nih-gov/www.ncbi.nlm.nih.gov/omim/601626

5589 lines
548 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- #601626 - LEUKEMIA, ACUTE MYELOID; AML
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=601626"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
<span class="hidden-sm hidden-xs">
Display:
<label style="font-weight: normal"><input type="checkbox" id="mimToggleChangeBars" checked /> Change Bars </label> &nbsp;
</span>
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">#601626</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#phenotypeMap"><strong>Phenotype-Gene Relationships</strong></a>
</li>
<li role="presentation">
<a href="/clinicalSynopsis/601626"><strong>Clinical Synopsis</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalFeatures">Clinical Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalManagement">Clinical Management</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#biochemicalFeatures">Biochemical Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#pathogenesis">Pathogenesis</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cytogenetics">Cytogenetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#genotypePhenotypeCorrelations">Genotype/Phenotype Correlations</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#animalModel">Animal Model</a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://clinicaltrials.gov/search?cond=LEUKEMIA, ACUTE MYELOID" class="mim-tip-hint" title="A registry of federally and privately supported clinical trials conducted in the United States and around the world." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Clinical Trials', 'domain': 'clinicaltrials.gov'})">Clinical Trials</a></div>
<div><a href="#mimEuroGentestFold" id="mimEuroGentestToggle" data-toggle="collapse" class="mim-tip-hint mimTriangleToggle" title="A list of European laboratories that offer genetic testing."><span id="mimEuroGentestToggleTriangle" class="small" style="margin-left: -0.8em;">&#9658;</span>EuroGentest</div>
<div id="mimEuroGentestFold" class="collapse">
<div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=17684&Typ=Pat" title="Unclassified acute myeloid leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Unclassified acute myeloid…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=21659&Typ=Pat" title="Inherited acute myeloid leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Inherited acute myeloid le…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=21660&Typ=Pat" title="Acute myeloid leukemia with CEBPA somatic mutations" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Acute myeloid leukemia wit…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=3586&Typ=Pat" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Acute myeloid leukemia&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=27686&Typ=Pat" title="Mixed phenotype acute leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Mixed phenotype acute leuk…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=11752&Typ=Pat" title="Acute myeloid leukaemia with myelodysplasia-related features" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Acute myeloid leukaemia wi…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=11753&Typ=Pat" title="Therapy related acute myeloid leukemia and myelodysplastic syndrome" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Therapy related acute myel…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=11756&Typ=Pat" title="Acute leukemia of ambiguous lineage" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Acute leukemia of ambiguou…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=13294&Typ=Pat" title="Acute myeloid leukemia with recurrent genetic anomaly" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Acute myeloid leukemia wit…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=13852&Typ=Pat" title="Acute undifferentiated leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Acute undifferentiated leu…&nbsp;</a></div>
</div>
<div><a href="#mimGeneReviewsFold" id="mimGeneReviewsToggle" data-toggle="collapse" class="mim-tip-hint mimTriangleToggle" title="Expert-authored, peer-reviewed descriptions of inherited disorders including the uses of genetic testing in diagnosis, management, and genetic counseling."><span id="mimGeneReviewsToggleTriangle" class="small" style="margin-left: -0.8em;">&#9658;</span>Gene Reviews</div>
<div id="mimGeneReviewsFold" class="collapse">
<div style="margin-left: 0.5em;"><a href="https://www.ncbi.nlm.nih.gov/books/NBK47457/" title="CEBPA-Associated Familial Acute Myeloid Leukemia (AML)" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Gene Reviews', 'domain': 'ncbi.nlm.nih.gov'})">CEBPA-Associated Familial …</a></div><div style="margin-left: 0.5em;"><a href="https://www.ncbi.nlm.nih.gov/books/NBK564234/" title="ETV6 Thrombocytopenia and Predisposition to Leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Gene Reviews', 'domain': 'ncbi.nlm.nih.gov'})">ETV6 Thrombocytopenia and …</a></div>
</div>
<div><a href="https://www.diseaseinfosearch.org/x/203" class="mim-tip-hint" title="Network of disease-specific advocacy organizations, universities, private companies, government agencies, and public policy organizations." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Genetic Alliance', 'domain': 'diseaseinfosearch.org'})">Genetic Alliance</a></div>
<div><a href="#mimMedlinePlusGeneticsFold" id="mimMedlinePlusGeneticsToggle" data-toggle="collapse" class="mim-tip-hint mimTriangleToggle" title="Consumer-friendly information about the effects of genetic variation on human health."><span id="mimMedlinePlusGeneticsToggleTriangle" class="small" style="margin-left: -0.8em;">&#9658;</span>MedlinePlus Genetics</div>
<div id="mimMedlinePlusGeneticsFold" class="collapse">
<div style="margin-left: 0.5em;"><a href="https://medlineplus.gov/genetics/condition/core-binding-factor-acute-myeloid-leukemia" title="Core binding factor acute myeloid leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">Core binding factor acute …&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://medlineplus.gov/genetics/condition/cytogenetically-normal-acute-myeloid-leukemia" title="Cytogenetically normal acute myeloid leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">Cytogenetically normal acu…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://medlineplus.gov/genetics/condition/familial-acute-myeloid-leukemia-with-mutated-cebpa" title="Familial acute myeloid leukemia with mutated CEBPA" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">Familial acute myeloid leu…&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://medlineplus.gov/genetics/gene/crebbp" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">CREBBP gene&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://medlineplus.gov/genetics/gene/etv6" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">ETV6 gene&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://medlineplus.gov/genetics/gene/kit" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">KIT gene&nbsp;</a></div>
</div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=601626[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
<div><a href="#mimOrphanetFold" id="mimOrphanetToggle" data-toggle="collapse" class="mim-tip-hint mimTriangleToggle" title="European reference portal for information on rare diseases and orphan drugs."><span id="mimOrphanetToggleTriangle" class="small" style="margin-left: -0.8em;">&#9658;</span>Orphanet</div>
<div id="mimOrphanetFold" class="collapse">
<div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=167714" title="Unclassified acute myeloid leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Unclassified acute myeloid…</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=319465" title="Inherited acute myeloid leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Inherited acute myeloid le…</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=319480" title="Acute myeloid leukemia with CEBPA somatic mutations" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Acute myeloid leukemia wit…</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=519" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Acute myeloid leukemia</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=530995" title="Mixed phenotype acute leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Mixed phenotype acute leuk…</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=86845" title="Acute myeloid leukaemia with myelodysplasia-related features" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Acute myeloid leukaemia wi…</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=86846" title="Therapy related acute myeloid leukemia and myelodysplastic syndrome" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Therapy related acute myel…</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=86851" title="Acute leukemia of ambiguous lineage" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Acute leukemia of ambiguou…</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=98277" title="Acute myeloid leukemia with recurrent genetic anomaly" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Acute myeloid leukemia wit…</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=98835" title="Acute undifferentiated leukemia" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Acute undifferentiated leu…</a></div>
</div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/disease/DOID:9119" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="http://www.informatics.jax.org/disease/601626" class="mim-tip-hint" title="Phenotypes, alleles, and disease models from Mouse Genome Informatics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Phenotype', 'domain': 'informatics.jax.org'})">MGI Mouse Phenotype</a></div>
<div><a href="https://omia.org/OMIA001990/" class="mim-tip-hint" title="Online Mendelian Inheritance in Animals (OMIA) is a database of genes, inherited disorders and traits in 191 animal species (other than human and mouse.)" target="_blank">OMIA</a></div>
<div><a href="https://wormbase.org/resources/disease/DOID:9119" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Wormbase Disease Ontology', 'domain': 'wormbase.org'})">Wormbase Disease Ontology</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellLines">
<span class="panel-title">
<span class="small">
<a href="#mimCellLinesLinksFold" id="mimCellLinesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellLinesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cell Lines</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellLinesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://catalog.coriell.org/Search?q=OmimNum:601626" class="definition" title="Coriell Cell Repositories; cell cultures and DNA derived from cell cultures." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'CCR', 'domain': 'ccr.coriell.org'})">Coriell</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
<a href="#" class="mim-tip-icd" qtip_title="<strong>ICD+</strong>" qtip_text="
<strong>SNOMEDCT:</strong> 1162928000, 91861009<br />
<strong>ICD10CM:</strong> C92.0, C92.00<br />
<strong>ICD9CM:</strong> 205.0<br />
<strong>ORPHA:</strong> 167714, 319465, 319480, 519, 530995, 86845, 86846, 86851, 98277, 98835<br />
<strong>DO:</strong> 9119<br />
">ICD+</a>
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Phenotype description, molecular basis known">
<span class="text-danger"><strong>#</strong></span>
601626
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
LEUKEMIA, ACUTE MYELOID; AML
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
LEUKEMIA, ACUTE MYELOGENOUS
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
<div>
<a id="includedTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
Other entities represented in this entry:
</span>
</p>
</div>
<div>
<span class="h3 mim-font">
LEUKEMIA, ACUTE MYELOID, SUSCEPTIBILITY TO, INCLUDED
</span>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="phenotypeMap" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/2/97?start=-3&limit=10&highlight=97">
2p23.3
</a>
</span>
</td>
<td>
<span class="mim-font">
Acute myeloid leukemia, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
DNMT3A
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/602769"> 602769 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/3/651?start=-3&limit=10&highlight=651">
3q21.3
</a>
</span>
</td>
<td>
<span class="mim-font">
{Leukemia, acute myeloid, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>, <abbr class="mim-tip-hint" title="Somatic mutation">SMu</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
GATA2
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/137295"> 137295 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/3/953?start=-3&limit=10&highlight=953">
3q27.3-q28
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>, <abbr class="mim-tip-hint" title="Somatic mutation">SMu</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
LPP
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/600700"> 600700 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/4/223?start=-3&limit=10&highlight=223">
4q12
</a>
</span>
</td>
<td>
<span class="mim-font">
{Leukemia, acute myeloid}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>, <abbr class="mim-tip-hint" title="Somatic mutation">SMu</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
CHIC2
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/604332"> 604332 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/4/226?start=-3&limit=10&highlight=226">
4q12
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
KIT
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/164920"> 164920 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/5/22?start=-3&limit=10&highlight=22">
5p15.33
</a>
</span>
</td>
<td>
<span class="mim-font">
{Leukemia, acute myeloid}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>, <abbr class="mim-tip-hint" title="Somatic mutation">SMu</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
TERT
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/187270"> 187270 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/5/758?start=-3&limit=10&highlight=758">
5q35.1
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
NPM1
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/164040"> 164040 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/9/27?start=-3&limit=10&highlight=27">
9p24.1
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
JAK2
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/147796"> 147796 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/9/586?start=-3&limit=10&highlight=586">
9q34.13
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
NUP214
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/114350"> 114350 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/10/95?start=-3&limit=10&highlight=95">
10p12.31
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>, <abbr class="mim-tip-hint" title="Somatic mutation">SMu</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
AF10
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/602409"> 602409 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/11/806?start=-3&limit=10&highlight=806">
11q14.2
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
PICALM
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/603025"> 603025 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/12/174?start=-3&limit=10&highlight=174">
12p13.2
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
ETV6
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/600618"> 600618 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/12/240?start=-3&limit=10&highlight=240">
