379 lines
22 KiB
HTML
379 lines
22 KiB
HTML
<html>
|
|
|
|
<head>
|
|
|
|
<title>Iterated profile searches with PSI-BLAST</title>
|
|
|
|
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
|
|
|
|
<META NAME="keywords" CONTENT="sequence analysis, BLAST, Altschul, Cold Sping Harbor, statistics, sequence similarity">
|
|
|
|
<META NAME="description" CONTENT="insert the description to be displayed by the search engine. Also searched by the search engine.">
|
|
|
|
<link rel="stylesheet" href="./ncbi.css">
|
|
|
|
</head>
|
|
|
|
|
|
|
|
|
|
|
|
<body bgcolor="#FFFFFF" background="GIFS/bkgd.gif" alt="" text="#000000" link="#000099" vlink="#6666CC">
|
|
|
|
<span class="TEXT"> <!-- the header -->
|
|
|
|
<table border="0" width="600" cellspacing="0" cellpadding="0">
|
|
|
|
<tr>
|
|
|
|
<td width="140"><a href="https://www.ncbi.nlm.nih.gov"> <img src="GIFS/left.GIF" alt="NCBI" width="130" height="45" border="0"></a></td>
|
|
|
|
<td width="360" class="H1" valign="BOTTOM"> <span class="H1">Iterated profile searches with PSI-BLAST</span><BR></td>
|
|
|
|
<td width="100" valign="MIDDLE"><A HREF="http://www.cshl.org/"><IMG SRC="GIFS/CSH.gif" ALT="CSH" ALIGN=BOTTOM WIDTH="45" HEIGHT="45" BORDER="0"></A></td>
|
|
|
|
</tr>
|
|
|
|
</table>
|
|
|
|
<!-- the quicklinks bar -->
|
|
|
|
<table CLASS="TEXT" border="0" width="600" cellspacing="0" cellpadding="3" bgcolor="#000000">
|
|
|
|
<tr CLASS="TEXT" align="CENTER">
|
|
|
|
<td width="170"><a href="Altschul-1.html" class="BAR">The statistics of <BR>sequence similarity scores</a></td>
|
|
|
|
<td width="170"><a href="Altschul-3.html" class="BAR">The statistics of <BR>PSI-BLAST scores</a></td>
|
|
|
|
<td width="170"><a href="Altschul-2.html" class="BAR">Iterated profile searches <BR>with PSI-BLAST</a></td>
|
|
|
|
<td width="90"><a href="https://blast.ncbi.nlm.nih.gov/" class="BAR">BLAST<BR>Home</a></td>
|
|
|
|
</tr>
|
|
|
|
</table>
|
|
|
|
<!-- the contents -->
|
|
|
|
<table border="0" width="600" cellspacing="0" cellpadding="0">
|
|
|
|
<tr valign="TOP"> <!-- left column -->
|
|
|
|
<td width="125">
|
|
|
|
<p> </p>
|
|
<p class="GUTTER1"><a href="#head1" class="GUTTER">The design of PSI-BLAST</a><BR><BR>
|
|
|
|
<p class="GUTTER1"><a href="#head2" class="GUTTER">An example</a><BR><BR>
|
|
|
|
<p class="GUTTER1"><a href="#head3" class="GUTTER">Notes on using PSI-BLAST</a><BR><BR>
|
|
|
|
<p class="GUTTER1"><a href="#head4" class="GUTTER">Adapted from:</a><BR><BR>
|
|
|
|
<p class="GUTTER1"><a href="#head5" class="GUTTER">Exercise</A><BR><BR>
|
|
|
|
<p class="GUTTER1"><a href="#refs" class="GUTTER">References</a><BR><BR>
|
|
|
|
|
|
</td>
|
|
|
|
<!-- extra column to force things over the gif border -->
|
|
|
|
<td width="15"> </td>
|
|
|
|
<!-- right content column -->
|
|
|
|
<td class="TEXTWIDE" width="460">
|
|
|
|
<p> </p>
|
|
|
|
<!-- title with bullet -->
|
|
|
|
<h3><img src="GIFS/bluebullet.gif" alt="" width="16" height="14">Introduction</h3>
|
|
|
|
<!-- end of title with bullet -->
|
|
|
|
<SPAN CLASS=TEXTWIDE>
|
|
|
|
Many functionally and evolutionarily important protein similarities are
|
|
recognizable only through comparison of three-dimensional structures <A HREF="#ref1">[1,2]</A>.
