8758 lines
828 KiB
Text
8758 lines
828 KiB
Text
|
|
|
|
|
|
|
|
|
|
<!DOCTYPE html>
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
|
|
|
|
<head>
|
|
|
|
|
|
|
|
<!--
|
|
################################# CRAWLER WARNING #################################
|
|
|
|
- The terms of service and the robots.txt file disallows crawling of this site,
|
|
please see https://omim.org/help/agreement for more information.
|
|
|
|
- A number of data files are available for download at https://omim.org/downloads.
|
|
|
|
- We have an API which you can learn about at https://omim.org/help/api and register
|
|
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
|
|
|
|
- You should feel free to contact us at https://omim.org/contact to figure out the best
|
|
approach to getting the data you need for your work.
|
|
|
|
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
|
|
|
|
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
|
|
DISTRIBUTED CRAWLS OF THIS SITE.
|
|
|
|
################################# CRAWLER WARNING #################################
|
|
-->
|
|
|
|
|
|
|
|
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
|
|
<meta http-equiv="cache-control" content="no-cache" />
|
|
<meta http-equiv="pragma" content="no-cache" />
|
|
<meta name="robots" content="index, follow" />
|
|
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
|
|
|
|
|
|
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
|
|
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
|
|
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
|
|
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
|
|
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
|
|
contain copious links to other genetics resources." />
|
|
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
|
|
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
|
|
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
|
|
<meta name="theme-color" content="#333333" />
|
|
<link rel="icon" href="/static/omim/favicon.png" />
|
|
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
|
|
<link rel="manifest" href="/static/omim/manifest.json" />
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script id='mimBrowserCapability'>
|
|
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
|
|
</script>
|
|
|
|
|
|
|
|
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
|
|
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
|
|
|
|
<link rel="preconnect" href="https://www.googletagmanager.com" />
|
|
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
|
|
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
|
|
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
|
|
<script>
|
|
window.dataLayer = window.dataLayer || [];
|
|
function gtag(){window.dataLayer.push(arguments);}
|
|
gtag("js", new Date());
|
|
gtag("config", "G-HMPSQC23JJ");
|
|
</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
|
|
|
|
|
|
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
|
|
|
|
|
|
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div id="mimBootstrapDeviceSize">
|
|
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
|
|
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
|
|
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
|
|
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
|
|
</div>
|
|
|
|
|
|
|
|
<title>
|
|
|
|
Entry
|
|
|
|
- *613815 - CYTOCHROME P450, FAMILY 21, SUBFAMILY A, POLYPEPTIDE 2; CYP21A2
|
|
|
|
|
|
- OMIM
|
|
|
|
</title>
|
|
|
|
|
|
|
|
</head>
|
|
|
|
<body>
|
|
<div id="mimBody">
|
|
|
|
|
|
|
|
<div id="mimHeader" class="hidden-print">
|
|
|
|
|
|
|
|
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
|
|
<div class="container-fluid">
|
|
|
|
<!-- Brand and toggle get grouped for better mobile display -->
|
|
<div class="navbar-header">
|
|
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
|
|
<span class="sr-only"> Toggle navigation </span>
|
|
<span class="icon-bar"></span>
|
|
<span class="icon-bar"></span>
|
|
<span class="icon-bar"></span>
|
|
</button>
|
|
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
|
|
</div>
|
|
|
|
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
|
|
|
|
<ul class="nav navbar-nav">
|
|
|
|
|
|
<li>
|
|
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
|
|
</li>
|
|
|
|
|
|
|
|
<li class="dropdown">
|
|
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
|
|
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
|
|
<li>
|
|
<a href="/statistics/update"> Update List </a>
|
|
</li>
|
|
<li>
|
|
<a href="/statistics/entry"> Entry Statistics </a>
|
|
</li>
|
|
<li>
|
|
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
|
|
</li>
|
|
<li>
|
|
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
|
|
|
|
|
|
<li class="dropdown">
|
|
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
|
|
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
|
|
|
|
<li>
|
|
<a href="/downloads/"> Register for Downloads </a>
|
|
</li>
|
|
<li>
|
|
<a href="/api"> Register for API Access </a>
|
|
</li>
|
|
|
|
</ul>
|
|
</li>
|
|
|
|
|
|
|
|
<li>
|
|
<a href="/contact?mimNumber=613815"><span class="mim-navbar-menu-font"> Contact Us </span></a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li>
|
|
|
|
<a href="/mimmatch/">
|
|
|
|
<span class="mim-navbar-menu-font">
|
|
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
|
|
MIMmatch
|
|
</span>
|
|
</span>
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="dropdown">
|
|
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
|
|
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
|
|
<li>
|
|
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
|
|
</li>
|
|
<li>
|
|
<a href="/donors"> Donors </a>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
|
|
|
|
|
|
<li class="dropdown">
|
|
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
|
|
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
|
|
<li>
|
|
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
|
|
</li>
|
|
<li role="separator" class="divider"></li>
|
|
<li>
|
|
<a href="/help/search"> Search Help </a>
|
|
</li>
|
|
<li>
|
|
<a href="/help/linking"> Linking Help </a>
|
|
</li>
|
|
<li>
|
|
<a href="/help/api"> API Help </a>
|
|
</li>
|
|
<li role="separator" class="divider"></li>
|
|
<li>
|
|
<a href="/help/external"> External Links </a>
|
|
</li>
|
|
<li role="separator" class="divider"></li>
|
|
<li>
|
|
<a href="/help/agreement"> Use Agreement </a>
|
|
</li>
|
|
<li>
|
|
<a href="/help/copyright"> Copyright </a>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
|
|
|
|
|
|
<li>
|
|
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
</nav>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div id="mimSearch" class="hidden-print">
|
|
|
|
<div class="container">
|
|
|
|
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
|
|
|
|
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
|
|
<input type="hidden" id="mimSearchStart" name="start" value="1" />
|
|
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
|
|
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
|
|
|
|
|
|
<div class="row">
|
|
|
|
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
|
|
<div class="form-group">
|
|
<div class="input-group">
|
|
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
|
|
<div class="input-group-btn">
|
|
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
|
|
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
|
|
<ul class="dropdown-menu dropdown-menu-right">
|
|
<li class="dropdown-header">
|
|
Advanced Search
|
|
</li>
|
|
<li style="margin-left: 0.5em;">
|
|
<a href="/search/advanced/entry"> OMIM </a>
|
|
</li>
|
|
<li style="margin-left: 0.5em;">
|
|
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
|
|
</li>
|
|
<li style="margin-left: 0.5em;">
|
|
<a href="/search/advanced/geneMap"> Gene Map </a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li role="separator" class="divider"></li>
|
|
<li>
|
|
<a href="/history"> Search History </a>
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
|
|
<span class="small">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</form>
|
|
|
|
<div class="row">
|
|
<p />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
<!-- <div id="mimSearch"> -->
|
|
|
|
|
|
|
|
|
|
<div id="mimContent">
|
|
|
|
|
|
|
|
<div class="container hidden-print">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="row">
|
|
|
|
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
|
|
|
|
<div id="mimAlertBanner">
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div class="row">
|
|
|
|
|
|
|
|
|
|
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
|
|
|
|
<div id="mimFloatingTocMenu" class="small" role="navigation">
|
|
|
|
<p>
|
|
<span class="h4">*613815</span>
|
|
<br />
|
|
<strong>Table of Contents</strong>
|
|
</p>
|
|
|
|
<nav>
|
|
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
|
|
|
|
<li role="presentation">
|
|
<a href="#title"><strong>Title</strong></a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#geneMap"><strong>Gene-Phenotype Relationships</strong></a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#text"><strong>Text</strong></a>
|
|
</li>
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#description">Description</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#cloning">Cloning and Expression</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#geneStructure">Gene Structure</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#mapping">Mapping</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#molecularGenetics">Molecular Genetics</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#evolution">Evolution</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#allelicVariants"><strong>Allelic Variants</strong></a>
|
|
</li>
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="/allelicVariants/613815">Table View</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#seeAlso"><strong>See Also</strong></a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#references"><strong>References</strong></a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#creationDate"><strong>Creation Date</strong></a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#editHistory"><strong>Edit History</strong></a>
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</nav>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div id="mimFloatingLinksMenu">
|
|
|
|
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
|
|
<h4 class="panel-title">
|
|
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
|
|
<div style="display: table-row">
|
|
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">▼</div>
|
|
|
|
<div style="display: table-cell;">External Links</div>
|
|
</div>
|
|
</a>
|
|
</h4>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="mimExternalLinksFold" class="collapse in">
|
|
|
|
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimGenome">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimGenomeLinksFold" id="mimGenomeLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<span id="mimGenomeLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">►</span> Genome
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimGenomeLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="genome">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
<div><a href="https://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000231852;t=ENST00000644719" class="mim-tip-hint" title="Genome databases for vertebrates and other eukaryotic species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/genome/gdv/browser/gene/?id=1589" class="mim-tip-hint" title="Detailed views of the complete genomes of selected organisms from vertebrates to protozoa." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Genome Viewer', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Genome Viewer</a></div>
|
|
|
|
|
|
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=613815" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimDna">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimDnaLinksFold" id="mimDnaLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<span id="mimDnaLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">►</span> DNA
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimDnaLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
<div><a href="https://www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000231852;t=ENST00000644719" class="mim-tip-hint" title="Transcript-based views for coding and noncoding DNA." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl (MANE Select)</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_000500,NM_001128590,NM_001368143,NM_001368144" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_000500" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq (MANE)', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq (MANE Select)</a></div>
|
|
|
|
|
|
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=613815" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimProtein">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimProteinLinksFold" id="mimProteinLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<span id="mimProteinLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">►</span> Protein
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimProteinLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
|
|
|
|
<div><a href="https://www.proteinatlas.org/search/CYP21A2" class="mim-tip-hint" title="The Human Protein Atlas contains information for a large majority of all human protein-coding genes regarding the expression and localization of the corresponding proteins based on both RNA and protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HumanProteinAtlas', 'domain': 'proteinatlas.org'})">Human Protein Atlas</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/protein/30317,30320,30322,30326,30329,180962,180964,180967,181290,386910,386993,443672,1495071,1616595,2347138,4261614,5577972,7671644,16549193,19069810,83582434,83582436,101913853,101913859,101913863,101913869,105295600,105295606,105295612,115528435,115529073,118763989,119623975,119623976,145967428,150416595,158427436,162009872,162009874,171705263,183672285,183672302,189054439,210161037,219553001,242917610,242917613,242917615,242917617,242917619,242917621,242917623,253757503,253757505,253757507,253757509,253757511,253757519,253757523,253757525,253757527,253757529,253757531,253757533,253757535,253757537,253757539,253757543,253757545,253757547,253757549,253757551,253757553,253757555,253757557,253757563,253757567,253757569,253757571,253757573,253757575,253757577,253757579,253757581,253757583,253757585,253757587,253757589,253757591,253757593,253757595,253757597,253757599,253757601,253757605,253757607,253757609,253757611,253757613,253757615,253757617,253757619,253757621,253757623,253757627,253757629,253757631,253757633,253757639,306022307,306022309,306022311,306022313,306022315,323510663,323510665,345286336,345286344,345286346,345286357,345286363,345286365,345286369,345286371,345286374,387865929,387865931,387865933,387865935,387865937,387865939,387865941,387865943,387865945,387865947,387865949,387865951,387865953,387865955,387865957,387865959,387865961,387865963,387865965,387865967,387865969,387865971,387865973,387865975,387865977,387865979,387865981,387865983,387865985,387865987,387865991,387865993,387865995,387865997,387865999,557368078,558510067,558520526,564815588,576090023,667796661,667796663,854935387,1128613211,1128613213,1128613215,1128613217,1128613219,1137303567,1137303569,1137303571,1137303573,1137645649,1270117885,1370525755,1534917802,1534917804,1534917806,1559191250,1559191263,2217419995,2217420003,2664702732" class="mim-tip-hint" title="NCBI protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Protein', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Protein</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.uniprot.org/uniprotkb/P08686" class="mim-tip-hint" title="Comprehensive protein sequence and functional information, including supporting data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UniProt', 'domain': 'uniprot.org'})">UniProt</a></div>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimGeneInfo">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimGeneInfoLinksFold" id="mimGeneInfoLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<div style="display: table-row">
|
|
<div id="mimGeneInfoLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">►</div>
|
|
|
|
<div style="display: table-cell;">Gene Info</div>
|
|
</div>
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimGeneInfoLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
<div><a href="http://biogps.org/#goto=genereport&id=1589" class="mim-tip-hint" title="The Gene Portal Hub; customizable portal of gene and protein function information." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'BioGPS', 'domain': 'biogps.org'})">BioGPS</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000231852;t=ENST00000644719" class="mim-tip-hint" title="Orthologs, paralogs, regulatory regions, and splice variants." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=CYP21A2" class="mim-tip-hint" title="The Human Genome Compendium; web-based cards integrating automatically mined information on human genes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneCards', 'domain': 'genecards.org'})">GeneCards</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="http://amigo.geneontology.org/amigo/search/annotation?q=CYP21A2" class="mim-tip-hint" title="Terms, defined using controlled vocabulary, representing gene product properties (biologic process, cellular component, molecular function) across species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneOntology', 'domain': 'amigo.geneontology.org'})">Gene Ontology</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.genome.jp/dbget-bin/www_bget?hsa+1589" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
|
|
|
|
|
|
|
|
<dd><a href="http://v1.marrvel.org/search/gene/CYP21A2" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></dd>
|
|
|
|
|
|
|
|
<dd><a href="https://monarchinitiative.org/NCBIGene:1589" class="mim-tip-hint" title="Monarch Initiative." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Monarch', 'domain': 'monarchinitiative.org'})">Monarch</a></dd>
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/gene/1589" class="mim-tip-hint" title="Gene-specific map, sequence, expression, structure, function, citation, and homology data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Gene', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Gene</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_chrom=chr6&hgg_gene=ENST00000644719.2&hgg_start=32038415&hgg_end=32041644&hgg_type=knownGene" class="mim-tip-hint" title="UCSC Genome Bioinformatics; gene-specific structure and function information with links to other databases." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC', 'domain': 'genome.ucsc.edu'})">UCSC</a></div>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<div style="display: table-row">
|
|
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">►</div>
|
|
|
|
<div style="display: table-cell;">Clinical Resources</div>
|
|
</div>
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
<div><a href="https://search.clinicalgenome.org/kb/gene-dosage/HGNC:2600" class="mim-tip-hint" title="A ClinGen curated resource of genes and regions of the genome that are dosage sensitive and should be targeted on a cytogenomic array." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinGen Dosage', 'domain': 'dosage.clinicalgenome.org'})">ClinGen Dosage</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=613815[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimVariation">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimVariationLinksFold" id="mimVariationLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<span id="mimVariationLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">▼</span> Variation
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimVariationLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/clinvar?term=613815[MIM]" class="mim-tip-hint" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://gnomad.broadinstitute.org/gene/ENSG00000231852" class="mim-tip-hint" title="The Genome Aggregation Database (gnomAD), Broad Institute." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'gnomAD', 'domain': 'gnomad.broadinstitute.org'})">gnomAD</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ebi.ac.uk/gwas/search?query=CYP21A2" class="mim-tip-hint" title="GWAS Catalog; NHGRI-EBI Catalog of published genome-wide association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Catalog', 'domain': 'gwascatalog.org'})">GWAS Catalog </a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.gwascentral.org/search?q=CYP21A2" class="mim-tip-hint" title="GWAS Central; summary level genotype-to-phenotype information from genetic association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Central', 'domain': 'gwascentral.org'})">GWAS Central </a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=CYP21A2" class="mim-tip-hint" title="Human Gene Mutation Database; published mutations causing or associated with human inherited disease; disease-associated/functional polymorphisms." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGMD', 'domain': 'hgmd.cf.ac.uk'})">HGMD</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://evs.gs.washington.edu/EVS/PopStatsServlet?searchBy=Gene+Hugo&target=CYP21A2&upstreamSize=0&downstreamSize=0&x=0&y=0" class="mim-tip-hint" title="National Heart, Lung, and Blood Institute Exome Variant Server." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NHLBI EVS', 'domain': 'evs.gs.washington.edu'})">NHLBI EVS</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.pharmgkb.org/gene/PA27096" class="mim-tip-hint" title="Pharmacogenomics Knowledge Base; curated and annotated information regarding the effects of human genetic variations on drug response." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PharmGKB', 'domain': 'pharmgkb.org'})">PharmGKB</a></div>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<div style="display: table-row">
|
|
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">►</div>
|
|
|
|
<div style="display: table-cell;">Animal Models</div>
|
|
</div>
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.alliancegenome.org/gene/HGNC:2600" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.mousephenotype.org/data/genes/MGI:88591" class="mim-tip-hint" title="International Mouse Phenotyping Consortium." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'IMPC', 'domain': 'knockoutmouse.org'})">IMPC</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="http://v1.marrvel.org/search/gene/CYP21A2#HomologGenesPanel" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="http://www.informatics.jax.org/marker/MGI:88591" class="mim-tip-hint" title="Mouse Genome Informatics; international database resource for the laboratory mouse, including integrated genetic, genomic, and biological data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Gene', 'domain': 'informatics.jax.org'})">MGI Mouse Gene</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.mmrrc.org/catalog/StrainCatalogSearchForm.php?search_query=" class="mim-tip-hint" title="Mutant Mouse Resource & Research Centers." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MMRRC', 'domain': 'mmrrc.org'})">MMRRC</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/gene/1589/ortholog/" class="mim-tip-hint" title="Orthologous genes at NCBI." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Orthologs', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Orthologs</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.orthodb.org/?ncbi=1589" class="mim-tip-hint" title="Hierarchical catalogue of orthologs." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrthoDB', 'domain': 'orthodb.org'})">OrthoDB</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://zfin.org/ZDB-GENE-070103-6" class="mim-tip-hint" title="The Zebrafish Model Organism Database." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ZFin', 'domain': 'zfin.org'})">ZFin</a></div>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellularPathways">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimCellularPathwaysLinksFold" id="mimCellularPathwaysLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<div style="display: table-row">
|
|
<div id="mimCellularPathwaysLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">►</div>
|
|
|
|
<div style="display: table-cell;">Cellular Pathways</div>
|
|
</div>
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimCellularPathwaysLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.genome.jp/dbget-bin/get_linkdb?-t+pathway+hsa:1589" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://reactome.org/content/query?q=CYP21A2&species=Homo+sapiens&types=Reaction&types=Pathway&cluster=true" class="definition" title="Protein-specific information in the context of relevant cellular pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {{'name': 'Reactome', 'domain': 'reactome.org'}})">Reactome</a></div>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
<span>
|
|
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
|
|
|
|
</span>
|
|
</span>
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
|
|
|
|
<div>
|
|
|
|
<a id="title" class="mim-anchor"></a>
|
|
|
|
<div>
|
|
<a id="number" class="mim-anchor"></a>
|
|
<div class="text-right">
|
|
|
|
|
|
|
|
|
|
|
|
</div>
|
|
<div>
|
|
<span class="h3">
|
|
<span class="mim-font mim-tip-hint" title="Gene description">
|
|
<span class="text-danger"><strong>*</strong></span>
|
|
613815
|
|
</span>
|
|
</span>
|
|
</div>
|
|
</div>
|
|
|
|
<div>
|
|
<a id="preferredTitle" class="mim-anchor"></a>
|
|
<h3>
|
|
<span class="mim-font">
|
|
|
|
CYTOCHROME P450, FAMILY 21, SUBFAMILY A, POLYPEPTIDE 2; CYP21A2
|
|
|
|
</span>
|
|
</h3>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<a id="alternativeTitles" class="mim-anchor"></a>
|
|
<div>
|
|
<p>
|
|
<span class="mim-font">
|
|
<em>Alternative titles; symbols</em>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
CYTOCHROME P450, SUBFAMILY XXIA, POLYPEPTIDE 2<br />
|
|
CYTOCHROME P450, SUBFAMILY XXI; CYP21<br />
|
|
STEROID CYTOCHROME P450 21-HYDROXYLASE; P450C21<br />
|
|
21-HYDROXYLASE B; CYP21B<br />
|
|
CA21H
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="includedTitles" class="mim-anchor"></a>
|
|
<div>
|
|
<p>
|
|
<span class="mim-font">
|
|
Other entities represented in this entry:
|
|
</span>
|
|
</p>
|
|
</div>
|
|
<div>
|
|
<span class="h3 mim-font">
|
|
CYTOCHROME P450, SUBFAMILY XXIA, POLYPEPTIDE 1 PSEUDOGENE, INCLUDED; CYP21A1P, INCLUDED
|
|
</span>
|
|
</div>
|
|
|
|
<div>
|
|
<span class="h4 mim-font">
|
|
|
|
CYP21P, INCLUDED; CYP21A, INCLUDED
|
|
</span>
|
|
</div>
|
|
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="approvedGeneSymbols" class="mim-anchor"></a>
|
|
<p>
|
|
<span class="mim-text-font">
|
|
<strong><em>HGNC Approved Gene Symbol: <a href="https://www.genenames.org/tools/search/#!/genes?query=CYP21A2" class="mim-tip-hint" title="HUGO Gene Nomenclature Committee." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGNC', 'domain': 'genenames.org'})">CYP21A2</a></em></strong>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="cytogeneticLocation" class="mim-anchor"></a>
|
|
<p>
|
|
<span class="mim-text-font">
|
|
<strong>
|
|
<em>
|
|
Cytogenetic location: <a href="/geneMap/6/350?start=-3&limit=10&highlight=350">6p21.33</a>
|
|
|
|
Genomic coordinates <span class="small">(GRCh38)</span> : <a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr6:32038415-32041644&dgv=pack&knownGene=pack&omimGene=pack" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">6:32,038,415-32,041,644</a> </span>
|
|
</em>
|
|
</strong>
|
|
<a href="https://www.ncbi.nlm.nih.gov/" target="_blank" class="small"> (from NCBI) </a>
|
|
|
|
|
|
|
|
</span>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
<div>
|
|
<a id="geneMap" class="mim-anchor"></a>
|
|
<div style="margin-bottom: 10px;">
|
|
<span class="h4 mim-font">
|
|
<strong>Gene-Phenotype Relationships</strong>
|
|
</span>
|
|
</div>
|
|
<div>
|
|
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
|
|
<thead>
|
|
<tr class="active">
|
|
<th>
|
|
Location
|
|
</th>
|
|
<th>
|
|
Phenotype
|
|
|
|
</th>
|
|
<th>
|
|
Phenotype <br /> MIM number
|
|
</th>
|
|
<th>
|
|
Inheritance
|
|
</th>
|
|
<th>
|
|
Phenotype <br /> mapping key
|
|
</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
|
|
<tr>
|
|
<td rowspan="2">
|
|
<span class="mim-font">
|
|
<a href="/geneMap/6/350?start=-3&limit=10&highlight=350">
|
|
6p21.33
|
|
</a>
|
|
</span>
|
|
</td>
|
|
|
|
|
|
<td>
|
|
<span class="mim-font">
|
|
Adrenal hyperplasia, congenital, due to 21-hydroxylase deficiency
|
|
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
|
|
<a href="/entry/201910"> 201910 </a>
|
|
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
|
|
<abbr class="mim-tip-hint" title="Autosomal recessive">AR</abbr>
|
|
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
|
|
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
|
|
|
|
</span>
|
|
</td>
|
|
|
|
|
|
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
<tr>
|
|
<td>
|
|
<span class="mim-font">
|
|
Hyperandrogenism, nonclassic type, due to 21-hydroxylase deficiency
|
|
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
|
|
<a href="/entry/201910"> 201910 </a>
|
|
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
|
|
<abbr class="mim-tip-hint" title="Autosomal recessive">AR</abbr>
|
|
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
|
|
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
|
|
|
|
</span>
|
|
</td>
|
|
</tr>
|
|
|
|
|
|
|
|
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="btn-group">
|
|
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
|
|
PheneGene Graphics <span class="caret"></span>
|
|
</button>
|
|
<ul class="dropdown-menu" style="width: 17em;">
|
|
<li><a href="/graph/linear/613815" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
|
|
<li><a href="/graph/radial/613815" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
|
|
</ul>
|
|
</div>
|
|
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="text" class="mim-anchor"></a>
|
|
|
|
|
|
|
|
<h4>
|
|
|
|
<span class="mim-font">
|
|
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon <span class='glyphicon glyphicon-plus-sign'></span> at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
|
|
<strong>TEXT</strong>
|
|
</span>
|
|
</span>
|
|
</h4>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="description" class="mim-anchor"></a>
|
|
<h4 href="#mimDescriptionFold" id="mimDescriptionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimDescriptionToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Description</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimDescriptionFold" class="collapse in ">
|
|
<span class="mim-text-font">
|
|
<p>The CYP21A2 gene encodes the 21-hydroxylase enzyme (<a href="https://enzyme.expasy.org/EC/1.14.99.10" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'EC\', \'domain\': \'expasy.org\'})">EC 1.14.99.10</a>), which is essential for adrenal steroidogenesis (summary by <a href="#3" class="mim-tip-reference" title="Araujo, R. S., Mendonca, B. B., Barbosa, A. S., Lin, C. J., Marcondes, J. A. M., Billerbeck, A. E. C., Bachega, T. A. S. S. <strong>Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 92: 4028-4034, 2007.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17666484/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17666484</a>] [<a href="https://doi.org/10.1210/jc.2006-2163" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17666484">Araujo et al., 2007</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17666484" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="cloning" class="mim-anchor"></a>
|
|
<h4 href="#mimCloningFold" id="mimCloningToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimCloningToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Cloning and Expression</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimCloningFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p><a href="#78" class="mim-tip-reference" title="White, P. C., New, M. I., Dupont, B. <strong>Structure of human steroid 21-hydroxylase genes.</strong> Proc. Nat. Acad. Sci. 83: 5111-5115, 1986.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3487786/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3487786</a>] [<a href="https://doi.org/10.1073/pnas.83.14.5111" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3487786">White et al. (1986)</a> found that cDNA corresponding to 21-hydroxylase is 2 kb long. The encoded protein is predicted to contain 494 amino acids with a molecular weight of 55,000. The enzyme is at most 28% homologous to other cytochrome P450 enzymes that have been studied. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3487786" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="geneStructure" class="mim-anchor"></a>
|
|
<h4 href="#mimGeneStructureFold" id="mimGeneStructureToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimGeneStructureToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Gene Structure</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimGeneStructureFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p>The gene encoding 21-hydroxylase contains 10 exons; the genes for other P450 enzymes contain 7, 8, or 9 exons. The inactive A gene has an 8-base deletion in codons 110 through 112, resulting in a frameshift that brings a stop codon into the reading frame at codon 130; a second frameshift and a nonsense mutation occur farther downstream. The two P450C21 genes have 9 introns and are about 3.4 kb long (<a href="#24" class="mim-tip-reference" title="Higashi, Y., Yoshioka, H., Yamane, M., Gotoh, O., Fujii-Kuriyama, Y. <strong>Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene.</strong> Proc. Nat. Acad. Sci. 83: 2841-2845, 1986.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3486422/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3486422</a>] [<a href="https://doi.org/10.1073/pnas.83.9.2841" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3486422">Higashi et al., 1986</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3486422" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="mapping" class="mim-anchor"></a>
|
|
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Mapping</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p><a href="#9" class="mim-tip-reference" title="Carroll, M. C., Campbell, R. D., Porter, R. R. <strong>Mapping of steroid 21-hydroxylase genes adjacent to complement component C4 genes in HLA, the major histocompatibility complex in man.</strong> Proc. Nat. Acad. Sci. 82: 521-525, 1985.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3871526/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3871526</a>] [<a href="https://doi.org/10.1073/pnas.82.2.521" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3871526">Carroll et al. (1985)</a> identified two 21-hydroxylase genes situated in the following relationship to C4A and C4B: 5-prime--C4A--21-OHA--C4B--21-OHB- -3-prime. <a href="#76" class="mim-tip-reference" title="White, P. C., Grossberger, D., Onufer, B. J., Chaplin, D. D., New, M. I., Dupont, B., Strominger, J. L. <strong>Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man.</strong> Proc. Nat. Acad. Sci. 82: 1089-1093, 1985.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2983330/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2983330</a>] [<a href="https://doi.org/10.1073/pnas.82.4.1089" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2983330">White et al. (1985)</a> presented evidence for the existence of 2 genes encoding steroid 21-hydroxylase in the C4 gene region, i.e., among the MHC class III genes. The order appears to be: centromere--GLO--DP--DQ--DR--C2--BF--C4A--21OHA--C4B--2 1OHB--B--C--A. The 21-hydroxylase B gene and the adjacent C4B gene appear to be deleted on the chromosome carrying HLA-Bw47 and the allele for salt-wasting 21-hydroxylase deficiency. In contrast, the chromosome carrying the HLA-A1;B8;DR3 haplotype is not associated with 21-hydroxylase deficiency and in the conclusions of <a href="#76" class="mim-tip-reference" title="White, P. C., Grossberger, D., Onufer, B. J., Chaplin, D. D., New, M. I., Dupont, B., Strominger, J. L. <strong>Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man.</strong> Proc. Nat. Acad. Sci. 82: 1089-1093, 1985.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2983330/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2983330</a>] [<a href="https://doi.org/10.1073/pnas.82.4.1089" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2983330">White et al. (1985)</a> based on restriction enzyme analysis may have a deletion of the C4A and 21OHA genes. This suggests that the latter is not functional. (In the human, the 21-hydroxylase B gene is functional; the A gene is missing 8 basepairs from exon 2. In the mouse, the 21-hydroxylase A gene is functional; the B gene is missing 215 basepairs from exon 2.) <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2983330+3871526" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The 21-hydroxylase pseudogene, symbolized CYP21P or CYP21A, is situated on 6p, close to the functional gene, CYP21. <a href="#24" class="mim-tip-reference" title="Higashi, Y., Yoshioka, H., Yamane, M., Gotoh, O., Fujii-Kuriyama, Y. <strong>Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene.</strong> Proc. Nat. Acad. Sci. 83: 2841-2845, 1986.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3486422/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3486422</a>] [<a href="https://doi.org/10.1073/pnas.83.9.2841" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3486422">Higashi et al. (1986)</a> suggested that this particular genomic anatomy predisposes the functional gene to mutation through gene conversion or through deletion by homologous recombination and unequal crossing-over. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3486422" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#24" class="mim-tip-reference" title="Higashi, Y., Yoshioka, H., Yamane, M., Gotoh, O., Fujii-Kuriyama, Y. <strong>Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene.</strong> Proc. Nat. Acad. Sci. 83: 2841-2845, 1986.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3486422/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3486422</a>] [<a href="https://doi.org/10.1073/pnas.83.9.2841" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3486422">Higashi et al. (1986)</a> confirmed close linkage to C4 by finding that the cloned P450C21 genes hybridized with the 5-prime or 3-prime end regions of human C4 DNA. The P450C21 gene that is nonfunctional is identical to the other except for 3 mutations, each of which is capable of causing premature termination: a 1-base insertion, an 8-base deletion, and a transition mutation. <a href="#24" class="mim-tip-reference" title="Higashi, Y., Yoshioka, H., Yamane, M., Gotoh, O., Fujii-Kuriyama, Y. <strong>Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene.</strong> Proc. Nat. Acad. Sci. 83: 2841-2845, 1986.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3486422/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3486422</a>] [<a href="https://doi.org/10.1073/pnas.83.9.2841" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3486422">Higashi et al. (1986)</a> suggested that tandem arrangement of the highly homologous pseudo- and genuine genes in close proximity could account for the high incidence of P450C21 gene deficiency or defect through nonhomologous pairing and unequal crossing-over. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3486422" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="molecularGenetics" class="mim-anchor"></a>
|
|
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Molecular Genetics</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p><a href="#77" class="mim-tip-reference" title="White, P. C., New, M. I., Dupont, B. <strong>HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation.</strong> Proc. Nat. Acad. Sci. 81: 7505-7509, 1984.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6334310/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6334310</a>] [<a href="https://doi.org/10.1073/pnas.81.23.7505" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="6334310">White et al. (1984)</a> demonstrated that the mutations in the several forms of congenital adrenal hyperplasia due to 21-hydroxylase deficiency involve the structural gene for the adrenal microsomal cytochrome P450 specific for steroid 21-hydroxylation (<a href="https://enzyme.expasy.org/EC/1.14.99.10" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'EC\', \'domain\': \'expasy.org\'})">EC 1.14.99.10</a>). <a href="#54" class="mim-tip-reference" title="Rodrigues, N. R., Dunham, I., Yu, C. Y., Carroll, M. C., Porter, R. R., Campbell, R. D. <strong>Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia.</strong> EMBO J. 6: 1653-1661, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3038528/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3038528</a>] [<a href="https://doi.org/10.1002/j.1460-2075.1987.tb02414.x" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3038528">Rodrigues et al. (1987)</a> pointed out that 21-hydroxylation was the first enzymatic activity ascribed to any cytochrome P450 (<a href="#12" class="mim-tip-reference" title="Cooper, D. Y., Levin, S., Narasimhulu, S., Rosenthal, O., Estabrook, R. W. <strong>Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems.</strong> Science 147: 400-402, 1965.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14221486/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14221486</a>] [<a href="https://doi.org/10.1126/science.147.3656.400" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="14221486">Cooper et al., 1965</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=6334310+14221486+3038528" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#54" class="mim-tip-reference" title="Rodrigues, N. R., Dunham, I., Yu, C. Y., Carroll, M. C., Porter, R. R., Campbell, R. D. <strong>Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia.</strong> EMBO J. 6: 1653-1661, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3038528/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3038528</a>] [<a href="https://doi.org/10.1002/j.1460-2075.1987.tb02414.x" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3038528">Rodrigues et al. (1987)</a> determined the nucleotide sequence of the 21-hydroxylase B gene in a patient with congenital adrenal hyperplasia. Eleven nucleotide differences from the normal were found: 2 in the 5-prime flanking region, 4 in introns, 1 in the 3-prime untranslated region, and 4 in exons. Two of the differences in exons caused codon changes: serine-269 to threonine and asparagine-494 to serine. <a href="#54" class="mim-tip-reference" title="Rodrigues, N. R., Dunham, I., Yu, C. Y., Carroll, M. C., Porter, R. R., Campbell, R. D. <strong>Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia.</strong> EMBO J. 6: 1653-1661, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3038528/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3038528</a>] [<a href="https://doi.org/10.1002/j.1460-2075.1987.tb02414.x" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3038528">Rodrigues et al. (1987)</a> confirmed that the 21-hydroxylase A gene is a pseudogene due to 3 deleterious mutations in the exons. Comparison of published sequences with those they determined suggested that the 21-hydroxylase B gene is polymorphic. They suggested, as had others, that the 4 distinct clinical forms of 21-hydroxylase deficiency (simple virilizing, salt-wasting, late-onset, and cryptic) may be the consequence of different allelic mutations in the 21-hydroxylase B gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3038528" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#26" class="mim-tip-reference" title="Jospe, N., Donohoue, P. A., Van Dop, C., McLean, R. H., Bias, W. B., Migeon, C. J. <strong>Prevalence of polymorphic 21-hydroxylase gene (CA21HB) mutations in salt-losing congenital adrenal hyperplasia.</strong> Biochem. Biophys. Res. Commun. 142: 798-804, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3030300/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3030300</a>] [<a href="https://doi.org/10.1016/0006-291x(87)91484-7" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3030300">Jospe et al. (1987)</a> performed genomic restriction analysis of 14 unrelated patients with salt-losing congenital adrenal hyperplasia, identifying 3 patterns of mutation in the CA21HB gene: in 16 of the 28 chromosomes (or haplotypes) analyzed, there was no detectable restriction fragment abnormality suggesting that these were point mutations or small deletions or insertions. Complete deletion of CA21HB was found in 9 of 28 haplotypes (32%). In 3 of 28 haplotypes (11%), apparent conversion of CA21HB to the pseudogene CA21HA had occurred. <a href="#26" class="mim-tip-reference" title="Jospe, N., Donohoue, P. A., Van Dop, C., McLean, R. H., Bias, W. B., Migeon, C. J. <strong>Prevalence of polymorphic 21-hydroxylase gene (CA21HB) mutations in salt-losing congenital adrenal hyperplasia.</strong> Biochem. Biophys. Res. Commun. 142: 798-804, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3030300/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3030300</a>] [<a href="https://doi.org/10.1016/0006-291x(87)91484-7" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3030300">Jospe et al. (1987)</a> described how apparent gene conversion could be detected in the restriction fragment patterns. An alternative explanation to conversion is that unequal crossing-over occurred between a haplotype of 2 CA21HA genes and 1 CA21HB gene, and a normal haplotype to produce loss of the CA21HB gene from the first haplotype but retention of 2 CA21HA genes. CA21HB deletion was associated with HLA-Bw47 in 6 haplotypes and with absent C4B expression in 7 haplotypes of the 9. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3030300" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In studies of DNA from 20 patients with 21-hydroxylase deficiency, <a href="#55" class="mim-tip-reference" title="Rumsby, G., Carroll, M. C., Porter, R. R., Grant, D. B., Hjelm, M. <strong>Deletion of the steroid 21-hydroxylase and complement C4 genes in congenital adrenal hyperplasia.</strong> J. Med. Genet. 23: 204-209, 1986.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3487654/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3487654</a>] [<a href="https://doi.org/10.1136/jmg.23.3.204" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3487654">Rumsby et al. (1986)</a> found one homozygous for a deletion encompassing the C4B and 21-hydroxylase genes. They presented evidence that this originated by recombination between homologous regions of 21-hydroxylase A and B. No alteration in the 21-hydroxylase gene was detected in 12 patients. Seven patients appeared to be heterozygous for the above deletion; i.e., they were genetic compounds. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3487654" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In molecular studies of the C4/21-hydroxylase genes in patients with the classic salt-wasting form, <a href="#56" class="mim-tip-reference" title="Schneider, P. M., Carroll, M. C., Alper, C. A., Rittner, C., Whitehead, A. S., Yunis, E. J., Colten, H. R. <strong>Polymorphism of the human complement C4 and steroid 21-hydroxylase genes: restriction fragment length polymorphisms revealing structural deletions, homoduplications, and size variants.</strong> J. Clin. Invest. 78: 650-657, 1986.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3018042/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3018042</a>] [<a href="https://doi.org/10.1172/JCI112623" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3018042">Schneider et al. (1986)</a> found deletion of C4B and 21-hydroxylase B genes in some. In 2, only the 21-hydroxylase B gene was deleted. <a href="#75" class="mim-tip-reference" title="Werkmeister, J. W., New, M. I., Dupont, B., White, P. C. <strong>Frequent deletion and duplication of the steroid 21-hydroxylase genes.</strong> Am. J. Hum. Genet. 39: 461-469, 1986.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3490178/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3490178</a>]" pmid="3490178">Werkmeister et al. (1986)</a> found deletion of the active CA21H gene in almost one-fourth of classic cases of 21-hydroxylase deficiency, whereas mild 'nonclassic' 21-hydroxylase deficiency was associated with a duplicated CA21H gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3490178+3018042" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using multiple restriction enzymes in the analysis of the 21-hydroxylase gene in 10 families, each of which included 2 or more affected persons, <a href="#37" class="mim-tip-reference" title="Matteson, K. J., Phillips, J. A., III, Miller, W. L., Chung, B.