12p12.1
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
KRAS
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/190070"> 190070 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/13/64?start=-3&limit=10&highlight=64">
13q12.2
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
FLT3
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/136351"> 136351 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/13/64?start=-3&limit=10&highlight=64">
13q12.2
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, reduced survival in, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
FLT3
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/136351"> 136351 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/19/135?start=-3&limit=10&highlight=135">
19p13.3
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>, <abbr class="mim-tip-hint" title="Somatic mutation">SMu</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="1 - The disorder is placed on the map due to its association with a gene, but the underlying defect is not known"> 1 </abbr>
</span>
</td>
<td>
<span class="mim-font">
SH3GL1
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601768"> 601768 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/19/552?start=-3&limit=10&highlight=552">
19q13.11
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
CEBPA
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/116897"> 116897 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/19/552?start=-3&limit=10&highlight=552">
19q13.11
</a>
</span>
</td>
<td>
<span class="mim-font">
?Leukemia, acute myeloid
<span class="mim-tip-hint" title="A question mark (?) indicates that the relationship between the phenotype and gene is provisional">
<span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span>
</span>
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>, <abbr class="mim-tip-hint" title="Somatic mutation">SMu</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
CEBPA
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/116897"> 116897 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/21/83?start=-3&limit=10&highlight=83">
21q22.12
</a>
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/601626"> 601626 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>, <abbr class="mim-tip-hint" title="Somatic mutation">SMu</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
RUNX1
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/151385"> 151385 </a>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group ">
<a href="/clinicalSynopsis/601626" class="btn btn-warning" role="button"> Clinical Synopsis </a>
<button type="button" id="mimPhenotypicSeriesToggle" class="btn btn-warning dropdown-toggle mimSingletonFoldToggle" data-toggle="collapse" href="#mimClinicalSynopsisFold" onclick="ga('send', 'event', 'Unfurl', 'ClinicalSynopsis', 'omim.org')">
<span class="caret"></span>
<span class="sr-only">Toggle Dropdown</span>
</button>
</div>
&nbsp;
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/601626" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/601626" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
<div>
<p />
</div>
<div id="mimClinicalSynopsisFold" class="well well-sm collapse mimSingletonToggleFold">
<div class="small" style="margin: 5px">
<div>
<div>
<span class="h5 mim-font">
<strong> INHERITANCE </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Autosomal dominant <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/263681008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">263681008</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/771269000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">771269000</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0443147&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0443147</a>, <a href="https://bioportal.bioontology.org/search?q=C1867440&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1867440</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000006</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000006</a>]</span><br /> -
Somatic mutation <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/124975008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">124975008</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1866227&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1866227</a>, <a href="https://bioportal.bioontology.org/search?q=C0544886&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0544886</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001442" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001442</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001442" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001442</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> HEMATOLOGY </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Acute myelogenous leukemia (AML) <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/91861009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">91861009</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/1162928000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">1162928000</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/C92.00" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">C92.00</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/C92.0" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">C92.0</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/205.0" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">205.0</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0023467&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0023467</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0004808" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0004808</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0004808" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0004808</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> MISCELLANEOUS </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Evidence of anticipation<br /> -
Mean onset age 57 years, 32 years and 13 years in successive generations<br /> -
Many genes with somatic mutation<br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> MOLECULAR BASIS </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Caused by mutation in the alpha CCAAT/enhancer-binding protein (C/EBP) gene (CEBPA, <a href="/entry/116897#0007">116897.0007</a>)<br />
</span>
</div>
</div>
</div>
<div class="text-right">
<a href="#mimClinicalSynopsisFold" data-toggle="collapse">&#9650;&nbsp;Close</a>
</div>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4 href="#mimTextFold" id="mimTextToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimTextToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div id="mimTextFold" class="collapse in ">
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because of evidence that acute myeloid leukemia (AML) can be caused by heterozygous mutation in the CEBPA gene (<a href="/entry/116897">116897</a>) on chromosome 19p13. One such family has been reported.</p><p>Somatic mutations in several genes have been found in cases of AML, e.g., in the CEBPA, ETV6 (<a href="/entry/600618">600618</a>), JAK2 (<a href="/entry/147796">147796</a>), KRAS2 (<a href="/entry/190070">190070</a>), NRAS (<a href="/entry/164790">164790</a>), HIPK2 (<a href="/entry/606868">606868</a>), FLT3 (<a href="/entry/136351">136351</a>), TET2 (<a href="/entry/612839">612839</a>), ASXL1 (<a href="/entry/612990">612990</a>), IDH1 (<a href="/entry/147700">147700</a>), CBL (<a href="/entry/165360">165360</a>), DNMT3A (<a href="/entry/602769">602769</a>), NPM1 (<a href="/entry/164040">164040</a>), SF3B1 (<a href="/entry/605590">605590</a>), and KIT (<a href="/entry/164920">164920</a>) genes. Other causes of AML include fusion genes generated by chromosomal translocations; see, for example, <a href="/entry/600358">600358</a> and <a href="/entry/159555">159555</a>.</p><p>Susceptibility to the development of acute myeloid leukemia may be caused by germline mutations in some genes, including GATA2 (<a href="/entry/137295">137295</a>), TERC (<a href="/entry/602322">602322</a>), and TERT (<a href="/entry/187270">187270</a>).</p><p>AML may also be part of the phenotypic spectrum of inherited disorders, including platelet disorder with associated myeloid malignancy (FPDMM; <a href="/entry/601399">601399</a>), caused by mutation in the RUNX1 gene (<a href="/entry/151385">151385</a>), and telomere-related pulmonary fibrosis and/or bone marrow failure (PFBMFT1, <a href="/entry/614742">614742</a> and PFBMFT2, <a href="/entry/614743">614743</a>), caused by mutation in the TERT or the TERC gene.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalFeatures" class="mim-anchor"></a>
<h4 href="#mimClinicalFeaturesFold" id="mimClinicalFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<div id="mimClinicalFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#40" class="mim-tip-reference" title="Shields, J. A., Stopyra, G. A., Marr, B. P., Shields, C. L., Pan, W., Eagle, R. C., Jr., Bernstein, J. &lt;strong&gt;Bilateral orbital myeloid sarcoma as initial sign of acute myeloid leukemia: case report and review of the literature.&lt;/strong&gt; Arch. Ophthal. 121: 138-142, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12523908/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12523908&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1001/archopht.121.1.138&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12523908">Shields et al. (2003)</a> published a case report on acute myeloid leukemia that presented as bilateral orbital myeloid sarcoma (or chloroma) in a previously healthy 25-month-old boy. Bone marrow biopsy revealed blasts and cells with maturing monocytic features. A final diagnosis of M5b AML was made. The authors reviewed the literature and concluded that leukemia may be the most likely diagnosis in a child with bilateral soft tissue orbital tumors. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12523908" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalManagement" class="mim-anchor"></a>
<h4 href="#mimClinicalManagementFold" id="mimClinicalManagementToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalManagementToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<div id="mimClinicalManagementFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>AML is often treated with allogeneic hematopoietic stem-cell transplantation (HSCT), and it is most sensitive to natural killer (NK)-cell reactivity. <a href="#44" class="mim-tip-reference" title="Venstrom, J. M., Pittari, G., Gooley, T. A., Chewning, J. H., Spellman, S., Haagenson, M., Gallagher, M. M., Malkki, M., Petersdorf, E., Dupont, B., Hsu, K. C. &lt;strong&gt;HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1.&lt;/strong&gt; New Eng. J. Med. 367: 805-816, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22931314/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22931314&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22931314[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa1200503&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22931314">Venstrom et al. (2012)</a> assessed clinical data, HLA genotyping results, and donor cell lines or genomic DNA for 1,277 patients with AML who had received HSCT from unrelated donors matched for HLA-A, -B, -C, -DR, and -DQ or with a single mismatch. They performed donor KIR genotyping and evaluated the clinical effect of donor KIR genotype and donor and recipient HLA genotypes. Patients with AML who received allografts from donors who were positive for KIR2DS1 (<a href="/entry/604952">604952</a>) had a lower rate of relapse than those with allografts from donors who were negative for KIR2DS1 (26.5% vs 32.5%; hazard ratio, 0.76; 95% confidence interval, 0.61 to 0.96; P = 0.02). Of allografts from donors with KIR2DS1, those from donors who were homozygous or heterozygous for HLA-C1 antigens could mediate this antileukemic effect, whereas those from donors who were homozygous for HLA-C2 did not provide any advantage. Recipients of KIR2DS1-positive allografts mismatched for a single HLA-C locus had a lower relapse rate than recipients of KIR2DS1-negative allografts with a mismatch at the same locus (17.1% vs 35.6%; hazard ratio, 0.40; 95% CI, 0.20 to 0.78; P = 0.007). KIR3DS1 (<a href="/entry/620778">620778</a>), in positive genetic linkage disequilibrium with KIR2DS1, had no effect on leukemia relapse but was associated with decreased mortality (60.1% vs 66.9% without KIR3DS1; hazard ratio, 0.83; 95% CI, 0.71 to 0.96; P = 0.01). <a href="#44" class="mim-tip-reference" title="Venstrom, J. M., Pittari, G., Gooley, T. A., Chewning, J. H., Spellman, S., Haagenson, M., Gallagher, M. M., Malkki, M., Petersdorf, E., Dupont, B., Hsu, K. C. &lt;strong&gt;HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1.&lt;/strong&gt; New Eng. J. Med. 367: 805-816, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22931314/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22931314&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22931314[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa1200503&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22931314">Venstrom et al. (2012)</a> concluded that activating KIR genes from donors were associated with distinct outcomes of allogeneic HSCT for AML. Donor KIR2DS1 appeared to provide protection against relapse in an HLA-C-dependent manner, and donor KIR3DS1 was associated with reduced mortality. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22931314" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The transcription factor fusion CBFB (<a href="/entry/121360">121360</a>)-SMMHC (MYH11; <a href="/entry/160745">160745</a>), expressed in AML with the chromosome inversion inv(16)(p13q22), outcompetes wildtype CBFB for binding to the transcription factor RUNX1, deregulates RUNX1 activity in hematopoiesis, and induces AML. Treatment of inv(16) AML with nonselective cytotoxic chemotherapy results in a good initial response but limited long-term survival. <a href="#24" class="mim-tip-reference" title="Illendula, A., Pulikkan, J. A., Zong, H., Grembecka, J., Xue, L., Sen, S., Zhou, Y., Boulton, A., Kuntimaddi, A., Gao, Y., Rajewski, R. A., Guzman, M. L., Castilla, L. H., Bushweller, J. H. &lt;strong&gt;A small-molecule inhibitor of the aberrant transcription factor CBF-beta-SMMHC delays leukemia in mice.&lt;/strong&gt; Science 347: 779-784, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25678665/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25678665&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25678665[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.aaa0314&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25678665">Illendula et al. (2015)</a> reported the development of a protein-protein interaction inhibitor, AI-10-49, that selectively binds to CBFB-SMMHC and disrupts its binding to RUNX1. AI-10-49 restores RUNX1 transcriptional activity, displays favorable pharmacokinetics, and delays leukemia progression in mice. Treatment of primary inv(16) AML patient blasts with AI-10-49 triggers selective cell death. <a href="#24" class="mim-tip-reference" title="Illendula, A., Pulikkan, J. A., Zong, H., Grembecka, J., Xue, L., Sen, S., Zhou, Y., Boulton, A., Kuntimaddi, A., Gao, Y., Rajewski, R. A., Guzman, M. L., Castilla, L. H., Bushweller, J. H. &lt;strong&gt;A small-molecule inhibitor of the aberrant transcription factor CBF-beta-SMMHC delays leukemia in mice.