|
|
When such structures are not available, patterns of conservation identified
|
|
from the alignment of related sequences can aid the recognition of distant
|
|
similarities. There is a large literature on the definition and construction
|
|
of these patterns, which have been variously called motifs, profiles,
|
|
position-specific score matrices, and Hidden Markov Models <A HREF="#ref3">[3-11]</A>.
|
|
In essence, for each position in the derived pattern, every amino acid
|
|
is assigned a score. If a residue is highly conserved at a particular
|
|
position, that residue is assigned a high positive score, and others are
|
|
assigned high negative scores. At weakly conserved positions, all residues
|
|
receive scores near zero. Position-specific scores can also be assigned to
|
|
potential insertions and deletions <A HREF="#ref4">[4,9,11]</A>.<BR>
|
|
|
|
The power of profile methods can be further enhanced through iteration of
|
|
the search procedure <A HREF="#ref6">[6-8,10]</A>. After a profile is run against a database,
|
|
new similar sequences can be detected. A new multiple alignment, which
|
|
includes these sequences, can be constructed, a new profile abstracted,
|
|
and a new database search performed. The procedure can be iterated as
|
|
often as desired or until convergence, when no new statistically significant
|
|
sequences are detected.<BR>
|
|
|
|
|
|
<h3><img src="GIFS/bluebullet.gif" alt="" width="16" height="14"><A name="head1">The design of PSI-BLAST</A></h3>
|
|
|
|
Iterated profile search methods have led to biologically important observations
|
|
but, for many years, were quite slow and generally did not provide precise
|
|
means for evaluating the significance of their results. This limited their
|
|
utility for systematic mining of the protein databases. The principal design
|
|
goals in developing the Position-Specific Iterated BLAST (PSI-BLAST) program
|
|
<A HREF="#ref10">[10]</A> were speed, simplicity and automatic operation. The procedure PSI-BLAST
|
|
uses can be summarized in five steps:<BR>
|
|
|
|
<CENTER><TABLE WIDTH=400>
|
|
<TR><TD ><SPAN CLASS=TEXTWIDE>
|
|
(1) PSI-BLAST takes as an input a single protein sequence and compares
|
|
it to a protein database, using the gapped BLAST program <A HREF="#ref10">[10]</A>.
|
|
</TD></TR>
|
|
<TR><TD ><SPAN CLASS=TEXTWIDE>
|
|
(2) The program constructs a multiple alignment, and then a profile,
|
|
from any significant local alignments found. The original query
|
|
sequence serves as a template for the multiple alignment and profile,
|
|
whose lengths are identical to that of the query. Different numbers
|
|
of sequences can be aligned in different template positions.
|
|
</TD></TR>
|
|
<TR><TD ><SPAN CLASS=TEXTWIDE>
|
|
(3) The profile is compared to the protein database, again seeking
|
|
local alignments. After a few minor modifications, the BLAST
|
|
algorithm <A HREF="#ref10">[10,12]</A> can be used for this directly.
|
|
</TD></TR>
|
|
<TR><TD ><SPAN CLASS=TEXTWIDE>
|
|
(4) PSI-BLAST estimates the statistical significance of the local
|
|
alignments found. Because profile substitution scores are
|
|
constructed to a fixed scale <A HREF="#ref13">[13]</A>, and gap scores remain independent
|
|
of position, the statistical theory and parameters for gapped BLAST
|
|
alignments <A HREF="#ref14">[14]</A> remain applicable to profile alignments <A HREF="#ref10">[10]</A>.