-C., Orlando, P. J., Frisch, H., Ferrandez, A., Burr, I. M. <strong>P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia.</strong> Proc. Nat. Acad. Sci. 84: 5858-5862, 1987. Note: Erratum: Proc. Nat. Acad. Sci. 84: 8054 only, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3497399/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3497399</a>] [<a href="https://doi.org/10.1073/pnas.84.16.5858" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3497399">Matteson et al. (1987)</a> concluded that the 'deletions' that have been reported as a frequent finding in CAH patients probably represent gene conversions, unequal crossovers, and polymorphisms rather than simple gene deletions. <a href="#39" class="mim-tip-reference" title="Miller, W. L. <strong>Congenital adrenal hyperplasia. (Letter)</strong> New Eng. J. Med. 317: 1413-1414, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3500410/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3500410</a>] [<a href="https://doi.org/10.1056/NEJM198711263172211" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3500410">Miller (1987)</a> challenged the interpretation of a high frequency of gene deletion underlying 21-hydroxylase deficiency. <a href="#80" class="mim-tip-reference" title="White, P. C., New, M. I., Dupont, B. <strong>Congenital adrenal hyperplasia. (Letter)</strong> New Eng. J. Med. 316: 1580-1586, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3295546/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3295546</a>] [<a href="https://doi.org/10.1056/NEJM198706183162506" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3295546">White et al. (1987)</a> defended their interpretation. They reiterated their view that probes for the closely linked and highly polymorphic HLA genes should be used for prenatal diagnosis, not CYP21 probes (<a href="#43" class="mim-tip-reference" title="Mornet, E., Boue, J., Raux-Demay, M., Couillin, P., Oury, J. F., Dumez, Y., Dausset, J., Cohen, D., Boue, A. <strong>First trimester prenatal diagnosis of 21-hydroxylase deficiency by linkage analysis to HLA-DNA probes and by 17-hydroxyprogesterone determination.</strong> Hum. Genet. 73: 358-364, 1986.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3017844/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3017844</a>] [<a href="https://doi.org/10.1007/BF00279101" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3017844">Mornet et al., 1986</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3500410+3295546+3497399+3017844" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By Southern blot analysis of genomic DNA using a 21-hydroxylase DNA probe, <a href="#20" class="mim-tip-reference" title="Harada, F., Kimura, A., Iwanaga, T., Shimozawa, K., Yata, J., Sasazuki, T. <strong>Gene conversion-like events cause steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia.</strong> Proc. Nat. Acad. Sci. 84: 8091-8094, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3500473/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3500473</a>] [<a href="https://doi.org/10.1073/pnas.84.22.8091" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3500473">Harada et al. (1987)</a> found an apparent absence of restriction fragments corresponding to the 21-hydroxylase B gene. They found that this apparent absence was not due to deletion of the gene but rather to a conversion of the functional 21-hydroxylase B gene into the nonfunctional 21-hydroxylase A pseudogene. In 2 patients studied, the affected HLA haplotypes were different, suggesting that conversion had occurred as independent events in the 2 instances. <a href="#20" class="mim-tip-reference" title="Harada, F., Kimura, A., Iwanaga, T., Shimozawa, K., Yata, J., Sasazuki, T. <strong>Gene conversion-like events cause steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia.</strong> Proc. Nat. Acad. Sci. 84: 8091-8094, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3500473/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3500473</a>] [<a href="https://doi.org/10.1073/pnas.84.22.8091" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3500473">Harada et al. (1987)</a> suggested that gene conversion-like events may be a relatively common cause of 21-hydroxylase deficiency in Japanese. They suggested that this mechanism might also account in part for the predominance of congenital adrenal hyperplasia due to 21-hydroxylase deficiency over that due to deficiency of other steroidogenic P450 enzymes. There may be other examples of gene conversion-like events that are responsible for monogenic disorders when related homologous genes reside in tandem array. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3500473" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#5" class="mim-tip-reference" title="Baumgartner-Parzer, S. M., Schulze, E., Waldhausl, W., Pauschenwein, S., Rondot, S., Nowotny, P., Meyer, K., Frisch, H., Waldhauser, F., Vierhapper, H. <strong>Mutational spectrum of the steroid 21-hydroxylase gene in Austria: identification of a novel missense mutation.</strong> J. Clin. Endocr. Metab. 86: 4771-4775, 2001.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11600539/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11600539</a>] [<a href="https://doi.org/10.1210/jcem.86.10.7898" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11600539">Baumgartner-Parzer et al. (2001)</a> studied the mutational spectrum of 21-hydroxylase deficiency in 79 unrelated Austrian patients with classic and nonclassic forms of CAH and their respective 112 family members. Apparent large gene deletions/conversions were present in 31% of the 158 unrelated CAH alleles, whereas the most frequent point mutations were intron 2 splice (<a href="#0006">613815.0006</a>; 22.8%), I172N (<a href="#0001">613815.0001</a>; 15.8%), V281L (<a href="#0002">613815.0002</a>; 12%), and P30L (<a href="#0004">613815.0004</a>; 7.6%), in line with the frequencies reported for other countries. Previously described mutations were not present in 1.2% of unrelated CAH alleles, including those of one female patient presenting with severe genital virilization. Sequence analysis of the complete functional 21-hydroxylase gene revealed a novel mutation in exon 10, arg426 to his (R426H; <a href="#0026">613815.0026</a>). In vitro expression experiments showed that the R426H mutant exhibited only low enzyme activity toward the natural substrate 17-hydroxyprogesterone. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11600539" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#46" class="mim-tip-reference" title="Olney, R. C., Mougey, E. B., Wang, J., Shulman, D. I., Sylvester, J. E. <strong>Using real-time, quantitative PCR for rapid genotyping of the steroid 21-hydroxylase gene in a north Florida population.</strong> J. Clin. Endocr. Metab. 87: 735-741, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11836313/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11836313</a>] [<a href="https://doi.org/10.1210/jcem.87.2.8273" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11836313">Olney et al. (2002)</a> developed an assay using real-time quantitative PCR to detect deletions of CYP21A2. This assay was able to detect heterozygous gene deletions with an alpha error rate of less than 5% and with a power greater than 95%. When combined with allele-specific PCR, genotyping for the 9 most common mutations could be completed within hours of blood sampling. This technique was used to study subjects with 21-hydroxylase deficiency in north Florida. Twenty-eight subjects with CAH, 7 first-degree relatives, and 13 normal subjects were characterized. Of 96 chromosomes, 69 abnormal alleles were identified. Among unrelated abnormal alleles, the frequency of specific mutations was 28% for a gene deletion (<a href="#0011">613815.0011</a>), 24% for the intron 2 splice mutation, 10% for I172N, 8% each for V281L and the exon 6 cluster (<a href="#0016">613815.0016</a>), and 6% for gln318 to ter (Q318X; <a href="#0020">613815.0020</a>). These frequencies, as well as the genotype/phenotype correlation, were similar to those found in comparable populations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11836313" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#67" class="mim-tip-reference" title="Tukel, T., Uyguner, O., Wei, J. Q., Yuksel-Apak, M., Saka, N., Song, D. X., Kayserili, H., Bas, F., Gunoz, H., Wilson, R. C., New, M. I., Wollnik, B. <strong>A novel semiquantitative polymerase chain reaction/enzyme digestion-based method for detection of large scale deletions/conversions of the CYP21 gene and mutation screening in Turkish families with 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 88: 5893-5897, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14671187/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14671187</a>] [<a href="https://doi.org/10.1210/jc.2003-030813" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="14671187">Tukel et al. (2003)</a> performed allele-specific PCR for the 8 most frequently reported CYP21 point mutations in 31 Turkish families having at least 1 21-hydroxylase-deficient individual. The allele frequencies of the point mutations were as follows: P30L (<a href="#0004">613815.0004</a>), 0%; IVS2 (<a href="#0006">613815.0006</a>), 22.5%; G110-delta-8nt (<a href="#0015">613815.0015</a>) , 3.2%; I172N (<a href="#0001">613815.0001</a>), 11.4%; exon 6 cluster (<a href="#0016">613815.0016</a>), 3.2%; V281L (<a href="#0002">613815.0002</a>), 0%; Q318X (<a href="#0020">613815.0020</a>), 8%; and R356W (<a href="#0003">613815.0003</a>), 9.6%. Large deletions and gene conversions were detected by Southern blot analysis, with allele frequencies of 9.6% and 22.5%, respectively. Sequence analysis of CYP21, performed on patients with only 1 mutant allele, revealed 2 missense mutations, R339H (<a href="#0021">613815.0021</a>) and P453S (<a href="#0010">613815.0010</a>). A semiquantitative PCR/enzyme digestion-based method for the detection of large-scale deletions/conversions of the gene was developed for routine diagnostic purposes, and its accuracy was shown by comparison with the results of Southern blot analysis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14671187" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To determine the mutational spectrum in the Tunisian CAH population, <a href="#29" class="mim-tip-reference" title="Kharrat, M., Tardy, V., M'Rad, R., Maazoul, F., Ben Jemaa, L., Refai, M., Morel, Y., Chaabouni, H. <strong>Molecular genetic analysis of Tunisian patients with a classic form of 21-hydroxylase deficiency: identification of four novel mutations and high prevalence of Q318X mutation.</strong> J. Clin. Endocr. Metab. 89: 368-374, 2004.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14715874/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14715874</a>] [<a href="https://doi.org/10.1210/jc.2003-031056" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="14715874">Kharrat et al. (2004)</a> analyzed the CYP21 active gene in 51 unrelated patients using a strategy of digestion by restriction enzyme and sequencing. All patients had a classical form of 21-hydroxylase deficiency. Mutations were detected in over 94% of the chromosomes examined. The most frequent mutation in the Tunisian CAH population was Q318X (<a href="#0020">613815.0020</a>), with large prevalence (35.3%), in contrast to the 0.5-13.8% described in other series. Incidence of other mutations did not differ, as had been described: large deletions (e.g., <a href="#0011">613815.0011</a>) (19.6%), mutation in intron 2 (<a href="#0006">613815.0006</a>) (17.6%), and I172N (<a href="#0001">613815.0001</a>) (10.8%). Four novel mutations were found in 4 patients with the salt-wasting form. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14715874" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#57" class="mim-tip-reference" title="Sido, A. G., Weber, M. M., Sido, P. G., Clausmeyer, S., Heinrich, U., Schulze, E. <strong>21-hydroxylase and 11-beta-hydroxylase mutations in Romanian patients with classic congenital adrenal hyperplasia.</strong> J. Clin. Endocr. Metab. 90: 5769-5773, 2005.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16046588/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16046588</a>] [<a href="https://doi.org/10.1210/jc.2005-0379" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16046588">Sido et al. (2005)</a> reported molecular analysis of 43 Romanian patients with classical CAH, 38 with 21-hydroxylase deficiency and 5 with 11-beta-hydroxylase deficiency. The most frequent mutation in patients with 21-hydroxylase deficiency was I2G (<a href="#0006">613815.0006</a>) (43.9%), followed by deletions and large conversions (16.7%). Genotypes were categorized in 3 mutation groups according to their predicted functional consequences and compared with clinical phenotype. Overall genotype-phenotype correlation was 87.88%. In the 5 patients with 11-beta-hydroxylase deficiency, 3 homozygous mutations were identified. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16046588" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Origin of Mutations</em></strong></p><p>
|
|
<a href="#44" class="mim-tip-reference" title="Mornet, E., Crete, P., Kuttenn, F., Raux-Demay, M.-C., Boue, J., White, P. C., Boue, A. <strong>Distribution of deletions and seven point mutations on CYP21B genes in three clinical forms of steroid 21-hydroxylase deficiency.</strong> Am. J. Hum. Genet. 48: 79-88, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1985465/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1985465</a>]" pmid="1985465">Mornet et al. (1991)</a> estimated that gene conversions involving small DNA segments probably account for 74% of cases of 21-hydroxylase deficiency. Complete deletion of the CYP21B gene (<a href="#0011">613815.0011</a>) accounted for about 20% of cases of the classic form of the disease. Complete deletion of CYP21B was associated with the salt-wasting form, as was an 8-bp deletion in the third exon (<a href="#0015">613815.0015</a>). A G-to-T transversion in the seventh exon (<a href="#0002">613815.0002</a>) was associated with the late-onset form of the disease. <a href="#17" class="mim-tip-reference" title="Ghanem, N., Lobaccaro, J. M., Buresi, C., Abbal, M., Halaby, G., Sultan, C., Lefranc, G. <strong>Defective, deleted or converted CYP21B gene and negative association with a rare restriction fragment length polymorphism allele of the factor B gene in congenital adrenal hyperplasia.</strong> Hum. Genet. 86: 117-125, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1979956/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1979956</a>] [<a href="https://doi.org/10.1007/BF00197691" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1979956">Ghanem et al. (1990)</a> concluded that about 70% of the mutations in the CYP21B gene causing classic and nonclassic CAH are point mutations, because the defective gene was indistinguishable from its structurally intact corresponding gene in Southern blot analysis. Due to the presence of a varying number of C4/21-hydroxylase repeat units, this gene region varies in length among haplotypes. Haplotypes carrying one C4/21-hydroxylase repeat unit with a CYP21P gene transmit the severe form of 21-hydroxylase deficiency. <a href="#19" class="mim-tip-reference" title="Haglund-Stengler, B., Ritzen, E. M., Gustafsson, J., Luthman, H. <strong>Haplotypes of the steroid 21-hydroxylase gene region encoding mild steroid 21-hydroxylase deficiency.</strong> Proc. Nat. Acad. Sci. 88: 8352-8356, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1924294/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1924294</a>] [<a href="https://doi.org/10.1073/pnas.88.19.8352" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1924294">Haglund-Stengler et al. (1991)</a> found association between triplication of the C4/21-hydroxylase repeat unit and the mild form of 21-hydroxylase deficiency. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1985465+1924294+1979956" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Gene conversion, a nonreciprocal exchange of homologous genetic information, has been studied extensively in lower eukaryotes in which all the products of a single meiosis can be recovered and analyzed. Because the latter is not possible in mammals, nonreciprocality of the genetic exchange cannot formally be demonstrated. Despite this limitation, the designation 'gene conversion' has been applied to exchanges observed in mammalian genomes that involve an alteration of an allele at a specific locus in such a way as to suggest that an internal portion of its sequence has been replaced by a homologous segment copied from another allele or locus. Gaucher disease (<a href="/entry/230800">230800</a>) is another example of a disorder in which conversion events occur between the functional gene and a neighboring pseudogene. Gene conversion has been postulated in other clustered gene families, including those for globins (e.g., <a href="/entry/142200">142200</a>), immunoglobulins (e.g., <a href="/entry/147070">147070</a>), red-green visual pigments (<a href="/entry/300822">300822</a>, <a href="/entry/300821">300821</a>), and others. With the notable exception of the HLA genes, in which many of the presumed gene conversion events involve allelic exchanges, the postulated gene conversion events in the other systems involve interlocus exchange. The evidence for gene conversion in the human genome had been circumstantial until the description by <a href="#11" class="mim-tip-reference" title="Collier, S., Tassabehji, M., Sinnott, P., Strachan, T. <strong>A de novo pathological point mutation at the 21-hydroxylase locus: implications for gene conversion in the human genome.</strong> Nature Genet. 3: 260-265, 1993. Note: Erratum: Nature Genet. 4: 101 only, 1993.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8485582/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8485582</a>] [<a href="https://doi.org/10.1038/ng0393-260" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8485582">Collier et al. (1993)</a> of a de novo mutation which permitted the direct comparison of the 'converted' allele with its original form. They observed the de novo introduction of a CYP21A pseudogene-specific mutation into a CYP21B allele. Despite extensive investigations, not a single mutant CYP21B allele has been reported to lack pseudogene-specific mutations that are incompatible with normal gene expression. Consequently, the pathogenesis of 21-hydroxylase deficiency appears to be due almost exclusively to gene-pseudogene exchanges. <a href="#66" class="mim-tip-reference" title="Tajima, T., Fujieda, K., Nakayama, K., Fujii-Kuriyama, Y. <strong>Molecular analysis of patient and carrier genes with congenital steroid 21-hydroxylase deficiency by using polymerase chain reaction and single strand conformation polymorphism.</strong> J. Clin. Invest. 92: 2182-2190, 1993.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8227333/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8227333</a>] [<a href="https://doi.org/10.1172/JCI116820" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8227333">Tajima et al. (1993)</a> concluded that approximately 90% of the genes in patients with 21-hydroxylase deficiency are accounted for either by a causative mutation from the pseudogene or by a deletion and suggested that the remaining 10% may represent new mutations that do not exist in the pseudogene. <a href="#64" class="mim-tip-reference" title="Tajima, T., Fujieda, K., Fujii-Kuriyama, Y. <strong>De novo mutation causes steroid 21-hydroxylase deficiency in one family of HLA-identical affected and unaffected individuals.</strong> J. Clin. Endocr. Metab. 77: 86-89, 1993.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8325964/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8325964</a>] [<a href="https://doi.org/10.1210/jcem.77.1.8325964" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8325964">Tajima et al. (1993)</a> described a de novo mutation of the CYP21B gene causing CAH. HLA-identical affected and unaffected sibs were observed. Both inherited a missense mutation in exon 4 from the father, but only the affected sib received an intron 2 mutation that caused aberrant RNA splicing from the mother, who was homozygous normal. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8325964+8485582+8227333" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#81" class="mim-tip-reference" title="White, P. C., Tusie-Luna, M.-T., New, M. I., Speiser, P. W. <strong>Mutations in steroid 21-hydroxylase (CYP21).</strong> Hum. Mutat. 3: 373-378, 1994.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8081391/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8081391</a>] [<a href="https://doi.org/10.1002/humu.1380030408" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8081391">White et al. (1994)</a> reviewed mutations in the CYP21 gene which are responsible for more than 90% of cases of the inherited inability to synthesize cortisol. Most of the mutations in CYP21 causing CAH are generated by recombinations between CYP21 and CYP21P which either delete CYP21 or transfer deleterious mutations from CYP21P to CYP21. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8081391" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#40" class="mim-tip-reference" title="Miller, W. L. <strong>Gene conversions, deletions and polymorphisms in congenital adrenal hyperplasia.</strong> Am. J. Hum. Genet. 42: 4-7, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3276177/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3276177</a>]" pmid="3276177">Miller (1988)</a> discussed gene conversion in relation to the monogenic form of adrenal hyperplasia. <a href="#22" class="mim-tip-reference" title="Higashi, Y., Tanae, A., Inoue, H., Fujii-Kuriyama, Y. <strong>Evidence for frequent gene conversion in the steroid 21-hydroxylase P-450(C21) gene: implications for steroid 21-hydroxylase deficiency.</strong> Am. J. Hum. Genet. 42: 17-25, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2827462/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2827462</a>]" pmid="2827462">Higashi et al. (1988)</a> presented evidence for either unequal intragenic or intergenic recombination and/or gene conversion events taking place between the pseudogene and the functional gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2827462+3276177" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 4 steroid 21-hydroxylase B mutations from three 21-hydroxylase-deficient patients, <a href="#23" class="mim-tip-reference" title="Higashi, Y., Tanae, A., Inoue, H., Hiromasa, T., Fujii-Kuriyama, Y. <strong>Aberrant splicing and missense mutations cause steroid 21-hydroxylase (P-450[C21]) deficiency in humans: possible gene conversion products.</strong> Proc. Nat. Acad. Sci. 85: 7486-7490, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2845408/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2845408</a>] [<a href="https://doi.org/10.1073/pnas.85.20.7486" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2845408">Higashi et al. (1988)</a> observed several base changes as compared with the functional B gene. Many of these base changes were identical to those in the CYP21A pseudogene. Two of them were shown to have a point mutation in the second intron, causing aberrant splicing. A third carried 3 clustered missense mutations in the sixth exon, which impaired 21-hydroxylase activity. Since all of these critical mutations could be seen in the corresponding site of the CYP21A pseudogene, the data strongly suggested the involvement of gene conversion in this genetic disease. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2845408" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using a genomic probe, <a href="#42" class="mim-tip-reference" title="Morel, Y., Andre, J., Uring-Lambert, B., Hauptmann, G., Betuel, H., Tossi, M., Forest, M. G., David, M., Bertrand, J., Miller, W. L. <strong>Rearrangements and point mutations of P450c21 genes are distinguished in five restriction endonuclease haplotypes identified by a new probing strategy in 57 families with congenital adrenal hyperplasia.</strong> J. Clin. Invest. 83: 527-536, 1989.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2913051/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2913051</a>] [<a href="https://doi.org/10.1172/JCI113914" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2913051">Morel et al. (1989)</a> defined 5 haplotypes that identified the mutations in 57 families. Specifically, of 116 CAH-bearing chromosomes, 114 could be sorted into 1 of these 5 haplotypes, based on blots of DNA digested with TaqI and BglII. Haplotype 1, present in 65.6%, was indistinguishable from the normal, and therefore bore very small lesions, presumably point mutations. Haplotype 2, present in 3.4%, and haplotype 3, present in 6.9%, had deletions and duplications of the CYP21 pseudogene but had especially intact functional genes, presumably bearing point mutations. Thus, point mutation was the genetic defect in 75.9% of the chromosomes. Haplotypes 4 and 5, present in 11.2%, appeared to represent a gene that had undergone a gene conversion event. Haplotype 5, present in 11.2%, appeared to have a deletion of about 30 kb of DNA, resulting in a single hybrid CYPA/B gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2913051" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#14" class="mim-tip-reference" title="Donohoue, P. A., Jospe, N., Migeon, C. J., Van Dop, C. <strong>Two distinct areas of unequal crossingover within the steroid 21-hydroxylase genes produce absence of CYP21B.</strong> Genomics 5: 397-406, 1989. Note: Erratum: Genomics 6: 392 only, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2613228/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2613228</a>] [<a href="https://doi.org/10.1016/0888-7543(89)90002-5" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2613228">Donohoue et al. (1989)</a> concluded that a single unequal crossing-over between the CYP21A and CYP21B genes yields deletion of the latter active gene to result in salt-losing CAH; furthermore, these crossovers do not occur randomly within the complex. In a patient with 21-hydroxylase deficiency, <a href="#58" class="mim-tip-reference" title="Sinnott, P., Collier, S., Costigan, C., Dyer, P. A., Harris, R., Strachan, T. <strong>Genesis by meiotic unequal crossover of a de novo deletion that contributes to a steroid 21-hydroxylase deficiency.</strong> Proc. Nat. Acad. Sci. 87: 2107-2111, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2315306/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2315306</a>] [<a href="https://doi.org/10.1073/pnas.87.6.2107" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2315306">Sinnott et al. (1990)</a> demonstrated a maternally inherited haplotype that carried a de novo deletion of an approximately 30-kb segment including the CYP21B gene and the associated C4B gene. The disease haplotype appeared to have been generated through meiotic unequal crossing-over. One of the maternal haplotypes was the frequently occurring HLA-DR3,B8,A1 haplotype that normally carries a deletion of an approximately 30-kb segment including the CYP21A gene and C4A gene. Haplotypes of this type may act as premutations, increasing the susceptibility to development of a 21-hydroxylase deficiency mutation by facilitating unequal chromosome pairing. Mutations in the pseudogene CYP21A include a C-to-T change that leads to a termination codon, TAG, in the eighth exon. <a href="#71" class="mim-tip-reference" title="Urabe, K., Kimura, A., Harada, F., Iwanaga, T., Sasazuki, T. <strong>Gene conversion in steroid 21-hydroxylase genes.</strong> Am. J. Hum. Genet. 46: 1178-1186, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1971153/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1971153</a>]" pmid="1971153">Urabe et al. (1990)</a> found that same change in a mutant CYP21B gene isolated from a patient with 21-hydroxylase deficiency. Furthermore, a reciprocal change, i.e., a T-to-C change in the eighth exon of the CYP21A gene, was observed in the Japanese population. This was considered evidence for gene conversion. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1971153+2613228+2315306" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#84" class="mim-tip-reference" title="Wu, D.-A., Chung, B. <strong>Mutations of P450c21 (steroid 21-hydroxylase) at cys-428, val-281, and ser-268 result in complete, partial, or no loss of enzymatic activity, respectively.</strong> J. Clin. Invest. 88: 519-523, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1864962/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1864962</a>] [<a href="https://doi.org/10.1172/JCI115334" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1864962">Wu and Chung (1991)</a> studied the effects of induced missense mutations at cysteine-428, valine-281, and serine-268 of the 21-hydroxylase gene. A ser268-to-thr mutation (<a href="#0005">613815.0005</a>) had been found in a patient suffering from CAH and a val281-to-leu mutation (<a href="#0002">613815.0002</a>) was identified in a patient with nonclassic CAH characterized by partial enzyme deficiency. Cysteine-428 is the invariant cys among all cytochrome P450s and is presumed to be the heme ligand. <a href="#84" class="mim-tip-reference" title="Wu, D.-A., Chung, B. <strong>Mutations of P450c21 (steroid 21-hydroxylase) at cys-428, val-281, and ser-268 result in complete, partial, or no loss of enzymatic activity, respectively.</strong> J. Clin. Invest. 88: 519-523, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1864962/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1864962</a>] [<a href="https://doi.org/10.1172/JCI115334" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1864962">Wu and Chung (1991)</a> mutated ser268 to thr, cys, and met to see if these changes altered the function of 21-hydroxylase. They changed val281 to leu, ile, and thr, similarly, to study the effects on structure and function of 21-hydroxylase. Val, leu, and ile share properties; therefore, substituting one with another should not drastically disturb the structure of the protein. <a href="#84" class="mim-tip-reference" title="Wu, D.-A., Chung, B. <strong>Mutations of P450c21 (steroid 21-hydroxylase) at cys-428, val-281, and ser-268 result in complete, partial, or no loss of enzymatic activity, respectively.</strong> J. Clin. Invest. 88: 519-523, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1864962/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1864962</a>] [<a href="https://doi.org/10.1172/JCI115334" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1864962">Wu and Chung (1991)</a> changed cys428 to thr, met, and ser to study the effects of these mutations. They found that the cys428, val281, and ser268 mutations resulted in complete, partial, or no loss of enzymatic activity, respectively. All the cys428 mutants had neither enzymatic activity nor P450 absorption, thus supporting the notion that cys428 is the heme ligand. All the 268-mutants exhibited the same activity as normal 21-hydroxylase, demonstrating that the clinically observed ser268-to-thr change represents a polymorphism rather than the cause of enzyme deficiency. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1864962" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#70" class="mim-tip-reference" title="Tusie-Luna, M.-T., White, P. C. <strong>Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms.</strong> Proc. Nat. Acad. Sci. 92: 10796-10800, 1995.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7479886/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7479886</a>] [<a href="https://doi.org/10.1073/pnas.92.23.10796" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="7479886">Tusie-Luna and White (1995)</a> pointed out that steroid 21-hydroxylase deficiency is unusual among genetic diseases in that approximately 95% of the mutant alleles have apparently been generated by recombination between a normally active gene (CYP21) and a closely linked pseudogene (CYP21P). Approximately 20% of mutant alleles carry DNA deletions of 30 kb that have presumably been generated by unequal meiotic crossing-over, whereas 75% carry one or more mutations in CYP21 that are normally found in the CYP21P pseudogene. These latter mutations are termed 'gene conversions.' To assess the frequency at which these different recombination events occur, <a href="#70" class="mim-tip-reference" title="Tusie-Luna, M.-T., White, P. C. <strong>Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms.</strong> Proc. Nat. Acad. Sci. 92: 10796-10800, 1995.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7479886/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7479886</a>] [<a href="https://doi.org/10.1073/pnas.92.23.10796" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="7479886">Tusie-Luna and White (1995)</a> used PCR to detect de novo deletions and gene conversions in matched sperm and peripheral blood leukocyte DNA samples from normal persons. Deletions with breakpoints in a 100-bp region in intron 2 and exon 3 were detected in sperm DNA samples with frequencies of approximately 1 in 10(5)-10(6) genomes but were not detected in the matching leukocyte DNA. Gene conversions in the same region occurred in approximately 1 in 10(3)-10(5) genomes in both sperm and leukocyte DNA. These data suggested to the authors that whereas deletions occur exclusively in meiosis, gene conversions occur during both meiosis and mitosis, or perhaps only during mitosis. Thus, the authors concluded that gene conversions must occur by a mechanism distinct from unequal crossing-over. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7479886" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#3" class="mim-tip-reference" title="Araujo, R. S., Mendonca, B. B., Barbosa, A. S., Lin, C. J., Marcondes, J. A. M., Billerbeck, A. E. C., Bachega, T. A. S. S. <strong>Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 92: 4028-4034, 2007.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17666484/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17666484</a>] [<a href="https://doi.org/10.1210/jc.2006-2163" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17666484">Araujo et al. (2007)</a> studied the CYP21A2 promoter/regulatory regions in 17 patients with the nonclassic form of 21-hydroxylase deficiency with undetermined genotype and 50 controls. Promoter mutations were found in compound heterozygosity with the V281L mutation in 1 patient and with the I2 splice mutation in another. The authors concluded that microconversions between CYP21A2 and CYP21A1P promoters could be involved in the nonclassic form and that CYP21A2 promoter analysis should be included in genetic studies of the disorder. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17666484" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>CYP21A2, the adjacent complement C4A gene, and parts of the flanking genes serine/threonine protein kinase-19 (STK19; <a href="/entry/604977">604977</a>) and tenascin-X (TNXB; <a href="/entry/600985">600985</a>) constitute a tandemly duplicated arrangement. The typical number of repeats of the CYP21/C4 region is 2, with 1 repeat carrying CYP21A2 and the other carrying the highly homologous pseudogene CYP21A1P (see <a href="#0012">613815.0012</a>). <a href="#32" class="mim-tip-reference" title="Koppens, P. F. J., Hoogenboezem, T., Degenhart, H. J. <strong>Carriership of a defective tenascin-X gene in steroid 21-hydroxylase deficiency patients: TNXB-TNXA hybrids in apparent large-scale gene conversions.</strong> Hum. Molec. Genet. 11: 2581-2590, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12354783/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12354783</a>] [<a href="https://doi.org/10.1093/hmg/11.21.2581" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12354783">Koppens et al. (2002)</a> determined that apparent large-scale conversions accounted for the defect in 9 of 77 chromosomes in a group of patients with CAH due to steroid 21-hydroxylase deficiency. They further showed that 4 of the 9 'conversions' extended into the flanking TNXB gene. This implies that 1 in every 10 steroid 21-hydroxylase deficiency patients is a carrier of tenascin-X deficiency, which is associated with a recessive form of the Ehlers-Danlos syndrome (<a href="/entry/606408">606408</a>). <a href="#32" class="mim-tip-reference" title="Koppens, P. F. J., Hoogenboezem, T., Degenhart, H. J. <strong>Carriership of a defective tenascin-X gene in steroid 21-hydroxylase deficiency patients: TNXB-TNXA hybrids in apparent large-scale gene conversions.</strong> Hum. Molec. Genet. 11: 2581-2590, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12354783/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12354783</a>] [<a href="https://doi.org/10.1093/hmg/11.21.2581" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12354783">Koppens et al. (2002)</a> stated that data on the structure of 'deletion' and 'large-scale conversion' chromosomes strongly suggest that both are the result of the same mechanism, namely unequal meiotic crossover. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12354783" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#4" class="mim-tip-reference" title="Baumgartner-Parzer, S. M., Fischer, G., Vierhapper, H. <strong>Predisposition for de novo gene aberrations in the offspring of mothers with a duplicated CYP21A2 gene.</strong> J. Clin. Endocr. Metab. 92: 1164-1167, 2007.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17164306/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17164306</a>] [<a href="https://doi.org/10.1210/jc.2006-2189" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17164306">Baumgartner-Parzer et al. (2007)</a> identified 2 unrelated female patients with CAH who inherited the intron 2 splice mutation (<a href="#0006">613815.0006</a>) from their father and harbored a de novo gene aberration on their maternal haplotype, a large deletion in one and the I172N mutation (<a href="#0001">613815.0001</a>) in the other. Both mothers were found to be carriers of rare duplicated CYP21A2 haplotypes, which were not detected in the daughters. <a href="#4" class="mim-tip-reference" title="Baumgartner-Parzer, S. M., Fischer, G., Vierhapper, H. <strong>Predisposition for de novo gene aberrations in the offspring of mothers with a duplicated CYP21A2 gene.</strong> J. Clin. Endocr. Metab. 92: 1164-1167, 2007.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17164306/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17164306</a>] [<a href="https://doi.org/10.1210/jc.2006-2189" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17164306">Baumgartner-Parzer et al. (2007)</a> hypothesized that duplicated CYP21A2 genes could predispose for de novo mutations in offspring, which is relevant for prenatal CYP21 genotyping and genetic counseling. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17164306" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#36" class="mim-tip-reference" title="Lopez-Gutierrez, A. U., Riba, L., Ordonez-Sanchez, M. L., Ramirez-Jimenez, S., Cerrillo-Hinojosa, M., Tusie-Luna, M. T. <strong>Uniparental disomy for chromosome 6 results in steroid 21-hydroxylase deficiency: evidence of different genetic mechanisms involved in the production of the disease.</strong> J. Med. Genet. 35: 1014-1019, 1998.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9863599/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9863599</a>] [<a href="https://doi.org/10.1136/jmg.35.12.1014" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9863599">Lopez-Gutierrez et al. (1998)</a> studied 47 Mexican families with 21-hydroxylase deficiency. In 9 families they failed to detect the mutation found in the proband in either parent; paternity was established in all cases. In 1 individual, paternal uniparental disomy for 6p was established, and <a href="#36" class="mim-tip-reference" title="Lopez-Gutierrez, A. U., Riba, L., Ordonez-Sanchez, M. L., Ramirez-Jimenez, S., Cerrillo-Hinojosa, M., Tusie-Luna, M. T. <strong>Uniparental disomy for chromosome 6 results in steroid 21-hydroxylase deficiency: evidence of different genetic mechanisms involved in the production of the disease.</strong> J. Med. Genet. 35: 1014-1019, 1998.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9863599/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9863599</a>] [<a href="https://doi.org/10.1136/jmg.35.12.1014" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9863599">Lopez-Gutierrez et al. (1998)</a> hypothesized that germline mutations might explain the segregation pattern in the remaining 8 families. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9863599" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Corticosteroids have specific effects on cardiac structure and function mediated by mineralocorticoid and glucocorticoid receptors (MR and GR (<a href="/entry/138040">138040</a>), respectively). Aldosterone and corticosterone are synthesized in rat heart. To see whether they might also be synthesized in the human cardiovascular system, <a href="#28" class="mim-tip-reference" title="Kayes-Wandover, K., White, P. C. <strong>Steroidogenic enzyme gene expression in the human heart.</strong> J. Clin. Endocr. Metab. 85: 2519-2525, 2000.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10902803/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10902803</a>] [<a href="https://doi.org/10.1210/jcem.85.7.6663" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10902803">Kayes-Wandover and White (2000)</a> examined the expression of genes for steroidogenic enzymes as well as genes for GR, MR, and 11-hydroxysteroid dehydrogenase (HSD11B2; <a href="/entry/614232">614232</a>), which maintains the specificity of MR. Human samples were from left and right atria, left and right ventricles, aorta, apex, intraventricular septum, and atrioventricular node, as well as whole adult and fetal heart. Using RT-PCR, mRNAs encoding CYP11A, CYP21, CYP11B1 (<a href="/entry/610613">610613</a>), GR, MR, and HSD11B2 were detected in all samples except ventricles, which did not express CYP11B1. CYP11B2 (<a href="/entry/124080">124080</a>) mRNA was detected in the aorta and fetal heart, but not in any region of the adult heart, and CYP17 was not detected in any cardiac sample. Levels of steroidogenic enzyme gene expression were typically 0.1% those in the adrenal gland. The authors concluded that these findings are consistent with autocrine or paracrine roles for corticosterone and deoxycorticosterone, but not cortisol or aldosterone, in the normal adult human heart. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10902803" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In each of 2 women with hyperandrogenism (see <a href="/entry/201910">201910</a>), <a href="#33" class="mim-tip-reference" title="Lajic, S., Clauin, S., Robins, T., Vexiau, P., Blanche, H., Bellanne-Chantelot, C., Wedell, A. <strong>Novel mutations in CYP21 detected in individuals with hyperandrogenism.</strong> J. Clin. Endocr. Metab. 87: 2824-2829, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12050257/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12050257</a>] [<a href="https://doi.org/10.1210/jcem.87.6.8525" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12050257">Lajic et al. (2002)</a> identified a novel missense mutation in the CYP21 gene (<a href="#0031">613815.0031</a> and <a href="#0032">613815.0032</a>). The women were predicted to carry mutations by hormonal evaluation, but did not display any of the genotypes commonly associated with congenital adrenal hyperplasia. The authors studied the functional and structural consequences of the mutations, and their results emphasized the importance of genetic evaluation and counseling in hyperandrogenic women who are predicted to carry CAH-causing mutations by biochemical tests. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12050257" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="evolution" class="mim-anchor"></a>
|
|
<h4 href="#mimEvolutionFold" id="mimEvolutionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimEvolutionToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Evolution</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimEvolutionFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p>The CYP21 pseudogene has 3 main defects: an 8-bp deletion in exon 3, a T insertion in exon 7, and a stop codon in exon 8. <a href="#27" class="mim-tip-reference" title="Kawaguchi, H., O'hUigin, C., Klein, J. <strong>Evolutionary origin of mutations in the primate cytochrome P450c21 gene.</strong> Am. J. Hum. Genet. 50: 766-780, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1550121/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1550121</a>]" pmid="1550121">Kawaguchi et al. (1992)</a> demonstrated that the 8-bp deletion is present in the chimpanzee also, whereas the other 2 defects are not found in the chimpanzee, gorilla, or orangutan. In the gorilla and orangutan, however, extra CYP21 copies are inactivated by other defects so that the number of functional copies is reduced in each species. Comparison of the sequences revealed evidence for intraspecific homogenization (concerted evolution) of the CYP21 genes, presumably through an expansion-contraction process effected by relatively frequent unequal but homologous crossing-over. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1550121" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="allelicVariants" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<span href="#mimAllelicVariantsFold" id="mimAllelicVariantsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimAllelicVariantsToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<strong>ALLELIC VARIANTS (<a href="/help/faq#1_4"></strong>
|
|
</span>
|
|
<strong>35 Selected Examples</a>):</strong>
|
|
</span>
|
|
</h4>
|
|
<div>
|
|
<p />
|
|
</div>
|
|
|
|
<div id="mimAllelicVariantsFold" class="collapse in mimTextToggleFold">
|
|
<div>
|
|
<a href="/allelicVariants/613815" class="btn btn-default" role="button"> Table View </a>
|
|
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=613815[MIM]" class="btn btn-default mim-tip-hint" role="button" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a>
|
|
|
|
</div>
|
|
<div>
|
|
<p />
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0001" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0001 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, ILE172ASN