&lt;/strong&gt; Science 347: 779-784, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25678665/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25678665&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25678665[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.aaa0314&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25678665">Illendula et al. (2015)</a> concluded that direct inhibition of the oncogenic CBFB-SMMHC fusion protein may be an effective therapeutic approach for inv(16) AML. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25678665" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#13" class="mim-tip-reference" title="Fong, C. Y., Gilan, O., Lam, E. Y. N., Rubin, A. F., Ftouni, S., Tyler, D., Stanley, K., Sinha, D., Yeh, P., Morison, J., Giotopoulos, G., Lugo, D., and 14 others. &lt;strong&gt;BET inhibitor resistance emerges from leukaemia stem cells.&lt;/strong&gt; Nature 525: 538-542, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26367796/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26367796&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26367796[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14888&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26367796">Fong et al. (2015)</a> used primary mouse hematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 (see <a href="/entry/159555">159555</a>) to generate several single-cell clones that demonstrated resistance, in vitro and in vivo, to the prototypical bromodomain and extra terminal protein (BET) inhibitor I-BET. Resistance to I-BET conferred cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance was not mediated through increased drug efflux or metabolism, emerged from leukemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 (<a href="/entry/608749">608749</a>) was globally reduced in resistant cells, whereas the expression of key target genes such as Myc (<a href="/entry/190080">190080</a>) remained unaltered, highlighting the existence of alternative mechanisms to regulate transcription. <a href="#13" class="mim-tip-reference" title="Fong, C. Y., Gilan, O., Lam, E. Y. N., Rubin, A. F., Ftouni, S., Tyler, D., Stanley, K., Sinha, D., Yeh, P., Morison, J., Giotopoulos, G., Lugo, D., and 14 others. &lt;strong&gt;BET inhibitor resistance emerges from leukaemia stem cells.&lt;/strong&gt; Nature 525: 538-542, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26367796/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26367796&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26367796[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14888&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26367796">Fong et al. (2015)</a> demonstrated that resistance to BET inhibitors, in human and mouse leukemia cells, is in part a consequence of increased Wnt/beta-catenin (see <a href="/entry/116806">116806</a>) signaling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. <a href="#13" class="mim-tip-reference" title="Fong, C. Y., Gilan, O., Lam, E. Y. N., Rubin, A. F., Ftouni, S., Tyler, D., Stanley, K., Sinha, D., Yeh, P., Morison, J., Giotopoulos, G., Lugo, D., and 14 others. &lt;strong&gt;BET inhibitor resistance emerges from leukaemia stem cells.&lt;/strong&gt; Nature 525: 538-542, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26367796/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26367796&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26367796[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14888&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26367796">Fong et al. (2015)</a> concluded that their findings provided insights into the biology of AML, highlighted potential therapeutic limitations of BET inhibitors, and identified strategies that may enhance the clinical utility of these unique targeted therapies. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26367796" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#37" class="mim-tip-reference" title="Rathert, P., Roth, M., Neumann, T., Muerdter, F., Roe, J.-S., Muhar, M., Deswal, S., Cerny-Reiterer, S., Peter, B., Jude, J., Hoffmann, T., Boryn, L. M., and 11 others. &lt;strong&gt;Transcriptional plasticity promotes primary and acquired resistance to BET inhibition.&lt;/strong&gt; Nature 525: 543-547, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26367798/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26367798&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26367798[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14898&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26367798">Rathert et al. (2015)</a> performed a chromatin-focused RNAi screen in a sensitive MLL-AF9;Nras(G12D)-driven AML mouse model to identify factors involved in primary and acquired BET resistance in leukemia. The screen showed that suppression of the Polycomb repressive complex-2 (PRC2; see <a href="/entry/606245">606245</a>), contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression did not directly affect the regulation of Brd4-dependent transcripts, but facilitated the remodeling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggered acute MYC repression in human leukemias regardless of their sensitivity, resistant leukemias were uniformly characterized by their ability to rapidly restore MYC transcription. This process involved the activation and recruitment of WNT (see <a href="/entry/606359">606359</a>) signaling components, which compensated for the loss of BRD4 and drove resistance in various cancer models. Additional studies revealed that BET-resistant states are characterized by remodeled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. <a href="#37" class="mim-tip-reference" title="Rathert, P., Roth, M., Neumann, T., Muerdter, F., Roe, J.-S., Muhar, M., Deswal, S., Cerny-Reiterer, S., Peter, B., Jude, J., Hoffmann, T., Boryn, L. M., and 11 others. &lt;strong&gt;Transcriptional plasticity promotes primary and acquired resistance to BET inhibition.&lt;/strong&gt; Nature 525: 543-547, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26367798/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26367798&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26367798[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14898&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26367798">Rathert et al. (2015)</a> concluded that their results identified and validated WNT signaling as a driver and candidate biomarker of primary and acquired BET resistance in leukemia, and implicated the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26367798" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#35" class="mim-tip-reference" title="Perl, A. E., Martinelli, G., Cortes, J. E., Neubauer, A., Berman, E., Paolini, S., Montesinos, P., Baer, M. R., Larson, R. A., Ustun, C., Fabbiano, F., Erba, H. P., and 19 others. &lt;strong&gt;Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML.&lt;/strong&gt; New Eng. J. Med. 381: 1728-1740, 2019. Note: Erratum: New Eng. J. Med. 386: 1868 only, 2022.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31665578/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31665578&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa1902688&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31665578">Perl et al. (2019)</a> reported the results of a phase 3 clinical trial of gilteritinib versus salvage chemotherapy for refractory FLT3-mutated AML. The 247 patients randomized to be treated with gilteritinib had significantly longer survival than the 124 patients in the standard salvage chemotherapy group (9.3 vs 5.6 months, hazard ratio for death 0.64, 95% confidence interval 0.49-0.83, p less than 0.001). The percentage with complete remission with full or partial hematologic recovery was 34% in the gilteritinib group and 15.3% in the chemotherapy group. Adverse events were less common in the gilteritinib group than in the chemotherapy group. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31665578" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="biochemicalFeatures" class="mim-anchor"></a>
<h4 href="#mimBiochemicalFeaturesFold" id="mimBiochemicalFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimBiochemicalFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Biochemical Features</strong>
</span>
</h4>
</div>
<div id="mimBiochemicalFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#16" class="mim-tip-reference" title="Garzon, R., Heaphy, C. E. A., Havelange, V., Fabbri, M., Volinia, S., Tsao, T., Zanesi, N., Kornblau, S. M., Marcucci, G., Calin, G. A., Andreeff, M., Croce, C. M. &lt;strong&gt;MicroRNA 29b functions in acute myeloid leukemia.&lt;/strong&gt; Blood 114: 5331-5341, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19850741/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19850741&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19850741[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2009-03-211938&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19850741">Garzon et al. (2009)</a> provided evidence supporting a tumor suppressor role for miR29A (<a href="/entry/610782">610782</a>) and miR29B (<a href="/entry/610783">610783</a>) in AML. Overexpression of both microRNAs reduced cell growth and induced apoptosis in AML cell lines. Injection of miR29B in a xenograft mouse model of AML resulted in tumor shrinkage. Northern blot analysis showed that the 2 microRNAs targeted genes involved in apoptosis, the cell cycle, and cell proliferation. Transfection of leukemic cells with miR29A and miR29B resulted in specific downregulation of CXXC6 (TET1; <a href="/entry/607790">607790</a>), MCL1 (<a href="/entry/159552">159552</a>), and CDK6 (<a href="/entry/603368">603368</a>). Studies of 45 samples from patients with AML showed an inverse correlation between MCL1 and miR29B. Although 42% of the miR29A-correlated genes were also correlated with miR29B, there were some differences: genes related to protein metabolism were found overrepresented in miR29B-correlated genes, and genes related to immune function were overrepresented in miR29A-correlated genes. Finally, there was a downregulation of both miR29A and miR29B in primary AML samples with monosomy 7 (<a href="/entry/252270">252270</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19850741" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="pathogenesis" class="mim-anchor"></a>
<h4 href="#mimPathogenesisFold" id="mimPathogenesisToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimPathogenesisToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Pathogenesis</strong>
</span>
</h4>
</div>
<div id="mimPathogenesisFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#27" class="mim-tip-reference" title="Kode, A., Manavalan, J. S., Mosialou, I., Bhagat, G., Rathinam, C. V., Luo, N., Khiabanian, H., Lee, A., Murty, V. V., Friedman, R., Brum, A., Park, D., Galili, N., Mukherjee, S., Teruya-Feldstein, J., Raza, A., Rabadan, R., Berman, E., Kousteni, S. &lt;strong&gt;Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts.&lt;/strong&gt; Nature 506: 240-244, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24429522/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24429522&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24429522[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature12883&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24429522">Kode et al. (2014)</a> showed that an activating mutation of beta-catenin (<a href="/entry/116806">116806</a>) in mouse osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of AML with common chromosomal aberrations and cell-autonomous progression. Activated beta-catenin stimulates expression of the Notch (see NOTCH1, <a href="/entry/190198">190198</a>) ligand Jag1 (<a href="/entry/601920">601920</a>) in osteoblasts. Subsequent activation of Notch signaling in hematopoietic stem cell progenitors induces the malignant changes. Genetic or pharmacologic inhibition of Notch signaling ameliorates AML and demonstrates the pathogenic role of the Notch pathway. In 38% of patients with myelodysplastic syndromes (see MDS, <a href="/entry/614286">614286</a>) or AML, increased beta-catenin signaling and nuclear accumulation was identified in osteoblasts, and these patients showed increased Notch signaling in hematopoietic cells. <a href="#27" class="mim-tip-reference" title="Kode, A., Manavalan, J. S., Mosialou, I., Bhagat, G., Rathinam, C. V., Luo, N., Khiabanian, H., Lee, A., Murty, V. V., Friedman, R., Brum, A., Park, D., Galili, N., Mukherjee, S., Teruya-Feldstein, J., Raza, A., Rabadan, R., Berman, E., Kousteni, S. &lt;strong&gt;Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts.&lt;/strong&gt; Nature 506: 240-244, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24429522/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24429522&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24429522[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature12883&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24429522">Kode et al. (2014)</a> concluded that their findings demonstrated that genetic alterations in osteoblasts can induce acute myeloid leukemia, identify molecular signals leading to this transformation, and suggested a potential novel pharmacotherapeutic approach to acute myeloid leukemia. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24429522" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#41" class="mim-tip-reference" title="Shlush, L. I., Zandi, S., Mitchell, A., Chen, W. C., Brandwein, J. M., Gupta, V., Kennedy, J. A., Schimmer, A. D., Schuh, A. C., Yee, K. W., McLeod, J. L., Doedens, M., and 14 others. &lt;strong&gt;Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia.&lt;/strong&gt; Nature 506: 328-333, 2014. Note: Erratum: Nature 508: 420 only, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24522528/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24522528&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24522528[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature13038&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24522528">Shlush et al. (2014)</a> found recurrent DNMT3A (<a href="/entry/602769">602769</a>) mutations at high allele frequency in highly purified hematopoietic stem cells (HSCs) as well as progenitor and mature cell fractions from the blood of AML patients, but these cells did not have the coincident NPM1 (<a href="/entry/164040">164040</a>) mutations present in AML blasts. DNMT3A mutation-bearing HSCs showed a multilineage repopulation advantage over nonmutated HSCs in xenografts, establishing their identity as preleukemic HSCs. Preleukemic HSCs were found in remission samples, indicating that they survive chemotherapy. <a href="#41" class="mim-tip-reference" title="Shlush, L. I., Zandi, S., Mitchell, A., Chen, W. C., Brandwein, J. M., Gupta, V., Kennedy, J. A., Schimmer, A. D., Schuh, A. C., Yee, K. W., McLeod, J. L., Doedens, M., and 14 others. &lt;strong&gt;Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia.&lt;/strong&gt; Nature 506: 328-333, 2014. Note: Erratum: Nature 508: 420 only, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24522528/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24522528&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24522528[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature13038&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24522528">Shlush et al. (2014)</a> concluded that DNMT3A mutations arise early in AML evolution, probably in HSCs, leading to a clonally expanded pool of preleukemic HSCs from which AML evolves. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24522528" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#38" class="mim-tip-reference" title="Santos, M. A., Faryabi, R. B., Ergen, A. V., Day, A. M., Malhowski, A., Canela, A., Onozawa, M., Lee, J.