|
|
</TD></TR>
|
|
<TR><TD ><SPAN CLASS=TEXTWIDE>
|
|
(5) Finally, PSI-BLAST iterates, by returning to step (2), an arbitrary
|
|
number of times or until convergence.
|
|
</TD></TR>
|
|
</TABLE></CENTER><BR>
|
|
|
|
Profile-alignment statistics allow PSI-BLAST to proceed as a natural extension
|
|
of BLAST; the results produced in iterative search steps are comparable to
|
|
those produced from the first pass. Unlike most profile-based search methods,
|
|
PSI-BLAST runs as one program, starting with a single protein sequence, and
|
|
the intermediate steps of multiple alignment and profile construction are
|
|
invisible to the user.<BR>
|
|
|
|
|
|
<h3><img src="GIFS/bluebullet.gif" alt="" width="16" height="14"><A name="head2">An example</A></h3>
|
|
|
|
PSI-BLAST uncovers many protein relationships missed by single-pass database-
|
|
search methods and has identified relationships that were previously detectable
|
|
only from information about the three-dimensional structure of the proteins
|
|
<A HREF="#ref10">[10,15,16]</A>. Here, we illustrate how to operate PSI-BLAST by using a comparison
|
|
of proteins from thermophilic archaea and bacteria as an example <A HREF="#ref17">[17]</A>. We
|
|
employ the WWW version of PSI-BLAST.<BR>
|
|
|
|
Use <A HREF="https://www.ncbi.nlm.nih.gov/Entrez/" TARGET=NEW>Entrez</A> to find the sequence of the uncharacterized protein MJ0414 from
|
|
<I>Methanococcus jannaschii </I><A HREF="#ref18">[18]</A> in FASTA format, and paste it into the <A HREF="https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&USER_FORMAT_DEFAULTS=on&SET_SAVED_SEARCH=true&PAGE=Proteins&PROGRAM=blastp&GAPCOSTS=11%201&DATABASE=nr&BLAST_PROGRAMS=psiBlast&MAX_NUM_SEQ=500&SHORT_QUERY_ADJUST=on&EXPECT=10&WORD_SIZE=3&MATRIX_NAME=BLOSUM62&COMPOSITION_BASED_STATISTICS=2&I_THRESH=0.005&EQ_MENU=Enter%20organism%20name%20or%20id--completions%20will%20be%20suggested&SHOW_OVERVIEW=true&SHOW_LINKOUT=true&ALIGNMENT_VIEW=Pairwise&MASK_CHAR=2&MASK_COLOR=1&GET_SEQUENCE=true&NEW_VIEW=true&NCBI_GI=false&NUM_OVERVIEW=100&DESCRIPTIONS=100&ALIGNMENTS=100&FORMAT_OBJECT=Alignment&FORMAT_TYPE=HTML&SHOW_CDS_FEATURE=false&OLD_BLAST=false" TARGET="NEW">PSI-BLAST
|
|
Web page</A>. At this point, you may immediately press the Submit Query button
|
|
or, instead, first tailor the search. For example, you may change the
|
|
substitution and gap costs, or the cutoff <I>E</I>-value that PSI-BLAST uses when
|
|
constructing a profile for the next iteration. This default <I>E</I>-value is the
|
|
rather conservative 0.001. Change it here to 0.01.<BR>
|
|
|
|
Examine the results of the program's initial gapped BLAST search. The only
|
|
significant hits are very strong ones to the query sequence itself, and to
|
|
uncharacterized proteins from three other archaea and the thermophilic
|
|
bacteria <I>Aquifex aeolicus</I>. However, iterating the search by using the
|
|
derived profile uncovers yeast DNA ligase II <A HREF="#ref19">[19]</A> with <I>E</I>-value 0.005,
|
|
which is moderately significant. If you have used 0.01 as the cutoff
|
|
<I>E-value</I> for recruitment of alignments into successive profiles, the ligase
|
|
sequence is included at this stage. If you left the cutoff <I>E</I>-value at 0.001,
|
|
PSI-BLAST reports convergence because no new sequences have alignments that
|
|
pass this threshold. Nevertheless, by checking the box next to the yeast
|
|
DNA ligase, you can force its inclusion in the construction of a PSI-BLAST
|
|
profile, and run another iteration. Because a ligase has been used in
|
|
constructing the query, the next iteration produces many highly significant
|
|
alignments that involve other DNA ligases.<BR>
|
|
|
|
How do we interpret these results? Once a single sequence from a highly
|
|
conserved family (here, the DNA ligases) is used in constructing a profile,
|
|
the rest of the family will almost certainly be retrieved (and have <I>E</I>-values
|
|
of high significance) in subsequent iterations. Impressive <I>E</I>-values for
|
|
sequences retrieved in later iterations depend upon the validity of earlier
|
|
inferences and therefore should not be taken as automatic proof of homology.