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs6475 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs6475;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs6475?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs6475" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs6475" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012933 OR RCV000416339 OR RCV000416360 OR RCV000622562 OR RCV000711382 OR RCV003226157" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012933, RCV000416339, RCV000416360, RCV000622562, RCV000711382, RCV003226157" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012933...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Most mutations in the CYP21 gene causing congenital adrenal hyperplasia (<a href="/entry/201910">201910</a>) are deletions. <a href="#1" class="mim-tip-reference" title="Amor, M., Parker, K. L., Globerman, H., New, M. I., White, P. C. <strong>Mutation in the CYP21B gene (ile172-to-asn) causes steroid 21-hydroxylase deficiency.</strong> Proc. Nat. Acad. Sci. 85: 1600-1604, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3257825/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3257825</a>] [<a href="https://doi.org/10.1073/pnas.85.5.1600" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3257825">Amor et al. (1988)</a> reported the cloning and characterization of a nondeleted mutant CYP21B gene. Codon 172 of the mutant gene was found to be changed from ATC, encoding isoleucine, to AAC, encoding asparagine. This mutation (I172N) is normally present in the CYP21A pseudogene, so that it may have been transferred to the mutant CYP21B gene by gene conversion. Hybridization of oligonucleotide probes corresponding to this and 2 other mutations normally present in CYP21A demonstrated that 4 out of 20 patients carried the codon 172 mutation; in 1 of these patients, the mutation was present as part of a larger gene conversion involving at least exons 3-6. Gene conversion may be a frequent cause of 21-hydroxylase deficiency alleles due to the presence of 6 chi-like sequences (GCTGGGG) in the CYP21 genes and the close proximity of the CYP21A pseudogene, which has several potentially deleterious mutations. <a href="#10" class="mim-tip-reference" title="Chiou, S.-H., Hu, M.-C., Chung, B. <strong>A missense mutation at ile172-to-asn or arg356-to-trp causes steroid 21-hydroxylase deficiency.</strong> J. Biol. Chem. 265: 3549-3552, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2303461/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2303461</a>]" pmid="2303461">Chiou et al. (1990)</a> also found this mutation on 1 allele in a compound heterozygote. <a href="#50" class="mim-tip-reference" title="Partanen, J., Campbell, R. D. <strong>Substitution of ile172-to-asn in the steroid 21-hydroxylase B (P450c21B) gene in a Finnish patient with the simple virilizing form of congenital adrenal hyperplasia.</strong> Hum. Genet. 87: 716-720, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1937474/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1937474</a>] [<a href="https://doi.org/10.1007/BF00201731" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1937474">Partanen and Campbell (1991)</a> amplified the full-length genomic P450C21 gene by PCR. The ile172-to-asn mutation in exon 4 was demonstrated. This mutation was observed also by <a href="#73" class="mim-tip-reference" title="Wedell, A., Ritzen, E. M., Haglund-Stengler, B., Luthman, H. <strong>Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.</strong> Proc. Nat. Acad. Sci. 89: 7232-7236, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1496017/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1496017</a>] [<a href="https://doi.org/10.1073/pnas.89.15.7232" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1496017">Wedell et al. (1992)</a>, who referred to it as ILE173ASN. <a href="#60" class="mim-tip-reference" title="Speiser, P. W., Dupont, J., Zhu, D., Serrat, J., Buegeleisen, M., Tusie-Luna, M.-T., Lesser, M., New, M. I., White, P. C. <strong>Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency.</strong> J. Clin. Invest. 90: 584-595, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1644925/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1644925</a>] [<a href="https://doi.org/10.1172/JCI115897" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1644925">Speiser et al. (1992)</a> found this mutation in 16% of 88 families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. The mutation falls into their group B with 2% enzyme activity and a simple virilizing phenotype. Among 127 patients with 21-hydroxylase deficiency in Sweden, <a href="#74" class="mim-tip-reference" title="Wedell, A., Thilen, A., Ritzen, E. M., Stengler, B., Luthman, H. <strong>Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease malformation.</strong> J. Clin. Endocr. Metab. 78: 1145-1152, 1994.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8175971/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8175971</a>] [<a href="https://doi.org/10.1210/jcem.78.5.8175971" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8175971">Wedell et al. (1994)</a> found that the ile173-to-asn mutation accounted for 20.8% of 186 unrelated chromosomes. (In the same study, the CYP21 gene was completely absent in 29.8% of chromosomes, the val281-to-leu mutation accounted for 5.4%, and the arg356-to-trp mutation accounted for 3.8%. The most frequent nondeletional mutation was the splice mutation in intron 2, which accounted for 27.7% of the chromosomes.) This mutation is found in 28% of all the cases of simple virilizing type (<a href="#81" class="mim-tip-reference" title="White, P. C., Tusie-Luna, M.-T., New, M. I., Speiser, P. W. <strong>Mutations in steroid 21-hydroxylase (CYP21).</strong> Hum. Mutat. 3: 373-378, 1994.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8081391/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8081391</a>] [<a href="https://doi.org/10.1002/humu.1380030408" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8081391">White et al., 1994</a>). To clarify the molecular basis of nonclassic CAH detectable by neonatal screening in Japan, <a href="#65" class="mim-tip-reference" title="Tajima, T., Fujieda, K., Nakae, J., Toyoura, T., Shimozawa, K., Kusuda, S., Goji, K., Nagashima, T., Cutler, G. B., Jr. <strong>Molecular basis of nonclassical steroid 21-hydroxylase deficiency detected by neonatal mass screening in Japan.</strong> J. Clin. Endocr. Metab. 82: 2350-2356, 1997.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9215318/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9215318</a>] [<a href="https://doi.org/10.1210/jcem.82.7.4094" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9215318">Tajima et al. (1997)</a> identified 2 sibs and 2 unrelated newborns who were diagnosed with probable nonclassic steroid 21-hydroxylase deficiency. The 2 sibs were found to have 1 allele that had 2 mutations, ile172 to asn and arg356 to trp. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3257825+8175971+1937474+9215318+1496017+2303461+1644925+8081391" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0002" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0002 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, NONCLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
ADENOMA, CORTISOL-PRODUCING, INCLUDED<br />
|
|
CARCINOMA, ADRENOCORTICAL, ANDROGEN-SECRETING, INCLUDED
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, VAL281LEU
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs6471 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs6471;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs6471?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs6471" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs6471" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012934 OR RCV000012935 OR RCV000012936 OR RCV000210728 OR RCV000417198 OR RCV000711385 OR RCV001804725 OR RCV003407320" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012934, RCV000012935, RCV000012936, RCV000210728, RCV000417198, RCV000711385, RCV001804725, RCV003407320" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012934...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In 9 patients with nonclassic 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>) associated with HLA-B14;DR1, <a href="#61" class="mim-tip-reference" title="Speiser, P. W., New, M. I., White, P. C. <strong>Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14,DR1.</strong> New Eng. J. Med. 319: 19-23, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3260007/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3260007</a>] [<a href="https://doi.org/10.1056/NEJM198807073190104" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3260007">Speiser et al. (1988)</a> found a change in codon 281 from GTG, encoding valine, to TTG, encoding leucine. <a href="#62" class="mim-tip-reference" title="Speiser, P. W., New, M. I., White, P. C. <strong>Clinical and genetic characterization of nonclassic 21-hydroxylase deficiency.</strong> Endocr. Res. 15: 257-276, 1989.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2788081/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2788081</a>] [<a href="https://doi.org/10.1080/07435808909039100" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2788081">Speiser et al. (1989)</a> concluded that this codon 281 mutation is a consistent change in nonclassic 21-hydroxylase deficiency associated with HLA-B14;DR1. The val281-to-leu mutation (V281L), found in association with the HLA-B14;DR1 haplotype, accounts for 75 to 80% of nonclassic 21-hydroxylase deficiency (<a href="#44" class="mim-tip-reference" title="Mornet, E., Crete, P., Kuttenn, F., Raux-Demay, M.-C., Boue, J., White, P. C., Boue, A. <strong>Distribution of deletions and seven point mutations on CYP21B genes in three clinical forms of steroid 21-hydroxylase deficiency.</strong> Am. J. Hum. Genet. 48: 79-88, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1985465/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1985465</a>]" pmid="1985465">Mornet et al., 1991</a>). This mutation was observed in several patients by <a href="#73" class="mim-tip-reference" title="Wedell, A., Ritzen, E. M., Haglund-Stengler, B., Luthman, H. <strong>Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.</strong> Proc. Nat. Acad. Sci. 89: 7232-7236, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1496017/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1496017</a>] [<a href="https://doi.org/10.1073/pnas.89.15.7232" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1496017">Wedell et al. (1992)</a>, who referred to it as VAL282LEU. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2788081+1985465+1496017+3260007" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In an analysis of steroid 21-hydroxylase gene mutations in the Spanish population, <a href="#16" class="mim-tip-reference" title="Ezquieta, B., Oliver, A., Gracia, R., Gancedo, P. G. <strong>Analysis of steroid 21-hydroxylase gene mutations in the Spanish population.</strong> Hum. Genet. 96: 198-204, 1995.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7635470/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7635470</a>] [<a href="https://doi.org/10.1007/BF00207379" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="7635470">Ezquieta et al. (1995)</a> found that the most frequent mutation causing the late onset form of disease (present in 15 of 38 patients) was val281 to leu, found in 18 of 30 chromosomes (37%). This mutation is found in 34% of all cases of the nonclassic type (<a href="#81" class="mim-tip-reference" title="White, P. C., Tusie-Luna, M.-T., New, M. I., Speiser, P. W. <strong>Mutations in steroid 21-hydroxylase (CYP21).</strong> Hum. Mutat. 3: 373-378, 1994.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8081391/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8081391</a>] [<a href="https://doi.org/10.1002/humu.1380030408" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8081391">White et al., 1994</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8081391+7635470" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In samples from 2 patients (1 with a cortisol-producing adenoma and 1 with an androgen-secreting adrenocortical carcinoma), <a href="#6" class="mim-tip-reference" title="Beuschlein, F., Schulze, E., Mora, P., Gensheimer, H.-P., Maser-Gluth, C., Allolio, B., Reincke, M. <strong>Steroid 21-hydroxylase mutations and 21-hydroxylase messenger ribonucleic acid expression in human adrenocortical tumors.</strong> J. Clin. Endocr. Metab. 83: 2585-2588, 1998.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9661649/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9661649</a>] [<a href="https://doi.org/10.1210/jcem.83.7.4965" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9661649">Beuschlein et al. (1998)</a> detected the heterozygous germline mutation val281 to leu in exon 7. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9661649" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0003" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0003 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, ARG356TRP
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs7769409 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs7769409;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs7769409?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs7769409" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs7769409" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012937 OR RCV000417198 OR RCV000711368 OR RCV003407321" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012937, RCV000417198, RCV000711368, RCV003407321" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012937...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with simple virilizing CAH (<a href="/entry/201910">201910</a>) who was a compound heterozygote for CYP21A2 mutations, <a href="#10" class="mim-tip-reference" title="Chiou, S.-H., Hu, M.-C., Chung, B. <strong>A missense mutation at ile172-to-asn or arg356-to-trp causes steroid 21-hydroxylase deficiency.</strong> J. Biol. Chem. 265: 3549-3552, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2303461/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2303461</a>]" pmid="2303461">Chiou et al. (1990)</a> found a CGG-to-TGG change in 1 allele resulting in substitution of a tryptophan residue for arginine-356 (R356W). Mutants corresponding to this and the ile172-to-asn (I172N; <a href="#0001">613815.0001</a>) allele were constructed from the normal CYP21 cDNA by site-directed mutagenesis. Both mutations failed to produce active enzyme. This mutation was also observed by <a href="#73" class="mim-tip-reference" title="Wedell, A., Ritzen, E. M., Haglund-Stengler, B., Luthman, H. <strong>Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.</strong> Proc. Nat. Acad. Sci. 89: 7232-7236, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1496017/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1496017</a>] [<a href="https://doi.org/10.1073/pnas.89.15.7232" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1496017">Wedell et al. (1992)</a>, who referred to it as ARG357TRP. <a href="#65" class="mim-tip-reference" title="Tajima, T., Fujieda, K., Nakae, J., Toyoura, T., Shimozawa, K., Kusuda, S., Goji, K., Nagashima, T., Cutler, G. B., Jr. <strong>Molecular basis of nonclassical steroid 21-hydroxylase deficiency detected by neonatal mass screening in Japan.</strong> J. Clin. Endocr. Metab. 82: 2350-2356, 1997.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9215318/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9215318</a>] [<a href="https://doi.org/10.1210/jcem.82.7.4094" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9215318">Tajima et al. (1997)</a> analyzed CYP21 genes for nonclassic steroid 21-hydroxylase deficiency. The 4 patients tested (2 sibs and 2 unrelated newborns) carried the R356W mutation. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2303461+9215318+1496017" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0004" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0004 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, NONCLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, PRO30LEU
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs9378251 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs9378251;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs9378251?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs9378251" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs9378251" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012938 OR RCV000711390" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012938, RCV000711390" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012938...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>The mild nonclassic form of steroid 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>) is one of the most common autosomal recessive disorders in humans, occurring in almost 1% of Caucasians and about 3% of Ashkenazi Jews. Many patients with this disorder carry a val281-to-leu (V281L) mutation in the CYP21 gene. This and most other mutations causing 21-hydroxylase deficiency are normally present in the CYP21P pseudogene and have presumably been transferred to CYP21 by gene conversion. To identify other potential nonclassic alleles, <a href="#69" class="mim-tip-reference" title="Tusie-Luna, M.-T., Speiser, P. W., Dumic, M., New, M. I., White, P. C. <strong>A mutation (pro30-to-leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele.</strong> Molec. Endocr. 5: 685-692, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2072928/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2072928</a>] [<a href="https://doi.org/10.1210/mend-5-5-685" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2072928">Tusie-Luna et al. (1991)</a> used recombinant vaccinia virus to express 2 mutant enzymes carrying the mutations pro30 to leu (normally present in CYP21P) and ser268 to thr (considered a normal polymorphism of CYP21; see <a href="#0005">613815.0005</a>). Whereas the activity of the protein carrying the ser-to-thr mutation was indeed indistinguishable from the wildtype, the enzyme with the pro-to-leu substitution had 60% of the wildtype activity for 17-hydroxyprogesterone and about 30% of normal activity for progesterone when assayed in intact cells. Proline-30 is conserved in many microsomal P450 enzymes and may be important for proper orientation of the enzyme with respect to the amino-terminal transmembrane segment. The pro30-to-leu mutation was present in 5 of 18 patients with nonclassic 21-hydroxylase deficiency. <a href="#65" class="mim-tip-reference" title="Tajima, T., Fujieda, K., Nakae, J., Toyoura, T., Shimozawa, K., Kusuda, S., Goji, K., Nagashima, T., Cutler, G. B., Jr. <strong>Molecular basis of nonclassical steroid 21-hydroxylase deficiency detected by neonatal mass screening in Japan.</strong> J. Clin. Endocr. Metab. 82: 2350-2356, 1997.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9215318/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9215318</a>] [<a href="https://doi.org/10.1210/jcem.82.7.4094" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9215318">Tajima et al. (1997)</a> observed the P30L mutation in 1 allele in 3 of 4 patients (2 sibs and 2 unrelated newborns) with nonclassic CAH in Japan. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2072928+9215318" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0005" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0005 21-@HYDROXYLASE POLYMORPHISM</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, SER268THR
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs6472 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs6472;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs6472?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs6472" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs6472" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000024069 OR RCV000029655 OR RCV000055819 OR RCV000252481 OR RCV001529036" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000024069, RCV000029655, RCV000055819, RCV000252481, RCV001529036" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000024069...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p><a href="#54" class="mim-tip-reference" title="Rodrigues, N. R., Dunham, I., Yu, C. Y., Carroll, M. C., Porter, R. R., Campbell, R. D. <strong>Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia.</strong> EMBO J. 6: 1653-1661, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3038528/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3038528</a>] [<a href="https://doi.org/10.1002/j.1460-2075.1987.tb02414.x" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3038528">Rodrigues et al. (1987)</a> identified a substitution of threonine for serine-268 in 21-hydroxylase (S268T) in a patient with congenital adrenal hyperplasia. <a href="#84" class="mim-tip-reference" title="Wu, D.-A., Chung, B. <strong>Mutations of P450c21 (steroid 21-hydroxylase) at cys-428, val-281, and ser-268 result in complete, partial, or no loss of enzymatic activity, respectively.</strong> J. Clin. Invest. 88: 519-523, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1864962/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1864962</a>] [<a href="https://doi.org/10.1172/JCI115334" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1864962">Wu and Chung (1991)</a> reported studies of induced mutations changing ser268 to thr, cys, and met. All of these 268-mutants exhibited the same activity as normal 21-hydroxylase, demonstrating that the ser268-to-thr change clinically represents a polymorphism rather than the cause of the enzyme deficiency. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1864962+3038528" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0006" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0006 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, IVS2AS, A/C-G, -13
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs6467 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs6467;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs6467?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs6467" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs6467" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012939 OR RCV000624227 OR RCV000711376 OR RCV004556714 OR RCV004584324" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012939, RCV000624227, RCV000711376, RCV004556714, RCV004584324" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012939...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>The most frequent nondeletional mutation found in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>) is an A-to-G transition at position -2 in the acceptor splice site of intron 2. As a result of the mutation, an aberrant splice acceptor site is activated 7 bases upstream of the mutation (<a href="#23" class="mim-tip-reference" title="Higashi, Y., Tanae, A., Inoue, H., Hiromasa, T., Fujii-Kuriyama, Y. <strong>Aberrant splicing and missense mutations cause steroid 21-hydroxylase (P-450[C21]) deficiency in humans: possible gene conversion products.</strong> Proc. Nat. Acad. Sci. 85: 7486-7490, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2845408/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2845408</a>] [<a href="https://doi.org/10.1073/pnas.85.20.7486" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2845408">Higashi et al., 1988</a>). As pointed out by <a href="#41" class="mim-tip-reference" title="Miller, W. L. <strong>Personal Communication.</strong> San Francisco, Calif. 1/3/1996."None>Miller (1996)</a>, this mutation, located in intron 2, is 13 bases (not 2) from the splice acceptor site of exon 3. According to the nucleotide numbering system of <a href="#23" class="mim-tip-reference" title="Higashi, Y., Tanae, A., Inoue, H., Hiromasa, T., Fujii-Kuriyama, Y. <strong>Aberrant splicing and missense mutations cause steroid 21-hydroxylase (P-450[C21]) deficiency in humans: possible gene conversion products.</strong> Proc. Nat. Acad. Sci. 85: 7486-7490, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2845408/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2845408</a>] [<a href="https://doi.org/10.1073/pnas.85.20.7486" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2845408">Higashi et al. (1988)</a>, it is residue 655. <a href="#41" class="mim-tip-reference" title="Miller, W. L. <strong>Personal Communication.</strong> San Francisco, Calif. 1/3/1996."None>Miller (1996)</a> noted that this base is normally polymorphic, being either C or A with roughly equal frequency in the normal population. Either a C-to-G or A-to-G mutation at nucleotide -13 causes the severe 21-OH deficiency. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2845408" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>This mutation has been detected in patients affected with either the salt-wasting or simple virilizing forms of the disorder (<a href="#47" class="mim-tip-reference" title="Owerbach, D., Crawford, Y. M., Draznin, M. B. <strong>Direct analysis of CYP21B genes in 21-hydroxylase deficiency using polymerase chain reaction amplification.</strong> Molec. Endocr. 4: 125-131, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2325662/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2325662</a>] [<a href="https://doi.org/10.1210/mend-4-1-125" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2325662">Owerbach et al., 1990</a>; <a href="#44" class="mim-tip-reference" title="Mornet, E., Crete, P., Kuttenn, F., Raux-Demay, M.-C., Boue, J., White, P. C., Boue, A. <strong>Distribution of deletions and seven point mutations on CYP21B genes in three clinical forms of steroid 21-hydroxylase deficiency.</strong> Am. J. Hum. Genet. 48: 79-88, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1985465/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1985465</a>]" pmid="1985465">Mornet et al., 1991</a>). <a href="#81" class="mim-tip-reference" title="White, P. C., Tusie-Luna, M.-T., New, M. I., Speiser, P. W. <strong>Mutations in steroid 21-hydroxylase (CYP21).</strong> Hum. Mutat. 3: 373-378, 1994.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8081391/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8081391</a>] [<a href="https://doi.org/10.1002/humu.1380030408" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8081391">White et al. (1994)</a> reported that this mutation represents 22% of the salt-wasting cases, 25% of the simple virilizing cases, and 12% of the nonclassic cases. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1985465+8081391+2325662" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>As reported by <a href="#25" class="mim-tip-reference" title="Hirschfeld, A. J., Fleshman, J. K. <strong>An unusually high incidence of salt-losing congenital adrenal hyperplasia in the Alaskan Eskimo.</strong> J. Pediat. 75: 492-494, 1969.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5804199/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5804199</a>] [<a href="https://doi.org/10.1016/s0022-3476(69)80280-5" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="5804199">Hirschfeld and Fleshman (1969)</a> and <a href="#49" class="mim-tip-reference" title="Pang, S., Murphey, W., Levine, L. S., Spence, D. A., Leon, A., LaFranchi, S., Surve, A. S., New, M. I. <strong>A pilot newborn screening program for congenital adrenal hyperplasia in Alaska.</strong> J. Clin. Endocr. Metab. 55: 413-420, 1982.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7096533/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7096533</a>] [<a href="https://doi.org/10.1210/jcem-55-3-413" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="7096533">Pang et al. (1982)</a>, the Yupik Eskimos of western Alaska have the world's highest prevalence of HLA-linked classic congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. The frequency was estimated to be between 1 in 282 and 1 in 490 liveborn infants. Studying 4 patients from 3 apparently unrelated Eskimo families residing in geographically distant villages, <a href="#60" class="mim-tip-reference" title="Speiser, P. W., Dupont, J., Zhu, D., Serrat, J., Buegeleisen, M., Tusie-Luna, M.-T., Lesser, M., New, M. I., White, P. C. <strong>Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency.</strong> J. Clin. Invest. 90: 584-595, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1644925/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1644925</a>] [<a href="https://doi.org/10.1172/JCI115897" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1644925">Speiser et al. (1992)</a> found that all were homozygous for a substitution of G for A at base 656 in the second intron. They concluded that allele-specific hybridization should be an efficient means of prenatal diagnosis in this isolated population. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7096533+1644925+5804199" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In the Spanish population, <a href="#16" class="mim-tip-reference" title="Ezquieta, B., Oliver, A., Gracia, R., Gancedo, P. G. <strong>Analysis of steroid 21-hydroxylase gene mutations in the Spanish population.</strong> Hum. Genet. 96: 198-204, 1995.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7635470/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7635470</a>] [<a href="https://doi.org/10.1007/BF00207379" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="7635470">Ezquieta et al. (1995)</a> found this splicing mutation in 30% of 41 mutant chromosomes, making it the most frequent cause of severe CAH in this population. They stated the mutation as an A-to-G change at nucleotide 655 of their clone. During the course of genetic analysis of CYP21 mutations in CAH families, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7635470" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#13" class="mim-tip-reference" title="Day, D. J., Speiser, P. W., Schulze, E., Bettendorf, M., Fitness, J., Barany, F., White, P. C. <strong>Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees.</strong> Hum. Molec. Genet. 5: 2039-2048, 1996.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8968761/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8968761</a>] [<a href="https://doi.org/10.1093/hmg/5.12.2039" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8968761">Day et al. (1996)</a> noticed a number of relatives genotyped as nucleotide 656G homozygotes who showed no clinical signs of disease. They proposed that the putative asymptomatic nucleotide 656G/G individuals are incorrectly typed due to a dropout of 1 haplotype during PCR amplification of CYP21. They recommended that for prenatal diagnosis, microsatellite typing be used as a supplement to CYP21 genotyping in order to resolve ambiguities at nucleotide 656. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8968761" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#35" class="mim-tip-reference" title="Lee, H.-H., Chang, S.-F., Tsai, F.-J., Tsai, L.-P., Lin, C.-Y. <strong>Mutation of IVS2-12A/C-G in combination with 707-714delGAGACTAC in the CYP21 gene is caused by deletion of the C4-CYP21 repeat module with steroid 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 88: 2726-2729, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12788880/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12788880</a>] [<a href="https://doi.org/10.1210/jc.2003-030047" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12788880">Lee et al. (2003)</a> noted that approximately 75% of defective CYP21 genes that cause CAH are generated through intergenic recombination, termed apparent gene conversion, from the neighboring CYP21P pseudogene. Among them, the common intron 2 splice site mutation, which <a href="#35" class="mim-tip-reference" title="Lee, H.-H., Chang, S.-F., Tsai, F.-J., Tsai, L.-P., Lin, C.-Y. <strong>Mutation of IVS2-12A/C-G in combination with 707-714delGAGACTAC in the CYP21 gene is caused by deletion of the C4-CYP21 repeat module with steroid 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 88: 2726-2729, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12788880/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12788880</a>] [<a href="https://doi.org/10.1210/jc.2003-030047" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12788880">Lee et al. (2003)</a> designated IVS2-12A/C-G, is believed to be derived from this mechanism and is the most prevalent case among all ethnic groups. However, mutation of 707-714delGAGACTAC (<a href="#0015">613815.0015</a>) rarely exists alone, although this locus is 53 nucleotides away from IVS2-12A/C-G. From the molecular characterization of the mutation of IVS2-12A/C-G combined with 707-714delGAGACTAC in patients with congenital adrenal hyperplasia, <a href="#35" class="mim-tip-reference" title="Lee, H.-H., Chang, S.-F., Tsai, F.-J., Tsai, L.-P., Lin, C.-Y. <strong>Mutation of IVS2-12A/C-G in combination with 707-714delGAGACTAC in the CYP21 gene is caused by deletion of the C4-CYP21 repeat module with steroid 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 88: 2726-2729, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12788880/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12788880</a>] [<a href="https://doi.org/10.1210/jc.2003-030047" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12788880">Lee et al. (2003)</a> found that it appeared to be in a 3.2- rather than a 3.7-kb fragment generated by Taq I digestion in a PCR product of the CYP21 gene. Interestingly, the 5-prime end region of such a CYP21 haplotype had CYP21P-specific sequences. The authors concluded that the coexistence of these 2 mutations is caused by deletion of the CYP21P, XA (TNXA; see <a href="/entry/600985">600985</a>), RP2 (pseudogene of STK19, <a href="/entry/604977">604977</a>), and C4B (<a href="/entry/120820">120820</a>) genes and intergenic recombination in the C4-CYP21 repeat module. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12788880" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Among 370 unrelated alleles from patients in the Netherlands with 21-hydroxylase deficiency, <a href="#63" class="mim-tip-reference" title="Stikkelbroeck, N. M. M. L., Hoefsloot, L. H., de Wijs, I. J., Otten, B. J., Hermus, A. R. M. M., Sistermans, E. A. <strong>CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in the Netherlands: six novel mutations and a specific cluster of four mutations.</strong> J. Clin. Endocr. Metab. 88: 3852-3859, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12915679/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12915679</a>] [<a href="https://doi.org/10.1210/jc.2002-021681" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12915679">Stikkelbroeck et al. (2003)</a> found this to be the most common point mutation, occurring in 28.1% of alleles. They referred to the mutation as I2G (IVS2-13A/C-G; 656A/C-G). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12915679" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0007" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0007 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, GLY292SER
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs201552310 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs201552310;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs201552310?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs201552310" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs201552310" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012940 OR RCV000711386" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012940, RCV000711386" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012940...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p><a href="#73" class="mim-tip-reference" title="Wedell, A., Ritzen, E. M., Haglund-Stengler, B., Luthman, H. <strong>Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.</strong> Proc. Nat. Acad. Sci. 89: 7232-7236, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1496017/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1496017</a>] [<a href="https://doi.org/10.1073/pnas.89.15.7232" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1496017">Wedell et al. (1992)</a> developed selective PCR amplification and direct sequencing of the full-length CYP21 gene and thereby identified 3 previously unknown mutations. One of them, in a patient with severe steroid 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), represented a substitution of serine for glycine-292 (G292S). The mutation was the result of a G-to-A transition at nucleotide 1718 in exon 7. The patient was 1 of 20 hemizygous patients, i.e., patients with only 1 copy of the functional CYP21 gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1496017" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0008" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0008 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, 2-BP DEL/1-BP INS, ARG484FS
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs397509367 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs397509367;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs397509367" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs397509367" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012941 OR RCV000711372 OR RCV003904830" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012941, RCV000711372, RCV003904830" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012941...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with severe steroid 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), <a href="#73" class="mim-tip-reference" title="Wedell, A., Ritzen, E. M., Haglund-Stengler, B., Luthman, H. <strong>Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.</strong> Proc. Nat. Acad. Sci. 89: 7232-7236, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1496017/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1496017</a>] [<a href="https://doi.org/10.1073/pnas.89.15.7232" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1496017">Wedell et al. (1992)</a> identified a change of a GG dinucleotide to a C in exon 10, resulting in a frameshift at arginine-484 and a predicted protein with 57 additional amino acids in the C-terminal end. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1496017" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0009" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0009 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, LATE-ONSET FORM</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, -4C-T, PRO105LEU, AND PRO453SER
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs550051210 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs550051210;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs550051210?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs550051210" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs550051210" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div> <div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs6470 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs6470;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs6470?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs6470" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs6470" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012942 OR RCV000012943 OR RCV000012952 OR RCV000247576 OR RCV000711371 OR RCV002288483 OR RCV003477866 OR RCV003924827 OR RCV003985261" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012942, RCV000012943, RCV000012952, RCV000247576, RCV000711371, RCV002288483, RCV003477866, RCV003924827, RCV003985261" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012942...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In 2 sibs with the late-onset form of 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>) manifested by pseudoprecocious puberty, growth acceleration, and clitoral enlargement at ages 8 and 10 years, <a href="#73" class="mim-tip-reference" title="Wedell, A., Ritzen, E. M., Haglund-Stengler, B., Luthman, H. <strong>Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.</strong> Proc. Nat. Acad. Sci. 89: 7232-7236, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1496017/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1496017</a>] [<a href="https://doi.org/10.1073/pnas.89.15.7232" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1496017">Wedell et al. (1992)</a> identified hemizygosity (i.e., only 1 functional CYP21 gene was present) for 3 sequence changes: C to T at 4 bases upstream of translation initiation, pro106 to leu, and pro454 to ser. Since pro454 is conserved in 4 species, it is likely to be important for normal enzyme function. (<a href="#81" class="mim-tip-reference" title="White, P. C., Tusie-Luna, M.-T., New, M. I., Speiser, P. W. <strong>Mutations in steroid 21-hydroxylase (CYP21).</strong> Hum. Mutat. 3: 373-378, 1994.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8081391/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8081391</a>] [<a href="https://doi.org/10.1002/humu.1380030408" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8081391">White et al. (1994)</a> later referred to the pro106-to-leu substitution as pro105 to leu, and <a href="#48" class="mim-tip-reference" title="Owerbach, D., Sherman, L., Ballard, A.-L., Azziz, R. <strong>Pro453-to-ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency.</strong> Molec. Endocr. 6: 1211-1215, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1406699/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1406699</a>] [<a href="https://doi.org/10.1210/mend.6.8.1406699" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1406699">Owerbach et al. (1992)</a> referred to the pro454-to-ser substitution as pro453 to ser.) <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1406699+8081391+1496017" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#45" class="mim-tip-reference" title="Nikoshkov, A., Lajic, S., Holst, M., Wedell, A., Luthman, H. <strong>Synergistic effect of partially inactivating mutations in steroid 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 82: 194-199, 1997.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8989258/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8989258</a>] [<a href="https://doi.org/10.1210/jcem.82.1.3678" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8989258">Nikoshkov et al. (1997)</a> tested the function of the -4, pro105-to-leu, and pro453-to-ser mutations by in vitro translation after expression of the mutant enzymes in cultured cells. While the -4 substitution had no measurable effect, the pro105-to-leu and pro453-to-ser mutations reduced enzyme activity to 62% and 68% for 17-hydroxyprogesterone and 64% and 46% for progesterone, respectively. When present in combination, these 2 mutations caused a reduction of enzyme activity to 10% for 17-hydroxyprogesterone and 7% for progesterone. These results indicated that pro105-to-leu and pro453-to-ser alleles should only cause very subtle disease when not in combination but may be considered when genotyping patients with the mildest forms of CAH1. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8989258" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0010" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0010 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, NONCLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, PRO453SER
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs6445 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs6445;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs6445?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs6445" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs6445" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012942 OR RCV000012943 OR RCV000012952 OR RCV000711371 OR RCV002288483 OR RCV003924827 OR RCV003985261" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012942, RCV000012943, RCV000012952, RCV000711371, RCV002288483, RCV003924827, RCV003985261" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012942...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Using PCR in a study of the structure of the CYP21 gene in 13 unrelated nonclassic steroid 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>) patients, 3 affected sibs, and 55 blood donors, <a href="#48" class="mim-tip-reference" title="Owerbach, D., Sherman, L., Ballard, A.-L., Azziz, R. <strong>Pro453-to-ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency.</strong> Molec. Endocr. 6: 1211-1215, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1406699/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1406699</a>] [<a href="https://doi.org/10.1210/mend.6.8.1406699" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1406699">Owerbach et al. (1992)</a> found the val281-to-leu (<a href="#0002">613815.0002</a>) and pro30-to-leu (<a href="#0004">613815.0004</a>) mutations, as well as a pro453-to-ser (P453S) mutation in exon 10. The P453S mutation was identified in 46.2% of unrelated nonclassic CAH patients, but only 7.7% and 3.6% of salt-wasting CAH patients and blood donors, respectively. In contrast to the other 2 'nonclassic' mutations, pro453 to ser had not been detected in the CYP21 pseudogene and, therefore, probably had not arisen by gene conversion. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1406699" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#59" class="mim-tip-reference" title="Soardi, F. C., Barbaro, M., Lau, I. F., Lemos-Marini, S. H. V., Baptista, M. T. M., Guerra-Junior, G., Wedell, A., Lajic, S., de Mello, M. P. <strong>Inhibition of CYP21A2 enzyme activity caused by novel missense mutations identified in Brazilian and Scandinavian patients.</strong> J. Clin. Endocr. Metab. 93: 2416-2420, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18381579/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18381579</a>] [<a href="https://doi.org/10.1210/jc.2007-2594" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18381579">Soardi et al. (2008)</a> found that P453S and another nonclassic mutation, H62L (<a href="#0034">613815.0034</a>), had a synergistic interaction. When the mutant proteins were expressed together in COS cells, the activity of the enzyme was reduced to 4.1% and 2.3% toward 17OHP and progesterone, respectively. Two unrelated patients who both carried P453S+H62L on the paternal allele had a mild simple virilizing phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18381579" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0011" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0011 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, 30-KB DEL
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012944" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012944" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012944</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In 13 patients with congenital adrenal hyperplasia (<a href="/entry/201910">201910</a>), <a href="#82" class="mim-tip-reference" title="White, P. C., Vitek, A., Dupont, B., New, M. I. <strong>Characterization of frequent deletions causing steroid 21-hydroxylase deficiency.</strong> Proc. Nat. Acad. Sci. 85: 4436-4440, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3260033/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3260033</a>] [<a href="https://doi.org/10.1073/pnas.85.12.4436" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3260033">White et al. (1988)</a> identified a deletion of approximately 30 kb, leaving behind the C4A gene (encoding the fourth component of complement; <a href="/entry/120820">120820</a>) and a single CYP21P-like gene. The deletion prevents the synthesis of the protein and destroys all enzymatic activity. This mutation is very common and is found in 29% of all the salt-wasting cases. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3260033" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0012" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0012 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, GENE CONVERSION CYP21 FROM CYP21P
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012945" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012945" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012945</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p><a href="#22" class="mim-tip-reference" title="Higashi, Y., Tanae, A., Inoue, H., Fujii-Kuriyama, Y. <strong>Evidence for frequent gene conversion in the steroid 21-hydroxylase P-450(C21) gene: implications for steroid 21-hydroxylase deficiency.</strong> Am. J. Hum. Genet. 42: 17-25, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2827462/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2827462</a>]" pmid="2827462">Higashi et al. (1988)</a> discovered that the CYP21P genes in 11 patients with congenital adrenal hyperplasia (<a href="/entry/201910">201910</a>) seemed to be replaced frequently in their 3-prime portions by the CYP21 gene sequences. All of these alterations occurred without changing the characteristic length (3.2 kb) of the TaqI fragment of the CYP21P gene, a result strongly suggesting that frequent gene conversions and/or intragenic recombinations have happened in the P-450 (C21) genes. This mutation results in a salt-wasting type and destroys all enzymatic activity. Gene conversions were observed in 8 normal individuals, suggesting that the resulting gene sequences do not always contain deleterious mutations from the CYP21 pseudogene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2827462" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0013" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0013 21-@HYDROXYLASE POLYMORPHISM</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, 3-BP INS, LEU10INS
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs61338903 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs61338903;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs61338903" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs61338903" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000024070 OR RCV000055814" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000024070, RCV000055814" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000024070...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p><a href="#54" class="mim-tip-reference" title="Rodrigues, N. R., Dunham, I., Yu, C. Y., Carroll, M. C., Porter, R. R., Campbell, R. D. <strong>Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia.</strong> EMBO J. 6: 1653-1661, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3038528/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3038528</a>] [<a href="https://doi.org/10.1002/j.1460-2075.1987.tb02414.x" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3038528">Rodrigues et al. (1987)</a> identified an insertion of CTG in exon 1 of the CYP21A2 gene at nucleotide position 28 coding for a leucine-10. This insertion has no effect on the enzymatic activity. This mutation is normally present in the CYP21 pseudogene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3038528" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0014" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0014 21-@HYDROXYLASE POLYMORPHISM</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, TYR102ARG