-E., Callen, E., Gutierrez-Martinez, P., Chen, H.-T., Wong, N., and 9 others. &lt;strong&gt;DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.&lt;/strong&gt; Nature 514: 107-111, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25079327/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25079327&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25079327[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature13483&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25079327">Santos et al. (2014)</a> showed that the histone methyltransferase MLL4 (<a href="/entry/606834">606834</a>), a suppressor of B-cell lymphoma, is required for stem cell activity and an aggressive form of AML harboring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukemic blasts, which protects mice from death related to AML. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 (<a href="/entry/602681">602681</a>) protects MLL4-null MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM (<a href="/entry/607585">607585</a>) or BRCA1 (<a href="/entry/113705">113705</a>) sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. <a href="#38" class="mim-tip-reference" title="Santos, M. A., Faryabi, R. B., Ergen, A. V., Day, A. M., Malhowski, A., Canela, A., Onozawa, M., Lee, J.-E., Callen, E., Gutierrez-Martinez, P., Chen, H.-T., Wong, N., and 9 others. &lt;strong&gt;DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.&lt;/strong&gt; Nature 514: 107-111, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25079327/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25079327&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25079327[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature13483&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25079327">Santos et al. (2014)</a> showed that restriction enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21 (CDKN1A; <a href="/entry/116899">116899</a>) activity. The authors concluded that they had uncovered an unexpected tumor-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in AML. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25079327" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By performing high-resolution proteomic analysis of human AML stem cell and non-stem cell populations, <a href="#36" class="mim-tip-reference" title="Raffel, S., Falcone, M., Kneisel, N., Hansson, J., Wang, W., Lutz, C., Bullinger, L., Poschet, G., Nonnenmacher, Y., Barnert, A., Bahr, C., Zeisberger, P., and 22 others. &lt;strong&gt;BCAT1 restricts alpha-KG levels in AML stem cells leading to IDH(mut)-like DNA hypermethylation.&lt;/strong&gt; Nature 551: 384-388, 2017. Note: Erratum: Nature 560: E28, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29144447/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29144447&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature24294&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29144447">Raffel et al. (2017)</a> found the branched-chain amino acid (BCAA) pathway enriched and BCAT1 (<a href="/entry/113520">113520</a>) protein and transcripts overexpressed in leukemia stem cells. <a href="#36" class="mim-tip-reference" title="Raffel, S., Falcone, M., Kneisel, N., Hansson, J., Wang, W., Lutz, C., Bullinger, L., Poschet, G., Nonnenmacher, Y., Barnert, A., Bahr, C., Zeisberger, P., and 22 others. &lt;strong&gt;BCAT1 restricts alpha-KG levels in AML stem cells leading to IDH(mut)-like DNA hypermethylation.&lt;/strong&gt; Nature 551: 384-388, 2017. Note: Erratum: Nature 560: E28, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29144447/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29144447&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature24294&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29144447">Raffel et al. (2017)</a> showed that BCAT1, which transfers alpha-amino groups from BCAAs to alpha-ketoglutarate, is a critical regulator of intracellular alpha-ketoglutarate homeostasis. Further to its role in the tricarboxylic acid cycle, alpha-ketoglutarate is an essential cofactor for alpha-ketoglutarate-dependent dioxygenases such as EGLN1 (<a href="/entry/606425">606425</a>) and the ten-eleven translocation (TET) family of DNA demethylases. Knockdown of BCAT1 in leukemia cells caused accumulation of alpha-ketoglutarate, leading to EGLN1-mediated HIF1-alpha (<a href="/entry/603348">603348</a>) protein degradation. This resulted in a growth and survival defect and abrogated leukemia-initiating potential. By contrast, overexpression of BCAT1 in leukemia cells decreased intracellular alpha-ketoglutarate levels and caused DNA hypermethylation through altered TET activity. AML with high levels of BCAT1 (BCAT1-high) displayed a DNA hypermethylation phenotype similar to cases carrying a mutant isocitrate dehydrogenase (see IDH1, <a href="/entry/147700">147700</a>) (IDH-mut), in which TET2 (<a href="/entry/612839">612839</a>) is inhibited by the oncometabolite 2-hydroxyglutarate. High levels of BCAT1 strongly correlated with shorter overall survival in IDH-wildtype-TET2-wildtype, but not IDH-mut or TET2-mut, AML. BCAT1-high AML showed robust enrichment for leukemia stem cell signatures, and paired sample analysis showed a significant increase in BCAT1 levels upon disease relapse. In summary, by limiting intracellular alpha-ketoglutarate, BCAT1 links BCAA catabolism to HIF1-alpha stability and regulation of the epigenomic landscape, mimicking the effects of IDH mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29144447" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#1" class="mim-tip-reference" title="Abelson, S., Collord, G., Ng, S. W. K., Weissbrod, O., Mendelson Cohen, N., Niemeyer, E., Barda, N., Zuzarte, P. C., Heisler, L., Sundaravadanam, Y., Luben, R., Hayat, S., and 63 others. &lt;strong&gt;Prediction of acute myeloid leukaemia risk in healthy individuals.&lt;/strong&gt; Nature 559: 400-404, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29988082/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29988082&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29988082[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-018-0317-6&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29988082">Abelson et al. (2018)</a> used deep sequencing to analyze genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign age-related clonal hematopoiesis. They analyzed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. <a href="#1" class="mim-tip-reference" title="Abelson, S., Collord, G., Ng, S. W. K., Weissbrod, O., Mendelson Cohen, N., Niemeyer, E., Barda, N., Zuzarte, P. C., Heisler, L., Sundaravadanam, Y., Luben, R., Hayat, S., and 63 others. &lt;strong&gt;Prediction of acute myeloid leukaemia risk in healthy individuals.&lt;/strong&gt; Nature 559: 400-404, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29988082/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29988082&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29988082[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-018-0317-6&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29988082">Abelson et al. (2018)</a> developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. The authors concluded that their findings provided proof of concept that it is possible to discriminate age-related clonal hematopoiesis from pre-AML many years before malignant transformation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29988082" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#46" class="mim-tip-reference" title="Yoshimi, A., Lin, K.-T., Wiseman, D. H., Rahman, M. A., Pastore, A., Wang, B., Lee, S. C.-W., Micol, J.-B., Zhang, X. J., de Botton, S., Penard-Lacronique, V., Stein, E. M., and 17 others. &lt;strong&gt;Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis.&lt;/strong&gt; Nature 574: 273-277, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31578525/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31578525&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31578525[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-019-1618-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31578525">Yoshimi et al. (2019)</a> used analysis of transcriptomes from 982 patients with AML to identify frequent overlap of mutations in IDH2 (<a href="/entry/147650">147650</a>) and SRSF2 (<a href="/entry/600813">600813</a>) that together promote leukemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, coexpression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, coexpression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3 (<a href="/entry/611347">611347</a>), a member of the integrator complex, concordant with increased stalling of RNA polymerase II. Aberrant INTS3 splicing contributed to leukemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. <a href="#46" class="mim-tip-reference" title="Yoshimi, A., Lin, K.-T., Wiseman, D. H., Rahman, M. A., Pastore, A., Wang, B., Lee, S. C.-W., Micol, J.-B., Zhang, X. J., de Botton, S., Penard-Lacronique, V., Stein, E. M., and 17 others. &lt;strong&gt;Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis.&lt;/strong&gt; Nature 574: 273-277, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31578525/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31578525&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31578525[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-019-1618-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31578525">Yoshimi et al. (2019)</a> concluded that their data identified a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukemias, provided functional evidence that mutations in splicing factors drive myeloid malignancy development, and identified spliceosomal changes as a mediator of IDH2-mutant leukemogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31578525" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="cytogenetics" class="mim-anchor"></a>
<h4 href="#mimCytogeneticsFold" id="mimCytogeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCytogeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cytogenetics</strong>
</span>
</h4>
</div>
<div id="mimCytogeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Loss of chromosome 5q is observed in 10 to 15% of patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia and in 40% of patients with therapy-related MDS or AML. In addition, patients with 5q deletion syndrome (<a href="/entry/153550">153550</a>) show hematologic abnormalities, including refractory anemia and abnormal megakaryocytes. By cytogenetic analysis and hybridization techniques, <a href="#28" class="mim-tip-reference" title="Le Beau, M. M., Espinosa, R., III, Neuman, W. L., Stock, W., Roulston, D., Larson, R. A., Keinanen, M., Westbrook, C. A. &lt;strong&gt;Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases.&lt;/strong&gt; Proc. Nat. Acad. Sci. 90: 5484-5488, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8516290/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8516290&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.90.12.5484&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8516290">Le Beau et al. (1993)</a> identified a common 2.8-Mb critical region containing the EGR1 gene (<a href="/entry/128990">128990</a>) on chromosome 5q31 that was deleted in 135 patients with hematologic abnormalities and 5q deletions, including 85 patients with de novo MDS or AML, 33 with therapy-related MDS or AML, and 17 with MDS and the 5q deletion syndrome. <a href="#28" class="mim-tip-reference" title="Le Beau, M. M., Espinosa, R., III, Neuman, W. L., Stock, W., Roulston, D., Larson, R. A., Keinanen, M., Westbrook, C. A. &lt;strong&gt;Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases.&lt;/strong&gt; Proc. Nat. Acad. Sci. 90: 5484-5488, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8516290/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8516290&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.90.12.5484&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8516290">Le Beau et al. (1993)</a> postulated that EGR1 or another closely-linked gene may act as a tumor suppressor gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8516290" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#2" class="mim-tip-reference" title="Baozhang, F., Jianling, L., Zexi, L., Jianping, H., Wenjie, C. &lt;strong&gt;Genetic studies on a family with acute myelogenous leukemia.&lt;/strong&gt; Cancer Genet. Cytogenet. 112: 134-137, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10686940/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10686940&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0165-4608(98)00166-6&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10686940">Baozhang et al. (1999)</a> reported a family with 7 cases of related leukemias among 22 members in 3 consecutive generations consistent with autosomal dominant inheritance. One of the patients and her father were found to have rearrangement and a rearrangement/amplification, respectively, of the ERBB oncogene (<a href="/entry/131550">131550</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10686940" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#23" class="mim-tip-reference" title="Horwitz, M., Sabath, D. E., Smithson, W. A., Raddich, J. &lt;strong&gt;A family inheriting different subtypes of acute myelogenous leukemia.&lt;/strong&gt; Am. J. Hemat. 52: 295-304, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8701948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8701948&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/(SICI)1096-8652(199608)52:4&lt;295::AID-AJH9&gt;3.0.CO;2-N&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8701948">Horwitz et al. (1996)</a> reported evidence of anticipation in familial acute myelogenous leukemia. <a href="#22" class="mim-tip-reference" title="Horwitz, M., Goode, E. L., Jarvik, G. P. &lt;strong&gt;Anticipation in familial leukemia.&lt;/strong&gt; Am. J. Hum. Genet. 59: 990-998, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8900225/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8900225&lt;/a&gt;]" pmid="8900225">Horwitz et al. (1996)</a> further studied those pedigrees and others from the literature. In 49 affected individuals from 9 families transmitting autosomal dominant AML, the mean age of onset was 57 years in the grandparental generation, 32 years in the parental generation, and 13 years in the youngest generation (p less than 0.001). <a href="#22" class="mim-tip-reference" title="Horwitz, M., Goode, E. L., Jarvik, G. P. &lt;strong&gt;Anticipation in familial leukemia.&lt;/strong&gt; Am. J. Hum. Genet. 59: 990-998, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8900225/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8900225&lt;/a&gt;]" pmid="8900225">Horwitz et al. (1996)</a> also reported evidence of anticipation in autosomal dominant chronic lymphocytic leukemia (CLL; <a href="/entry/151400">151400</a>) (p = 0.008). In 18 affected individuals from 7 pedigrees with autosomal dominant CLL, the mean age of onset in the parental generation was 66 years, versus 51 years in the younger generation. Based on this evidence of anticipation, <a href="#22" class="mim-tip-reference" title="Horwitz, M., Goode, E. L., Jarvik, G. P. &lt;strong&gt;Anticipation in familial leukemia.&lt;/strong&gt; Am. J. Hum. Genet. 59: 990-998, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8900225/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8900225&lt;/a&gt;]" pmid="8900225">Horwitz et al. (1996)</a> suggested that dynamic mutations of unstable DNA sequence repeats could be a common mechanism of inherited hematopoietic malignancy. They proposed 3 possible candidate chromosomal regions for familial leukemia with anticipation: 21q22.1-22.2, 11q23.3 in the vicinity of the CBL2 gene (<a href="/entry/165360">165360</a>), and 16q22 in the vicinity of the CBFB gene (<a href="/entry/121360">121360</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8701948+8900225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#21" class="mim-tip-reference" title="Horwitz, M., Benson, K. F., Li, F.-Q., Wolff, J., Leppert, M. F., Hobson, L., Mangelsdorf, M., Yu, S., Hewett, D., Richards, R. I., Raskind, W. H. &lt;strong&gt;Genetic heterogeneity in familial acute myelogenous leukemia: evidence for a second locus at chromosome 16q21-23.2.&lt;/strong&gt; Am. J. Hum. Genet. 61: 873-881, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9382098/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9382098&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/514894&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9382098">Horwitz et al. (1997)</a> presented evidence suggesting that there is a locus for acute myelogenous leukemia on chromosome 16q22. They studied a family with 11 relevant meioses transmitting autosomal dominant AML and myelodysplasia. They excluded linkage to 21q22.1-q22.2 and to 9p22-p21, and found a maximum 2-point lod score of 2.82 with the microsatellite marker D16S522 at recombination fraction theta = 0.0. Haplotype analysis showed a 23.5-cM region of 16q22 that was inherited in common by all affected family members and extended from D16S451 to D16S289. Nonparametric linkage analysis gave a p value of 0.00098 for the conditional probability of linkage. Mutation analysis excluded expansion of the AT-rich minisatellite repeat FRA16B fragile site and the CAG trinucleotide repeat in the E2F-4 transcription factor (<a href="/entry/600659">600659</a>). The 'repeat expansion detection' method, capable of detecting dynamic mutation associated with anticipation, more generally excluded large CAG repeat expansion as a cause of leukemia in this family. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9382098" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Mutations in CEBPA</em></strong></p><p>