|
|
In the example considered here, the best evidence for a possible relationship
|
|
between the thermophile protein family and DNA ligases is the alignment
|
|
produced in the first PSI-BLAST iteration (<I>E</I> = 0.005). This should be taken
|
|
as a hint that requires corroboration. Fortunately, the PSI-BLAST alignment
|
|
of our uncharacterized protein and yeast DNA ligase here provides such
|
|
corroboration (<A HREF="Fig1.html" TARGET="NEW2">Fig. 1</A>). The best-conserved portions of the alignment
|
|
correspond perfectly to the set of conserved motifs identified in ATP-
|
|
dependent DNA ligases <A HREF="#ref20">[20]</A>, including the catalytic lysine residue that
|
|
forms a covalent adduct with AMP (<A HREF="Fig1.html" TARGET="NEW>Fig. 1</A>). Although the <I>E-values</I> reported
|
|
for the other ligase alignments do nothing to confirm the relationship, the
|
|
alignments themselves conform to the conservation pattern shown in <A HREF="Fig1.html" TARGET="NEW>Fig. 1</A>.
|
|
Thus, we can conclude that the uncharacterized archaeal and <I>A. aeolicus</I>
|
|
proteins probably comprise a new family of ATP-dependent DNA ligases.
|
|
This finding is interesting both in itself and in the context of the
|
|
apparently massive horizontal gene exchange between thermophilic archaea
|
|
and bacteria <A HREF="#ref17">[17]</A>.<BR>
|
|
|
|
<h3><img src="GIFS/bluebullet.gif" alt="" width="16" height="14"><A name="head3">Notes on using PSI-BLAST</A></h3>
|
|
|
|
The WWW version of PSI-BLAST requires the user to decide after each iteration
|
|
whether to continue. In some respects this is a limitation, but it has the
|
|
advantage that the user can hand-pick the sequences used for each profile
|
|
construction, regardless of <I>E-value</I>, by checking boxes next to the sequences'
|
|
descriptions. A <A HREF="ftp://ncbi.nlm.nih.gov/blast/executables/">stand-alone version</A> of PSI-BLAST (obtainable from NCBI by
|
|
anonymous FTP at ftp://ncbi.nlm.nih.gov/blast/executables/) allows the user
|
|
to run the program for a chosen number of iterations or until convergence;
|
|
it also allows the user to save the profile produced and use it subsequently
|
|
to search another database.<BR>
|
|
|
|
PSI-BLAST is a powerful tool, but its use requires caution. The sources of
|
|
error are the same as for standard BLAST but are easily amplified by iteration.
|
|
The major source of deceptive alignments is the presence within proteins of
|
|
regions with highly biased amino acid composition <A HREF="#ref21">[21]</A>. If such a region
|
|
is included during production of a profile, otherwise unrelated sequences
|
|
containing similarly biased regions will probably creep in during subsequent
|
|
iterations, rendering the search nearly worthless. PSI-BLAST filters out
|
|
biased regions of query sequences by default, using the SEG program <A HREF="#ref21">[21]</A>.