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000024071" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000024071" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000024071</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p><a href="#54" class="mim-tip-reference" title="Rodrigues, N. R., Dunham, I., Yu, C. Y., Carroll, M. C., Porter, R. R., Campbell, R. D. <strong>Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia.</strong> EMBO J. 6: 1653-1661, 1987.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3038528/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3038528</a>] [<a href="https://doi.org/10.1002/j.1460-2075.1987.tb02414.x" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3038528">Rodrigues et al. (1987)</a> identified an A-to-G change at nucleotide 683 in exon 3 of the CYP21A2 gene, resulting in a substitution of arginine for tyrosine-102 (Y102R). There is normal enzymatic activity associated with this polymorphism. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3038528" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0015" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0015 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, 8-BP DEL
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs387906510 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs387906510;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs387906510?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs387906510" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs387906510" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012946 OR RCV000711378" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012946, RCV000711378" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012946...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>By hybridization with specific oligonucleotide probes, <a href="#82" class="mim-tip-reference" title="White, P. C., Vitek, A., Dupont, B., New, M. I. <strong>Characterization of frequent deletions causing steroid 21-hydroxylase deficiency.</strong> Proc. Nat. Acad. Sci. 85: 4436-4440, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3260033/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3260033</a>] [<a href="https://doi.org/10.1073/pnas.85.12.4436" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3260033">White et al. (1988)</a> showed an 8-bp deletion of nucleotides 707-714 in exon 3, typical of CYP21P, which prevents synthesis of the protein by a frameshift and causes the salt-wasting type of congenital adrenal hyperplasia. This mutation is present in about 8% of the salt-wasting CAH (<a href="/entry/201910">201910</a>) cases. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3260033" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>See <a href="#0006">613815.0006</a> and <a href="#35" class="mim-tip-reference" title="Lee, H.-H., Chang, S.-F., Tsai, F.-J., Tsai, L.-P., Lin, C.-Y. <strong>Mutation of IVS2-12A/C-G in combination with 707-714delGAGACTAC in the CYP21 gene is caused by deletion of the C4-CYP21 repeat module with steroid 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 88: 2726-2729, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12788880/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12788880</a>] [<a href="https://doi.org/10.1210/jc.2003-030047" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12788880">Lee et al. (2003)</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12788880" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0016" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0016 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, ILE236ASN, VAL237GLU, MET239LYS
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs12530380 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs12530380;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs12530380?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs12530380" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs12530380" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div> <div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1554299737 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1554299737;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1554299737" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1554299737" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div> <div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs6476 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs6476;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs6476?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs6476" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs6476" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012947 OR RCV000055823 OR RCV001269527 OR RCV001269963 OR RCV001269964 OR RCV002250459 OR RCV002250603 OR RCV002250604 OR RCV002298442 OR RCV002298450 OR RCV002298552 OR RCV002298553 OR RCV002308619 OR RCV002308620 OR RCV002308621" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012947, RCV000055823, RCV001269527, RCV001269963, RCV001269964, RCV002250459, RCV002250603, RCV002250604, RCV002298442, RCV002298450, RCV002298552, RCV002298553, RCV002308619, RCV002308620, RCV002308621" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012947...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with the salt-wasting form of congenital adrenal hyperplasia caused by 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), <a href="#23" class="mim-tip-reference" title="Higashi, Y., Tanae, A., Inoue, H., Hiromasa, T., Fujii-Kuriyama, Y. <strong>Aberrant splicing and missense mutations cause steroid 21-hydroxylase (P-450[C21]) deficiency in humans: possible gene conversion products.</strong> Proc. Nat. Acad. Sci. 85: 7486-7490, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2845408/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2845408</a>] [<a href="https://doi.org/10.1073/pnas.85.20.7486" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2845408">Higashi et al. (1988)</a> identified a cluster mutation in exon 6 of the CYP21A2 gene (ILE235ASN (I235N), VAL236GLU (V236E), and MET238LYS (M238K)). Each of these substitutions was caused by a T-to-A transversion at nucleotide position 1380, 1383, and 1389, respectively. This mutation was presumed to have arisen in a gene conversion event. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2845408" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#68" class="mim-tip-reference" title="Tusie-Luna, M. T., Traktman, P., White, P. C. <strong>Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus.</strong> J. Biol. Chem. 265: 20916-20922, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2249999/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2249999</a>]" pmid="2249999">Tusie-Luna et al. (1990)</a> expressed the exon 6 cluster mutation at high levels in cultured COS-1 cells using recombinant vaccinia virus to determine its functional effect. They found that this mutation had no detectable enzymatic activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2249999" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#53" class="mim-tip-reference" title="Robins, T., Barbaro, M., Lajic, S., Wedell, A. <strong>Not all amino acid substitutions of the common cluster E6 mutation in CYP21 cause congenital adrenal hyperplasia.</strong> J. Clin. Endocr. Metab. 90: 2148-2153, 2005.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15623806/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15623806</a>] [<a href="https://doi.org/10.1210/jc.2004-1937" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="15623806">Robins et al. (2005)</a> excluded the M239K mutation as a disease-causing mutation in this cluster by demonstrating that it has no effect on enzyme activity. V237E abolished enzyme function and is thus a null mutation, whereas very low but measurable activity remained for I236N. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15623806" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<a id="0017" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0017 MOVED TO <a href="/entry/613815#0016">613815.0016</a></strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<a id="0018" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0018 MOVED TO <a href="/entry/613815#0016">613815.0016</a></strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0019" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0019 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, IVS7DS, G-C, +1
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs1474566961 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1474566961;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs1474566961?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1474566961" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1474566961" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012950" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012950" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012950</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a severely affected 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>) patient, <a href="#72" class="mim-tip-reference" title="Wedell, A., Luthman, H. <strong>Steroid 21-hydroxylase deficiency: two additional mutations in salt-wasting disease and rapid screening of disease-causing mutations.</strong> Hum. Molec. Genet. 2: 499-504, 1993.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8518786/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8518786</a>] [<a href="https://doi.org/10.1093/hmg/2.5.499" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8518786">Wedell and Luthman (1993)</a> identified a G-to-C substitution at nucleotide 177, the first nucleotide of the donor splice site of intron 7, resulting in abnormal splicing. This mutation was found in compound heterozygosity with a premature termination mutation (<a href="#0022">613815.0022</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8518786" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0020" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0020 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, GLN318TER
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs7755898 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs7755898;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs7755898?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs7755898" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs7755898" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012951 OR RCV000417198 OR RCV000711391 OR RCV002222348 OR RCV003924828" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012951, RCV000417198, RCV000711391, RCV002222348, RCV003924828" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012951...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p><a href="#18" class="mim-tip-reference" title="Globerman, H., Amor, H., Parker, K. L., New, M. I., White, P. C. <strong>A nonsense mutation causing steroid 21-hydroxylase deficiency.</strong> J. Clin. Invest. 82: 139-144, 1988.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3267225/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3267225</a>] [<a href="https://doi.org/10.1172/JCI113562" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="3267225">Globerman et al. (1988)</a> identified a T-to-C substitution at nucleotide 1994 in exon 8 of the CYP21A2 gene, resulting in a stop codon at position 318 (Q318X). Individuals homozygous for this mutation have the salt-wasting form of 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>) and no enzymatic activity. This mutation is normally present in the CYP21 pseudogene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3267225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a Spanish population, <a href="#15" class="mim-tip-reference" title="Ezquieta, B., Cueva, E., Oyarzabal, M., Oliver, A., Varela, J. M., Jariego, C. <strong>Gene conversion (655G splicing mutation) and the founder effect (gln318-to-stop) contribute to the most frequent severe point mutations in congenital adrenal hyperplasia (21-hydroxylase deficiency) in the Spanish population.</strong> Clin. Genet. 62: 181-188, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12220458/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12220458</a>] [<a href="https://doi.org/10.1034/j.1399-0004.2002.620213.x" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12220458">Ezquieta et al. (2002)</a> provided data on the contributions of gene conversion and founder effect to the distribution of the 2 most frequent severe point mutations of the CYP21A2 gene causing congenital adrenal hyperplasia: the 655G splicing mutation at intron 2 (<a href="#0006">613815.0006</a>) and gln318-to-ter. Both mechanisms were found to contribute to the mutant alleles in different degrees. The 655G splicing mutation (accounting for 15.5% of alleles) seemed to be almost exclusively related to recent conversion events, whereas Q318X (accounting for 8.3% of alleles) was more likely to be due to the dissemination of remotely generated mutant alleles. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12220458" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0021" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0021 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, NONCLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, ARG339HIS AND PRO453SER
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs72552754 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs72552754;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs72552754?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs72552754" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs72552754" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012942 OR RCV000012943 OR RCV000012952 OR RCV000711371 OR RCV002288483 OR RCV003318405 OR RCV003924827 OR RCV003985261" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012942, RCV000012943, RCV000012952, RCV000711371, RCV002288483, RCV003318405, RCV003924827, RCV003985261" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012942...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with a mild, nonclassic form of 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), <a href="#21" class="mim-tip-reference" title="Helmberg, A., Tusie-Luna, M. T., Tabarelli, M., Kofler, R., White, P. C. <strong>R339H and P453S: CYP21 mutations associated with nonclassic steroid 21-hydroxylase deficiency that are not apparent gene conversions.</strong> Molec. Endocr. 6: 1318-1322, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1406709/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1406709</a>] [<a href="https://doi.org/10.1210/mend.6.8.1406709" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1406709">Helmberg et al. (1992)</a> 1 allele that carried 2 missense mutations in the CYP21A2 gene, R339H and P453S (see <a href="#0010">613815.0010</a>). The substitution of histidine for arginine-339 resulted from a G-to-C change at nucleotide 2058 in exon 8. The enzymatic activity associated with this mutation is lowered to 30 to 60% of normal. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1406709" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0022" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0022 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, TRP406TER
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs151344503 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs151344503;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs151344503?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs151344503" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs151344503" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012953 OR RCV001851812" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012953, RCV001851812" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012953...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with salt-wasting 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), <a href="#72" class="mim-tip-reference" title="Wedell, A., Luthman, H. <strong>Steroid 21-hydroxylase deficiency: two additional mutations in salt-wasting disease and rapid screening of disease-causing mutations.</strong> Hum. Molec. Genet. 2: 499-504, 1993.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8518786/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8518786</a>] [<a href="https://doi.org/10.1093/hmg/2.5.499" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8518786">Wedell and Luthman (1993)</a> identified an A-to-G substitution at nucleotide 2339 in exon 9 of the CYP21A2 gene, causing a stop codon at position 406 (W406X). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8518786" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0023" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0023 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, GLU380ASP
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012954 OR RCV003234903" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012954, RCV003234903" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012954...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In an HLA-homozygous patient with salt-losing congenital adrenal hyperplasia due to 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), <a href="#30" class="mim-tip-reference" title="Kirby-Keyser, L., Porter, C. C., Donohoue, P. A. <strong>E380D: a novel point mutation of CYP21 in an HLA-homozygous patient with salt-losing congenital adrenal hyperplasia due to 21-hydroxylase deficiency.</strong> Hum. Mutat. 9: 181-182, 1997.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9067760/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9067760</a>] [<a href="https://doi.org/10.1002/(SICI)1098-1004(1997)9:2<181::AID-HUMU12>3.0.CO;2-Z" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9067760">Kirby-Keyser et al. (1997)</a> demonstrated homozygosity for an E380D mutation in the CYP21 gene. Both parents and 1 sib were heterozygous for this mutation. E380D had not been identified in any pseudogenes, suggesting that the mutation had arisen through conventional means and not by gene conversion or similar mechanisms related to the neighboring pseudogene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9067760" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<a id="0024" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0024 MOVED TO <a href="/entry/613815#0016">613815.0016</a></strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0025" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0025 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, GLY424SER
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs72552758 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs72552758;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs72552758?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs72552758" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs72552758" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000991861 OR RCV002249597" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000991861, RCV002249597" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000991861...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p><a href="#7" class="mim-tip-reference" title="Billerbeck, A. E. C., Bachega, T. A. S. S., Frazzatto, E. T., Nishi, M. Y., Goldberg, A. C., Marin, M. L. C., Madureira, G., Monte, O., Arnhold, I. J. P., Mendonca, B. B. <strong>A novel missense mutation, GLY424SER, in Brazilian patients with 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 84: 2870-2872, 1999.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10443693/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10443693</a>] [<a href="https://doi.org/10.1210/jcem.84.8.5937" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10443693">Billerbeck et al. (1999)</a> sequenced the entire CYP21 gene of a Brazilian mulatto patient with the simple virilizing form of congenital adrenal hyperplasia (<a href="/entry/201910">201910</a>) who had the R356W mutation (<a href="#0003">613815.0003</a>) in a heterozygous state. They identified a heterozygous G-to-A transition at nucleotide 2494, resulting in a gly424-to-ser (G424S) substitution in a region where glycine is conserved in at least 4 species. Overall, the gly424-to-ser mutation was found in a compound heterozygous state in 5 Brazilian families; 4 presented the simple virilizing form, and 1 presented the nonclassic form. Interestingly, 3 of the 5 families had a mulatto origin. All patients with the gly424-to-ser mutation had CYP21P and C4A (<a href="/entry/120810">120810</a>) gene deletions and human leukocyte antigen DR17 on the same haplotype, suggesting linkage disequilibrium and a probable founder effect. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10443693" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0026" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0026 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, ARG426HIS
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs151344504 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs151344504;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs151344504?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs151344504" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs151344504" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012957 OR RCV001851813 OR RCV003390673" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012957, RCV001851813, RCV003390673" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012957...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a female index patient and her 2 sisters presenting with classical congenital adrenal hyperplasia and severe genital virilization (<a href="/entry/201910">201910</a>), <a href="#5" class="mim-tip-reference" title="Baumgartner-Parzer, S. M., Schulze, E., Waldhausl, W., Pauschenwein, S., Rondot, S., Nowotny, P., Meyer, K., Frisch, H., Waldhauser, F., Vierhapper, H. <strong>Mutational spectrum of the steroid 21-hydroxylase gene in Austria: identification of a novel missense mutation.</strong> J. Clin. Endocr. Metab. 86: 4771-4775, 2001.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11600539/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11600539</a>] [<a href="https://doi.org/10.1210/jcem.86.10.7898" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11600539">Baumgartner-Parzer et al. (2001)</a> found hemizygosity for an arg426-to-his (R426H) mutation in the maternal CYP21B gene, resulting from a G-to-A transition in exon 10. The patients were compound heterozygous for a large gene deletion of the CYP21B (paternal) and CYP21A (maternal) genes. One of the 3 sisters had given birth to a daughter who was a clinically asymptomatic carrier of the R426H mutation. In vitro expression experiments showed the R426H mutant to exhibit only low enzyme activity toward the natural substrate 17-hydroxyprogesterone. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11600539" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0027" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0027 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, 1-BP INS, 82C
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1582299448 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1582299448;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1582299448" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1582299448" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012958" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012958" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012958</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Genotyping of 41 Brazilian patients with the classical form of 21-hydroxylase deficiency revealed 64% microconversion, whereas deletions and large gene conversions accounted for up to 21% of the molecular defect (<a href="#2" class="mim-tip-reference" title="Araujo, M., Sanches, M. R., Suzuki, L. A., Guerra, G., Jr., Farah, S. B., De Mello, M. P. <strong>Molecular analysis of CYP21 and C4 genes in Brazilian families with the classical form of steroid 21-hydroxylase deficiency.</strong> Braz. J. Med. Biol. Res. 29: 1-13, 1996.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8731325/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8731325</a>]" pmid="8731325">Araujo et al., 1996</a>; <a href="#51" class="mim-tip-reference" title="Paulino, L. C., Araujo, M., Guerra, G., Jr., Marini, S. H., De Mello, M. P. <strong>Mutation distribution and CYP21/C4 locus variability in Brazilian families with the classical form of the 21-hydroxylase deficiency.</strong> Acta Paediat. 88: 275-83, 1999.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10229037/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10229037</a>] [<a href="https://doi.org/10.1080/08035259950170024" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10229037">Paulino et al., 1999</a>). <a href="#34" class="mim-tip-reference" title="Lau, I. F., Soardi, F. C., Lemos-Marini, S. H. V., Guerra, G., Jr., Baptista, M. T. M., De Mello, M. P. <strong>H28+C insertion in the CYP21 gene: a novel frameshift mutation in a Brazilian patient with the classical form of 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 86: 5877-5880, 2001.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11739456/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11739456</a>] [<a href="https://doi.org/10.1210/jcem.86.12.8113" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11739456">Lau et al. (2001)</a> reported a novel mutation disclosed by sequencing the entire CYP21 gene of a patient in whom no pseudogene-originated mutation had been found. The patient, who had the classical form of 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), was the daughter of a consanguineous marriage; she was homozygous for a novel frameshift, an insertion of a cytosine between nucleotides 82 and 83, within exon 1. The mutation caused conversion of codon 28 from histidine to proline and premature termination at amino acid 78. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=11739456+8731325+10229037" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0028" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0028 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, IVS2, A-G, -2
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1582302625 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1582302625;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1582302625" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1582302625" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012959" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012959" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012959</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In 3 unrelated Brazilian patients with the classic form of the 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), <a href="#8" class="mim-tip-reference" title="Billerbeck, A. E. C., Mendonca, B. B., Pinto, E. M., Madureira, G., Arnhold, I. J. P., Bachega, T. A. S. S. <strong>Three novel mutations in CYP21 gene in Brazilian patients with the classical form of 21-hydroxylase deficiency due to a founder effect.</strong> J. Clin. Endocr. Metab. 87: 4314-4317, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12213891/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12213891</a>] [<a href="https://doi.org/10.1210/jc.2001-011939" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12213891">Billerbeck et al. (2002)</a> found 3 novel mutations after CYP21 gene sequencing. In 1 patient and her brother, both affected with the simple virilizing form, and in their aunt, with the nonclassic form, an AG-to-GG transition was found in the acceptor site of intron 2. In the sibs, this mutation was found in compound heterozygosity with the I172N mutation (<a href="#0001">613815.0001</a>); in their aunt, it was found in compound heterozygosity with P30L (<a href="#0004">613815.0004</a>), which confers more than 30% enzyme activity, explaining why she presented with the nonclassic form. In another patient with the salt-wasting form, they found an insertion of an adenine between nucleotides 1003 and 1004, in exon 4, that altered the reading frame and created a stop codon at codon 297 (<a href="#0029">613815.0029</a>). In the third patient and his sister, they found a C-to-T transition in codon 408 predicted to encode an arg408-to-cys (R408C) substitution in a region where arginine is conserved in at least 4 different species. Microsatellite studies, using markers flanking CYP21 gene, revealed that each new mutation presents the same haplotype, suggesting a gene founder effect for each one. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12213891" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0029" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0029 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, 1-BP INS, 1003A
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012960" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012960" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012960</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>For discussion of the 1-bp insertion (1003_1004insA) in exon 4 of the CYP21A2 gene that was found in compound heterozygous state in a patient with the salt-wasting form of 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>) by <a href="#8" class="mim-tip-reference" title="Billerbeck, A. E. C., Mendonca, B. B., Pinto, E. M., Madureira, G., Arnhold, I. J. P., Bachega, T. A. S. S. <strong>Three novel mutations in CYP21 gene in Brazilian patients with the classical form of 21-hydroxylase deficiency due to a founder effect.</strong> J. Clin. Endocr. Metab. 87: 4314-4317, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12213891/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12213891</a>] [<a href="https://doi.org/10.1210/jc.2001-011939" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12213891">Billerbeck et al. (2002)</a>, see <a href="#0028">613815.0028</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12213891" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0030" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0030 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, ARG408CYS
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs72552757 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs72552757;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs72552757?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs72552757" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs72552757" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012961 OR RCV002472928" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012961, RCV002472928" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012961...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>For discussion of the arg408-to-cys (R408C) mutation in the CYP21A2 gene that was found in compound heterozygous state in 2 sibs with the salt-wasting form of 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>) by <a href="#8" class="mim-tip-reference" title="Billerbeck, A. E. C., Mendonca, B. B., Pinto, E. M., Madureira, G., Arnhold, I. J. P., Bachega, T. A. S. S. <strong>Three novel mutations in CYP21 gene in Brazilian patients with the classical form of 21-hydroxylase deficiency due to a founder effect.</strong> J. Clin. Endocr. Metab. 87: 4314-4317, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12213891/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12213891</a>] [<a href="https://doi.org/10.1210/jc.2001-011939" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12213891">Billerbeck et al. (2002)</a>, see <a href="#0028">613815.0028</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12213891" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0031" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0031 HYPERANDROGENISM, NONCLASSIC TYPE, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, VAL304MET
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs151344505 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs151344505;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs151344505?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs151344505" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs151344505" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV002211046 OR RCV002281650" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV002211046, RCV002281650" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV002211046...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a woman with hyperandrogenism (<a href="/entry/201910">201910</a>), <a href="#33" class="mim-tip-reference" title="Lajic, S., Clauin, S., Robins, T., Vexiau, P., Blanche, H., Bellanne-Chantelot, C., Wedell, A. <strong>Novel mutations in CYP21 detected in individuals with hyperandrogenism.</strong> J. Clin. Endocr. Metab. 87: 2824-2829, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12050257/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12050257</a>] [<a href="https://doi.org/10.1210/jcem.87.6.8525" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12050257">Lajic et al. (2002)</a> identified a novel homozygous val304-to-met (V304M) mutation in the CYP21 gene. After expression in COS-1 cells, the mutated enzyme was found to have a residual activity of 46% for conversion of 17-hydroxyprogesterone and 26% for conversion of progesterone compared with the normal enzyme. A normal degradation pattern for this mutant enzyme indicated that the mutation is of functional, rather than structural, importance. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12050257" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0032" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0032 HYPERANDROGENISM, NONCLASSIC TYPE, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, GLY375SER
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs151344506 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs151344506;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs151344506?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs151344506" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs151344506" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012963" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012963" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012963</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a woman with signs of hyperandrogenism (<a href="/entry/201910">201910</a>), <a href="#33" class="mim-tip-reference" title="Lajic, S., Clauin, S., Robins, T., Vexiau, P., Blanche, H., Bellanne-Chantelot, C., Wedell, A. <strong>Novel mutations in CYP21 detected in individuals with hyperandrogenism.</strong> J. Clin. Endocr. Metab. 87: 2824-2829, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12050257/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12050257</a>] [<a href="https://doi.org/10.1210/jcem.87.6.8525" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12050257">Lajic et al. (2002)</a> identified a novel gly375-to-ser (G375S) mutation in the CYP21 gene in heterozygous state with a pro453-to-ser (P453S; <a href="#0010">613815.0010</a>) mutation, which is known to cause nonclassic CAH. The G375S variant almost completely abolished enzyme activity; conversion was 1.6% and 0.7% of normal for 17-hydroxyprogesterone and progesterone, respectively. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12050257" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0033" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0033 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, VAL281LEU, PHE306+1, GLN318TER, AND ARG356TRP
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs267606756 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs267606756;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs267606756" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs267606756" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012934 OR RCV000012935 OR RCV000012936 OR RCV000012937 OR RCV000012951 OR RCV000055821 OR RCV000210728 OR RCV000417198 OR RCV000711368 OR RCV000711385 OR RCV000711389 OR RCV000711391 OR RCV001804725 OR RCV002222348 OR RCV003407320 OR RCV003407321 OR RCV003924828" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012934, RCV000012935, RCV000012936, RCV000012937, RCV000012951, RCV000055821, RCV000210728, RCV000417198, RCV000711368, RCV000711385, RCV000711389, RCV000711391, RCV001804725, RCV002222348, RCV003407320, RCV003407321, RCV003924828" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012934...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p><a href="#63" class="mim-tip-reference" title="Stikkelbroeck, N. M. M. L., Hoefsloot, L. H., de Wijs, I. J., Otten, B. J., Hermus, A. R. M. M., Sistermans, E. A. <strong>CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in the Netherlands: six novel mutations and a specific cluster of four mutations.</strong> J. Clin. Endocr. Metab. 88: 3852-3859, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12915679/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12915679</a>] [<a href="https://doi.org/10.1210/jc.2002-021681" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12915679">Stikkelbroeck et al. (2003)</a> found a clustering of pseudogene-derived mutations in exons 7 and 8 of the CYP21A2 gene (val281 to leu, a 1-bp insertion after codon 306, gln318 to ter, and arg356 to trp) in 7 of 370 unrelated alleles (1.9%) from a population of Dutch patients with 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>). This cluster had been reported by <a href="#31" class="mim-tip-reference" title="Koppens, P. F. J., Hoogenboezem, T., Degenhart, H. J. <strong>CYP21 and CYP21P variability in steroid 21-hydroxylase deficiency patients and in the general population in the Netherlands.</strong> Europ. J. Hum. Genet. 8: 827-836, 2000.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11093272/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11093272</a>] [<a href="https://doi.org/10.1038/sj.ejhg.5200543" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11093272">Koppens et al. (2000)</a> in 2 Dutch patients (2 of 75 unrelated alleles) and by <a href="#83" class="mim-tip-reference" title="Wilson, R. C., Mercado, A. B., Cheng, K. C., New, M. I. <strong>Steroid 21-hydroxylase deficiency: genotype may not predict phenotype.</strong> J. Clin. Endocr. Metab. 80: 2322-2329, 1995.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7629224/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7629224</a>] [<a href="https://doi.org/10.1210/jcem.80.8.7629224" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="7629224">Wilson et al. (1995)</a> in 2 patients (2 of 394 alleles). <a href="#63" class="mim-tip-reference" title="Stikkelbroeck, N. M. M. L., Hoefsloot, L. H., de Wijs, I. J., Otten, B. J., Hermus, A. R. M. M., Sistermans, E. A. <strong>CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in the Netherlands: six novel mutations and a specific cluster of four mutations.</strong> J. Clin. Endocr. Metab. 88: 3852-3859, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12915679/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12915679</a>] [<a href="https://doi.org/10.1210/jc.2002-021681" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12915679">Stikkelbroeck et al. (2003)</a> suggested that this cluster may be specific to the Dutch population and may be attributable to a common founder. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=12915679+11093272+7629224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0034" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0034 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, HIS62LEU
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">●</span> rs9378252 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs9378252;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs9378252?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">●</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs9378252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs9378252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012965 OR RCV000173141 OR RCV002307363 OR RCV002472929" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012965, RCV000173141, RCV002307363, RCV002472929" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012965...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Of 60 novel mutations in CYP21 identified in a screen of 2,900 patients with steroid 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), <a href="#38" class="mim-tip-reference" title="Menassa, R., Tardy, V., Despert, F., Bouvattier-Morel, C., Brossier, J. P., Cartigny, M., Morel, Y. <strong>p.H62L, a rare mutation of the CYP21 gene identified in two forms of 21-hydroxylase deficiency.</strong> J. Clin. Endocr. Metab. 93: 1901-1908, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18319307/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18319307</a>] [<a href="https://doi.org/10.1210/jc.2007-2701" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18319307">Menassa et al. (2008)</a> found that a his-to-leu substitution at codon 62 (H62L) was the most frequent. The H62L substitution, which arises from an A-to-T transversion at nucleotide 185 in exon 1 of the CYP21 gene, was found in 13 patients from 12 unrelated families, either isolated or associated on the same allele with a mild mutation. In isolation, or when associated with a partial conversion of the promoter, the H62L mutation was responsible for a nonclassic form; associated with the P453S (<a href="#0010">613815.0010</a>) or P30L (<a href="#0004">613815.0004</a>) mutations, H62L contributed to a simple virilizing phenotype more severe than that associated with P453S or P30L alone, but not as severe as the phenotype associated with I172N (<a href="#0001">613815.0001</a>). Analysis of a 3-dimensional model structure of the CYP21 protein localized the H62L mutation to the beta-1-sheet region, in a large hydrophobic area considered important for membrane anchoring. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18319307" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#59" class="mim-tip-reference" title="Soardi, F. C., Barbaro, M., Lau, I. F., Lemos-Marini, S. H. V., Baptista, M. T. M., Guerra-Junior, G., Wedell, A., Lajic, S., de Mello, M. P. <strong>Inhibition of CYP21A2 enzyme activity caused by novel missense mutations identified in Brazilian and Scandinavian patients.</strong> J. Clin. Endocr. Metab. 93: 2416-2420, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18381579/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18381579</a>] [<a href="https://doi.org/10.1210/jc.2007-2594" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18381579">Soardi et al. (2008)</a> found that the H62L mutant protein showed an activity compatible with a nonclassic mutation in functional assays. Determination of apparent kinetic constants revealed that the substrate binding capacity was in the same magnitude for mutant and normal enzyme. <a href="#59" class="mim-tip-reference" title="Soardi, F. C., Barbaro, M., Lau, I. F., Lemos-Marini, S. H. V., Baptista, M. T. M., Guerra-Junior, G., Wedell, A., Lajic, S., de Mello, M. P. <strong>Inhibition of CYP21A2 enzyme activity caused by novel missense mutations identified in Brazilian and Scandinavian patients.</strong> J. Clin. Endocr. Metab. 93: 2416-2420, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18381579/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18381579</a>] [<a href="https://doi.org/10.1210/jc.2007-2594" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18381579">Soardi et al. (2008)</a> found that the H62L mutation was associated with other mutations in both Brazilian and Scandinavian patients. In the Scandinavian patients H62L was associated on the paternal allele with the nonclassic P453S (<a href="#0010">613815.0010</a>) mutation. In vitro activity data revealed a synergistic effect of the H62L+P453S mutation, which may explain the mild simple virilizing phenotype in these patients. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18381579" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
|
|
<div>
|
|
<a id="0035" class="mim-anchor"></a>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0035 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
|
|
<div style="float: left;">
|
|
CYP21A2, LYS121GLN
|
|
</div>
|
|
|
|
</span>
|
|
|
|
|
|
|
|
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs267606757 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs267606757;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs267606757" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs267606757" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000012966 OR RCV004782020" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000012966, RCV004782020" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000012966...</a>
|
|
</span>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a female patient with nonclassic 21-hydroxylase deficiency (<a href="/entry/201910">201910</a>), <a href="#52" class="mim-tip-reference" title="Riepe, F. G., Hiort, O., Grotzinger, J., Sippell, W. G., Krone, N., Holterhus, P.-M. <strong>Functional and structural consequences of a novel point mutation in the CYP21A2 gene causing congenital adrenal hyperplasia: potential relevance of helix C for P450 oxidoreductase-21-hydroxylase interaction.</strong> J. Clin. Endocr. Metab. 93: 2891-2895, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18445671/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18445671</a>] [<a href="https://doi.org/10.1210/jc.2007-2646" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18445671">Riepe et al. (2008)</a> detected heterozygosity for a novel mutation in the CYP21A2 gene, a 364A-C transversion in exon 3 resulting in a lys121-to-gln substitution (K121Q). This mutation was present on the maternal allele; the paternal allele carried a P453S mutation (<a href="#0010">613815.0010</a>). In vitro expression analysis of the mutant K121Q enzyme in transiently transfected COS-7 cells revealed reduced CYP21 activity of approximately 14.0% for the conversion of 17-hydroxyprogesterone and 19.5% for the conversion of progesterone. K121 is located on helix C in the CYP21 protein, which is part of the heme coordinating system. In addition, helix C is involved in the interaction with the electron-providing enzyme P450 oxidoreductase (<a href="/entry/124015">124015</a>). <a href="#52" class="mim-tip-reference" title="Riepe, F. G., Hiort, O., Grotzinger, J., Sippell, W. G., Krone, N., Holterhus, P.-M. <strong>Functional and structural consequences of a novel point mutation in the CYP21A2 gene causing congenital adrenal hyperplasia: potential relevance of helix C for P450 oxidoreductase-21-hydroxylase interaction.</strong> J. Clin. Endocr. Metab. 93: 2891-2895, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18445671/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18445671</a>] [<a href="https://doi.org/10.1210/jc.2007-2646" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18445671">Riepe et al. (2008)</a> hypothesized that the K121Q mutation impairs electron flux between P450 oxidoreductase and CYP21 and alters substrate affinity by displacing the heme coordination site. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18445671" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="seeAlso" class="mim-anchor"></a>
|
|
<h4 href="#mimSeeAlsoFold" id="mimSeeAlsoToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span class="mim-font">
|
|
<span id="mimSeeAlsoToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<strong>See Also:</strong>
|
|
</span>
|
|
</h4>
|
|
<div id="mimSeeAlsoFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<a href="#White1987" class="mim-tip-reference" title="White, P. C., New, M. I., Dupont, B. <strong>Congenital adrenal hyperplasia. (Letter)</strong> New Eng. J. Med. 316: 1580-1586, 1987.">White et al. (1987)</a>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="references"class="mim-anchor"></a>
|
|
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span class="mim-font">
|
|
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<strong>REFERENCES</strong>
|
|
</span>
|
|
</h4>
|
|
<div>
|
|
<p />
|
|
</div>
|
|
|
|
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
|
|
<ol>
|
|
|
|
<li>
|
|
<a id="1" class="mim-anchor"></a>
|
|
<a id="Amor1988" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Amor, M., Parker, K. L., Globerman, H., New, M. I., White, P. C.