In affected members of a family with acute myeloid leukemia, <a href="#43" class="mim-tip-reference" title="Smith, M. L., Cavenagh, J. D., Lister, T. A., Fitzgibbon, J. &lt;strong&gt;Mutation of CEBPA in familial acute myeloid leukemia.&lt;/strong&gt; New Eng. J. Med. 351: 2403-2407, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15575056/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15575056&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa041331&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15575056">Smith et al. (2004)</a> identified a germline 1-bp deletion (212delC; <a href="/entry/116897#0007">116897.0007</a>) in the CEBPA gene. Overt leukemia developed in the father at age 10 years, in the first-born son at age 30 years, and in the last-born daughter at age 18 years. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15575056" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Mutations in GATA2</em></strong></p><p>
<a href="#19" class="mim-tip-reference" title="Hahn, C. N., Chong, C.-E., Carmichael, C. L., Wilkins, E. J., Brautigan, P. J., Li, X.-C., Babic, M., Lin, M., Carmagnac, A., Lee, Y. K., Kok, C. H., Gagliardi, L., and 16 others. &lt;strong&gt;Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia.&lt;/strong&gt; Nature Genet. 43: 1012-1017, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21892162/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21892162&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21892162[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.913&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21892162">Hahn et al. (2011)</a> analyzed 50 candidate genes in 5 families with a predisposition to myelodysplastic syndrome (<a href="/entry/614286">614286</a>) and acute myeloid leukemia, and in 3 of the families they identified a heritable heterozygous missense mutation in the GATA2 gene (T354M; <a href="/entry/137295#0002">137295.0002</a>) that segregated with disease and was not found in 695 nonleukemic ethnically matched controls. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21892162" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Mutations in TERT</em></strong></p><p>
<a href="#7" class="mim-tip-reference" title="Calado, R. T., Regal, J. A., Hills, M., Yewdell, W. T., Dalmazzo, L. F., Zago, M. A., Lansdorp, P. M., Hogge, D., Chanock, S. J., Estey, E. H., Falcao, R. P., Young, N. S. &lt;strong&gt;Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia.&lt;/strong&gt; Proc. Nat. Acad. Sci. 106: 1187-1192, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19147845/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19147845&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19147845[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0807057106&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19147845">Calado et al. (2009)</a> found a significantly increased number of germline mutations in the TERT gene in patients with sporadic acute myeloid leukemia compared to controls. One mutation in particular, A1062T (<a href="/entry/187270#0022">187270.0022</a>), was 3-fold higher among 594 AML patients compared to 1,110 controls (p = 0.0009). In vitro studies showed that the mutations caused haploinsufficiency of telomerase activity. An abnormal karyotype was found in 18 of 21 patients with TERT mutations who were tested. <a href="#7" class="mim-tip-reference" title="Calado, R. T., Regal, J. A., Hills, M., Yewdell, W. T., Dalmazzo, L. F., Zago, M. A., Lansdorp, P. M., Hogge, D., Chanock, S. J., Estey, E. H., Falcao, R. P., Young, N. S. &lt;strong&gt;Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia.&lt;/strong&gt; Proc. Nat. Acad. Sci. 106: 1187-1192, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19147845/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19147845&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19147845[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0807057106&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19147845">Calado et al. (2009)</a> suggested that telomere attrition may promote genomic instability and DNA damage, which may contribute to the development of leukemia. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19147845" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Somatic Mutations in NPM1</em></strong></p><p>
NPM, a nucleocytoplasmic shuttling protein with prominent nucleolar localization, regulates the ARF (<a href="/entry/103180">103180</a>)/p53 (<a href="/entry/191170">191170</a>) tumor suppressor pathway. Chromosomal translocations involving the NPM gene cause cytoplasmic dislocation of the NPM protein. <a href="#12" class="mim-tip-reference" title="Falini, B., Mecucci, C., Tiacci, E., Alcalay, M., Rosati, R., Pasqualucci, L., La Starza, R., Diverio, D., Colombo, E., Santucci, A., Bigerna, B., Pacini, R., and 11 others. &lt;strong&gt;Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.&lt;/strong&gt; New Eng. J. Med. 352: 254-266, 2005. Note: Erratum: New Eng. J. Med. 352: 740 only, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15659725/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15659725&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa041974&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15659725">Falini et al. (2005)</a> used immunohistochemical methods to study the subcellular localization of NPM in bone marrow biopsy specimens from 591 patients with primary AML. They then correlated the presence of cytoplasmic NPM with clinical and biologic features of the disease. Cytoplasmic NPM was detected in 35.2% of the 591 specimens from patients with primary AML but not in 135 secondary AML (sAML) specimens or in 980 hematopoietic or extrahematopoietic neoplasms other than AML. It was associated with a wide spectrum of morphologic subtypes of the disease, a normal karyotype, and responsiveness to induction chemotherapy, but not with recurrent genetic abnormalities. There was a high frequency of internal tandem duplications of FLT3 (<a href="/entry/136351">136351</a>) and absence of CD34 (<a href="/entry/142230">142230</a>) and CD133 (<a href="/entry/604365">604365</a>) in AML specimens with a normal karyotype and cytoplasmic dislocation of NPM, but not in those in which the protein was restricted to the nucleus. AML specimens with cytoplasmic NPM carried mutations in the NPM gene (see <a href="/entry/164040#0001">164040.0001</a>-<a href="/entry/164040#0004">164040.0004</a>); this mutant gene caused cytoplasmic localization of NPM in transfected cells. All 6 NPM mutant proteins showed mutations in at least 1 of the tryptophan residues at positions 288 and 290 and shared the same last 5 amino acid residues (VSLRK). Thus, despite genetic heterogeneity, all NPM gene mutations resulted in a distinct sequence in the NPM protein C terminus. <a href="#12" class="mim-tip-reference" title="Falini, B., Mecucci, C., Tiacci, E., Alcalay, M., Rosati, R., Pasqualucci, L., La Starza, R., Diverio, D., Colombo, E., Santucci, A., Bigerna, B., Pacini, R., and 11 others. &lt;strong&gt;Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.&lt;/strong&gt; New Eng. J. Med. 352: 254-266, 2005. Note: Erratum: New Eng. J. Med. 352: 740 only, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15659725/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15659725&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa041974&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15659725">Falini et al. (2005)</a> concluded that cytoplasmic NPM is a characteristic feature of a large subgroup of patients with AML who have a normal karyotype, NPM gene mutations, and responsiveness to induction chemotherapy. <a href="#18" class="mim-tip-reference" title="Grisendi, S., Pandolfi, P. P. &lt;strong&gt;NPM mutations in acute myelogenous leukemia. (Editorial)&lt;/strong&gt; New Eng. J. Med. 352: 291-292, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15659732/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15659732&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMe048337&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15659732">Grisendi and Pandolfi (2005)</a> noted that NPM staining in cases of AML with aberrant cytoplasmic localization of the protein is mostly cytoplasmic, which suggests that the mutant NPM acts dominantly on the product of the remaining wildtype allele, causing its retention in the cytoplasm by heterodimerization. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=15659725+15659732" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By microRNA (miRNA) expression profiling, <a href="#15" class="mim-tip-reference" title="Garzon, R., Garofalo, M., Martelli, M. P., Briesewitz, R., Wang, L., Fernandez-Cymering, C., Volinia, S., Liu, C.-G., Schnittger, S., Haferlach, T., Liso, A., Diverio, D., Mancini, M., Meloni, G., Foa, R., Martelli, M. F., Mecucci, C., Croce, C. M., Falini, B. &lt;strong&gt;Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin.&lt;/strong&gt; Proc. Nat. Acad. Sci. 105: 3945-3950, 2008. Note: Erratum: Proc. Nat. Acad. Sci. 121: e2415544121, 2024; Proc. Nat. Acad. Sci. 121: e2419360121, 2024.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18308931/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18308931&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18308931[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0800135105&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18308931">Garzon et al. (2008)</a> identified 36 upregulated and 21 downregulated miRNAs in AML patients with NPM1 mutations compared with AML patients without NPM1 mutations. miR10A (MIRN10A; <a href="/entry/610173">610173</a>) and miR10B (MIRN10B; <a href="/entry/611576">611576</a>) showed the greatest upregulation, with increases of 20- and 16.67-fold, respectively. Mir22 (MIRN22; <a href="/entry/612077">612077</a>) showed greatest downregulation, with a reduction of 0.31-fold. <a href="#15" class="mim-tip-reference" title="Garzon, R., Garofalo, M., Martelli, M. P., Briesewitz, R., Wang, L., Fernandez-Cymering, C., Volinia, S., Liu, C.-G., Schnittger, S., Haferlach, T., Liso, A., Diverio, D., Mancini, M., Meloni, G., Foa, R., Martelli, M. F., Mecucci, C., Croce, C. M., Falini, B. &lt;strong&gt;Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin.&lt;/strong&gt; Proc. Nat. Acad. Sci. 105: 3945-3950, 2008. Note: Erratum: Proc. Nat. Acad. Sci. 121: e2415544121, 2024; Proc. Nat. Acad. Sci. 121: e2419360121, 2024.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18308931/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18308931&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18308931[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0800135105&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18308931">Garzon et al. (2008)</a> concluded that AML with NPM1 mutations has a distinctive miRNA signature. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18308931" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#25" class="mim-tip-reference" title="Ivey, A., Hills, R. K., Simpson, M. A., Jovanovic, J. V., Gilkes, A., Grech, A., Patel, Y., Bhudia, N., Farah, H., Mason, J., Wall, K., Akiki, S., and 10 others. &lt;strong&gt;Assessment of minimal residual disease in standard-risk AML.&lt;/strong&gt; New Eng. J. Med. 374: 422-433, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26789727/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26789727&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa1507471&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26789727">Ivey et al. (2016)</a> used quantitative RT-PCR assays to detect minimal residual disease in 2,569 samples obtained from 346 patients with NPM1-mutated AML who had undergone intensive treatment in the National Cancer Research Institute AML17 trial. The authors used a custom 51-gene panel to perform targeted sequencing of 223 samples obtained at the time of diagnosis and 49 samples obtained at the time of relapse. Mutations associated with preleukemic clones were tracked by means of digital polymerase chain reaction. Molecular profiling highlighted the complexity of NPM1-mutated AML, with segregation of patients into more than 150 subgroups, thus precluding reliable outcome prediction. The determination of minimal residual disease status was more informative. Persistence of NPM1-mutated transcripts in blood was present in 15% of the patients after the second chemotherapy cycle and was associated with a greater risk of relapse after 3 years of follow-up than was an absence of such transcripts (82% vs 30%; hazard ratio 4.80; 95% CI 2.95-7.80; p less than 0.001) and a lower rate of survival (24% vs 75%; hazard ratio for death, 4.38; 95% CI 2.57-7.47; p less than 0.001). The presence of minimal residual disease was the only independent prognostic factor for death in multivariate analysis (hazard ratio, 4.84; 95% CI 2.57 to 9.15; p less than 0.001). These results were validated in an independent cohort. On sequential monitoring of minimal residual disease, relapse was reliably predicted by a rising level of NPM1-mutated transcripts. Although mutations associated with preleukemic clones remained detectable during ongoing remission after chemotherapy, NPM1 mutations were detected in 69 of 70 patients at the time of relapse and provided a better marker of disease status. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26789727" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Other Somatic Mutations</em></strong></p><p>