|
|
Because the SEG parameters have been set to avoid masking potentially
|
|
important regions, some bias may persist; PSI-BLAST can thus still generate
|
|
compositionally rooted artifacts. These cases usually can be identified by
|
|
inspection - especially when sequences that have a known bias, such as myosins
|
|
or collagens, are retrieved. <A HREF="ftp://ncbi.nlm.nih.gov/pub/seg/seg/">SEG</A> (ftp://ncbi.nlm.nih.gov/pub/seg/seg/) can be
|
|
used with parameters that eliminate nearly all biased regions <A HREF="#ref21">[21]</A>, and the
|
|
user can apply locally other filtering procedures, such as COILS <A HREF="#ref22">[22]</A> (which
|
|
detects coiled-coil regions), before submitting the appropriately masked
|
|
sequence to PSI-BLAST.<BR>
|
|
|
|
<h3><img src="GIFS/bluebullet.gif" alt="" width="16" height="14"><A name="head5">Exercise</A></h3>
|
|
|
|
Use Entrez to find the C-terminal region (approximately 215 residues)
|
|
of human BRCA1 (SWISS-PROT accession number P38398) <A HREF="#ref23">[23]</A>. Search the
|
|
NR protein database with this sequence using PSI-BLAST. What do the Xs
|
|
in some alignments represent? Can the search be modified so that they
|
|
do not appear? How many PSI-BLAST iterations can be performed before
|
|
convergence? If dubious similarities pass the threshold for inclusion
|
|
in profile construction during a given iteration, try removing them and
|
|
check whether they reappear with significant similarity in the subsequent
|
|
iteration. For published analyses of some of these similarities, see
|
|
<A HREF="#ref10">[10,24-26]</A>.<BR>
|
|
|
|
|
|
|
|
<h3><img src="GIFS/bluebullet.gif" alt="" width="16" height="14"><A name="head4">Adapted from:</A></h3>
|
|
|
|
Altschul, S.F. & Koonin, E.V. (1998) "Iterated profile searches with
|
|
PSI-BLAST - a tool for discovery in protein databases." Trends Biochem.
|
|
Sci. 23, 444-447.<BR>
|
|
|
|
|
|
|
|
<h3><img src="GIFS/bluebullet.gif" alt="" width="16" height="14"><A name = "refs">References</A></h3>
|
|
|
|
|
|
<A NAME="ref1">[1]</A> Holm, L. & Sander, C. (1997) "New structure - novel fold?" Structure
|
|
5:165-171. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/9032077">(PubMed)</A><BR><BR>
|
|
<A NAME="ref2">[2]</A> Brenner, S.E., Chothia, C. & Hubbard, T.J.P. (1998) "Assessing sequence
|
|
comparison methods with reliable structurally identified distant
|
|
evolutionary relationships." Proc. Natl. Acad. Sci. USA 95:6073-6078. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/9600919">(PubMed)</A><BR><BR>
|
|
<A NAME="ref3">[3]</A> Schneider, T.D., Stormo, G.D., Gold, L. & Ehrenfeucht, A. (1986)
|
|
"Information content of binding sites on nucleotide sequences."