|
|
<strong>Mutation in the CYP21B gene (ile172-to-asn) causes steroid 21-hydroxylase deficiency.</strong>
|
|
Proc. Nat. Acad. Sci. 85: 1600-1604, 1988.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3257825/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3257825</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3257825" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.85.5.1600" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="2" class="mim-anchor"></a>
|
|
<a id="Araujo1996" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Araujo, M., Sanches, M. R., Suzuki, L. A., Guerra, G., Jr., Farah, S. B., De Mello, M. P.
|
|
<strong>Molecular analysis of CYP21 and C4 genes in Brazilian families with the classical form of steroid 21-hydroxylase deficiency.</strong>
|
|
Braz. J. Med. Biol. Res. 29: 1-13, 1996.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8731325/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8731325</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8731325" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="3" class="mim-anchor"></a>
|
|
<a id="Araujo2007" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Araujo, R. S., Mendonca, B. B., Barbosa, A. S., Lin, C. J., Marcondes, J. A. M., Billerbeck, A. E. C., Bachega, T. A. S. S.
|
|
<strong>Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 92: 4028-4034, 2007.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17666484/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17666484</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17666484" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2006-2163" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="4" class="mim-anchor"></a>
|
|
<a id="Baumgartner-Parzer2007" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Baumgartner-Parzer, S. M., Fischer, G., Vierhapper, H.
|
|
<strong>Predisposition for de novo gene aberrations in the offspring of mothers with a duplicated CYP21A2 gene.</strong>
|
|
J. Clin. Endocr. Metab. 92: 1164-1167, 2007.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17164306/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17164306</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17164306" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2006-2189" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="5" class="mim-anchor"></a>
|
|
<a id="Baumgartner-Parzer2001" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Baumgartner-Parzer, S. M., Schulze, E., Waldhausl, W., Pauschenwein, S., Rondot, S., Nowotny, P., Meyer, K., Frisch, H., Waldhauser, F., Vierhapper, H.
|
|
<strong>Mutational spectrum of the steroid 21-hydroxylase gene in Austria: identification of a novel missense mutation.</strong>
|
|
J. Clin. Endocr. Metab. 86: 4771-4775, 2001.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11600539/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11600539</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11600539" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.86.10.7898" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="6" class="mim-anchor"></a>
|
|
<a id="Beuschlein1998" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Beuschlein, F., Schulze, E., Mora, P., Gensheimer, H.-P., Maser-Gluth, C., Allolio, B., Reincke, M.
|
|
<strong>Steroid 21-hydroxylase mutations and 21-hydroxylase messenger ribonucleic acid expression in human adrenocortical tumors.</strong>
|
|
J. Clin. Endocr. Metab. 83: 2585-2588, 1998.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9661649/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9661649</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9661649" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.83.7.4965" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="7" class="mim-anchor"></a>
|
|
<a id="Billerbeck1999" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Billerbeck, A. E. C., Bachega, T. A. S. S., Frazzatto, E. T., Nishi, M. Y., Goldberg, A. C., Marin, M. L. C., Madureira, G., Monte, O., Arnhold, I. J. P., Mendonca, B. B.
|
|
<strong>A novel missense mutation, GLY424SER, in Brazilian patients with 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 84: 2870-2872, 1999.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10443693/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10443693</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10443693" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.84.8.5937" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="8" class="mim-anchor"></a>
|
|
<a id="Billerbeck2002" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Billerbeck, A. E. C., Mendonca, B. B., Pinto, E. M., Madureira, G., Arnhold, I. J. P., Bachega, T. A. S. S.
|
|
<strong>Three novel mutations in CYP21 gene in Brazilian patients with the classical form of 21-hydroxylase deficiency due to a founder effect.</strong>
|
|
J. Clin. Endocr. Metab. 87: 4314-4317, 2002.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12213891/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12213891</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12213891" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2001-011939" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="9" class="mim-anchor"></a>
|
|
<a id="Carroll1985" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Carroll, M. C., Campbell, R. D., Porter, R. R.
|
|
<strong>Mapping of steroid 21-hydroxylase genes adjacent to complement component C4 genes in HLA, the major histocompatibility complex in man.</strong>
|
|
Proc. Nat. Acad. Sci. 82: 521-525, 1985.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3871526/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3871526</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3871526" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.82.2.521" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="10" class="mim-anchor"></a>
|
|
<a id="Chiou1990" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Chiou, S.-H., Hu, M.-C., Chung, B.
|
|
<strong>A missense mutation at ile172-to-asn or arg356-to-trp causes steroid 21-hydroxylase deficiency.</strong>
|
|
J. Biol. Chem. 265: 3549-3552, 1990.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2303461/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2303461</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2303461" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="11" class="mim-anchor"></a>
|
|
<a id="Collier1993" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Collier, S., Tassabehji, M., Sinnott, P., Strachan, T.
|
|
<strong>A de novo pathological point mutation at the 21-hydroxylase locus: implications for gene conversion in the human genome.</strong>
|
|
Nature Genet. 3: 260-265, 1993. Note: Erratum: Nature Genet. 4: 101 only, 1993.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8485582/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8485582</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8485582" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/ng0393-260" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="12" class="mim-anchor"></a>
|
|
<a id="Cooper1965" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Cooper, D. Y., Levin, S., Narasimhulu, S., Rosenthal, O., Estabrook, R. W.
|
|
<strong>Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems.</strong>
|
|
Science 147: 400-402, 1965.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14221486/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14221486</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14221486" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1126/science.147.3656.400" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="13" class="mim-anchor"></a>
|
|
<a id="Day1996" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Day, D. J., Speiser, P. W., Schulze, E., Bettendorf, M., Fitness, J., Barany, F., White, P. C.
|
|
<strong>Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees.</strong>
|
|
Hum. Molec. Genet. 5: 2039-2048, 1996.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8968761/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8968761</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8968761" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1093/hmg/5.12.2039" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="14" class="mim-anchor"></a>
|
|
<a id="Donohoue1989" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Donohoue, P. A., Jospe, N., Migeon, C. J., Van Dop, C.
|
|
<strong>Two distinct areas of unequal crossingover within the steroid 21-hydroxylase genes produce absence of CYP21B.</strong>
|
|
Genomics 5: 397-406, 1989. Note: Erratum: Genomics 6: 392 only, 1990.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2613228/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2613228</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2613228" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/0888-7543(89)90002-5" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="15" class="mim-anchor"></a>
|
|
<a id="Ezquieta2002" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Ezquieta, B., Cueva, E., Oyarzabal, M., Oliver, A., Varela, J. M., Jariego, C.
|
|
<strong>Gene conversion (655G splicing mutation) and the founder effect (gln318-to-stop) contribute to the most frequent severe point mutations in congenital adrenal hyperplasia (21-hydroxylase deficiency) in the Spanish population.</strong>
|
|
Clin. Genet. 62: 181-188, 2002.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12220458/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12220458</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12220458" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1034/j.1399-0004.2002.620213.x" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="16" class="mim-anchor"></a>
|
|
<a id="Ezquieta1995" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Ezquieta, B., Oliver, A., Gracia, R., Gancedo, P. G.
|
|
<strong>Analysis of steroid 21-hydroxylase gene mutations in the Spanish population.</strong>
|
|
Hum. Genet. 96: 198-204, 1995.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7635470/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7635470</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7635470" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1007/BF00207379" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="17" class="mim-anchor"></a>
|
|
<a id="Ghanem1990" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Ghanem, N., Lobaccaro, J. M., Buresi, C., Abbal, M., Halaby, G., Sultan, C., Lefranc, G.
|
|
<strong>Defective, deleted or converted CYP21B gene and negative association with a rare restriction fragment length polymorphism allele of the factor B gene in congenital adrenal hyperplasia.</strong>
|
|
Hum. Genet. 86: 117-125, 1990.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1979956/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1979956</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1979956" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1007/BF00197691" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="18" class="mim-anchor"></a>
|
|
<a id="Globerman1988" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Globerman, H., Amor, H., Parker, K. L., New, M. I., White, P. C.
|
|
<strong>A nonsense mutation causing steroid 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Invest. 82: 139-144, 1988.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3267225/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3267225</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3267225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1172/JCI113562" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="19" class="mim-anchor"></a>
|
|
<a id="Haglund-Stengler1991" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Haglund-Stengler, B., Ritzen, E. M., Gustafsson, J., Luthman, H.
|
|
<strong>Haplotypes of the steroid 21-hydroxylase gene region encoding mild steroid 21-hydroxylase deficiency.</strong>
|
|
Proc. Nat. Acad. Sci. 88: 8352-8356, 1991.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1924294/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1924294</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1924294" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.88.19.8352" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="20" class="mim-anchor"></a>
|
|
<a id="Harada1987" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Harada, F., Kimura, A., Iwanaga, T., Shimozawa, K., Yata, J., Sasazuki, T.
|
|
<strong>Gene conversion-like events cause steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia.</strong>
|
|
Proc. Nat. Acad. Sci. 84: 8091-8094, 1987.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3500473/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3500473</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3500473" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.84.22.8091" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="21" class="mim-anchor"></a>
|
|
<a id="Helmberg1992" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Helmberg, A., Tusie-Luna, M. T., Tabarelli, M., Kofler, R., White, P. C.
|
|
<strong>R339H and P453S: CYP21 mutations associated with nonclassic steroid 21-hydroxylase deficiency that are not apparent gene conversions.</strong>
|
|
Molec. Endocr. 6: 1318-1322, 1992.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1406709/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1406709</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1406709" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/mend.6.8.1406709" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="22" class="mim-anchor"></a>
|
|
<a id="Higashi1988" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Higashi, Y., Tanae, A., Inoue, H., Fujii-Kuriyama, Y.
|
|
<strong>Evidence for frequent gene conversion in the steroid 21-hydroxylase P-450(C21) gene: implications for steroid 21-hydroxylase deficiency.</strong>
|
|
Am. J. Hum. Genet. 42: 17-25, 1988.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2827462/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2827462</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2827462" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="23" class="mim-anchor"></a>
|
|
<a id="Higashi1988" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Higashi, Y., Tanae, A., Inoue, H., Hiromasa, T., Fujii-Kuriyama, Y.
|
|
<strong>Aberrant splicing and missense mutations cause steroid 21-hydroxylase (P-450[C21]) deficiency in humans: possible gene conversion products.</strong>
|
|
Proc. Nat. Acad. Sci. 85: 7486-7490, 1988.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2845408/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2845408</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2845408" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.85.20.7486" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="24" class="mim-anchor"></a>
|
|
<a id="Higashi1986" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Higashi, Y., Yoshioka, H., Yamane, M., Gotoh, O., Fujii-Kuriyama, Y.
|
|
<strong>Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene.</strong>
|
|
Proc. Nat. Acad. Sci. 83: 2841-2845, 1986.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3486422/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3486422</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3486422" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.83.9.2841" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="25" class="mim-anchor"></a>
|
|
<a id="Hirschfeld1969" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Hirschfeld, A. J., Fleshman, J. K.
|
|
<strong>An unusually high incidence of salt-losing congenital adrenal hyperplasia in the Alaskan Eskimo.</strong>
|
|
J. Pediat. 75: 492-494, 1969.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5804199/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5804199</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5804199" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/s0022-3476(69)80280-5" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="26" class="mim-anchor"></a>
|
|
<a id="Jospe1987" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Jospe, N., Donohoue, P. A., Van Dop, C., McLean, R. H., Bias, W. B., Migeon, C. J.
|
|
<strong>Prevalence of polymorphic 21-hydroxylase gene (CA21HB) mutations in salt-losing congenital adrenal hyperplasia.</strong>
|
|
Biochem. Biophys. Res. Commun. 142: 798-804, 1987.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3030300/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3030300</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3030300" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/0006-291x(87)91484-7" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="27" class="mim-anchor"></a>
|
|
<a id="Kawaguchi1992" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Kawaguchi, H., O'hUigin, C., Klein, J.
|
|
<strong>Evolutionary origin of mutations in the primate cytochrome P450c21 gene.</strong>
|
|
Am. J. Hum. Genet. 50: 766-780, 1992.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1550121/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1550121</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1550121" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="28" class="mim-anchor"></a>
|
|
<a id="Kayes-Wandover2000" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Kayes-Wandover, K., White, P. C.
|
|
<strong>Steroidogenic enzyme gene expression in the human heart.</strong>
|
|
J. Clin. Endocr. Metab. 85: 2519-2525, 2000.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10902803/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10902803</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10902803" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.85.7.6663" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="29" class="mim-anchor"></a>
|
|
<a id="Kharrat2004" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Kharrat, M., Tardy, V., M'Rad, R., Maazoul, F., Ben Jemaa, L., Refai, M., Morel, Y., Chaabouni, H.
|
|
<strong>Molecular genetic analysis of Tunisian patients with a classic form of 21-hydroxylase deficiency: identification of four novel mutations and high prevalence of Q318X mutation.</strong>
|
|
J. Clin. Endocr. Metab. 89: 368-374, 2004.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14715874/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14715874</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14715874" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2003-031056" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="30" class="mim-anchor"></a>
|
|
<a id="Kirby-Keyser1997" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Kirby-Keyser, L., Porter, C. C., Donohoue, P. A.
|
|
<strong>E380D: a novel point mutation of CYP21 in an HLA-homozygous patient with salt-losing congenital adrenal hyperplasia due to 21-hydroxylase deficiency.</strong>
|
|
Hum. Mutat. 9: 181-182, 1997.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9067760/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9067760</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9067760" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1002/(SICI)1098-1004(1997)9:2<181::AID-HUMU12>3.0.CO;2-Z" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="31" class="mim-anchor"></a>
|
|
<a id="Koppens2000" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Koppens, P. F. J., Hoogenboezem, T., Degenhart, H. J.
|
|
<strong>CYP21 and CYP21P variability in steroid 21-hydroxylase deficiency patients and in the general population in the Netherlands.</strong>
|
|
Europ. J. Hum. Genet. 8: 827-836, 2000.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11093272/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11093272</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11093272" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/sj.ejhg.5200543" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="32" class="mim-anchor"></a>
|
|
<a id="Koppens2002" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Koppens, P. F. J., Hoogenboezem, T., Degenhart, H. J.
|
|
<strong>Carriership of a defective tenascin-X gene in steroid 21-hydroxylase deficiency patients: TNXB-TNXA hybrids in apparent large-scale gene conversions.</strong>
|
|
Hum. Molec. Genet. 11: 2581-2590, 2002.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12354783/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12354783</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12354783" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1093/hmg/11.21.2581" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="33" class="mim-anchor"></a>
|
|
<a id="Lajic2002" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Lajic, S., Clauin, S., Robins, T., Vexiau, P., Blanche, H., Bellanne-Chantelot, C., Wedell, A.
|
|
<strong>Novel mutations in CYP21 detected in individuals with hyperandrogenism.</strong>
|
|
J. Clin. Endocr. Metab. 87: 2824-2829, 2002.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12050257/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12050257</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12050257" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.87.6.8525" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="34" class="mim-anchor"></a>
|
|
<a id="Lau2001" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Lau, I. F., Soardi, F. C., Lemos-Marini, S. H. V., Guerra, G., Jr., Baptista, M. T. M., De Mello, M. P.
|
|
<strong>H28+C insertion in the CYP21 gene: a novel frameshift mutation in a Brazilian patient with the classical form of 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 86: 5877-5880, 2001.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11739456/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11739456</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11739456" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.86.12.8113" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="35" class="mim-anchor"></a>
|
|
<a id="Lee2003" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Lee, H.-H., Chang, S.-F., Tsai, F.-J., Tsai, L.-P., Lin, C.-Y.
|
|
<strong>Mutation of IVS2-12A/C-G in combination with 707-714delGAGACTAC in the CYP21 gene is caused by deletion of the C4-CYP21 repeat module with steroid 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 88: 2726-2729, 2003.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12788880/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12788880</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12788880" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2003-030047" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="36" class="mim-anchor"></a>
|
|
<a id="Lopez-Gutierrez1998" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Lopez-Gutierrez, A. U., Riba, L., Ordonez-Sanchez, M. L., Ramirez-Jimenez, S., Cerrillo-Hinojosa, M., Tusie-Luna, M. T.
|
|
<strong>Uniparental disomy for chromosome 6 results in steroid 21-hydroxylase deficiency: evidence of different genetic mechanisms involved in the production of the disease.</strong>
|
|
J. Med. Genet. 35: 1014-1019, 1998.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9863599/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9863599</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9863599" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1136/jmg.35.12.1014" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="37" class="mim-anchor"></a>
|
|
<a id="Matteson1987" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Matteson, K. J., Phillips, J. A., III, Miller, W. L., Chung, B.-C., Orlando, P. J., Frisch, H., Ferrandez, A., Burr, I. M.
|
|
<strong>P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia.</strong>
|
|
Proc. Nat. Acad. Sci. 84: 5858-5862, 1987. Note: Erratum: Proc. Nat. Acad. Sci. 84: 8054 only, 1987.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3497399/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3497399</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3497399" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.84.16.5858" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="38" class="mim-anchor"></a>
|
|
<a id="Menassa2008" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Menassa, R., Tardy, V., Despert, F., Bouvattier-Morel, C., Brossier, J. P., Cartigny, M., Morel, Y.
|
|
<strong>p.H62L, a rare mutation of the CYP21 gene identified in two forms of 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 93: 1901-1908, 2008.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18319307/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18319307</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18319307" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2007-2701" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="39" class="mim-anchor"></a>
|
|
<a id="Miller1987" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Miller, W. L.
|
|
<strong>Congenital adrenal hyperplasia. (Letter)</strong>
|
|
New Eng. J. Med. 317: 1413-1414, 1987.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3500410/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3500410</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3500410" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1056/NEJM198711263172211" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="40" class="mim-anchor"></a>
|
|
<a id="Miller1988" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Miller, W. L.
|
|
<strong>Gene conversions, deletions and polymorphisms in congenital adrenal hyperplasia.</strong>
|
|
Am. J. Hum. Genet. 42: 4-7, 1988.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3276177/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3276177</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3276177" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="41" class="mim-anchor"></a>
|
|
<a id="Miller1996" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Miller, W. L.
|
|
<strong>Personal Communication.</strong>
|
|
San Francisco, Calif. 1/3/1996.
|
|
|
|
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="42" class="mim-anchor"></a>
|
|
<a id="Morel1989" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Morel, Y., Andre, J., Uring-Lambert, B., Hauptmann, G., Betuel, H., Tossi, M., Forest, M. G., David, M., Bertrand, J., Miller, W. L.
|
|
<strong>Rearrangements and point mutations of P450c21 genes are distinguished in five restriction endonuclease haplotypes identified by a new probing strategy in 57 families with congenital adrenal hyperplasia.</strong>
|
|
J. Clin. Invest. 83: 527-536, 1989.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2913051/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2913051</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2913051" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1172/JCI113914" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="43" class="mim-anchor"></a>
|
|
<a id="Mornet1986" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Mornet, E., Boue, J., Raux-Demay, M., Couillin, P., Oury, J. F., Dumez, Y., Dausset, J., Cohen, D., Boue, A.
|
|
<strong>First trimester prenatal diagnosis of 21-hydroxylase deficiency by linkage analysis to HLA-DNA probes and by 17-hydroxyprogesterone determination.</strong>
|
|
Hum. Genet. 73: 358-364, 1986.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3017844/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3017844</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3017844" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1007/BF00279101" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="44" class="mim-anchor"></a>
|
|
<a id="Mornet1991" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Mornet, E., Crete, P., Kuttenn, F., Raux-Demay, M.-C., Boue, J., White, P. C., Boue, A.
|
|
<strong>Distribution of deletions and seven point mutations on CYP21B genes in three clinical forms of steroid 21-hydroxylase deficiency.</strong>
|
|
Am. J. Hum. Genet. 48: 79-88, 1991.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1985465/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1985465</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1985465" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="45" class="mim-anchor"></a>
|
|
<a id="Nikoshkov1997" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Nikoshkov, A., Lajic, S., Holst, M., Wedell, A., Luthman, H.
|
|
<strong>Synergistic effect of partially inactivating mutations in steroid 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 82: 194-199, 1997.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8989258/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8989258</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8989258" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.82.1.3678" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="46" class="mim-anchor"></a>
|
|
<a id="Olney2002" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Olney, R. C., Mougey, E. B., Wang, J., Shulman, D. I., Sylvester, J. E.
|
|
<strong>Using real-time, quantitative PCR for rapid genotyping of the steroid 21-hydroxylase gene in a north Florida population.</strong>
|
|
J. Clin. Endocr. Metab. 87: 735-741, 2002.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11836313/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11836313</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11836313" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.87.2.8273" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="47" class="mim-anchor"></a>
|
|
<a id="Owerbach1990" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Owerbach, D., Crawford, Y. M., Draznin, M. B.
|
|
<strong>Direct analysis of CYP21B genes in 21-hydroxylase deficiency using polymerase chain reaction amplification.</strong>
|
|
Molec. Endocr. 4: 125-131, 1990.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2325662/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2325662</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2325662" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/mend-4-1-125" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="48" class="mim-anchor"></a>
|
|
<a id="Owerbach1992" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Owerbach, D., Sherman, L., Ballard, A.-L., Azziz, R.
|
|
<strong>Pro453-to-ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency.</strong>
|
|
Molec. Endocr. 6: 1211-1215, 1992.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1406699/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1406699</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1406699" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/mend.6.8.1406699" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="49" class="mim-anchor"></a>
|
|
<a id="Pang1982" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Pang, S., Murphey, W., Levine, L. S., Spence, D. A., Leon, A., LaFranchi, S., Surve, A. S., New, M. I.
|
|
<strong>A pilot newborn screening program for congenital adrenal hyperplasia in Alaska.</strong>
|
|
J. Clin. Endocr. Metab. 55: 413-420, 1982.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7096533/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7096533</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7096533" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem-55-3-413" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="50" class="mim-anchor"></a>
|
|
<a id="Partanen1991" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Partanen, J., Campbell, R. D.
|
|
<strong>Substitution of ile172-to-asn in the steroid 21-hydroxylase B (P450c21B) gene in a Finnish patient with the simple virilizing form of congenital adrenal hyperplasia.</strong>
|
|
Hum. Genet. 87: 716-720, 1991.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1937474/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1937474</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1937474" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1007/BF00201731" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="51" class="mim-anchor"></a>
|
|
<a id="Paulino1999" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Paulino, L. C., Araujo, M., Guerra, G., Jr., Marini, S. H., De Mello, M. P.
|
|
<strong>Mutation distribution and CYP21/C4 locus variability in Brazilian families with the classical form of the 21-hydroxylase deficiency.</strong>
|
|
Acta Paediat. 88: 275-83, 1999.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10229037/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10229037</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10229037" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1080/08035259950170024" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="52" class="mim-anchor"></a>
|
|
<a id="Riepe2008" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Riepe, F. G., Hiort, O., Grotzinger, J., Sippell, W. G., Krone, N., Holterhus, P.-M.
|
|
<strong>Functional and structural consequences of a novel point mutation in the CYP21A2 gene causing congenital adrenal hyperplasia: potential relevance of helix C for P450 oxidoreductase-21-hydroxylase interaction.</strong>
|
|
J. Clin. Endocr. Metab. 93: 2891-2895, 2008.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18445671/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18445671</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18445671" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2007-2646" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="53" class="mim-anchor"></a>
|
|
<a id="Robins2005" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Robins, T., Barbaro, M., Lajic, S., Wedell, A.
|
|
<strong>Not all amino acid substitutions of the common cluster E6 mutation in CYP21 cause congenital adrenal hyperplasia.</strong>
|
|
J. Clin. Endocr. Metab. 90: 2148-2153, 2005.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15623806/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15623806</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15623806" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2004-1937" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="54" class="mim-anchor"></a>
|
|
<a id="Rodrigues1987" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Rodrigues, N. R., Dunham, I., Yu, C. Y., Carroll, M. C., Porter, R. R., Campbell, R. D.
|
|
<strong>Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia.</strong>
|
|
EMBO J. 6: 1653-1661, 1987.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3038528/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3038528</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3038528" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1002/j.1460-2075.1987.tb02414.x" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="55" class="mim-anchor"></a>
|
|
<a id="Rumsby1986" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Rumsby, G., Carroll, M. C., Porter, R. R., Grant, D. B., Hjelm, M.
|
|
<strong>Deletion of the steroid 21-hydroxylase and complement C4 genes in congenital adrenal hyperplasia.</strong>
|
|
J. Med. Genet. 23: 204-209, 1986.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3487654/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3487654</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3487654" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1136/jmg.23.3.204" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="56" class="mim-anchor"></a>
|
|
<a id="Schneider1986" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Schneider, P. M., Carroll, M. C., Alper, C. A., Rittner, C., Whitehead, A. S., Yunis, E. J., Colten, H. R.
|
|
<strong>Polymorphism of the human complement C4 and steroid 21-hydroxylase genes: restriction fragment length polymorphisms revealing structural deletions, homoduplications, and size variants.</strong>
|
|
J. Clin. Invest. 78: 650-657, 1986.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3018042/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3018042</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3018042" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1172/JCI112623" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="57" class="mim-anchor"></a>
|
|
<a id="Sido2005" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Sido, A. G., Weber, M. M., Sido, P. G., Clausmeyer, S., Heinrich, U., Schulze, E.
|
|
<strong>21-hydroxylase and 11-beta-hydroxylase mutations in Romanian patients with classic congenital adrenal hyperplasia.</strong>
|
|
J. Clin. Endocr. Metab. 90: 5769-5773, 2005.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16046588/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16046588</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16046588" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2005-0379" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="58" class="mim-anchor"></a>
|
|
<a id="Sinnott1990" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Sinnott, P., Collier, S., Costigan, C., Dyer, P. A., Harris, R., Strachan, T.
|
|
<strong>Genesis by meiotic unequal crossover of a de novo deletion that contributes to a steroid 21-hydroxylase deficiency.</strong>
|
|
Proc. Nat. Acad. Sci. 87: 2107-2111, 1990.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2315306/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2315306</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2315306" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.87.6.2107" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="59" class="mim-anchor"></a>
|
|
<a id="Soardi2008" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Soardi, F. C., Barbaro, M., Lau, I. F., Lemos-Marini, S. H. V., Baptista, M. T. M., Guerra-Junior, G., Wedell, A., Lajic, S., de Mello, M. P.
|
|
<strong>Inhibition of CYP21A2 enzyme activity caused by novel missense mutations identified in Brazilian and Scandinavian patients.</strong>
|
|
J. Clin. Endocr. Metab. 93: 2416-2420, 2008.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18381579/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18381579</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18381579" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2007-2594" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="60" class="mim-anchor"></a>
|
|
<a id="Speiser1992" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Speiser, P. W., Dupont, J., Zhu, D., Serrat, J., Buegeleisen, M., Tusie-Luna, M.-T., Lesser, M., New, M. I., White, P. C.
|
|
<strong>Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Invest. 90: 584-595, 1992.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1644925/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1644925</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1644925" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1172/JCI115897" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="61" class="mim-anchor"></a>
|
|
<a id="Speiser1988" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Speiser, P. W., New, M. I., White, P. C.
|
|
<strong>Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14,DR1.</strong>
|
|
New Eng. J. Med. 319: 19-23, 1988.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3260007/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3260007</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3260007" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1056/NEJM198807073190104" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="62" class="mim-anchor"></a>
|
|
<a id="Speiser1989" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Speiser, P. W., New, M. I., White, P. C.
|
|
<strong>Clinical and genetic characterization of nonclassic 21-hydroxylase deficiency.</strong>
|
|
Endocr. Res. 15: 257-276, 1989.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2788081/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2788081</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2788081" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1080/07435808909039100" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="63" class="mim-anchor"></a>
|
|
<a id="Stikkelbroeck2003" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Stikkelbroeck, N. M. M. L., Hoefsloot, L. H., de Wijs, I. J., Otten, B. J., Hermus, A. R. M. M., Sistermans, E. A.
|
|
<strong>CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in the Netherlands: six novel mutations and a specific cluster of four mutations.</strong>
|
|
J. Clin. Endocr. Metab. 88: 3852-3859, 2003.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12915679/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12915679</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12915679" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2002-021681" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="64" class="mim-anchor"></a>
|
|
<a id="Tajima1993" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Tajima, T., Fujieda, K., Fujii-Kuriyama, Y.
|
|
<strong>De novo mutation causes steroid 21-hydroxylase deficiency in one family of HLA-identical affected and unaffected individuals.</strong>
|
|
J. Clin. Endocr. Metab. 77: 86-89, 1993.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8325964/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8325964</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8325964" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.77.1.8325964" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="65" class="mim-anchor"></a>
|
|
<a id="Tajima1997" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Tajima, T., Fujieda, K., Nakae, J., Toyoura, T., Shimozawa, K., Kusuda, S., Goji, K., Nagashima, T., Cutler, G. B., Jr.
|
|
<strong>Molecular basis of nonclassical steroid 21-hydroxylase deficiency detected by neonatal mass screening in Japan.</strong>
|
|
J. Clin. Endocr. Metab. 82: 2350-2356, 1997.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9215318/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9215318</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9215318" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.82.7.4094" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="66" class="mim-anchor"></a>
|
|
<a id="Tajima1993" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Tajima, T., Fujieda, K., Nakayama, K., Fujii-Kuriyama, Y.
|
|
<strong>Molecular analysis of patient and carrier genes with congenital steroid 21-hydroxylase deficiency by using polymerase chain reaction and single strand conformation polymorphism.</strong>
|
|
J. Clin. Invest. 92: 2182-2190, 1993.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8227333/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8227333</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8227333" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1172/JCI116820" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="67" class="mim-anchor"></a>
|
|
<a id="Tukel2003" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Tukel, T., Uyguner, O., Wei, J. Q., Yuksel-Apak, M., Saka, N., Song, D. X., Kayserili, H., Bas, F., Gunoz, H., Wilson, R. C., New, M. I., Wollnik, B.
|
|
<strong>A novel semiquantitative polymerase chain reaction/enzyme digestion-based method for detection of large scale deletions/conversions of the CYP21 gene and mutation screening in Turkish families with 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 88: 5893-5897, 2003.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14671187/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14671187</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14671187" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jc.2003-030813" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="68" class="mim-anchor"></a>
|
|
<a id="Tusie-Luna1990" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Tusie-Luna, M. T., Traktman, P., White, P. C.
|
|
<strong>Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus.</strong>
|
|
J. Biol. Chem. 265: 20916-20922, 1990.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2249999/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2249999</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2249999" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="69" class="mim-anchor"></a>
|
|
<a id="Tusie-Luna1991" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Tusie-Luna, M.-T., Speiser, P. W., Dumic, M., New, M. I., White, P. C.
|
|
<strong>A mutation (pro30-to-leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele.</strong>
|
|
Molec. Endocr. 5: 685-692, 1991.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2072928/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2072928</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2072928" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/mend-5-5-685" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="70" class="mim-anchor"></a>
|
|
<a id="Tusie-Luna1995" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Tusie-Luna, M.-T., White, P. C.
|
|
<strong>Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms.</strong>
|
|
Proc. Nat. Acad. Sci. 92: 10796-10800, 1995.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7479886/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7479886</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7479886" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.92.23.10796" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="71" class="mim-anchor"></a>
|
|
<a id="Urabe1990" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Urabe, K., Kimura, A., Harada, F., Iwanaga, T., Sasazuki, T.
|
|
<strong>Gene conversion in steroid 21-hydroxylase genes.</strong>
|
|
Am. J. Hum. Genet. 46: 1178-1186, 1990.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1971153/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1971153</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1971153" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="72" class="mim-anchor"></a>
|
|
<a id="Wedell1993" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Wedell, A., Luthman, H.
|
|
<strong>Steroid 21-hydroxylase deficiency: two additional mutations in salt-wasting disease and rapid screening of disease-causing mutations.</strong>
|
|
Hum. Molec. Genet. 2: 499-504, 1993.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8518786/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8518786</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8518786" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1093/hmg/2.5.499" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="73" class="mim-anchor"></a>
|
|
<a id="Wedell1992" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Wedell, A., Ritzen, E. M., Haglund-Stengler, B., Luthman, H.
|
|
<strong>Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.</strong>
|
|
Proc. Nat. Acad. Sci. 89: 7232-7236, 1992.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1496017/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1496017</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1496017" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.89.15.7232" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="74" class="mim-anchor"></a>
|
|
<a id="Wedell1994" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Wedell, A., Thilen, A., Ritzen, E. M., Stengler, B., Luthman, H.
|
|
<strong>Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease malformation.</strong>
|
|
J. Clin. Endocr. Metab. 78: 1145-1152, 1994.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8175971/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8175971</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8175971" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.78.5.8175971" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="75" class="mim-anchor"></a>
|
|
<a id="Werkmeister1986" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Werkmeister, J. W., New, M. I., Dupont, B., White, P. C.
|
|
<strong>Frequent deletion and duplication of the steroid 21-hydroxylase genes.</strong>
|
|
Am. J. Hum. Genet. 39: 461-469, 1986.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3490178/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3490178</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3490178" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="76" class="mim-anchor"></a>
|
|
<a id="White1985" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
White, P. C., Grossberger, D., Onufer, B. J., Chaplin, D. D., New, M. I., Dupont, B., Strominger, J. L.
|
|
<strong>Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man.</strong>
|
|
Proc. Nat. Acad. Sci. 82: 1089-1093, 1985.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2983330/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2983330</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2983330" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.82.4.1089" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="77" class="mim-anchor"></a>
|
|
<a id="White1984" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
White, P. C., New, M. I., Dupont, B.
|
|
<strong>HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation.</strong>
|
|
Proc. Nat. Acad. Sci. 81: 7505-7509, 1984.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6334310/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6334310</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6334310" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.81.23.7505" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="78" class="mim-anchor"></a>
|
|
<a id="White1986" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
White, P. C., New, M. I., Dupont, B.
|
|
<strong>Structure of human steroid 21-hydroxylase genes.</strong>
|
|
Proc. Nat. Acad. Sci. 83: 5111-5115, 1986.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3487786/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3487786</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3487786" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.83.14.5111" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="79" class="mim-anchor"></a>
|
|
<a id="White1987" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
White, P. C., New, M. I., Dupont, B.
|
|
<strong>Congenital adrenal hyperplasia.</strong>
|
|
New Eng. J. Med. 316: 1519-1524, 1987.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3295543/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3295543</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3295543" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1056/NEJM198706113162406" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="80" class="mim-anchor"></a>
|
|
<a id="White1987" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
White, P. C., New, M. I., Dupont, B.
|
|
<strong>Congenital adrenal hyperplasia. (Letter)</strong>
|
|
New Eng. J. Med. 316: 1580-1586, 1987.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3295546/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3295546</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3295546" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1056/NEJM198706183162506" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="81" class="mim-anchor"></a>
|
|
<a id="White1994" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
White, P. C., Tusie-Luna, M.-T., New, M. I., Speiser, P. W.
|
|
<strong>Mutations in steroid 21-hydroxylase (CYP21).</strong>
|
|
Hum. Mutat. 3: 373-378, 1994.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8081391/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8081391</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8081391" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1002/humu.1380030408" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="82" class="mim-anchor"></a>
|
|
<a id="White1988" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
White, P. C., Vitek, A., Dupont, B., New, M. I.
|
|
<strong>Characterization of frequent deletions causing steroid 21-hydroxylase deficiency.</strong>
|
|
Proc. Nat. Acad. Sci. 85: 4436-4440, 1988.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3260033/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3260033</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3260033" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.85.12.4436" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="83" class="mim-anchor"></a>
|
|
<a id="Wilson1995" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Wilson, R. C., Mercado, A. B., Cheng, K. C., New, M. I.
|
|
<strong>Steroid 21-hydroxylase deficiency: genotype may not predict phenotype.</strong>
|
|
J. Clin. Endocr. Metab. 80: 2322-2329, 1995.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7629224/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7629224</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7629224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1210/jcem.80.8.7629224" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="84" class="mim-anchor"></a>
|
|
<a id="Wu1991" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Wu, D.-A., Chung, B.
|
|
<strong>Mutations of P450c21 (steroid 21-hydroxylase) at cys-428, val-281, and ser-268 result in complete, partial, or no loss of enzymatic activity, respectively.</strong>
|
|
J. Clin. Invest. 88: 519-523, 1991.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1864962/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1864962</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1864962" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1172/JCI115334" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
</ol>
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="creationDate" class="mim-anchor"></a>
|
|
<div class="row">
|
|
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
|
|
<span class="text-nowrap mim-text-font">
|
|
Creation Date:
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
Anne M. Stumpf : 3/16/2011
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="editHistory" class="mim-anchor"></a>
|
|
|
|
<div class="row">
|
|
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
|
|
<span class="text-nowrap mim-text-font">
|
|
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
alopez : 11/07/2018
|
|
</span>
|
|
</div>
|
|
</div>
|
|
<div class="row collapse" id="mimCollapseEditHistory">
|
|
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
carol : 10/21/2016<br>carol : 06/24/2016<br>carol : 4/6/2016<br>carol : 4/29/2013<br>terry : 3/15/2013<br>terry : 6/6/2012<br>terry : 6/6/2012<br>carol : 9/23/2011<br>alopez : 3/23/2011<br>alopez : 3/23/2011<br>alopez : 3/18/2011
|
|
</span>
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div class="container visible-print-block">
|
|
|
|
<div class="row">
|
|
|
|
|
|
|
|
<div class="col-md-8 col-md-offset-1">
|
|
|
|
<div>
|
|
<div>
|
|
<h3>
|
|
<span class="mim-font">
|
|
<strong>*</strong> 613815
|
|
</span>
|
|
</h3>
|
|
</div>
|
|
|
|
<div>
|
|
<h3>
|
|
<span class="mim-font">
|
|
|
|
CYTOCHROME P450, FAMILY 21, SUBFAMILY A, POLYPEPTIDE 2; CYP21A2
|
|
|
|
</span>
|
|
</h3>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<div >
|
|
<p>
|
|
<span class="mim-font">
|
|
<em>Alternative titles; symbols</em>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
CYTOCHROME P450, SUBFAMILY XXIA, POLYPEPTIDE 2<br />
|
|
CYTOCHROME P450, SUBFAMILY XXI; CYP21<br />
|
|
STEROID CYTOCHROME P450 21-HYDROXYLASE; P450C21<br />
|
|
21-HYDROXYLASE B; CYP21B<br />
|
|
CA21H
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<div>
|
|
<p>
|
|
<span class="mim-font">
|
|
Other entities represented in this entry:
|
|
</span>
|
|
</p>
|
|
</div>
|
|
<div>
|
|
<span class="h3 mim-font">
|
|
CYTOCHROME P450, SUBFAMILY XXIA, POLYPEPTIDE 1 PSEUDOGENE, INCLUDED; CYP21A1P, INCLUDED
|
|
</span>
|
|
</div>
|
|
|
|
<div>
|
|
<span class="h4 mim-font">
|
|
|
|
CYP21P, INCLUDED; CYP21A, INCLUDED
|
|
</span>
|
|
</div>
|
|
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<p>
|
|
<span class="mim-text-font">
|
|
<strong><em>HGNC Approved Gene Symbol: CYP21A2</em></strong>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<p>
|
|
<span class="mim-text-font">
|
|
<strong>
|
|
<em>
|
|
Cytogenetic location: 6p21.33
|
|
|
|
Genomic coordinates <span class="small">(GRCh38)</span> : 6:32,038,415-32,041,644 </span>
|
|
</em>
|
|
</strong>
|
|
<span class="small">(from NCBI)</span>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Gene-Phenotype Relationships</strong>
|
|
</span>
|
|
</h4>
|
|
<div>
|
|
<table class="table table-bordered table-condensed small mim-table-padding">
|
|
<thead>
|
|
<tr class="active">
|
|
<th>
|
|
Location
|
|
</th>
|
|
<th>
|
|
Phenotype
|
|
</th>
|
|
<th>
|
|
Phenotype <br /> MIM number
|
|
</th>
|
|
<th>
|
|
Inheritance
|
|
</th>
|
|
<th>
|
|
Phenotype <br /> mapping key
|
|
</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
|
|
<tr>
|
|
<td rowspan="2">
|
|
<span class="mim-font">
|
|
6p21.33
|
|
</span>
|
|
</td>
|
|
|
|
|
|
<td>
|
|
<span class="mim-font">
|
|
Adrenal hyperplasia, congenital, due to 21-hydroxylase deficiency
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
201910
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
Autosomal recessive
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
3
|
|
</span>
|
|
</td>
|
|
|
|
|
|
|
|
|
|
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
<tr>
|
|
<td>
|
|
<span class="mim-font">
|
|
Hyperandrogenism, nonclassic type, due to 21-hydroxylase deficiency
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
201910
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
Autosomal recessive
|
|
</span>
|
|
</td>
|
|
<td>
|
|
<span class="mim-font">
|
|
3
|
|
</span>
|
|
</td>
|
|
</tr>
|
|
|
|
|
|
|
|
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>TEXT</strong>
|
|
</span>
|
|
</h4>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Description</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>The CYP21A2 gene encodes the 21-hydroxylase enzyme (EC 1.14.99.10), which is essential for adrenal steroidogenesis (summary by Araujo et al., 2007). </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Cloning and Expression</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>White et al. (1986) found that cDNA corresponding to 21-hydroxylase is 2 kb long. The encoded protein is predicted to contain 494 amino acids with a molecular weight of 55,000. The enzyme is at most 28% homologous to other cytochrome P450 enzymes that have been studied. </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Gene Structure</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>The gene encoding 21-hydroxylase contains 10 exons; the genes for other P450 enzymes contain 7, 8, or 9 exons. The inactive A gene has an 8-base deletion in codons 110 through 112, resulting in a frameshift that brings a stop codon into the reading frame at codon 130; a second frameshift and a nonsense mutation occur farther downstream. The two P450C21 genes have 9 introns and are about 3.4 kb long (Higashi et al., 1986). </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Mapping</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>Carroll et al. (1985) identified two 21-hydroxylase genes situated in the following relationship to C4A and C4B: 5-prime--C4A--21-OHA--C4B--21-OHB- -3-prime. White et al. (1985) presented evidence for the existence of 2 genes encoding steroid 21-hydroxylase in the C4 gene region, i.e., among the MHC class III genes. The order appears to be: centromere--GLO--DP--DQ--DR--C2--BF--C4A--21OHA--C4B--2 1OHB--B--C--A. The 21-hydroxylase B gene and the adjacent C4B gene appear to be deleted on the chromosome carrying HLA-Bw47 and the allele for salt-wasting 21-hydroxylase deficiency. In contrast, the chromosome carrying the HLA-A1;B8;DR3 haplotype is not associated with 21-hydroxylase deficiency and in the conclusions of White et al. (1985) based on restriction enzyme analysis may have a deletion of the C4A and 21OHA genes. This suggests that the latter is not functional. (In the human, the 21-hydroxylase B gene is functional; the A gene is missing 8 basepairs from exon 2. In the mouse, the 21-hydroxylase A gene is functional; the B gene is missing 215 basepairs from exon 2.) </p><p>The 21-hydroxylase pseudogene, symbolized CYP21P or CYP21A, is situated on 6p, close to the functional gene, CYP21. Higashi et al. (1986) suggested that this particular genomic anatomy predisposes the functional gene to mutation through gene conversion or through deletion by homologous recombination and unequal crossing-over. </p><p>Higashi et al. (1986) confirmed close linkage to C4 by finding that the cloned P450C21 genes hybridized with the 5-prime or 3-prime end regions of human C4 DNA. The P450C21 gene that is nonfunctional is identical to the other except for 3 mutations, each of which is capable of causing premature termination: a 1-base insertion, an 8-base deletion, and a transition mutation. Higashi et al. (1986) suggested that tandem arrangement of the highly homologous pseudo- and genuine genes in close proximity could account for the high incidence of P450C21 gene deficiency or defect through nonhomologous pairing and unequal crossing-over. </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Molecular Genetics</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>White et al. (1984) demonstrated that the mutations in the several forms of congenital adrenal hyperplasia due to 21-hydroxylase deficiency involve the structural gene for the adrenal microsomal cytochrome P450 specific for steroid 21-hydroxylation (EC 1.14.99.10). Rodrigues et al. (1987) pointed out that 21-hydroxylation was the first enzymatic activity ascribed to any cytochrome P450 (Cooper et al., 1965). </p><p>Rodrigues et al. (1987) determined the nucleotide sequence of the 21-hydroxylase B gene in a patient with congenital adrenal hyperplasia. Eleven nucleotide differences from the normal were found: 2 in the 5-prime flanking region, 4 in introns, 1 in the 3-prime untranslated region, and 4 in exons. Two of the differences in exons caused codon changes: serine-269 to threonine and asparagine-494 to serine. Rodrigues et al. (1987) confirmed that the 21-hydroxylase A gene is a pseudogene due to 3 deleterious mutations in the exons. Comparison of published sequences with those they determined suggested that the 21-hydroxylase B gene is polymorphic. They suggested, as had others, that the 4 distinct clinical forms of 21-hydroxylase deficiency (simple virilizing, salt-wasting, late-onset, and cryptic) may be the consequence of different allelic mutations in the 21-hydroxylase B gene. </p><p>Jospe et al. (1987) performed genomic restriction analysis of 14 unrelated patients with salt-losing congenital adrenal hyperplasia, identifying 3 patterns of mutation in the CA21HB gene: in 16 of the 28 chromosomes (or haplotypes) analyzed, there was no detectable restriction fragment abnormality suggesting that these were point mutations or small deletions or insertions. Complete deletion of CA21HB was found in 9 of 28 haplotypes (32%). In 3 of 28 haplotypes (11%), apparent conversion of CA21HB to the pseudogene CA21HA had occurred. Jospe et al. (1987) described how apparent gene conversion could be detected in the restriction fragment patterns. An alternative explanation to conversion is that unequal crossing-over occurred between a haplotype of 2 CA21HA genes and 1 CA21HB gene, and a normal haplotype to produce loss of the CA21HB gene from the first haplotype but retention of 2 CA21HA genes. CA21HB deletion was associated with HLA-Bw47 in 6 haplotypes and with absent C4B expression in 7 haplotypes of the 9. </p><p>In studies of DNA from 20 patients with 21-hydroxylase deficiency, Rumsby et al. (1986) found one homozygous for a deletion encompassing the C4B and 21-hydroxylase genes. They presented evidence that this originated by recombination between homologous regions of 21-hydroxylase A and B. No alteration in the 21-hydroxylase gene was detected in 12 patients. Seven patients appeared to be heterozygous for the above deletion; i.e., they were genetic compounds. </p><p>In molecular studies of the C4/21-hydroxylase genes in patients with the classic salt-wasting form, Schneider et al. (1986) found deletion of C4B and 21-hydroxylase B genes in some. In 2, only the 21-hydroxylase B gene was deleted. Werkmeister et al. (1986) found deletion of the active CA21H gene in almost one-fourth of classic cases of 21-hydroxylase deficiency, whereas mild 'nonclassic' 21-hydroxylase deficiency was associated with a duplicated CA21H gene. </p><p>Using multiple restriction enzymes in the analysis of the 21-hydroxylase gene in 10 families, each of which included 2 or more affected persons, Matteson et al. (1987) concluded that the 'deletions' that have been reported as a frequent finding in CAH patients probably represent gene conversions, unequal crossovers, and polymorphisms rather than simple gene deletions. Miller (1987) challenged the interpretation of a high frequency of gene deletion underlying 21-hydroxylase deficiency. White et al. (1987) defended their interpretation. They reiterated their view that probes for the closely linked and highly polymorphic HLA genes should be used for prenatal diagnosis, not CYP21 probes (Mornet et al., 1986). </p><p>By Southern blot analysis of genomic DNA using a 21-hydroxylase DNA probe, Harada et al. (1987) found an apparent absence of restriction fragments corresponding to the 21-hydroxylase B gene. They found that this apparent absence was not due to deletion of the gene but rather to a conversion of the functional 21-hydroxylase B gene into the nonfunctional 21-hydroxylase A pseudogene. In 2 patients studied, the affected HLA haplotypes were different, suggesting that conversion had occurred as independent events in the 2 instances. Harada et al. (1987) suggested that gene conversion-like events may be a relatively common cause of 21-hydroxylase deficiency in Japanese. They suggested that this mechanism might also account in part for the predominance of congenital adrenal hyperplasia due to 21-hydroxylase deficiency over that due to deficiency of other steroidogenic P450 enzymes. There may be other examples of gene conversion-like events that are responsible for monogenic disorders when related homologous genes reside in tandem array. </p><p>Baumgartner-Parzer et al. (2001) studied the mutational spectrum of 21-hydroxylase deficiency in 79 unrelated Austrian patients with classic and nonclassic forms of CAH and their respective 112 family members. Apparent large gene deletions/conversions were present in 31% of the 158 unrelated CAH alleles, whereas the most frequent point mutations were intron 2 splice (613815.0006; 22.8%), I172N (613815.0001; 15.8%), V281L (613815.0002; 12%), and P30L (613815.0004; 7.6%), in line with the frequencies reported for other countries. Previously described mutations were not present in 1.2% of unrelated CAH alleles, including those of one female patient presenting with severe genital virilization. Sequence analysis of the complete functional 21-hydroxylase gene revealed a novel mutation in exon 10, arg426 to his (R426H; 613815.0026). In vitro expression experiments showed that the R426H mutant exhibited only low enzyme activity toward the natural substrate 17-hydroxyprogesterone. </p><p>Olney et al. (2002) developed an assay using real-time quantitative PCR to detect deletions of CYP21A2. This assay was able to detect heterozygous gene deletions with an alpha error rate of less than 5% and with a power greater than 95%. When combined with allele-specific PCR, genotyping for the 9 most common mutations could be completed within hours of blood sampling. This technique was used to study subjects with 21-hydroxylase deficiency in north Florida. Twenty-eight subjects with CAH, 7 first-degree relatives, and 13 normal subjects were characterized. Of 96 chromosomes, 69 abnormal alleles were identified. Among unrelated abnormal alleles, the frequency of specific mutations was 28% for a gene deletion (613815.0011), 24% for the intron 2 splice mutation, 10% for I172N, 8% each for V281L and the exon 6 cluster (613815.0016), and 6% for gln318 to ter (Q318X; 613815.0020). These frequencies, as well as the genotype/phenotype correlation, were similar to those found in comparable populations. </p><p>Tukel et al. (2003) performed allele-specific PCR for the 8 most frequently reported CYP21 point mutations in 31 Turkish families having at least 1 21-hydroxylase-deficient individual. The allele frequencies of the point mutations were as follows: P30L (613815.0004), 0%; IVS2 (613815.0006), 22.5%; G110-delta-8nt (613815.0015) , 3.2%; I172N (613815.0001), 11.4%; exon 6 cluster (613815.0016), 3.2%; V281L (613815.0002), 0%; Q318X (613815.0020), 8%; and R356W (613815.0003), 9.6%. Large deletions and gene conversions were detected by Southern blot analysis, with allele frequencies of 9.6% and 22.5%, respectively. Sequence analysis of CYP21, performed on patients with only 1 mutant allele, revealed 2 missense mutations, R339H (613815.0021) and P453S (613815.0010). A semiquantitative PCR/enzyme digestion-based method for the detection of large-scale deletions/conversions of the gene was developed for routine diagnostic purposes, and its accuracy was shown by comparison with the results of Southern blot analysis. </p><p>To determine the mutational spectrum in the Tunisian CAH population, Kharrat et al. (2004) analyzed the CYP21 active gene in 51 unrelated patients using a strategy of digestion by restriction enzyme and sequencing. All patients had a classical form of 21-hydroxylase deficiency. Mutations were detected in over 94% of the chromosomes examined. The most frequent mutation in the Tunisian CAH population was Q318X (613815.0020), with large prevalence (35.3%), in contrast to the 0.5-13.8% described in other series. Incidence of other mutations did not differ, as had been described: large deletions (e.g., 613815.0011) (19.6%), mutation in intron 2 (613815.0006) (17.6%), and I172N (613815.0001) (10.8%). Four novel mutations were found in 4 patients with the salt-wasting form. </p><p>Sido et al. (2005) reported molecular analysis of 43 Romanian patients with classical CAH, 38 with 21-hydroxylase deficiency and 5 with 11-beta-hydroxylase deficiency. The most frequent mutation in patients with 21-hydroxylase deficiency was I2G (613815.0006) (43.9%), followed by deletions and large conversions (16.7%). Genotypes were categorized in 3 mutation groups according to their predicted functional consequences and compared with clinical phenotype. Overall genotype-phenotype correlation was 87.88%. In the 5 patients with 11-beta-hydroxylase deficiency, 3 homozygous mutations were identified. </p><p><strong><em>Origin of Mutations</em></strong></p><p>
|
|
Mornet et al. (1991) estimated that gene conversions involving small DNA segments probably account for 74% of cases of 21-hydroxylase deficiency. Complete deletion of the CYP21B gene (613815.0011) accounted for about 20% of cases of the classic form of the disease. Complete deletion of CYP21B was associated with the salt-wasting form, as was an 8-bp deletion in the third exon (613815.0015). A G-to-T transversion in the seventh exon (613815.0002) was associated with the late-onset form of the disease. Ghanem et al. (1990) concluded that about 70% of the mutations in the CYP21B gene causing classic and nonclassic CAH are point mutations, because the defective gene was indistinguishable from its structurally intact corresponding gene in Southern blot analysis. Due to the presence of a varying number of C4/21-hydroxylase repeat units, this gene region varies in length among haplotypes. Haplotypes carrying one C4/21-hydroxylase repeat unit with a CYP21P gene transmit the severe form of 21-hydroxylase deficiency. Haglund-Stengler et al. (1991) found association between triplication of the C4/21-hydroxylase repeat unit and the mild form of 21-hydroxylase deficiency. </p><p>Gene conversion, a nonreciprocal exchange of homologous genetic information, has been studied extensively in lower eukaryotes in which all the products of a single meiosis can be recovered and analyzed. Because the latter is not possible in mammals, nonreciprocality of the genetic exchange cannot formally be demonstrated. Despite this limitation, the designation 'gene conversion' has been applied to exchanges observed in mammalian genomes that involve an alteration of an allele at a specific locus in such a way as to suggest that an internal portion of its sequence has been replaced by a homologous segment copied from another allele or locus. Gaucher disease (230800) is another example of a disorder in which conversion events occur between the functional gene and a neighboring pseudogene. Gene conversion has been postulated in other clustered gene families, including those for globins (e.g., 142200), immunoglobulins (e.g., 147070), red-green visual pigments (300822, 300821), and others. With the notable exception of the HLA genes, in which many of the presumed gene conversion events involve allelic exchanges, the postulated gene conversion events in the other systems involve interlocus exchange. The evidence for gene conversion in the human genome had been circumstantial until the description by Collier et al. (1993) of a de novo mutation which permitted the direct comparison of the 'converted' allele with its original form. They observed the de novo introduction of a CYP21A pseudogene-specific mutation into a CYP21B allele. Despite extensive investigations, not a single mutant CYP21B allele has been reported to lack pseudogene-specific mutations that are incompatible with normal gene expression. Consequently, the pathogenesis of 21-hydroxylase deficiency appears to be due almost exclusively to gene-pseudogene exchanges. Tajima et al. (1993) concluded that approximately 90% of the genes in patients with 21-hydroxylase deficiency are accounted for either by a causative mutation from the pseudogene or by a deletion and suggested that the remaining 10% may represent new mutations that do not exist in the pseudogene. Tajima et al. (1993) described a de novo mutation of the CYP21B gene causing CAH. HLA-identical affected and unaffected sibs were observed. Both inherited a missense mutation in exon 4 from the father, but only the affected sib received an intron 2 mutation that caused aberrant RNA splicing from the mother, who was homozygous normal. </p><p>White et al. (1994) reviewed mutations in the CYP21 gene which are responsible for more than 90% of cases of the inherited inability to synthesize cortisol. Most of the mutations in CYP21 causing CAH are generated by recombinations between CYP21 and CYP21P which either delete CYP21 or transfer deleterious mutations from CYP21P to CYP21. </p><p>Miller (1988) discussed gene conversion in relation to the monogenic form of adrenal hyperplasia. Higashi et al. (1988) presented evidence for either unequal intragenic or intergenic recombination and/or gene conversion events taking place between the pseudogene and the functional gene. </p><p>In 4 steroid 21-hydroxylase B mutations from three 21-hydroxylase-deficient patients, Higashi et al. (1988) observed several base changes as compared with the functional B gene. Many of these base changes were identical to those in the CYP21A pseudogene. Two of them were shown to have a point mutation in the second intron, causing aberrant splicing. A third carried 3 clustered missense mutations in the sixth exon, which impaired 21-hydroxylase activity. Since all of these critical mutations could be seen in the corresponding site of the CYP21A pseudogene, the data strongly suggested the involvement of gene conversion in this genetic disease. </p><p>Using a genomic probe, Morel et al. (1989) defined 5 haplotypes that identified the mutations in 57 families. Specifically, of 116 CAH-bearing chromosomes, 114 could be sorted into 1 of these 5 haplotypes, based on blots of DNA digested with TaqI and BglII. Haplotype 1, present in 65.6%, was indistinguishable from the normal, and therefore bore very small lesions, presumably point mutations. Haplotype 2, present in 3.4%, and haplotype 3, present in 6.9%, had deletions and duplications of the CYP21 pseudogene but had especially intact functional genes, presumably bearing point mutations. Thus, point mutation was the genetic defect in 75.9% of the chromosomes. Haplotypes 4 and 5, present in 11.2%, appeared to represent a gene that had undergone a gene conversion event. Haplotype 5, present in 11.2%, appeared to have a deletion of about 30 kb of DNA, resulting in a single hybrid CYPA/B gene. </p><p>Donohoue et al. (1989) concluded that a single unequal crossing-over between the CYP21A and CYP21B genes yields deletion of the latter active gene to result in salt-losing CAH; furthermore, these crossovers do not occur randomly within the complex. In a patient with 21-hydroxylase deficiency, Sinnott et al. (1990) demonstrated a maternally inherited haplotype that carried a de novo deletion of an approximately 30-kb segment including the CYP21B gene and the associated C4B gene. The disease haplotype appeared to have been generated through meiotic unequal crossing-over. One of the maternal haplotypes was the frequently occurring HLA-DR3,B8,A1 haplotype that normally carries a deletion of an approximately 30-kb segment including the CYP21A gene and C4A gene. Haplotypes of this type may act as premutations, increasing the susceptibility to development of a 21-hydroxylase deficiency mutation by facilitating unequal chromosome pairing. Mutations in the pseudogene CYP21A include a C-to-T change that leads to a termination codon, TAG, in the eighth exon. Urabe et al. (1990) found that same change in a mutant CYP21B gene isolated from a patient with 21-hydroxylase deficiency. Furthermore, a reciprocal change, i.e., a T-to-C change in the eighth exon of the CYP21A gene, was observed in the Japanese population. This was considered evidence for gene conversion. </p><p>Wu and Chung (1991) studied the effects of induced missense mutations at cysteine-428, valine-281, and serine-268 of the 21-hydroxylase gene. A ser268-to-thr mutation (613815.0005) had been found in a patient suffering from CAH and a val281-to-leu mutation (613815.0002) was identified in a patient with nonclassic CAH characterized by partial enzyme deficiency. Cysteine-428 is the invariant cys among all cytochrome P450s and is presumed to be the heme ligand. Wu and Chung (1991) mutated ser268 to thr, cys, and met to see if these changes altered the function of 21-hydroxylase. They changed val281 to leu, ile, and thr, similarly, to study the effects on structure and function of 21-hydroxylase. Val, leu, and ile share properties; therefore, substituting one with another should not drastically disturb the structure of the protein. Wu and Chung (1991) changed cys428 to thr, met, and ser to study the effects of these mutations. They found that the cys428, val281, and ser268 mutations resulted in complete, partial, or no loss of enzymatic activity, respectively. All the cys428 mutants had neither enzymatic activity nor P450 absorption, thus supporting the notion that cys428 is the heme ligand. All the 268-mutants exhibited the same activity as normal 21-hydroxylase, demonstrating that the clinically observed ser268-to-thr change represents a polymorphism rather than the cause of enzyme deficiency. </p><p>Tusie-Luna and White (1995) pointed out that steroid 21-hydroxylase deficiency is unusual among genetic diseases in that approximately 95% of the mutant alleles have apparently been generated by recombination between a normally active gene (CYP21) and a closely linked pseudogene (CYP21P). Approximately 20% of mutant alleles carry DNA deletions of 30 kb that have presumably been generated by unequal meiotic crossing-over, whereas 75% carry one or more mutations in CYP21 that are normally found in the CYP21P pseudogene. These latter mutations are termed 'gene conversions.' To assess the frequency at which these different recombination events occur, Tusie-Luna and White (1995) used PCR to detect de novo deletions and gene conversions in matched sperm and peripheral blood leukocyte DNA samples from normal persons. Deletions with breakpoints in a 100-bp region in intron 2 and exon 3 were detected in sperm DNA samples with frequencies of approximately 1 in 10(5)-10(6) genomes but were not detected in the matching leukocyte DNA. Gene conversions in the same region occurred in approximately 1 in 10(3)-10(5) genomes in both sperm and leukocyte DNA. These data suggested to the authors that whereas deletions occur exclusively in meiosis, gene conversions occur during both meiosis and mitosis, or perhaps only during mitosis. Thus, the authors concluded that gene conversions must occur by a mechanism distinct from unequal crossing-over. </p><p>Araujo et al. (2007) studied the CYP21A2 promoter/regulatory regions in 17 patients with the nonclassic form of 21-hydroxylase deficiency with undetermined genotype and 50 controls. Promoter mutations were found in compound heterozygosity with the V281L mutation in 1 patient and with the I2 splice mutation in another. The authors concluded that microconversions between CYP21A2 and CYP21A1P promoters could be involved in the nonclassic form and that CYP21A2 promoter analysis should be included in genetic studies of the disorder. </p><p>CYP21A2, the adjacent complement C4A gene, and parts of the flanking genes serine/threonine protein kinase-19 (STK19; 604977) and tenascin-X (TNXB; 600985) constitute a tandemly duplicated arrangement. The typical number of repeats of the CYP21/C4 region is 2, with 1 repeat carrying CYP21A2 and the other carrying the highly homologous pseudogene CYP21A1P (see 613815.0012). Koppens et al. (2002) determined that apparent large-scale conversions accounted for the defect in 9 of 77 chromosomes in a group of patients with CAH due to steroid 21-hydroxylase deficiency. They further showed that 4 of the 9 'conversions' extended into the flanking TNXB gene. This implies that 1 in every 10 steroid 21-hydroxylase deficiency patients is a carrier of tenascin-X deficiency, which is associated with a recessive form of the Ehlers-Danlos syndrome (606408). Koppens et al. (2002) stated that data on the structure of 'deletion' and 'large-scale conversion' chromosomes strongly suggest that both are the result of the same mechanism, namely unequal meiotic crossover. </p><p>Baumgartner-Parzer et al. (2007) identified 2 unrelated female patients with CAH who inherited the intron 2 splice mutation (613815.0006) from their father and harbored a de novo gene aberration on their maternal haplotype, a large deletion in one and the I172N mutation (613815.0001) in the other. Both mothers were found to be carriers of rare duplicated CYP21A2 haplotypes, which were not detected in the daughters. Baumgartner-Parzer et al. (2007) hypothesized that duplicated CYP21A2 genes could predispose for de novo mutations in offspring, which is relevant for prenatal CYP21 genotyping and genetic counseling. </p><p>Lopez-Gutierrez et al. (1998) studied 47 Mexican families with 21-hydroxylase deficiency. In 9 families they failed to detect the mutation found in the proband in either parent; paternity was established in all cases. In 1 individual, paternal uniparental disomy for 6p was established, and Lopez-Gutierrez et al. (1998) hypothesized that germline mutations might explain the segregation pattern in the remaining 8 families. </p><p>Corticosteroids have specific effects on cardiac structure and function mediated by mineralocorticoid and glucocorticoid receptors (MR and GR (138040), respectively). Aldosterone and corticosterone are synthesized in rat heart. To see whether they might also be synthesized in the human cardiovascular system, Kayes-Wandover and White (2000) examined the expression of genes for steroidogenic enzymes as well as genes for GR, MR, and 11-hydroxysteroid dehydrogenase (HSD11B2; 614232), which maintains the specificity of MR. Human samples were from left and right atria, left and right ventricles, aorta, apex, intraventricular septum, and atrioventricular node, as well as whole adult and fetal heart. Using RT-PCR, mRNAs encoding CYP11A, CYP21, CYP11B1 (610613), GR, MR, and HSD11B2 were detected in all samples except ventricles, which did not express CYP11B1. CYP11B2 (124080) mRNA was detected in the aorta and fetal heart, but not in any region of the adult heart, and CYP17 was not detected in any cardiac sample. Levels of steroidogenic enzyme gene expression were typically 0.1% those in the adrenal gland. The authors concluded that these findings are consistent with autocrine or paracrine roles for corticosterone and deoxycorticosterone, but not cortisol or aldosterone, in the normal adult human heart. </p><p>In each of 2 women with hyperandrogenism (see 201910), Lajic et al. (2002) identified a novel missense mutation in the CYP21 gene (613815.0031 and 613815.0032). The women were predicted to carry mutations by hormonal evaluation, but did not display any of the genotypes commonly associated with congenital adrenal hyperplasia. The authors studied the functional and structural consequences of the mutations, and their results emphasized the importance of genetic evaluation and counseling in hyperandrogenic women who are predicted to carry CAH-causing mutations by biochemical tests. </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Evolution</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>The CYP21 pseudogene has 3 main defects: an 8-bp deletion in exon 3, a T insertion in exon 7, and a stop codon in exon 8. Kawaguchi et al. (1992) demonstrated that the 8-bp deletion is present in the chimpanzee also, whereas the other 2 defects are not found in the chimpanzee, gorilla, or orangutan. In the gorilla and orangutan, however, extra CYP21 copies are inactivated by other defects so that the number of functional copies is reduced in each species. Comparison of the sequences revealed evidence for intraspecific homogenization (concerted evolution) of the CYP21 genes, presumably through an expansion-contraction process effected by relatively frequent unequal but homologous crossing-over. </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>ALLELIC VARIANTS</strong>