|
|
J. Mol. Biol. 188:415-431. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/3525846">(PubMed)</A><BR><BR>
|
|
<A NAME="ref4">[4]</A> Gribskov, M., McLachlan, A.D. and Eisenberg, D. (1987) "Profile analysis:
|
|
detection of distantly related proteins." Proc. Natl. Acad. Sci. USAR
|
|
84:4355-4358. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/3474607">(PubMed)</A><BR><BR>
|
|
<A NAME="ref5">[5]</A> Staden, R. (1988) "Methods to define and locate patterns of motifs in
|
|
sequences." Comput. Appl. Biosci. 4:53-60. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/2898280">(PubMed)</A><BR><BR>
|
|
<A NAME="ref6">[6]</A> Gribskov, M. (1992) "Translational initiation factor-IF-1 and
|
|
factor-EIF-2-alpha share an RNA-binding motif with prokaryotic ribosomal
|
|
protein-S1 and polynucleotide phosphorylase." Gene 119:107-111. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/1383091">(PubMed)</A><BR><BR>
|
|
<A NAME="ref7">[7]</A> Tatusov, R.L., Altschul, S.F. & Koonin, E.V. (1994) "Detection of
|
|
conserved segments in proteins: Iterative scanning of sequence databases
|
|
with alignment blocks." Proc. Natl. Acad. Sci. USA 91:12091-12095. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/7991589">(PubMed)</A><BR><BR>
|
|
<A NAME="ref8">[8]</A> Yi, T-M. and Lander, E.S. (1994) "Recognition of related proteins by
|
|
iterative template refinement (ITR)." Prot. Sci. 3:1315-1328. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/7987226">(PubMed)</A><BR><BR>
|
|
<A NAME="ref9">[9]</A> Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. (1996) "A flexible motif
|
|
search technique based on generalized profiles." Comput. Chem. 20:3-23. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/8867839">(PubMed)</A><BR><BR>
|
|
<A NAME="ref10">[10]</A> Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller,
|
|
W. & Lipman, D.J. (1997) "Gapped BLAST and PSI-BLAST: a new generation of
|
|
protein database search programs." Nucleic Acids Res. 25:3389-3402. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/9254694">(PubMed)</A><BR><BR>
|
|
<A NAME="ref11">[11]</A> Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998) "Biological
|
|
Sequence Analysis. Probabilistic Models of Proteins and Nucleic Acids."
|
|
Cambridge University Press, Cambridge, UK. <BR><BR>
|
|
|
|
<A NAME="ref12">[12]</A> Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990)
|
|
"Basic local alignment search tool." J. Mol. Biol. 215:403-410. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/2231712">(PubMed)</A><BR><BR>
|
|
<A NAME="ref13">[13]</A> Karlin, S. & Altschul, S.F. (1990) "Methods for assessing the statistical
|
|
significance of molecular sequence features by using general scoring
|
|
schemes." Proc. Natl. Acad. Sci. USA 87:2264-2268. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/2315319">(PubMed)</A><BR><BR>
|
|
<A NAME="ref14">[14]</A> Altschul, S.F. & Gish, W. (1996) "Local alignment statistics." Meth.
|
|
Enzymol. 266:460-480. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/8743700">(PubMed)</A><BR><BR>
|
|
<A NAME="ref15">[15]</A> Mushegian, A.R., Bassett, D.E. Jr., Boguski, M.S., Bork, P. & Koonin, E.V.
|
|
(1997) "Positionally cloned human disease genes: patterns of evolutionary
|
|
conservation and functional motifs." Proc. Natl. Acad. Sci. USA
|
|
94:5831-5836. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/9159160">(PubMed)</A><BR><BR>
|
|
|
|
<A NAME="ref16">[16]</A> Huynen, M., Doerks, T., Eisenhaber, F., Orengo, C., Sunyaev, S., Yuan, Y. &
|
|
Bork, P. (1998) "Homology-based fold predictions for Mycoplasma genitalium
|
|
proteins." J. Mol. Biol. 280:323-326. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/9665839">(PubMed)</A><BR><BR>
|
|
<A NAME="ref17">[17]</A> Aravind, L., Tatusov, R.L., Wolf , Y.I., Walker, D.R. and Koonin, E.V. (1998) "Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles." Trends Genet., 14:442-444 <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/9825671">(PubMed)</A><BR><BR>
|
|
<A NAME="ref18">[18]</A> Bult, C.J., White, O., Olsen, G.J., Zhou, L., Fleischmann, R.D., Sutton,
|
|
G.G., Blake, J.A., FitzGerald, L.M., Clayton, R.A., Gocayne, J.D.,
|
|
Kerlavage, A.R., Dougherty, B.A., Tomb, J.F., Adams, M.D., Reich, C.I.,
|
|
Overbeek, R., Kirkness, E.F., Weinstock, K.G., Merrick, J.M., Glodek, A.,
|
|
Scott, J.L., Geoghagen, N.S.M. & Venter, J.C. (1996) "Complete genome
|
|
sequence of the methanogenic archaeon, Methanococcus jannaschii." Science
|
|
273:1058-1073. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/8688087">(PubMed)</A><BR><BR>
|
|
<A NAME="ref19">[19]</A> Sterky, F., Holmberg, A., Pettersson, B. & Uhlen, M. (1996) "The sequence
|
|
of a 30 kb fragment on the left arm of chromosome XV from Saccharomyces
|
|
cerevisiae reveals 15 open reading frames, five of which correspond to
|
|
previously identified genes." Yeast 12:1091-1095. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/8896276">(PubMed)</A><BR><BR>
|
|
<A NAME="ref20">[20]</A> Shuman, S. & Schwer, B. (1995) "RNA capping enzyme and DNA ligase: a
|
|
superfamily of covalent nucleotidyl transferases." Mol. Microbiol.