|
|
</span>
|
|
<strong>35 Selected Examples):</strong>
|
|
</span>
|
|
</h4>
|
|
<div>
|
|
<p />
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0001 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, ILE172ASN
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs6475,
|
|
|
|
|
|
gnomAD: rs6475,
|
|
|
|
|
|
ClinVar: RCV000012933, RCV000416339, RCV000416360, RCV000622562, RCV000711382, RCV003226157
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Most mutations in the CYP21 gene causing congenital adrenal hyperplasia (201910) are deletions. Amor et al. (1988) reported the cloning and characterization of a nondeleted mutant CYP21B gene. Codon 172 of the mutant gene was found to be changed from ATC, encoding isoleucine, to AAC, encoding asparagine. This mutation (I172N) is normally present in the CYP21A pseudogene, so that it may have been transferred to the mutant CYP21B gene by gene conversion. Hybridization of oligonucleotide probes corresponding to this and 2 other mutations normally present in CYP21A demonstrated that 4 out of 20 patients carried the codon 172 mutation; in 1 of these patients, the mutation was present as part of a larger gene conversion involving at least exons 3-6. Gene conversion may be a frequent cause of 21-hydroxylase deficiency alleles due to the presence of 6 chi-like sequences (GCTGGGG) in the CYP21 genes and the close proximity of the CYP21A pseudogene, which has several potentially deleterious mutations. Chiou et al. (1990) also found this mutation on 1 allele in a compound heterozygote. Partanen and Campbell (1991) amplified the full-length genomic P450C21 gene by PCR. The ile172-to-asn mutation in exon 4 was demonstrated. This mutation was observed also by Wedell et al. (1992), who referred to it as ILE173ASN. Speiser et al. (1992) found this mutation in 16% of 88 families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. The mutation falls into their group B with 2% enzyme activity and a simple virilizing phenotype. Among 127 patients with 21-hydroxylase deficiency in Sweden, Wedell et al. (1994) found that the ile173-to-asn mutation accounted for 20.8% of 186 unrelated chromosomes. (In the same study, the CYP21 gene was completely absent in 29.8% of chromosomes, the val281-to-leu mutation accounted for 5.4%, and the arg356-to-trp mutation accounted for 3.8%. The most frequent nondeletional mutation was the splice mutation in intron 2, which accounted for 27.7% of the chromosomes.) This mutation is found in 28% of all the cases of simple virilizing type (White et al., 1994). To clarify the molecular basis of nonclassic CAH detectable by neonatal screening in Japan, Tajima et al. (1997) identified 2 sibs and 2 unrelated newborns who were diagnosed with probable nonclassic steroid 21-hydroxylase deficiency. The 2 sibs were found to have 1 allele that had 2 mutations, ile172 to asn and arg356 to trp. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0002 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, NONCLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
ADENOMA, CORTISOL-PRODUCING, INCLUDED<br />
|
|
CARCINOMA, ADRENOCORTICAL, ANDROGEN-SECRETING, INCLUDED
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, VAL281LEU
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs6471,
|
|
|
|
|
|
gnomAD: rs6471,
|
|
|
|
|
|
ClinVar: RCV000012934, RCV000012935, RCV000012936, RCV000210728, RCV000417198, RCV000711385, RCV001804725, RCV003407320
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In 9 patients with nonclassic 21-hydroxylase deficiency (201910) associated with HLA-B14;DR1, Speiser et al. (1988) found a change in codon 281 from GTG, encoding valine, to TTG, encoding leucine. Speiser et al. (1989) concluded that this codon 281 mutation is a consistent change in nonclassic 21-hydroxylase deficiency associated with HLA-B14;DR1. The val281-to-leu mutation (V281L), found in association with the HLA-B14;DR1 haplotype, accounts for 75 to 80% of nonclassic 21-hydroxylase deficiency (Mornet et al., 1991). This mutation was observed in several patients by Wedell et al. (1992), who referred to it as VAL282LEU. </p><p>In an analysis of steroid 21-hydroxylase gene mutations in the Spanish population, Ezquieta et al. (1995) found that the most frequent mutation causing the late onset form of disease (present in 15 of 38 patients) was val281 to leu, found in 18 of 30 chromosomes (37%). This mutation is found in 34% of all cases of the nonclassic type (White et al., 1994). </p><p>In samples from 2 patients (1 with a cortisol-producing adenoma and 1 with an androgen-secreting adrenocortical carcinoma), Beuschlein et al. (1998) detected the heterozygous germline mutation val281 to leu in exon 7. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0003 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, ARG356TRP
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs7769409,
|
|
|
|
|
|
gnomAD: rs7769409,
|
|
|
|
|
|
ClinVar: RCV000012937, RCV000417198, RCV000711368, RCV003407321
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with simple virilizing CAH (201910) who was a compound heterozygote for CYP21A2 mutations, Chiou et al. (1990) found a CGG-to-TGG change in 1 allele resulting in substitution of a tryptophan residue for arginine-356 (R356W). Mutants corresponding to this and the ile172-to-asn (I172N; 613815.0001) allele were constructed from the normal CYP21 cDNA by site-directed mutagenesis. Both mutations failed to produce active enzyme. This mutation was also observed by Wedell et al. (1992), who referred to it as ARG357TRP. Tajima et al. (1997) analyzed CYP21 genes for nonclassic steroid 21-hydroxylase deficiency. The 4 patients tested (2 sibs and 2 unrelated newborns) carried the R356W mutation. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0004 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, NONCLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, PRO30LEU
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs9378251,
|
|
|
|
|
|
gnomAD: rs9378251,
|
|
|
|
|
|
ClinVar: RCV000012938, RCV000711390
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>The mild nonclassic form of steroid 21-hydroxylase deficiency (201910) is one of the most common autosomal recessive disorders in humans, occurring in almost 1% of Caucasians and about 3% of Ashkenazi Jews. Many patients with this disorder carry a val281-to-leu (V281L) mutation in the CYP21 gene. This and most other mutations causing 21-hydroxylase deficiency are normally present in the CYP21P pseudogene and have presumably been transferred to CYP21 by gene conversion. To identify other potential nonclassic alleles, Tusie-Luna et al. (1991) used recombinant vaccinia virus to express 2 mutant enzymes carrying the mutations pro30 to leu (normally present in CYP21P) and ser268 to thr (considered a normal polymorphism of CYP21; see 613815.0005). Whereas the activity of the protein carrying the ser-to-thr mutation was indeed indistinguishable from the wildtype, the enzyme with the pro-to-leu substitution had 60% of the wildtype activity for 17-hydroxyprogesterone and about 30% of normal activity for progesterone when assayed in intact cells. Proline-30 is conserved in many microsomal P450 enzymes and may be important for proper orientation of the enzyme with respect to the amino-terminal transmembrane segment. The pro30-to-leu mutation was present in 5 of 18 patients with nonclassic 21-hydroxylase deficiency. Tajima et al. (1997) observed the P30L mutation in 1 allele in 3 of 4 patients (2 sibs and 2 unrelated newborns) with nonclassic CAH in Japan. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0005 21-@HYDROXYLASE POLYMORPHISM</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, SER268THR
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs6472,
|
|
|
|
|
|
gnomAD: rs6472,
|
|
|
|
|
|
ClinVar: RCV000024069, RCV000029655, RCV000055819, RCV000252481, RCV001529036
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Rodrigues et al. (1987) identified a substitution of threonine for serine-268 in 21-hydroxylase (S268T) in a patient with congenital adrenal hyperplasia. Wu and Chung (1991) reported studies of induced mutations changing ser268 to thr, cys, and met. All of these 268-mutants exhibited the same activity as normal 21-hydroxylase, demonstrating that the ser268-to-thr change clinically represents a polymorphism rather than the cause of the enzyme deficiency. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0006 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, IVS2AS, A/C-G, -13
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs6467,
|
|
|
|
|
|
gnomAD: rs6467,
|
|
|
|
|
|
ClinVar: RCV000012939, RCV000624227, RCV000711376, RCV004556714, RCV004584324
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>The most frequent nondeletional mutation found in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency (201910) is an A-to-G transition at position -2 in the acceptor splice site of intron 2. As a result of the mutation, an aberrant splice acceptor site is activated 7 bases upstream of the mutation (Higashi et al., 1988). As pointed out by Miller (1996), this mutation, located in intron 2, is 13 bases (not 2) from the splice acceptor site of exon 3. According to the nucleotide numbering system of Higashi et al. (1988), it is residue 655. Miller (1996) noted that this base is normally polymorphic, being either C or A with roughly equal frequency in the normal population. Either a C-to-G or A-to-G mutation at nucleotide -13 causes the severe 21-OH deficiency. </p><p>This mutation has been detected in patients affected with either the salt-wasting or simple virilizing forms of the disorder (Owerbach et al., 1990; Mornet et al., 1991). White et al. (1994) reported that this mutation represents 22% of the salt-wasting cases, 25% of the simple virilizing cases, and 12% of the nonclassic cases. </p><p>As reported by Hirschfeld and Fleshman (1969) and Pang et al. (1982), the Yupik Eskimos of western Alaska have the world's highest prevalence of HLA-linked classic congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. The frequency was estimated to be between 1 in 282 and 1 in 490 liveborn infants. Studying 4 patients from 3 apparently unrelated Eskimo families residing in geographically distant villages, Speiser et al. (1992) found that all were homozygous for a substitution of G for A at base 656 in the second intron. They concluded that allele-specific hybridization should be an efficient means of prenatal diagnosis in this isolated population. </p><p>In the Spanish population, Ezquieta et al. (1995) found this splicing mutation in 30% of 41 mutant chromosomes, making it the most frequent cause of severe CAH in this population. They stated the mutation as an A-to-G change at nucleotide 655 of their clone. During the course of genetic analysis of CYP21 mutations in CAH families, </p><p>Day et al. (1996) noticed a number of relatives genotyped as nucleotide 656G homozygotes who showed no clinical signs of disease. They proposed that the putative asymptomatic nucleotide 656G/G individuals are incorrectly typed due to a dropout of 1 haplotype during PCR amplification of CYP21. They recommended that for prenatal diagnosis, microsatellite typing be used as a supplement to CYP21 genotyping in order to resolve ambiguities at nucleotide 656. </p><p>Lee et al. (2003) noted that approximately 75% of defective CYP21 genes that cause CAH are generated through intergenic recombination, termed apparent gene conversion, from the neighboring CYP21P pseudogene. Among them, the common intron 2 splice site mutation, which Lee et al. (2003) designated IVS2-12A/C-G, is believed to be derived from this mechanism and is the most prevalent case among all ethnic groups. However, mutation of 707-714delGAGACTAC (613815.0015) rarely exists alone, although this locus is 53 nucleotides away from IVS2-12A/C-G. From the molecular characterization of the mutation of IVS2-12A/C-G combined with 707-714delGAGACTAC in patients with congenital adrenal hyperplasia, Lee et al. (2003) found that it appeared to be in a 3.2- rather than a 3.7-kb fragment generated by Taq I digestion in a PCR product of the CYP21 gene. Interestingly, the 5-prime end region of such a CYP21 haplotype had CYP21P-specific sequences. The authors concluded that the coexistence of these 2 mutations is caused by deletion of the CYP21P, XA (TNXA; see 600985), RP2 (pseudogene of STK19, 604977), and C4B (120820) genes and intergenic recombination in the C4-CYP21 repeat module. </p><p>Among 370 unrelated alleles from patients in the Netherlands with 21-hydroxylase deficiency, Stikkelbroeck et al. (2003) found this to be the most common point mutation, occurring in 28.1% of alleles. They referred to the mutation as I2G (IVS2-13A/C-G; 656A/C-G). </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0007 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, GLY292SER
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs201552310,
|
|
|
|
|
|
gnomAD: rs201552310,
|
|
|
|
|
|
ClinVar: RCV000012940, RCV000711386
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Wedell et al. (1992) developed selective PCR amplification and direct sequencing of the full-length CYP21 gene and thereby identified 3 previously unknown mutations. One of them, in a patient with severe steroid 21-hydroxylase deficiency (201910), represented a substitution of serine for glycine-292 (G292S). The mutation was the result of a G-to-A transition at nucleotide 1718 in exon 7. The patient was 1 of 20 hemizygous patients, i.e., patients with only 1 copy of the functional CYP21 gene. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0008 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, 2-BP DEL/1-BP INS, ARG484FS
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs397509367,
|
|
|
|
|
|
|
|
ClinVar: RCV000012941, RCV000711372, RCV003904830
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with severe steroid 21-hydroxylase deficiency (201910), Wedell et al. (1992) identified a change of a GG dinucleotide to a C in exon 10, resulting in a frameshift at arginine-484 and a predicted protein with 57 additional amino acids in the C-terminal end. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0009 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, LATE-ONSET FORM</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, -4C-T, PRO105LEU, AND PRO453SER
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs550051210, rs6470,
|
|
|
|
|
|
gnomAD: rs550051210, rs6470,
|
|
|
|
|
|
ClinVar: RCV000012942, RCV000012943, RCV000012952, RCV000247576, RCV000711371, RCV002288483, RCV003477866, RCV003924827, RCV003985261
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In 2 sibs with the late-onset form of 21-hydroxylase deficiency (201910) manifested by pseudoprecocious puberty, growth acceleration, and clitoral enlargement at ages 8 and 10 years, Wedell et al. (1992) identified hemizygosity (i.e., only 1 functional CYP21 gene was present) for 3 sequence changes: C to T at 4 bases upstream of translation initiation, pro106 to leu, and pro454 to ser. Since pro454 is conserved in 4 species, it is likely to be important for normal enzyme function. (White et al. (1994) later referred to the pro106-to-leu substitution as pro105 to leu, and Owerbach et al. (1992) referred to the pro454-to-ser substitution as pro453 to ser.) </p><p>Nikoshkov et al. (1997) tested the function of the -4, pro105-to-leu, and pro453-to-ser mutations by in vitro translation after expression of the mutant enzymes in cultured cells. While the -4 substitution had no measurable effect, the pro105-to-leu and pro453-to-ser mutations reduced enzyme activity to 62% and 68% for 17-hydroxyprogesterone and 64% and 46% for progesterone, respectively. When present in combination, these 2 mutations caused a reduction of enzyme activity to 10% for 17-hydroxyprogesterone and 7% for progesterone. These results indicated that pro105-to-leu and pro453-to-ser alleles should only cause very subtle disease when not in combination but may be considered when genotyping patients with the mildest forms of CAH1. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0010 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, NONCLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, PRO453SER
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs6445,
|
|
|
|
|
|
gnomAD: rs6445,
|
|
|
|
|
|
ClinVar: RCV000012942, RCV000012943, RCV000012952, RCV000711371, RCV002288483, RCV003924827, RCV003985261
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Using PCR in a study of the structure of the CYP21 gene in 13 unrelated nonclassic steroid 21-hydroxylase deficiency (201910) patients, 3 affected sibs, and 55 blood donors, Owerbach et al. (1992) found the val281-to-leu (613815.0002) and pro30-to-leu (613815.0004) mutations, as well as a pro453-to-ser (P453S) mutation in exon 10. The P453S mutation was identified in 46.2% of unrelated nonclassic CAH patients, but only 7.7% and 3.6% of salt-wasting CAH patients and blood donors, respectively. In contrast to the other 2 'nonclassic' mutations, pro453 to ser had not been detected in the CYP21 pseudogene and, therefore, probably had not arisen by gene conversion. </p><p>Soardi et al. (2008) found that P453S and another nonclassic mutation, H62L (613815.0034), had a synergistic interaction. When the mutant proteins were expressed together in COS cells, the activity of the enzyme was reduced to 4.1% and 2.3% toward 17OHP and progesterone, respectively. Two unrelated patients who both carried P453S+H62L on the paternal allele had a mild simple virilizing phenotype. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0011 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, 30-KB DEL
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
ClinVar: RCV000012944
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In 13 patients with congenital adrenal hyperplasia (201910), White et al. (1988) identified a deletion of approximately 30 kb, leaving behind the C4A gene (encoding the fourth component of complement; 120820) and a single CYP21P-like gene. The deletion prevents the synthesis of the protein and destroys all enzymatic activity. This mutation is very common and is found in 29% of all the salt-wasting cases. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0012 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, GENE CONVERSION CYP21 FROM CYP21P
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
ClinVar: RCV000012945
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Higashi et al. (1988) discovered that the CYP21P genes in 11 patients with congenital adrenal hyperplasia (201910) seemed to be replaced frequently in their 3-prime portions by the CYP21 gene sequences. All of these alterations occurred without changing the characteristic length (3.2 kb) of the TaqI fragment of the CYP21P gene, a result strongly suggesting that frequent gene conversions and/or intragenic recombinations have happened in the P-450 (C21) genes. This mutation results in a salt-wasting type and destroys all enzymatic activity. Gene conversions were observed in 8 normal individuals, suggesting that the resulting gene sequences do not always contain deleterious mutations from the CYP21 pseudogene. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0013 21-@HYDROXYLASE POLYMORPHISM</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, 3-BP INS, LEU10INS
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs61338903,
|
|
|
|
|
|
|
|
ClinVar: RCV000024070, RCV000055814
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Rodrigues et al. (1987) identified an insertion of CTG in exon 1 of the CYP21A2 gene at nucleotide position 28 coding for a leucine-10. This insertion has no effect on the enzymatic activity. This mutation is normally present in the CYP21 pseudogene. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0014 21-@HYDROXYLASE POLYMORPHISM</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, TYR102ARG
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
ClinVar: RCV000024071
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Rodrigues et al. (1987) identified an A-to-G change at nucleotide 683 in exon 3 of the CYP21A2 gene, resulting in a substitution of arginine for tyrosine-102 (Y102R). There is normal enzymatic activity associated with this polymorphism. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0015 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, 8-BP DEL
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs387906510,
|
|
|
|
|
|
gnomAD: rs387906510,
|
|
|
|
|
|
ClinVar: RCV000012946, RCV000711378
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>By hybridization with specific oligonucleotide probes, White et al. (1988) showed an 8-bp deletion of nucleotides 707-714 in exon 3, typical of CYP21P, which prevents synthesis of the protein by a frameshift and causes the salt-wasting type of congenital adrenal hyperplasia. This mutation is present in about 8% of the salt-wasting CAH (201910) cases. </p><p>See 613815.0006 and Lee et al. (2003). </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0016 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, ILE236ASN, VAL237GLU, MET239LYS
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs12530380, rs1554299737, rs6476,
|
|
|
|
|
|
gnomAD: rs12530380, rs6476,
|
|
|
|
|
|
ClinVar: RCV000012947, RCV000055823, RCV001269527, RCV001269963, RCV001269964, RCV002250459, RCV002250603, RCV002250604, RCV002298442, RCV002298450, RCV002298552, RCV002298553, RCV002308619, RCV002308620, RCV002308621
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with the salt-wasting form of congenital adrenal hyperplasia caused by 21-hydroxylase deficiency (201910), Higashi et al. (1988) identified a cluster mutation in exon 6 of the CYP21A2 gene (ILE235ASN (I235N), VAL236GLU (V236E), and MET238LYS (M238K)). Each of these substitutions was caused by a T-to-A transversion at nucleotide position 1380, 1383, and 1389, respectively. This mutation was presumed to have arisen in a gene conversion event. </p><p>Tusie-Luna et al. (1990) expressed the exon 6 cluster mutation at high levels in cultured COS-1 cells using recombinant vaccinia virus to determine its functional effect. They found that this mutation had no detectable enzymatic activity. </p><p>Robins et al. (2005) excluded the M239K mutation as a disease-causing mutation in this cluster by demonstrating that it has no effect on enzyme activity. V237E abolished enzyme function and is thus a null mutation, whereas very low but measurable activity remained for I236N. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-text-font">
|
|
<strong>.0017 MOVED TO 613815.0016</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-text-font">
|
|
<strong>.0018 MOVED TO 613815.0016</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0019 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, IVS7DS, G-C, +1
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs1474566961,
|
|
|
|
|
|
gnomAD: rs1474566961,
|
|
|
|
|
|
ClinVar: RCV000012950
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a severely affected 21-hydroxylase deficiency (201910) patient, Wedell and Luthman (1993) identified a G-to-C substitution at nucleotide 177, the first nucleotide of the donor splice site of intron 7, resulting in abnormal splicing. This mutation was found in compound heterozygosity with a premature termination mutation (613815.0022). </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0020 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, GLN318TER
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs7755898,
|
|
|
|
|
|
gnomAD: rs7755898,
|
|
|
|
|
|
ClinVar: RCV000012951, RCV000417198, RCV000711391, RCV002222348, RCV003924828
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Globerman et al. (1988) identified a T-to-C substitution at nucleotide 1994 in exon 8 of the CYP21A2 gene, resulting in a stop codon at position 318 (Q318X). Individuals homozygous for this mutation have the salt-wasting form of 21-hydroxylase deficiency (201910) and no enzymatic activity. This mutation is normally present in the CYP21 pseudogene. </p><p>In a Spanish population, Ezquieta et al. (2002) provided data on the contributions of gene conversion and founder effect to the distribution of the 2 most frequent severe point mutations of the CYP21A2 gene causing congenital adrenal hyperplasia: the 655G splicing mutation at intron 2 (613815.0006) and gln318-to-ter. Both mechanisms were found to contribute to the mutant alleles in different degrees. The 655G splicing mutation (accounting for 15.5% of alleles) seemed to be almost exclusively related to recent conversion events, whereas Q318X (accounting for 8.3% of alleles) was more likely to be due to the dissemination of remotely generated mutant alleles. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0021 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, NONCLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, ARG339HIS AND PRO453SER
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs72552754,
|
|
|
|
|
|
gnomAD: rs72552754,
|
|
|
|
|
|
ClinVar: RCV000012942, RCV000012943, RCV000012952, RCV000711371, RCV002288483, RCV003318405, RCV003924827, RCV003985261
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with a mild, nonclassic form of 21-hydroxylase deficiency (201910), Helmberg et al. (1992) 1 allele that carried 2 missense mutations in the CYP21A2 gene, R339H and P453S (see 613815.0010). The substitution of histidine for arginine-339 resulted from a G-to-C change at nucleotide 2058 in exon 8. The enzymatic activity associated with this mutation is lowered to 30 to 60% of normal. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0022 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, TRP406TER
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs151344503,
|
|
|
|
|
|
gnomAD: rs151344503,
|
|
|
|
|
|
ClinVar: RCV000012953, RCV001851812
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a patient with salt-wasting 21-hydroxylase deficiency (201910), Wedell and Luthman (1993) identified an A-to-G substitution at nucleotide 2339 in exon 9 of the CYP21A2 gene, causing a stop codon at position 406 (W406X). </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0023 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, SALT-WASTING TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, GLU380ASP
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
ClinVar: RCV000012954, RCV003234903
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In an HLA-homozygous patient with salt-losing congenital adrenal hyperplasia due to 21-hydroxylase deficiency (201910), Kirby-Keyser et al. (1997) demonstrated homozygosity for an E380D mutation in the CYP21 gene. Both parents and 1 sib were heterozygous for this mutation. E380D had not been identified in any pseudogenes, suggesting that the mutation had arisen through conventional means and not by gene conversion or similar mechanisms related to the neighboring pseudogene. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-text-font">
|
|
<strong>.0024 MOVED TO 613815.0016</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0025 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, GLY424SER
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs72552758,
|
|
|
|
|
|
gnomAD: rs72552758,
|
|
|
|
|
|
ClinVar: RCV000991861, RCV002249597
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Billerbeck et al. (1999) sequenced the entire CYP21 gene of a Brazilian mulatto patient with the simple virilizing form of congenital adrenal hyperplasia (201910) who had the R356W mutation (613815.0003) in a heterozygous state. They identified a heterozygous G-to-A transition at nucleotide 2494, resulting in a gly424-to-ser (G424S) substitution in a region where glycine is conserved in at least 4 species. Overall, the gly424-to-ser mutation was found in a compound heterozygous state in 5 Brazilian families; 4 presented the simple virilizing form, and 1 presented the nonclassic form. Interestingly, 3 of the 5 families had a mulatto origin. All patients with the gly424-to-ser mutation had CYP21P and C4A (120810) gene deletions and human leukocyte antigen DR17 on the same haplotype, suggesting linkage disequilibrium and a probable founder effect. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0026 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, ARG426HIS
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs151344504,
|
|
|
|
|
|
gnomAD: rs151344504,
|
|
|
|
|
|
ClinVar: RCV000012957, RCV001851813, RCV003390673
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a female index patient and her 2 sisters presenting with classical congenital adrenal hyperplasia and severe genital virilization (201910), Baumgartner-Parzer et al. (2001) found hemizygosity for an arg426-to-his (R426H) mutation in the maternal CYP21B gene, resulting from a G-to-A transition in exon 10. The patients were compound heterozygous for a large gene deletion of the CYP21B (paternal) and CYP21A (maternal) genes. One of the 3 sisters had given birth to a daughter who was a clinically asymptomatic carrier of the R426H mutation. In vitro expression experiments showed the R426H mutant to exhibit only low enzyme activity toward the natural substrate 17-hydroxyprogesterone. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0027 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, 1-BP INS, 82C
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs1582299448,
|
|
|
|
|
|
|
|
ClinVar: RCV000012958
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Genotyping of 41 Brazilian patients with the classical form of 21-hydroxylase deficiency revealed 64% microconversion, whereas deletions and large gene conversions accounted for up to 21% of the molecular defect (Araujo et al., 1996; Paulino et al., 1999). Lau et al. (2001) reported a novel mutation disclosed by sequencing the entire CYP21 gene of a patient in whom no pseudogene-originated mutation had been found. The patient, who had the classical form of 21-hydroxylase deficiency (201910), was the daughter of a consanguineous marriage; she was homozygous for a novel frameshift, an insertion of a cytosine between nucleotides 82 and 83, within exon 1. The mutation caused conversion of codon 28 from histidine to proline and premature termination at amino acid 78. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0028 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, IVS2, A-G, -2
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs1582302625,
|
|
|
|
|
|
|
|
ClinVar: RCV000012959
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In 3 unrelated Brazilian patients with the classic form of the 21-hydroxylase deficiency (201910), Billerbeck et al. (2002) found 3 novel mutations after CYP21 gene sequencing. In 1 patient and her brother, both affected with the simple virilizing form, and in their aunt, with the nonclassic form, an AG-to-GG transition was found in the acceptor site of intron 2. In the sibs, this mutation was found in compound heterozygosity with the I172N mutation (613815.0001); in their aunt, it was found in compound heterozygosity with P30L (613815.0004), which confers more than 30% enzyme activity, explaining why she presented with the nonclassic form. In another patient with the salt-wasting form, they found an insertion of an adenine between nucleotides 1003 and 1004, in exon 4, that altered the reading frame and created a stop codon at codon 297 (613815.0029). In the third patient and his sister, they found a C-to-T transition in codon 408 predicted to encode an arg408-to-cys (R408C) substitution in a region where arginine is conserved in at least 4 different species. Microsatellite studies, using markers flanking CYP21 gene, revealed that each new mutation presents the same haplotype, suggesting a gene founder effect for each one. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0029 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, 1-BP INS, 1003A
|
|
|
|
|
|
<br />
|
|
|
|
|
|
|
|
ClinVar: RCV000012960
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>For discussion of the 1-bp insertion (1003_1004insA) in exon 4 of the CYP21A2 gene that was found in compound heterozygous state in a patient with the salt-wasting form of 21-hydroxylase deficiency (201910) by Billerbeck et al. (2002), see 613815.0028. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0030 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY, CLASSIC TYPE</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, ARG408CYS
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs72552757,
|
|
|
|
|
|
gnomAD: rs72552757,
|
|
|
|
|
|
ClinVar: RCV000012961, RCV002472928
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>For discussion of the arg408-to-cys (R408C) mutation in the CYP21A2 gene that was found in compound heterozygous state in 2 sibs with the salt-wasting form of 21-hydroxylase deficiency (201910) by Billerbeck et al. (2002), see 613815.0028. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0031 HYPERANDROGENISM, NONCLASSIC TYPE, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, VAL304MET
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs151344505,
|
|
|
|
|
|
gnomAD: rs151344505,
|
|
|
|
|
|
ClinVar: RCV002211046, RCV002281650
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a woman with hyperandrogenism (201910), Lajic et al. (2002) identified a novel homozygous val304-to-met (V304M) mutation in the CYP21 gene. After expression in COS-1 cells, the mutated enzyme was found to have a residual activity of 46% for conversion of 17-hydroxyprogesterone and 26% for conversion of progesterone compared with the normal enzyme. A normal degradation pattern for this mutant enzyme indicated that the mutation is of functional, rather than structural, importance. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0032 HYPERANDROGENISM, NONCLASSIC TYPE, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, GLY375SER
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs151344506,
|
|
|
|
|
|
gnomAD: rs151344506,
|
|
|
|
|
|
ClinVar: RCV000012963
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a woman with signs of hyperandrogenism (201910), Lajic et al. (2002) identified a novel gly375-to-ser (G375S) mutation in the CYP21 gene in heterozygous state with a pro453-to-ser (P453S; 613815.0010) mutation, which is known to cause nonclassic CAH. The G375S variant almost completely abolished enzyme activity; conversion was 1.6% and 0.7% of normal for 17-hydroxyprogesterone and progesterone, respectively. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0033 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, VAL281LEU, PHE306+1, GLN318TER, AND ARG356TRP
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs267606756,
|
|
|
|
|
|
|
|
ClinVar: RCV000012934, RCV000012935, RCV000012936, RCV000012937, RCV000012951, RCV000055821, RCV000210728, RCV000417198, RCV000711368, RCV000711385, RCV000711389, RCV000711391, RCV001804725, RCV002222348, RCV003407320, RCV003407321, RCV003924828
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Stikkelbroeck et al. (2003) found a clustering of pseudogene-derived mutations in exons 7 and 8 of the CYP21A2 gene (val281 to leu, a 1-bp insertion after codon 306, gln318 to ter, and arg356 to trp) in 7 of 370 unrelated alleles (1.9%) from a population of Dutch patients with 21-hydroxylase deficiency (201910). This cluster had been reported by Koppens et al. (2000) in 2 Dutch patients (2 of 75 unrelated alleles) and by Wilson et al. (1995) in 2 patients (2 of 394 alleles). Stikkelbroeck et al. (2003) suggested that this cluster may be specific to the Dutch population and may be attributable to a common founder. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0034 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, HIS62LEU
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs9378252,
|
|
|
|
|
|
gnomAD: rs9378252,
|
|
|
|
|
|
ClinVar: RCV000012965, RCV000173141, RCV002307363, RCV002472929
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>Of 60 novel mutations in CYP21 identified in a screen of 2,900 patients with steroid 21-hydroxylase deficiency (201910), Menassa et al. (2008) found that a his-to-leu substitution at codon 62 (H62L) was the most frequent. The H62L substitution, which arises from an A-to-T transversion at nucleotide 185 in exon 1 of the CYP21 gene, was found in 13 patients from 12 unrelated families, either isolated or associated on the same allele with a mild mutation. In isolation, or when associated with a partial conversion of the promoter, the H62L mutation was responsible for a nonclassic form; associated with the P453S (613815.0010) or P30L (613815.0004) mutations, H62L contributed to a simple virilizing phenotype more severe than that associated with P453S or P30L alone, but not as severe as the phenotype associated with I172N (613815.0001). Analysis of a 3-dimensional model structure of the CYP21 protein localized the H62L mutation to the beta-1-sheet region, in a large hydrophobic area considered important for membrane anchoring. </p><p>Soardi et al. (2008) found that the H62L mutant protein showed an activity compatible with a nonclassic mutation in functional assays. Determination of apparent kinetic constants revealed that the substrate binding capacity was in the same magnitude for mutant and normal enzyme. Soardi et al. (2008) found that the H62L mutation was associated with other mutations in both Brazilian and Scandinavian patients. In the Scandinavian patients H62L was associated on the paternal allele with the nonclassic P453S (613815.0010) mutation. In vitro activity data revealed a synergistic effect of the H62L+P453S mutation, which may explain the mild simple virilizing phenotype in these patients. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>.0035 ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
|
|
CYP21A2, LYS121GLN
|
|
|
|
|
|
<br />
|
|
|
|
SNP: rs267606757,
|
|
|
|
|
|
|
|
ClinVar: RCV000012966, RCV004782020
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<span class="mim-text-font">
|
|
<p>In a female patient with nonclassic 21-hydroxylase deficiency (201910), Riepe et al. (2008) detected heterozygosity for a novel mutation in the CYP21A2 gene, a 364A-C transversion in exon 3 resulting in a lys121-to-gln substitution (K121Q). This mutation was present on the maternal allele; the paternal allele carried a P453S mutation (613815.0010). In vitro expression analysis of the mutant K121Q enzyme in transiently transfected COS-7 cells revealed reduced CYP21 activity of approximately 14.0% for the conversion of 17-hydroxyprogesterone and 19.5% for the conversion of progesterone. K121 is located on helix C in the CYP21 protein, which is part of the heme coordinating system. In addition, helix C is involved in the interaction with the electron-providing enzyme P450 oxidoreductase (124015). Riepe et al. (2008) hypothesized that the K121Q mutation impairs electron flux between P450 oxidoreductase and CYP21 and alters substrate affinity by displacing the heme coordination site. </p>
|
|
</span>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>See Also:</strong>
|
|
</span>
|
|
</h4>
|
|
<span class="mim-text-font">
|
|
White et al. (1987)
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>REFERENCES</strong>
|
|
</span>
|
|
</h4>
|
|
<div>
|
|
<p />
|
|
</div>
|
|
|
|
<div>
|
|
<ol>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Amor, M., Parker, K. L., Globerman, H., New, M. I., White, P. C.
|
|
<strong>Mutation in the CYP21B gene (ile172-to-asn) causes steroid 21-hydroxylase deficiency.</strong>
|
|
Proc. Nat. Acad. Sci. 85: 1600-1604, 1988.
|
|
|
|
|
|
[PubMed: 3257825]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.85.5.1600]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Araujo, M., Sanches, M. R., Suzuki, L. A., Guerra, G., Jr., Farah, S. B., De Mello, M. P.
|
|
<strong>Molecular analysis of CYP21 and C4 genes in Brazilian families with the classical form of steroid 21-hydroxylase deficiency.</strong>
|
|
Braz. J. Med. Biol. Res. 29: 1-13, 1996.
|
|
|
|
|
|
[PubMed: 8731325]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Araujo, R. S., Mendonca, B. B., Barbosa, A. S., Lin, C. J., Marcondes, J. A. M., Billerbeck, A. E. C., Bachega, T. A. S. S.
|
|
<strong>Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 92: 4028-4034, 2007.
|
|
|
|
|
|
[PubMed: 17666484]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2006-2163]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Baumgartner-Parzer, S. M., Fischer, G., Vierhapper, H.
|
|
<strong>Predisposition for de novo gene aberrations in the offspring of mothers with a duplicated CYP21A2 gene.</strong>
|
|
J. Clin. Endocr. Metab. 92: 1164-1167, 2007.
|
|
|
|
|
|
[PubMed: 17164306]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2006-2189]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Baumgartner-Parzer, S. M., Schulze, E., Waldhausl, W., Pauschenwein, S., Rondot, S., Nowotny, P., Meyer, K., Frisch, H., Waldhauser, F., Vierhapper, H.
|
|
<strong>Mutational spectrum of the steroid 21-hydroxylase gene in Austria: identification of a novel missense mutation.</strong>
|
|
J. Clin. Endocr. Metab. 86: 4771-4775, 2001.
|
|
|
|
|
|
[PubMed: 11600539]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.86.10.7898]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Beuschlein, F., Schulze, E., Mora, P., Gensheimer, H.-P., Maser-Gluth, C., Allolio, B., Reincke, M.
|
|
<strong>Steroid 21-hydroxylase mutations and 21-hydroxylase messenger ribonucleic acid expression in human adrenocortical tumors.</strong>
|
|
J. Clin. Endocr. Metab. 83: 2585-2588, 1998.
|
|
|
|
|
|
[PubMed: 9661649]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.83.7.4965]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Billerbeck, A. E. C., Bachega, T. A. S. S., Frazzatto, E. T., Nishi, M. Y., Goldberg, A. C., Marin, M. L. C., Madureira, G., Monte, O., Arnhold, I. J. P., Mendonca, B. B.
|
|
<strong>A novel missense mutation, GLY424SER, in Brazilian patients with 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 84: 2870-2872, 1999.
|
|
|
|
|
|
[PubMed: 10443693]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.84.8.5937]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Billerbeck, A. E. C., Mendonca, B. B., Pinto, E. M., Madureira, G., Arnhold, I. J. P., Bachega, T. A. S. S.
|
|
<strong>Three novel mutations in CYP21 gene in Brazilian patients with the classical form of 21-hydroxylase deficiency due to a founder effect.</strong>
|
|
J. Clin. Endocr. Metab. 87: 4314-4317, 2002.
|
|
|
|
|
|
[PubMed: 12213891]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2001-011939]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Carroll, M. C., Campbell, R. D., Porter, R. R.
|
|
<strong>Mapping of steroid 21-hydroxylase genes adjacent to complement component C4 genes in HLA, the major histocompatibility complex in man.</strong>
|
|
Proc. Nat. Acad. Sci. 82: 521-525, 1985.
|
|
|
|
|
|
[PubMed: 3871526]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.82.2.521]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Chiou, S.-H., Hu, M.-C., Chung, B.
|
|
<strong>A missense mutation at ile172-to-asn or arg356-to-trp causes steroid 21-hydroxylase deficiency.</strong>
|
|
J. Biol. Chem. 265: 3549-3552, 1990.
|
|
|
|
|
|
[PubMed: 2303461]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Collier, S., Tassabehji, M., Sinnott, P., Strachan, T.
|
|
<strong>A de novo pathological point mutation at the 21-hydroxylase locus: implications for gene conversion in the human genome.</strong>
|
|
Nature Genet. 3: 260-265, 1993. Note: Erratum: Nature Genet. 4: 101 only, 1993.
|
|
|
|
|
|
[PubMed: 8485582]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/ng0393-260]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Cooper, D. Y., Levin, S., Narasimhulu, S., Rosenthal, O., Estabrook, R. W.
|
|
<strong>Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems.</strong>
|
|
Science 147: 400-402, 1965.
|
|
|
|
|
|
[PubMed: 14221486]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1126/science.147.3656.400]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Day, D. J., Speiser, P. W., Schulze, E., Bettendorf, M., Fitness, J., Barany, F., White, P. C.
|
|
<strong>Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees.</strong>
|
|
Hum. Molec. Genet. 5: 2039-2048, 1996.
|
|
|
|
|
|
[PubMed: 8968761]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1093/hmg/5.12.2039]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Donohoue, P. A., Jospe, N., Migeon, C. J., Van Dop, C.
|
|
<strong>Two distinct areas of unequal crossingover within the steroid 21-hydroxylase genes produce absence of CYP21B.</strong>
|
|
Genomics 5: 397-406, 1989. Note: Erratum: Genomics 6: 392 only, 1990.
|
|
|
|
|
|
[PubMed: 2613228]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/0888-7543(89)90002-5]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Ezquieta, B., Cueva, E., Oyarzabal, M., Oliver, A., Varela, J. M., Jariego, C.
|
|
<strong>Gene conversion (655G splicing mutation) and the founder effect (gln318-to-stop) contribute to the most frequent severe point mutations in congenital adrenal hyperplasia (21-hydroxylase deficiency) in the Spanish population.</strong>
|
|
Clin. Genet. 62: 181-188, 2002.
|
|
|
|
|
|
[PubMed: 12220458]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1034/j.1399-0004.2002.620213.x]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Ezquieta, B., Oliver, A., Gracia, R., Gancedo, P. G.
|
|
<strong>Analysis of steroid 21-hydroxylase gene mutations in the Spanish population.</strong>
|
|
Hum. Genet. 96: 198-204, 1995.
|
|
|
|
|
|
[PubMed: 7635470]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1007/BF00207379]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Ghanem, N., Lobaccaro, J. M., Buresi, C., Abbal, M., Halaby, G., Sultan, C., Lefranc, G.
|
|
<strong>Defective, deleted or converted CYP21B gene and negative association with a rare restriction fragment length polymorphism allele of the factor B gene in congenital adrenal hyperplasia.</strong>
|
|
Hum. Genet. 86: 117-125, 1990.
|
|
|
|
|
|
[PubMed: 1979956]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1007/BF00197691]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Globerman, H., Amor, H., Parker, K. L., New, M. I., White, P. C.
|
|
<strong>A nonsense mutation causing steroid 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Invest. 82: 139-144, 1988.
|
|
|
|
|
|
[PubMed: 3267225]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1172/JCI113562]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Haglund-Stengler, B., Ritzen, E. M., Gustafsson, J., Luthman, H.
|
|
<strong>Haplotypes of the steroid 21-hydroxylase gene region encoding mild steroid 21-hydroxylase deficiency.</strong>
|
|
Proc. Nat. Acad. Sci. 88: 8352-8356, 1991.
|
|
|
|
|
|
[PubMed: 1924294]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.88.19.8352]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Harada, F., Kimura, A., Iwanaga, T., Shimozawa, K., Yata, J., Sasazuki, T.
|
|
<strong>Gene conversion-like events cause steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia.</strong>
|
|
Proc. Nat. Acad. Sci. 84: 8091-8094, 1987.
|
|
|
|
|
|
[PubMed: 3500473]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.84.22.8091]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Helmberg, A., Tusie-Luna, M. T., Tabarelli, M., Kofler, R., White, P. C.
|
|
<strong>R339H and P453S: CYP21 mutations associated with nonclassic steroid 21-hydroxylase deficiency that are not apparent gene conversions.</strong>
|
|
Molec. Endocr. 6: 1318-1322, 1992.
|
|
|
|
|
|
[PubMed: 1406709]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/mend.6.8.1406709]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Higashi, Y., Tanae, A., Inoue, H., Fujii-Kuriyama, Y.
|
|
<strong>Evidence for frequent gene conversion in the steroid 21-hydroxylase P-450(C21) gene: implications for steroid 21-hydroxylase deficiency.</strong>
|
|
Am. J. Hum. Genet. 42: 17-25, 1988.
|
|
|
|
|
|
[PubMed: 2827462]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Higashi, Y., Tanae, A., Inoue, H., Hiromasa, T., Fujii-Kuriyama, Y.
|
|
<strong>Aberrant splicing and missense mutations cause steroid 21-hydroxylase (P-450[C21]) deficiency in humans: possible gene conversion products.</strong>
|
|
Proc. Nat. Acad. Sci. 85: 7486-7490, 1988.
|
|
|
|
|
|
[PubMed: 2845408]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.85.20.7486]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Higashi, Y., Yoshioka, H., Yamane, M., Gotoh, O., Fujii-Kuriyama, Y.
|
|
<strong>Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene.</strong>
|
|
Proc. Nat. Acad. Sci. 83: 2841-2845, 1986.
|
|
|
|
|
|
[PubMed: 3486422]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.83.9.2841]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Hirschfeld, A. J., Fleshman, J. K.
|
|
<strong>An unusually high incidence of salt-losing congenital adrenal hyperplasia in the Alaskan Eskimo.</strong>
|
|
J. Pediat. 75: 492-494, 1969.
|
|
|
|
|
|
[PubMed: 5804199]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/s0022-3476(69)80280-5]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Jospe, N., Donohoue, P. A., Van Dop, C., McLean, R. H., Bias, W. B., Migeon, C. J.
|
|
<strong>Prevalence of polymorphic 21-hydroxylase gene (CA21HB) mutations in salt-losing congenital adrenal hyperplasia.</strong>
|
|
Biochem. Biophys. Res. Commun. 142: 798-804, 1987.
|
|
|
|
|
|
[PubMed: 3030300]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/0006-291x(87)91484-7]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Kawaguchi, H., O'hUigin, C., Klein, J.
|
|
<strong>Evolutionary origin of mutations in the primate cytochrome P450c21 gene.</strong>
|
|
Am. J. Hum. Genet. 50: 766-780, 1992.
|
|
|
|
|
|
[PubMed: 1550121]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Kayes-Wandover, K., White, P. C.
|
|
<strong>Steroidogenic enzyme gene expression in the human heart.</strong>
|
|
J. Clin. Endocr. Metab. 85: 2519-2525, 2000.
|
|
|
|
|
|
[PubMed: 10902803]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.85.7.6663]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Kharrat, M., Tardy, V., M'Rad, R., Maazoul, F., Ben Jemaa, L., Refai, M., Morel, Y., Chaabouni, H.
|
|
<strong>Molecular genetic analysis of Tunisian patients with a classic form of 21-hydroxylase deficiency: identification of four novel mutations and high prevalence of Q318X mutation.</strong>
|
|
J. Clin. Endocr. Metab. 89: 368-374, 2004.
|
|
|
|
|
|
[PubMed: 14715874]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2003-031056]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Kirby-Keyser, L., Porter, C. C., Donohoue, P. A.
|
|
<strong>E380D: a novel point mutation of CYP21 in an HLA-homozygous patient with salt-losing congenital adrenal hyperplasia due to 21-hydroxylase deficiency.</strong>
|
|
Hum. Mutat. 9: 181-182, 1997.
|
|
|
|
|
|
[PubMed: 9067760]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1002/(SICI)1098-1004(1997)9:2<181::AID-HUMU12>3.0.CO;2-Z]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Koppens, P. F. J., Hoogenboezem, T., Degenhart, H. J.
|
|
<strong>CYP21 and CYP21P variability in steroid 21-hydroxylase deficiency patients and in the general population in the Netherlands.</strong>
|
|
Europ. J. Hum. Genet. 8: 827-836, 2000.
|
|
|
|
|
|
[PubMed: 11093272]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/sj.ejhg.5200543]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Koppens, P. F. J., Hoogenboezem, T., Degenhart, H. J.
|
|
<strong>Carriership of a defective tenascin-X gene in steroid 21-hydroxylase deficiency patients: TNXB-TNXA hybrids in apparent large-scale gene conversions.</strong>
|
|
Hum. Molec. Genet. 11: 2581-2590, 2002.
|
|
|
|
|
|
[PubMed: 12354783]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1093/hmg/11.21.2581]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Lajic, S., Clauin, S., Robins, T., Vexiau, P., Blanche, H., Bellanne-Chantelot, C., Wedell, A.
|
|
<strong>Novel mutations in CYP21 detected in individuals with hyperandrogenism.</strong>
|
|
J. Clin. Endocr. Metab. 87: 2824-2829, 2002.
|
|
|
|
|
|
[PubMed: 12050257]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.87.6.8525]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Lau, I. F., Soardi, F. C., Lemos-Marini, S. H. V., Guerra, G., Jr., Baptista, M. T. M., De Mello, M. P.
|
|
<strong>H28+C insertion in the CYP21 gene: a novel frameshift mutation in a Brazilian patient with the classical form of 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 86: 5877-5880, 2001.
|
|
|
|
|
|
[PubMed: 11739456]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.86.12.8113]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Lee, H.-H., Chang, S.-F., Tsai, F.-J., Tsai, L.-P., Lin, C.-Y.
|
|
<strong>Mutation of IVS2-12A/C-G in combination with 707-714delGAGACTAC in the CYP21 gene is caused by deletion of the C4-CYP21 repeat module with steroid 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 88: 2726-2729, 2003.
|
|
|
|
|
|
[PubMed: 12788880]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2003-030047]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Lopez-Gutierrez, A. U., Riba, L., Ordonez-Sanchez, M. L., Ramirez-Jimenez, S., Cerrillo-Hinojosa, M., Tusie-Luna, M. T.
|
|
<strong>Uniparental disomy for chromosome 6 results in steroid 21-hydroxylase deficiency: evidence of different genetic mechanisms involved in the production of the disease.</strong>
|
|
J. Med. Genet. 35: 1014-1019, 1998.
|
|
|
|
|
|
[PubMed: 9863599]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1136/jmg.35.12.1014]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Matteson, K. J., Phillips, J. A., III, Miller, W. L., Chung, B.-C., Orlando, P. J., Frisch, H., Ferrandez, A., Burr, I. M.
|
|
<strong>P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia.</strong>
|
|
Proc. Nat. Acad. Sci. 84: 5858-5862, 1987. Note: Erratum: Proc. Nat. Acad. Sci. 84: 8054 only, 1987.
|
|
|
|
|
|
[PubMed: 3497399]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.84.16.5858]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Menassa, R., Tardy, V., Despert, F., Bouvattier-Morel, C., Brossier, J. P., Cartigny, M., Morel, Y.
|
|
<strong>p.H62L, a rare mutation of the CYP21 gene identified in two forms of 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 93: 1901-1908, 2008.
|
|
|
|
|
|
[PubMed: 18319307]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2007-2701]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Miller, W. L.
|
|
<strong>Congenital adrenal hyperplasia. (Letter)</strong>
|
|
New Eng. J. Med. 317: 1413-1414, 1987.
|
|
|
|
|
|
[PubMed: 3500410]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1056/NEJM198711263172211]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Miller, W. L.
|
|
<strong>Gene conversions, deletions and polymorphisms in congenital adrenal hyperplasia.</strong>
|
|
Am. J. Hum. Genet. 42: 4-7, 1988.
|
|
|
|
|
|
[PubMed: 3276177]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Miller, W. L.
|
|
<strong>Personal Communication.</strong>
|
|
San Francisco, Calif. 1/3/1996.
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Morel, Y., Andre, J., Uring-Lambert, B., Hauptmann, G., Betuel, H., Tossi, M., Forest, M. G., David, M., Bertrand, J., Miller, W. L.
|
|
<strong>Rearrangements and point mutations of P450c21 genes are distinguished in five restriction endonuclease haplotypes identified by a new probing strategy in 57 families with congenital adrenal hyperplasia.</strong>
|
|
J. Clin. Invest. 83: 527-536, 1989.
|
|
|
|
|
|
[PubMed: 2913051]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1172/JCI113914]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Mornet, E., Boue, J., Raux-Demay, M., Couillin, P., Oury, J. F., Dumez, Y., Dausset, J., Cohen, D., Boue, A.
|
|
<strong>First trimester prenatal diagnosis of 21-hydroxylase deficiency by linkage analysis to HLA-DNA probes and by 17-hydroxyprogesterone determination.</strong>
|
|
Hum. Genet. 73: 358-364, 1986.
|
|
|
|
|
|
[PubMed: 3017844]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1007/BF00279101]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Mornet, E., Crete, P., Kuttenn, F., Raux-Demay, M.-C., Boue, J., White, P. C., Boue, A.
|
|
<strong>Distribution of deletions and seven point mutations on CYP21B genes in three clinical forms of steroid 21-hydroxylase deficiency.</strong>
|
|
Am. J. Hum. Genet. 48: 79-88, 1991.
|
|
|
|
|
|
[PubMed: 1985465]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Nikoshkov, A., Lajic, S., Holst, M., Wedell, A., Luthman, H.
|
|
<strong>Synergistic effect of partially inactivating mutations in steroid 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 82: 194-199, 1997.
|
|
|
|
|
|
[PubMed: 8989258]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.82.1.3678]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Olney, R. C., Mougey, E. B., Wang, J., Shulman, D. I., Sylvester, J. E.
|
|
<strong>Using real-time, quantitative PCR for rapid genotyping of the steroid 21-hydroxylase gene in a north Florida population.</strong>
|
|
J. Clin. Endocr. Metab. 87: 735-741, 2002.
|
|
|
|
|
|
[PubMed: 11836313]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.87.2.8273]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Owerbach, D., Crawford, Y. M., Draznin, M. B.
|
|
<strong>Direct analysis of CYP21B genes in 21-hydroxylase deficiency using polymerase chain reaction amplification.</strong>
|
|
Molec. Endocr. 4: 125-131, 1990.
|
|
|
|
|
|
[PubMed: 2325662]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/mend-4-1-125]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Owerbach, D., Sherman, L., Ballard, A.-L., Azziz, R.
|
|
<strong>Pro453-to-ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency.</strong>
|
|
Molec. Endocr. 6: 1211-1215, 1992.
|
|
|
|
|
|
[PubMed: 1406699]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/mend.6.8.1406699]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Pang, S., Murphey, W., Levine, L. S., Spence, D. A., Leon, A., LaFranchi, S., Surve, A. S., New, M. I.
|
|
<strong>A pilot newborn screening program for congenital adrenal hyperplasia in Alaska.</strong>
|
|
J. Clin. Endocr. Metab. 55: 413-420, 1982.
|
|
|
|
|
|
[PubMed: 7096533]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem-55-3-413]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Partanen, J., Campbell, R. D.
|
|
<strong>Substitution of ile172-to-asn in the steroid 21-hydroxylase B (P450c21B) gene in a Finnish patient with the simple virilizing form of congenital adrenal hyperplasia.</strong>
|
|
Hum. Genet. 87: 716-720, 1991.
|
|
|
|
|
|
[PubMed: 1937474]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1007/BF00201731]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Paulino, L. C., Araujo, M., Guerra, G., Jr., Marini, S. H., De Mello, M. P.
|
|
<strong>Mutation distribution and CYP21/C4 locus variability in Brazilian families with the classical form of the 21-hydroxylase deficiency.</strong>
|
|
Acta Paediat. 88: 275-83, 1999.
|
|
|
|
|
|
[PubMed: 10229037]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1080/08035259950170024]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Riepe, F. G., Hiort, O., Grotzinger, J., Sippell, W. G., Krone, N., Holterhus, P.-M.
|
|
<strong>Functional and structural consequences of a novel point mutation in the CYP21A2 gene causing congenital adrenal hyperplasia: potential relevance of helix C for P450 oxidoreductase-21-hydroxylase interaction.</strong>
|
|
J. Clin. Endocr. Metab. 93: 2891-2895, 2008.
|
|
|
|
|
|
[PubMed: 18445671]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2007-2646]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Robins, T., Barbaro, M., Lajic, S., Wedell, A.
|
|
<strong>Not all amino acid substitutions of the common cluster E6 mutation in CYP21 cause congenital adrenal hyperplasia.</strong>
|
|
J. Clin. Endocr. Metab. 90: 2148-2153, 2005.
|
|
|
|
|
|
[PubMed: 15623806]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2004-1937]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Rodrigues, N. R., Dunham, I., Yu, C. Y., Carroll, M. C., Porter, R. R., Campbell, R. D.
|
|
<strong>Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia.</strong>
|
|
EMBO J. 6: 1653-1661, 1987.
|
|
|
|
|
|
[PubMed: 3038528]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1002/j.1460-2075.1987.tb02414.x]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Rumsby, G., Carroll, M. C., Porter, R. R., Grant, D. B., Hjelm, M.
|
|
<strong>Deletion of the steroid 21-hydroxylase and complement C4 genes in congenital adrenal hyperplasia.</strong>
|
|
J. Med. Genet. 23: 204-209, 1986.
|
|
|
|
|
|
[PubMed: 3487654]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1136/jmg.23.3.204]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Schneider, P. M., Carroll, M. C., Alper, C. A., Rittner, C., Whitehead, A. S., Yunis, E. J., Colten, H. R.
|
|
<strong>Polymorphism of the human complement C4 and steroid 21-hydroxylase genes: restriction fragment length polymorphisms revealing structural deletions, homoduplications, and size variants.</strong>
|
|
J. Clin. Invest. 78: 650-657, 1986.
|
|
|
|
|
|
[PubMed: 3018042]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1172/JCI112623]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Sido, A. G., Weber, M. M., Sido, P. G., Clausmeyer, S., Heinrich, U., Schulze, E.
|
|
<strong>21-hydroxylase and 11-beta-hydroxylase mutations in Romanian patients with classic congenital adrenal hyperplasia.</strong>
|
|
J. Clin. Endocr. Metab. 90: 5769-5773, 2005.
|
|
|
|
|
|
[PubMed: 16046588]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2005-0379]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Sinnott, P., Collier, S., Costigan, C., Dyer, P. A., Harris, R., Strachan, T.
|
|
<strong>Genesis by meiotic unequal crossover of a de novo deletion that contributes to a steroid 21-hydroxylase deficiency.</strong>
|
|
Proc. Nat. Acad. Sci. 87: 2107-2111, 1990.
|
|
|
|
|
|
[PubMed: 2315306]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.87.6.2107]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Soardi, F. C., Barbaro, M., Lau, I. F., Lemos-Marini, S. H. V., Baptista, M. T. M., Guerra-Junior, G., Wedell, A., Lajic, S., de Mello, M. P.
|
|
<strong>Inhibition of CYP21A2 enzyme activity caused by novel missense mutations identified in Brazilian and Scandinavian patients.</strong>
|
|
J. Clin. Endocr. Metab. 93: 2416-2420, 2008.
|
|
|
|
|
|
[PubMed: 18381579]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2007-2594]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Speiser, P. W., Dupont, J., Zhu, D., Serrat, J., Buegeleisen, M., Tusie-Luna, M.-T., Lesser, M., New, M. I., White, P. C.
|
|
<strong>Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Invest. 90: 584-595, 1992.
|
|
|
|
|
|
[PubMed: 1644925]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1172/JCI115897]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Speiser, P. W., New, M. I., White, P. C.
|
|
<strong>Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14,DR1.</strong>
|
|
New Eng. J. Med. 319: 19-23, 1988.
|
|
|
|
|
|
[PubMed: 3260007]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1056/NEJM198807073190104]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Speiser, P. W., New, M. I., White, P. C.
|
|
<strong>Clinical and genetic characterization of nonclassic 21-hydroxylase deficiency.</strong>
|
|
Endocr. Res. 15: 257-276, 1989.
|
|
|
|
|
|
[PubMed: 2788081]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1080/07435808909039100]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Stikkelbroeck, N. M. M. L., Hoefsloot, L. H., de Wijs, I. J., Otten, B. J., Hermus, A. R. M. M., Sistermans, E. A.
|
|
<strong>CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in the Netherlands: six novel mutations and a specific cluster of four mutations.</strong>
|
|
J. Clin. Endocr. Metab. 88: 3852-3859, 2003.
|
|
|
|
|
|
[PubMed: 12915679]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2002-021681]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Tajima, T., Fujieda, K., Fujii-Kuriyama, Y.
|
|
<strong>De novo mutation causes steroid 21-hydroxylase deficiency in one family of HLA-identical affected and unaffected individuals.</strong>
|
|
J. Clin. Endocr. Metab. 77: 86-89, 1993.
|
|
|
|
|
|
[PubMed: 8325964]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.77.1.8325964]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Tajima, T., Fujieda, K., Nakae, J., Toyoura, T., Shimozawa, K., Kusuda, S., Goji, K., Nagashima, T., Cutler, G. B., Jr.
|
|
<strong>Molecular basis of nonclassical steroid 21-hydroxylase deficiency detected by neonatal mass screening in Japan.</strong>
|
|
J. Clin. Endocr. Metab. 82: 2350-2356, 1997.
|
|
|
|
|
|
[PubMed: 9215318]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.82.7.4094]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Tajima, T., Fujieda, K., Nakayama, K., Fujii-Kuriyama, Y.
|
|
<strong>Molecular analysis of patient and carrier genes with congenital steroid 21-hydroxylase deficiency by using polymerase chain reaction and single strand conformation polymorphism.</strong>
|
|
J. Clin. Invest. 92: 2182-2190, 1993.
|
|
|
|
|
|
[PubMed: 8227333]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1172/JCI116820]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Tukel, T., Uyguner, O., Wei, J. Q., Yuksel-Apak, M., Saka, N., Song, D. X., Kayserili, H., Bas, F., Gunoz, H., Wilson, R. C., New, M. I., Wollnik, B.
|
|
<strong>A novel semiquantitative polymerase chain reaction/enzyme digestion-based method for detection of large scale deletions/conversions of the CYP21 gene and mutation screening in Turkish families with 21-hydroxylase deficiency.</strong>
|
|
J. Clin. Endocr. Metab. 88: 5893-5897, 2003.
|
|
|
|
|
|
[PubMed: 14671187]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jc.2003-030813]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Tusie-Luna, M. T., Traktman, P., White, P. C.
|
|
<strong>Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus.</strong>
|
|
J. Biol. Chem. 265: 20916-20922, 1990.
|
|
|
|
|
|
[PubMed: 2249999]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Tusie-Luna, M.-T., Speiser, P. W., Dumic, M., New, M. I., White, P. C.
|
|
<strong>A mutation (pro30-to-leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele.</strong>
|
|
Molec. Endocr. 5: 685-692, 1991.
|
|
|
|
|
|
[PubMed: 2072928]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/mend-5-5-685]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Tusie-Luna, M.-T., White, P. C.
|
|
<strong>Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms.</strong>
|
|
Proc. Nat. Acad. Sci. 92: 10796-10800, 1995.
|
|
|
|
|
|
[PubMed: 7479886]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.92.23.10796]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Urabe, K., Kimura, A., Harada, F., Iwanaga, T., Sasazuki, T.
|
|
<strong>Gene conversion in steroid 21-hydroxylase genes.</strong>
|
|
Am. J. Hum. Genet. 46: 1178-1186, 1990.
|
|
|
|
|
|
[PubMed: 1971153]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Wedell, A., Luthman, H.
|
|
<strong>Steroid 21-hydroxylase deficiency: two additional mutations in salt-wasting disease and rapid screening of disease-causing mutations.</strong>
|
|
Hum. Molec. Genet. 2: 499-504, 1993.
|
|
|
|
|
|
[PubMed: 8518786]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1093/hmg/2.5.499]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Wedell, A., Ritzen, E. M., Haglund-Stengler, B., Luthman, H.
|
|
<strong>Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations.</strong>
|
|
Proc. Nat. Acad. Sci. 89: 7232-7236, 1992.
|
|
|
|
|
|
[PubMed: 1496017]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.89.15.7232]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Wedell, A., Thilen, A., Ritzen, E. M., Stengler, B., Luthman, H.
|
|
<strong>Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease malformation.</strong>
|
|
J. Clin. Endocr. Metab. 78: 1145-1152, 1994.
|
|
|
|
|
|
[PubMed: 8175971]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.78.5.8175971]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Werkmeister, J. W., New, M. I., Dupont, B., White, P. C.
|
|
<strong>Frequent deletion and duplication of the steroid 21-hydroxylase genes.</strong>
|
|
Am. J. Hum. Genet. 39: 461-469, 1986.
|
|
|
|
|
|
[PubMed: 3490178]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
White, P. C., Grossberger, D., Onufer, B. J., Chaplin, D. D., New, M. I., Dupont, B., Strominger, J. L.
|
|
<strong>Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man.</strong>
|
|
Proc. Nat. Acad. Sci. 82: 1089-1093, 1985.
|
|
|
|
|
|
[PubMed: 2983330]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.82.4.1089]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
White, P. C., New, M. I., Dupont, B.
|
|
<strong>HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation.</strong>
|
|
Proc. Nat. Acad. Sci. 81: 7505-7509, 1984.
|
|
|
|
|
|
[PubMed: 6334310]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.81.23.7505]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
White, P. C., New, M. I., Dupont, B.
|
|
<strong>Structure of human steroid 21-hydroxylase genes.</strong>
|
|
Proc. Nat. Acad. Sci. 83: 5111-5115, 1986.
|
|
|
|
|
|
[PubMed: 3487786]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.83.14.5111]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
White, P. C., New, M. I., Dupont, B.
|
|
<strong>Congenital adrenal hyperplasia.</strong>
|
|
New Eng. J. Med. 316: 1519-1524, 1987.
|
|
|
|
|
|
[PubMed: 3295543]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1056/NEJM198706113162406]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
White, P. C., New, M. I., Dupont, B.
|
|
<strong>Congenital adrenal hyperplasia. (Letter)</strong>
|
|
New Eng. J. Med. 316: 1580-1586, 1987.
|
|
|
|
|
|
[PubMed: 3295546]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1056/NEJM198706183162506]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
White, P. C., Tusie-Luna, M.-T., New, M. I., Speiser, P. W.
|
|
<strong>Mutations in steroid 21-hydroxylase (CYP21).</strong>
|
|
Hum. Mutat. 3: 373-378, 1994.
|
|
|
|
|
|
[PubMed: 8081391]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1002/humu.1380030408]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
White, P. C., Vitek, A., Dupont, B., New, M. I.
|
|
<strong>Characterization of frequent deletions causing steroid 21-hydroxylase deficiency.</strong>
|
|
Proc. Nat. Acad. Sci. 85: 4436-4440, 1988.
|
|
|
|
|
|
[PubMed: 3260033]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.85.12.4436]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Wilson, R. C., Mercado, A. B., Cheng, K. C., New, M. I.
|
|
<strong>Steroid 21-hydroxylase deficiency: genotype may not predict phenotype.</strong>
|
|
J. Clin. Endocr. Metab. 80: 2322-2329, 1995.
|
|
|
|
|
|
[PubMed: 7629224]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1210/jcem.80.8.7629224]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Wu, D.-A., Chung, B.
|
|
<strong>Mutations of P450c21 (steroid 21-hydroxylase) at cys-428, val-281, and ser-268 result in complete, partial, or no loss of enzymatic activity, respectively.</strong>
|
|
J. Clin. Invest. 88: 519-523, 1991.
|
|
|
|
|
|
[PubMed: 1864962]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1172/JCI115334]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
</ol>
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<div class="row">
|
|
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
|
|
<span class="text-nowrap mim-text-font">
|
|
Creation Date:
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
Anne M. Stumpf : 3/16/2011
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<div class="row">
|
|
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
|
|
<span class="text-nowrap mim-text-font">
|
|
Edit History:
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
alopez : 11/07/2018<br>carol : 10/21/2016<br>carol : 06/24/2016<br>carol : 4/6/2016<br>carol : 4/29/2013<br>terry : 3/15/2013<br>terry : 6/6/2012<br>terry : 6/6/2012<br>carol : 9/23/2011<br>alopez : 3/23/2011<br>alopez : 3/23/2011<br>alopez : 3/18/2011
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div id="mimFooter">
|
|
|
|
|
|
<div class="container ">
|
|
<div class="row">
|
|
<br />
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div class="hidden-print mim-footer">
|
|
<div class="container">
|
|
<div class="row">
|
|
<p />
|
|
</div>
|
|
<div class="row text-center small">
|
|
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
|
|
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
|
|
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
|
|
<br />
|
|
OMIM<sup>®</sup> and Online Mendelian Inheritance in Man<sup>®</sup> are registered trademarks of the Johns Hopkins University.
|
|
<br />
|
|
Copyright<sup>®</sup> 1966-2025 Johns Hopkins University.
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div class="visible-print-block mim-footer" style="position: relative;">
|
|
<div class="container">
|
|
<div class="row">
|
|
<p />
|
|
</div>
|
|
<div class="row text-center small">
|
|
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
|
|
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
|
|
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
|
|
<br />
|
|
OMIM<sup>®</sup> and Online Mendelian Inheritance in Man<sup>®</sup> are registered trademarks of the Johns Hopkins University.
|
|
<br />
|
|
Copyright<sup>®</sup> 1966-2025 Johns Hopkins University.
|
|
<br />
|
|
Printed: March 5, 2025
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
|
|
<div class="modal-dialog" role="document">
|
|
<div class="modal-content">
|
|
<div class="modal-header">
|
|
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button>
|
|
<h4 class="modal-title" id="mimDonationPopupModalTitle">
|
|
OMIM Donation:
|
|
</h4>
|
|
</div>
|
|
<div class="modal-body">
|
|
<div class="row">
|
|
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
|
|
<p>
|
|
Dear OMIM User,
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class="row">
|
|
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
|
|
<p>
|
|
To ensure long-term funding for the OMIM project, we have diversified
|
|
our revenue stream. We are determined to keep this website freely
|
|
accessible. Unfortunately, it is not free to produce. Expert curators
|
|
review the literature and organize it to facilitate your work. Over 90%
|
|
of the OMIM's operating expenses go to salary support for MD and PhD
|
|
science writers and biocurators. Please join your colleagues by making a
|
|
donation now and again in the future. Donations are an important
|
|
component of our efforts to ensure long-term funding to provide you the
|
|
information that you need at your fingertips.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class="row">
|
|
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
|
|
<p>
|
|
Thank you in advance for your generous support, <br />
|
|
Ada Hamosh, MD, MPH <br />
|
|
Scientific Director, OMIM <br />
|
|
</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div class="modal-footer">
|
|
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
</body>
|
|
|
|
</html>
|
|
|
|
|