|
|
17:405-410. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/8559059">(PubMed)</A><BR><BR>
|
|
<A NAME="ref21">[21]</A> Wootton, J.C. & Federhen, S. (1996) "Analysis of compositionally biased
|
|
regions in sequence databases." Methods Enzymol. 266:554-571. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/8743706">(PubMed)</A><BR><BR>
|
|
<A NAME="ref22">[22]</A> Lupas, A. (1996) "Prediction and analysis of coiled-coil structures."
|
|
Methods Enzymol. 266:513-525. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/8743703">(PubMed)</A><BR><BR>
|
|
<A NAME="ref23">[23]</A> Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P.A., Harshman, K.,
|
|
Tavtigian, S., Liu, Q., Cochran, C., Bennett, L.M., Ding, W., Bell, R.,
|
|
Rosenthal, J., Hussey, C., Tran, T., McClure, M., Frye, C., Hattier, T.,
|
|
Phelps, R., Haugen-Strano, A., Katcher, H., Yakumo, K., Gholami, Z.,
|
|
Shaffer, D., Stone, S., Bayer, S., Wray, C., Bogden, R., Dayananth, P.,
|
|
Ward, J., Tonin, P., Narod, S., Bristow, P.K., Norris, F.H., Helvering, L.,
|
|
Morrison, P., Rosteck, P., Lai, M., Barrett, J.C., Lewis, C., Neuhausen,
|
|
S., Cannon-Albright, L., Goldgar, D., Wiseman, R., Kamb, A. & Skolnick,
|
|
M.H. (1994) "A strong candidate for the breast and ovarian cancer
|
|
susceptibility gene BRCA1." Science 266:66-71. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/7545954">(PubMed)</A><BR><BR><A NAME="ref24">[24]</A> Koonin, E.V., Altschul, S.F. & Bork, P. (1996) "BRCA1 protein products:
|
|
Functional motifs." Nature Genet. 13:266-268. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/8673121">(PubMed)</A><BR><BR><A NAME="ref25">[25]</A> Bork, P., Hofmann, K., Bucher, P, Neuwald, A.F., Altschul, S.F. & Koonin,
|
|
E.V. (1997) "A superfamily of conserved domains in DNA damage-responsive
|
|
cell cycle checkpoint proteins," FASEB J. 11:68-76. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/9034168">(PubMed)</A><BR><BR><A NAME="ref26">[26]</A> Callebaut, I. & Mornon, J.P. (1997) "From BRCA1 to RAP1: a widespread BRCT
|
|
module closely associated with DNA repair." FEBS Lett. 400:25-30. <A HREF="https://www.ncbi.nlm.nih.gov/pubmed/9000507">(PubMed)</A><BR><BR> </td>
|
|
|
|
|
|
|
|
</tr>
|
|
|
|
</table>
|
|
|
|
<!-- end of content --> <!-- bottom of the page -->
|
|
|
|
</span>
|
|
|
|
</table>
|
|
|
|
|
|
|
|
|
|
|
|
</body>
|
|
|
|
</html>
|
|
|