In the bone marrow of a 4-year-old child with AML, <a href="#5" class="mim-tip-reference" title="Bollag, G., Adler, F., elMasry, N., McCabe, P. C., Connor, E., Jr., Thompson, P., McCormick, F., Shannon, K. &lt;strong&gt;Biochemical characterization of a novel KRAS insertion mutation from a human leukemia.&lt;/strong&gt; J. Biol. Chem. 271: 32491-32494, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8955068/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8955068&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.271.51.32491&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8955068">Bollag et al. (1996)</a> identified an insertion in the KRAS2 gene (<a href="/entry/190070#0008">190070.0008</a>). Expression studies showed that the mutant KRAS2 protein caused cellular transformation and activated the RAS-mitogen-activated protein kinase signaling pathway. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8955068" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Bone marrow minimal residual disease causes relapse after chemotherapy in patients with acute myelogenous leukemia. <a href="#32" class="mim-tip-reference" title="Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., Akiyama, T., Kuroda, H., Kawano, Y., Kobune, M., Kato, J., Hirayama, Y., Sakamaki, S., Kohda, K., Miyake, K., Niitsu, Y. &lt;strong&gt;Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia.&lt;/strong&gt; Nature Med. 9: 1158-1165, 2003. Note: Erratum: Nature Med. 11: 578 only, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12897778/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12897778&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm909&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12897778">Matsunaga et al. (2003)</a> postulated that the drug resistance is induced by the attachment of very late antigen-4 (VLA4; see <a href="/entry/192975">192975</a>) on leukemic cells to fibronectin (<a href="/entry/135600">135600</a>) on bone marrow stromal cells. <a href="#32" class="mim-tip-reference" title="Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., Akiyama, T., Kuroda, H., Kawano, Y., Kobune, M., Kato, J., Hirayama, Y., Sakamaki, S., Kohda, K., Miyake, K., Niitsu, Y. &lt;strong&gt;Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia.&lt;/strong&gt; Nature Med. 9: 1158-1165, 2003. Note: Erratum: Nature Med. 11: 578 only, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12897778/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12897778&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm909&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12897778">Matsunaga et al. (2003)</a> found that VLA4-positive cells acquired resistance to anoikis (loss of anchorage) or drug-induced apoptosis through the phosphatidylinositol-3-kinase (see <a href="/entry/601232">601232</a>)/AKT (<a href="/entry/164730">164730</a>)/Bcl2 (<a href="/entry/151430">151430</a>) signaling pathway, which is activated by the interaction of VLA4 and fibronectin. This resistance was negated by VLA4-specific antibodies. In a mouse model of minimal residual disease, <a href="#32" class="mim-tip-reference" title="Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., Akiyama, T., Kuroda, H., Kawano, Y., Kobune, M., Kato, J., Hirayama, Y., Sakamaki, S., Kohda, K., Miyake, K., Niitsu, Y. &lt;strong&gt;Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia.&lt;/strong&gt; Nature Med. 9: 1158-1165, 2003. Note: Erratum: Nature Med. 11: 578 only, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12897778/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12897778&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm909&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12897778">Matsunaga et al. (2003)</a> achieved a 100% survival rate by combining VLA4-specific antibodies and cytosine arabinoside, whereas cytosine arabinoside alone prolonged survival only slightly. In addition, overall survival at 5 years was 100% for 10 VLA4-negative patients and 44.4% for 15 VLA4-positive patients. Thus, <a href="#32" class="mim-tip-reference" title="Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., Akiyama, T., Kuroda, H., Kawano, Y., Kobune, M., Kato, J., Hirayama, Y., Sakamaki, S., Kohda, K., Miyake, K., Niitsu, Y. &lt;strong&gt;Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia.&lt;/strong&gt; Nature Med. 9: 1158-1165, 2003. Note: Erratum: Nature Med. 11: 578 only, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12897778/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12897778&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm909&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12897778">Matsunaga et al. (2003)</a> concluded that the interaction between VLA4 on leukemic cells and fibronectin on stromal cells may be crucial in bone marrow minimal residual disease and AML prognosis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12897778" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#3" class="mim-tip-reference" title="Barjesteh van Waalwijk van Doorn-Khosrovani, S., Spensberger, D., de Knegt, Y., Tang, M., Lowenberg, B., Delwel, R. &lt;strong&gt;Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia.&lt;/strong&gt; Oncogene 24: 4129-4137, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15806161/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15806161&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1208588&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15806161">Barjesteh van Waalwijk van Doorn-Khosrovani et al. (2005)</a> analyzed 300 patients newly diagnosed with AML for mutations in the coding region of the ETV6 gene and identified 5 somatic heterozygous mutations (e.g., <a href="/entry/600618#0001">600618.0001</a> and <a href="/entry/600618#0002">600618.0002</a>). These ETV6 mutant proteins were unable to repress transcription and showed dominant-negative effects. The authors also examined ETV6 protein expression in 77 patients with AML and found that 24 (31%) lacked the wildtype 57- and 50-kD proteins; there was no correlation between ETV6 mRNA transcript levels and the loss of ETV6 protein, suggesting posttranscriptional regulation of ETV6. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15806161" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#29" class="mim-tip-reference" title="Lee, J. W., Kim, Y. G., Soung, Y. H., Han, K. J., Kim, S. Y., Rhim, H. S., Min, W. S., Nam, S. W., Park, W. S., Lee, J. Y., Yoo, N. J., Lee, S. H. &lt;strong&gt;The JAK2 V617F mutation in de novo acute myelogenous leukemias.&lt;/strong&gt; Oncogene 25: 1434-1436, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16247455/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16247455&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1209163&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16247455">Lee et al. (2006)</a> identified heterozygosity for mutations in the JAK2 gene (<a href="/entry/147796#0001">147796.0001</a> and <a href="/entry/147796#0002">147796.0002</a>) in bone marrow aspirates from 3 (2.7%) of 113 unrelated patients with AML. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16247455" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#10" class="mim-tip-reference" title="Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Masse, A., Kosmider, O., Le Couedic, J.-P., Robert, F., Alberdi, A., Lecluse, Y., Plo, I., and 11 others. &lt;strong&gt;Mutation in TET2 in myeloid cancers.&lt;/strong&gt; New Eng. J. Med. 360: 2289-2301, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19474426/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19474426&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa0810069&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19474426">Delhommeau et al. (2009)</a> analyzed the TET2 gene (<a href="/entry/612839">612839</a>) in bone marrow cells from 320 patients with myeloid cancers and identified TET2 defects in 2 patients with primary AML and 5 patients with secondary AML. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19474426" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#31" class="mim-tip-reference" title="Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., Chen, K., Koboldt, D. C., Fulton, R. S., Delehaunty, K. D., McGrath, S. D., Fulton, L. A., Locke, D. P., and 46 others. &lt;strong&gt;Recurring mutations found by sequencing an acute myeloid leukemia genome.&lt;/strong&gt; New Eng. J. Med. 361: 1058-1066, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19657110/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19657110&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19657110[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa0903840&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19657110">Mardis et al. (2009)</a> used massively parallel DNA sequencing to obtain a very high level of coverage of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. <a href="#31" class="mim-tip-reference" title="Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., Chen, K., Koboldt, D. C., Fulton, R. S., Delehaunty, K. D., McGrath, S. D., Fulton, L. A., Locke, D. P., and 46 others. &lt;strong&gt;Recurring mutations found by sequencing an acute myeloid leukemia genome.&lt;/strong&gt; New Eng. J. Med. 361: 1058-1066, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19657110/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19657110&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19657110[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa0903840&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19657110">Mardis et al. (2009)</a> identified 12 somatic mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS (<a href="/entry/164790">164790</a>) and NPM1 (<a href="/entry/164040">164040</a>) had been previously identified in patients with AML, but 2 other mutations had not been identified. One of these mutations, in the IDH1 (<a href="/entry/147700">147700</a>) gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; it is at position 108,115,590 of chromosome 10. The AML genome that was sequenced contained approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19657110" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#17" class="mim-tip-reference" title="Gelsi-Boyer, V., Trouplin, V., Adelaide, J., Bonansea, J., Cervera, N., Carbuccia, N., Lagarde, A., Prebet, T., Nezri, M., Sainty, D., Olschwang, S., Xerri, L., Chaffanet, M., Mozziconacci, M.-J., Vey, N., Birnbaum, D. &lt;strong&gt;Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia.&lt;/strong&gt; Brit. J. Haemat. 145: 788-800, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19388938/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19388938&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1365-2141.2009.07697.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19388938">Gelsi-Boyer et al. (2009)</a> presented evidence that the ASXL1 gene (<a href="/entry/612990">612990</a>) may act as a tumor suppressor in myeloid malignancies. They identified heterozygous somatic mutations in the ASXL1 gene in 5 (16%) of 38 myelodysplastic syndrome/acute myeloid leukemia samples. Somatic ASXL1 mutations were also found in 19 (43%) of 44 chronic myelomonocytic leukemia (CMML; see <a href="/entry/607785">607785</a>) samples. All the mutations were in exon 12 and resulted in truncation of the C-terminal PHD finger of the protein. The findings suggested that regulators of gene expression via DNA methylation, histone modification, and chromatin remodeling could be altered in myelodysplastic syndromes and some leukemias. The same group (<a href="#9" class="mim-tip-reference" title="Carbuccia, N., Murati, A., Trouplin, V., Brecqueville, M., Adelaide, J., Rey, J., Vainchenker, W., Bernard, O. A., Chaffanet, M., Vey, N., Birnbaum, D., Mozziconacci, M. J. &lt;strong&gt;Mutations of ASXL1 gene in myeloproliferative neoplasms. (Letter)&lt;/strong&gt; Leukemia 23: 2183-2186, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19609284/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19609284&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/leu.2009.141&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19609284">Carbuccia et al., 2009</a>) identified heterozygous somatic truncating ASXL1 mutations in 5 (7.8%) of 64 myeloproliferative neoplasms, including 1 essential thrombocythemia (<a href="/entry/187950">187950</a>), 3 primary myelofibrosis (<a href="/entry/254450">254450</a>), and 1 AML. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=19609284+19388938" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#20" class="mim-tip-reference" title="Harutyunyan, A., Klampfl, T., Cazzola, M., Kralovics, R. &lt;strong&gt;p53 lesions in leukemic transformation. (Letter)&lt;/strong&gt; New Eng. J. Med. 364: 488-490, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21288114/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21288114&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMc1012718&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21288114">Harutyunyan et al. (2011)</a> analyzed biopsy specimens of myeloproliferative neoplastic tissue from 330 patients for chromosomal aberrations associated with leukemic transformation. Three hundred and eight of the patients had chronic-phase myeloproliferative neoplasms and 22 had postmyeloproliferative-phase neoplasm secondary acute myeloid leukemia. Among those 22 patients, 1 carried the MPL W515L mutation and all others carried the JAK2 V617F mutation. Six of the 22 patients carried somatic mutations of TP53 (<a href="/entry/191170">191170</a>). Three of the patients had independent mutations on both TP53 alleles, and 2 had homozygous mutations because of an acquired uniparental disomy of chromosome 17p. None of the patients with TP53 mutations had amplification of chromosome 1q involving the MDM4 gene (<a href="/entry/602704">602704</a>). <a href="#20" class="mim-tip-reference" title="Harutyunyan, A., Klampfl, T., Cazzola, M., Kralovics, R. &lt;strong&gt;p53 lesions in leukemic transformation. (Letter)&lt;/strong&gt; New Eng. J. Med. 364: 488-490, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21288114/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21288114&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMc1012718&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21288114">Harutyunyan et al. (2011)</a> concluded that TP53 mutations are strongly associated with transformation to AML in patients with myeloproliferative neoplasms (p = 0.003). <a href="#20" class="mim-tip-reference" title="Harutyunyan, A., Klampfl, T., Cazzola, M., Kralovics, R. &lt;strong&gt;p53 lesions in leukemic transformation. (Letter)&lt;/strong&gt; New Eng. J. Med. 364: 488-490, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21288114/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21288114&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMc1012718&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21288114">Harutyunyan et al. (2011)</a> also found amplification of a region of chromosome 1q harboring the MDM4 gene in 18.18% of patients with secondary AML (p less than 0.001). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21288114" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#11" class="mim-tip-reference" title="Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., Ritchey, J. K., Young, M. A., Lamprecht, T., McLellan, M. D., McMichael, J. F., Wallis, J. W., and 27 others. &lt;strong&gt;Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing.&lt;/strong&gt; Nature 481: 506-510, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22237025/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22237025&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22237025[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature10738&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22237025">Ding et al. (2012)</a> determined the mutational spectrum associated with relapse of AML by sequencing the primary tumor and relapse genomes from 8 AML patients, and validated hundreds of somatic mutations using deep sequencing. This method allowed them to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (e.g., WAC; SMC3, <a href="/entry/606062">606062</a>; DIS3, <a href="/entry/607533">607533</a>; DDX41, <a href="/entry/608170">608170</a>; and DAXX, <a href="/entry/603186">603186</a>) in AML, <a href="#11" class="mim-tip-reference" title="Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., Ritchey, J. K., Young, M. A., Lamprecht, T., McLellan, M. D., McMichael, J. F., Wallis, J. W., and 27 others. &lt;strong&gt;Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing.&lt;/strong&gt; Nature 481: 506-510, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22237025/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22237025&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22237025[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature10738&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22237025">Ding et al. (2012)</a> identified 2 major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumor gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations, and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumor mutations in all 8 cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. <a href="#11" class="mim-tip-reference" title="Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., Ritchey, J. K., Young, M. A., Lamprecht, T., McLellan, M. D., McMichael, J. F., Wallis, J. W., and 27 others. &lt;strong&gt;Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing.&lt;/strong&gt; Nature 481: 506-510, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22237025/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22237025&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22237025[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature10738&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22237025">Ding et al. (2012)</a> concluded that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22237025" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The <a href="#8" class="mim-tip-reference" title="Cancer Genome Atlas Research Network. &lt;strong&gt;Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.&lt;/strong&gt; New Eng. J. Med. 368: 2059-2074, 2013. Note: Erratum: New Eng. J. Med. 369: 98 only, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23634996/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23634996&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23634996[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa1301689&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23634996">Cancer Genome Atlas Research Network (2013)</a> analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA methylation analysis. A total of 23 genes were significantly mutated, and another 237 were mutated in 2 or more samples. Nearly all samples had at least 1 nonsynonymous mutation in 1 of 9 categories of genes that were deemed relevant for pathogenesis. The authors identified recurrent mutations in the NPM1 gene in 54/200 (27%) samples, in the FLT3 gene (<a href="/entry/136351">136351</a>) in 56/200 (28%) samples, in the DNMT3A gene (<a href="/entry/602769">602769</a>) in 51/200 (26%) samples, and in the IDH1 or IDH2 (<a href="/entry/147650">147650</a>) genes in 39/200 (20%) samples. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23634996" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#6" class="mim-tip-reference" title="Brewin, J., Horne, G., Chevassut, T. &lt;strong&gt;Genomic landscapes and clonality of de novo AML. (Letter)&lt;/strong&gt; New Eng. J. Med. 369: 1472-1473, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24106951/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24106951&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMc1308782&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24106951">Brewin et al. (2013)</a> noted that the study of the <a href="#8" class="mim-tip-reference" title="Cancer Genome Atlas Research Network. &lt;strong&gt;Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.&lt;/strong&gt; New Eng. J. Med. 368: 2059-2074, 2013. Note: Erratum: New Eng. J. Med. 369: 98 only, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23634996/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23634996&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23634996[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa1301689&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23634996">Cancer Genome Atlas Research Network (2013)</a> did not reveal which mutations occurred in the founding clone, as would be expected for an initiator of disease, and which occurred in minor clones, which subsequently drive disease. <a href="#33" class="mim-tip-reference" title="Miller, C. A., Wilson, R. K., Ley, T. J. &lt;strong&gt;Reply to Brewin et al. (Letter)&lt;/strong&gt; New Eng. J. Med. 369: 1473 only, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24106950/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24106950&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMc1308782&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24106950">Miller et al. (2013)</a> responded that genes mutated almost exclusively in founding clones in their study included RUNX1 (<a href="/entry/151385">151385</a>) (9 of 9 mutations in founding clones), NPM1 (<a href="/entry/164040">164040</a>) (3 of 3 clones), U2AF1 (<a href="/entry/191317">191317</a>) (5 of 5 clones), DNMT3A (38 of 40 clones), IDH2 (13 of 14), IDH1 (<a href="/entry/147700">147700</a>) (15 of 17 clones), and KIT (<a href="/entry/164920">164920</a>) (5 of 6). In contrast, mutations in NRAS, TET2 (<a href="/entry/612839">612839</a>), CEBPA, WT1 (<a href="/entry/607102">607102</a>), PTPN11 (<a href="/entry/176876">176876</a>), and FLT3 were often found in subclones, suggesting that they were often cooperating mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=24106950+24106951+23634996" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Therapy-Related Acute Myeloid Leukemia</em></strong></p><p>
<a href="#45" class="mim-tip-reference" title="Wong, T. N., Ramsingh, G., Young, A. L., Miller, C. A., Touma, W., Welch, J. S., Lamprecht, T. L., Shen, D., Hundal, J., Fulton, R. S., Heath, S., Baty, J. D., and 11 others. &lt;strong&gt;Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukemia.&lt;/strong&gt; Nature 518: 552-555, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25487151/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25487151&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25487151[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature13968&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25487151">Wong et al. (2015)</a> sequenced the genomes of 22 patients with therapy-related AML (t-AML) and showed that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genomewide DNA damage. <a href="#45" class="mim-tip-reference" title="Wong, T. N., Ramsingh, G., Young, A. L., Miller, C. A., Touma, W., Welch, J. S., Lamprecht, T. L., Shen, D., Hundal, J., Fulton, R. S., Heath, S., Baty, J. D., and 11 others. &lt;strong&gt;Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukemia.&lt;/strong&gt; Nature 518: 552-555, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25487151/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25487151&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25487151[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature13968&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25487151">Wong et al. (2015)</a> identified 4 cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003-0.7%) in mobilized blood leukocytes or bone marrow 3 to 6 years before the development of t-AML/t-MDS, including 2 cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimeras containing both wildtype and Tp53 +/- hematopoietic stem/progenitor cells (HSPCs), the Tp53 +/- HSPCs preferentially expanded after exposure to chemotherapy. <a href="#45" class="mim-tip-reference" title="Wong, T. N., Ramsingh, G., Young, A. L., Miller, C. A., Touma, W., Welch, J. S., Lamprecht, T. L., Shen, D., Hundal, J., Fulton, R. S., Heath, S., Baty, J. D., and 11 others. &lt;strong&gt;Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukemia.&lt;/strong&gt; Nature 518: 552-555, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25487151/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25487151&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25487151[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature13968&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25487151">Wong et al. (2015)</a> concluded that these data suggested that cytotoxic therapy does not directly induce TP53 mutations. Rather, they supported a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25487151" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="genotypePhenotypeCorrelations" class="mim-anchor"></a>
<h4 href="#mimGenotypePhenotypeCorrelationsFold" id="mimGenotypePhenotypeCorrelationsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGenotypePhenotypeCorrelationsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<div id="mimGenotypePhenotypeCorrelationsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#39" class="mim-tip-reference" title="Schlenk, R. F., Dohner, K., Krauter, J., Frohling, S., Corbacioglu, A., Bullinger, L., Habdank, M., Spath, D., Morgan, M., Benner, A., Schlegelberger, B., Heil, G., Ganser, A., Dohner, H. &lt;strong&gt;Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia.&lt;/strong&gt; New Eng. J. Med. 358: 1909-1918, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18450602/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18450602&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa074306&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18450602">Schlenk et al. (2008)</a> studied 872 patients younger than 60 years of age with cytogenetically normal AML and compared mutation status of the NPM1 (<a href="/entry/164040">164040</a>), FLT3 (<a href="/entry/136351">136351</a>), CEBPA (<a href="/entry/116897">116897</a>), MLL (<a href="/entry/159555">159555</a>), and NRAS (<a href="/entry/164790">164790</a>) genes in leukemia cells with clinical outcome. There was an overall complete remission rate of 77%. The genotype of mutant NPM1 without FLT3 internal tandem duplications (FLT3-ITD), the mutant CEBPA genotype, and younger age were each significantly associated with complete remission. The authors also found that the benefit of postremission hematopoietic stem cell transplant was limited to the subgroup of patients with the prognostically adverse genotype FLT3-ITD or the genotype consisting of wildtype NPM1 and CEBPA without FLT3-ITD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18450602" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#14" class="mim-tip-reference" title="Gale, R. E., Green, C., Allen, C., Mead, A. J., Burnett, A. K., Hills, R. K., Linch, D. C. &lt;strong&gt;The impact of FLT3 tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia.&lt;/strong&gt; Blood 111: 2776-2784, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17957027/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17957027&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2007-08-109090&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17957027">Gale et al. (2008)</a> found that 354 (26%) of 1,425 patients with AML had the FLT3 internal duplication. The median total mutant level for all patients was 35% of total FLT3, but there was wide variation with levels ranging from 1 to 96%. There was a significant correlation between worse overall survival, relapse risk, and increased white blood cell count with increased mutant level, but the size of the duplication and the number of mutations had no significant impact on outcome. Those patients with the FLT3 duplication had a worse risk of relapse than patients without the FLT3 duplication. Among a subset of 1,217 patients, 503 (41%) had a mutation in the NPM1 gene (<a href="/entry/164040">164040</a>), and 208 (17%) had mutations in both genes. The presence of an NPM1 mutation had a beneficial effect on the remission rate, most likely due to a lower rate of resistant disease, both in patients with and without FLT3 duplications. <a href="#14" class="mim-tip-reference" title="Gale, R. E., Green, C., Allen, C., Mead, A. J., Burnett, A. K., Hills, R. K., Linch, D. C. &lt;strong&gt;The impact of FLT3 tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia.&lt;/strong&gt; Blood 111: 2776-2784, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17957027/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17957027&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2007-08-109090&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17957027">Gale et al. (2008)</a> identified 3 prognostic groups among AML patients: good in those with only a NPM1 mutation; intermediate in those with either no FLT3 or NPM1 mutations or mutations in both genes; and poor in those with only FLT3 mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17957027" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#4" class="mim-tip-reference" title="Boissel, N., Nibourel, O., Renneville, A., Huchette, P., Dombret, H., Preudhomme, C. &lt;strong&gt;Differential prognosis impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. (Letter)&lt;/strong&gt; Blood 117: 3696-3697, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21454467/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21454467&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2010-11-320937&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21454467">Boissel et al. (2011)</a> reviewed the work of several others and performed their own analysis of 205 patients with cytogenetically normal AML, and found that patients with IDH2(R172) mutations had a worse prognosis from those with IDH2(R140) mutations (e.g., <a href="/entry/147650#0001">147650.0001</a>). That patients with IDH2(R172) mutations had an unfavorable prognosis by comparison had been noted by <a href="#30" class="mim-tip-reference" title="Marcucci, G., Maharry, K., Wu, Y.-Z., Radmacher, M. D., Mrozek, K., Margeson, D., Holland, K. B., Whitman, S. P., Becker, H., Schwind, S., Matzeler, K. H., Powell, B. L., Carter, T. H., Kolitz, J. E., Wetzler, M., Carroll, A. J., Baer, M. R., Caligiuri, M. A., Larson, R. A., Bloomfield, C. D. &lt;strong&gt;IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study.&lt;/strong&gt; J. Clin. Oncol. 28: 2348-2355, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20368543/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20368543&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20368543[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1200/JCO.2009.27.3730&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20368543">Marcucci et al. (2010)</a>. The frequency of IDH2(R172) mutations was lower than that of IDH2(R140) mutations among cytogenetically normal AML patients. <a href="#4" class="mim-tip-reference" title="Boissel, N., Nibourel, O., Renneville, A., Huchette, P., Dombret, H., Preudhomme, C. &lt;strong&gt;Differential prognosis impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. (Letter)&lt;/strong&gt; Blood 117: 3696-3697, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21454467/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21454467&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2010-11-320937&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21454467">Boissel et al. (2011)</a> cautioned that patients should be separated by mutation status for prognostic analysis. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=21454467+20368543" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Activating internal tandem duplication (ITD) mutations in FLT3 (FLT3-ITD) are detected in approximately 20% of acute myeloid leukemia patients and are associated with a poor prognosis. Abundant laboratory and clinical evidence, including the lack of convincing clinical activity of early FLT3 inhibitors, suggested that FLT3-ITD probably represents a passenger lesion. <a href="#42" class="mim-tip-reference" title="Smith, C. C., Wang, Q., Chin, C.-S., Salerno, S., Damon, L. E., Levis, M. J., Perl, A. E., Travers, K. J., Wang, S., Hunt, J. P., Zarrinkar, P. P., Schadt, E. E., Kasarskis, A., Kuriyan, J., Shah, N. P. &lt;strong&gt;Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia.&lt;/strong&gt; Nature 485: 260-263, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22504184/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22504184&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22504184[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature11016&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22504184">Smith et al. (2012)</a> reported point mutations at 3 residues within the kinase domain of FLT3-ITD that confer substantial in vitro resistance to AC220 (quizartinib), an active investigational inhibitor of FLT3, KIT (<a href="/entry/164920">164920</a>), PDGFRA (<a href="/entry/173490">173490</a>), PDGFRB (<a href="/entry/173410">173410</a>), and RET (<a href="/entry/164761">164761</a>); evolution of AC220-resistant substitutions at 2 of these amino acids was observed in 8 of 8 FLT3-ITD-positive AML patients with acquired resistance to AC220. <a href="#42" class="mim-tip-reference" title="Smith, C. C., Wang, Q., Chin, C.-S., Salerno, S., Damon, L. E., Levis, M. J., Perl, A. E., Travers, K. J., Wang, S., Hunt, J. P., Zarrinkar, P. P., Schadt, E. E., Kasarskis, A., Kuriyan, J., Shah, N. P. &lt;strong&gt;Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia.&lt;/strong&gt; Nature 485: 260-263, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22504184/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22504184&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22504184[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature11016&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22504184">Smith et al. (2012)</a> concluded that their findings demonstrated that FLT3-ITD can represent a driver lesion and valid therapeutic target in human AML. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22504184" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="animalModel" class="mim-anchor"></a>
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#26" class="mim-tip-reference" title="Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., Dick, J. E. &lt;strong&gt;Targeting of CD44 eradicates human acute myeloid leukemic stem cells.&lt;/strong&gt; Nature Med. 12: 1167-1174, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16998484/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16998484&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1483&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16998484">Jin et al. (2006)</a> found that treatment with activating monoclonal antibodies to CD44 (<a href="/entry/107269">107269</a>) markedly reduced leukemic repopulation in nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice challenged with human AML cells. Absence of leukemia following serial tumor transplantation experiments in mice demonstrated direct targeting of AML leukemic stem cells (LSCs). Treatment of engrafted mice with anti-CD44 reduced the number of Cd34 (<a href="/entry/142230">142230</a>)-positive/Cd38 (<a href="/entry/107270">107270</a>)-negative primitive stem cells and increased the number of Cd14 (<a href="/entry/158120">158120</a>)-positive monocytic cells. Anti-CD44 treatment also diminished the homing capacity of SCID leukemia-initiating cells to bone marrow and spleen. <a href="#26" class="mim-tip-reference" title="Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., Dick, J. E. &lt;strong&gt;Targeting of CD44 eradicates human acute myeloid leukemic stem cells.&lt;/strong&gt; Nature Med. 12: 1167-1174, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16998484/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16998484&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1483&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16998484">Jin et al. (2006)</a> concluded that CD44 is a key regulator of AML LSCs, which require a niche to maintain their stem cell properties. They suggested that CD44 targeting may help eliminate quiescent AML LSCs. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16998484" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#34" class="mim-tip-reference" title="Mullican, S. E., Zhang, S., Konopleva, M., Ruvolo, V., Andreeff, M., Milbrandt, J., Conneely, O. M. &lt;strong&gt;Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia.&lt;/strong&gt; Nature Med. 13: 730-735, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17515897/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17515897&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1579&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17515897">Mullican et al. (2007)</a> generated Nr4a1 (<a href="/entry/139139">139139</a>)/Nr4a3 (<a href="/entry/600542">600542</a>) double-null mice and observed the development of rapidly lethal acute myeloid leukemia involving abnormal expansion of hematopoietic stem cells and myeloid progenitors, decreased expression of JunB (<a href="/entry/165161">165161</a>) and c-Jun (<a href="/entry/165160">165160</a>), and defective extrinsic apoptotic signaling (FASL, <a href="/entry/134638">134638</a>; TRAIL, <a href="/entry/603598">603598</a>). Leukemic blast cells from 46 AML patients with a variety of cytogenetic abnormalities all showed downregulation of NR4A1 and NR4A3 compared to CD34+ cells from normal controls, suggesting that epigenetic silencing of these receptors may be an obligate event in human AML development. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17515897" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Abelson2018" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Abelson, S., Collord, G., Ng, S. W. K., Weissbrod, O., Mendelson Cohen, N., Niemeyer, E., Barda, N., Zuzarte, P. C., Heisler, L., Sundaravadanam, Y., Luben, R., Hayat, S., and 63 others.
<strong>Prediction of acute myeloid leukaemia risk in healthy individuals.</strong>
Nature 559: 400-404, 2018.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/29988082/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">29988082</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=29988082[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29988082" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/s41586-018-0317-6" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Baozhang1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Baozhang, F., Jianling, L., Zexi, L., Jianping, H., Wenjie, C.
<strong>Genetic studies on a family with acute myelogenous leukemia.</strong>
Cancer Genet. Cytogenet. 112: 134-137, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10686940/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10686940</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10686940" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0165-4608(98)00166-6" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Barjesteh van Waalwijk van Doorn-Khosrovani2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Barjesteh van Waalwijk van Doorn-Khosrovani, S., Spensberger, D., de Knegt, Y., Tang, M., Lowenberg, B., Delwel, R.
<strong>Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia.</strong>
Oncogene 24: 4129-4137, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15806161/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15806161</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15806161" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.onc.1208588" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Boissel2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Boissel, N., Nibourel, O., Renneville, A., Huchette, P., Dombret, H., Preudhomme, C.
<strong>Differential prognosis impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. (Letter)</strong>
Blood 117: 3696-3697, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21454467/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21454467</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21454467" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1182/blood-2010-11-320937" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Bollag1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bollag, G., Adler, F., elMasry, N., McCabe, P. C., Connor, E., Jr., Thompson, P., McCormick, F., Shannon, K.
<strong>Biochemical characterization of a novel KRAS insertion mutation from a human leukemia.</strong>
J. Biol. Chem. 271: 32491-32494, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8955068/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8955068</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8955068" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1074/jbc.271.51.32491" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Brewin2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Brewin, J., Horne, G., Chevassut, T.
<strong>Genomic landscapes and clonality of de novo AML. (Letter)</strong>
New Eng. J. Med. 369: 1472-1473, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/24106951/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">24106951</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24106951" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMc1308782" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Calado2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Calado, R. T., Regal, J. A., Hills, M., Yewdell, W. T., Dalmazzo, L. F., Zago, M. A., Lansdorp, P. M., Hogge, D., Chanock, S. J., Estey, E. H., Falcao, R. P., Young, N. S.
<strong>Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia.</strong>
Proc. Nat. Acad. Sci. 106: 1187-1192, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19147845/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19147845</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19147845[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19147845" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0807057106" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="{Cancer Genome Atlas Research Network}2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cancer Genome Atlas Research Network.
<strong>Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.</strong>
New Eng. J. Med. 368: 2059-2074, 2013. Note: Erratum: New Eng. J. Med. 369: 98 only, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23634996/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23634996</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=23634996[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23634996" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa1301689" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Carbuccia2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Carbuccia, N., Murati, A., Trouplin, V., Brecqueville, M., Adelaide, J., Rey, J., Vainchenker, W., Bernard, O. A., Chaffanet, M., Vey, N., Birnbaum, D., Mozziconacci, M. J.
<strong>Mutations of ASXL1 gene in myeloproliferative neoplasms. (Letter)</strong>
Leukemia 23: 2183-2186, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19609284/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19609284</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19609284" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/leu.2009.141" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Delhommeau2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Masse, A., Kosmider, O., Le Couedic, J.-P., Robert, F., Alberdi, A., Lecluse, Y., Plo, I., and 11 others.
<strong>Mutation in TET2 in myeloid cancers.</strong>
New Eng. J. Med. 360: 2289-2301, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19474426/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19474426</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19474426" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa0810069" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Ding2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., Ritchey, J. K., Young, M. A., Lamprecht, T., McLellan, M. D., McMichael, J. F., Wallis, J. W., and 27 others.
<strong>Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing.</strong>
Nature 481: 506-510, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22237025/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22237025</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22237025[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22237025" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature10738" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Falini2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Falini, B., Mecucci, C., Tiacci, E., Alcalay, M., Rosati, R., Pasqualucci, L., La Starza, R., Diverio, D., Colombo, E., Santucci, A., Bigerna, B., Pacini, R., and 11 others.
<strong>Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.</strong>
New Eng. J. Med. 352: 254-266, 2005. Note: Erratum: New Eng. J. Med. 352: 740 only, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15659725/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15659725</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15659725" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa041974" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Fong2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fong, C. Y., Gilan, O., Lam, E. Y. N., Rubin, A. F., Ftouni, S., Tyler, D., Stanley, K., Sinha, D., Yeh, P., Morison, J., Giotopoulos, G., Lugo, D., and 14 others.
<strong>BET inhibitor resistance emerges from leukaemia stem cells.</strong>
Nature 525: 538-542, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/26367796/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">26367796</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=26367796[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26367796" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature14888" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Gale2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gale, R. E., Green, C., Allen, C., Mead, A. J., Burnett, A. K., Hills, R. K., Linch, D. C.
<strong>The impact of FLT3 tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia.</strong>
Blood 111: 2776-2784, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17957027/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17957027</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17957027" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1182/blood-2007-08-109090" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Garzon2008" class="mim-anchor"></a>
<div class="mim-changed mim-change">
<p class="mim-text-font">
Garzon, R., Garofalo, M., Martelli, M. P., Briesewitz, R., Wang, L., Fernandez-Cymering, C., Volinia, S., Liu, C.-G., Schnittger, S., Haferlach, T., Liso, A., Diverio, D., Mancini, M., Meloni, G., Foa, R., Martelli, M. F., Mecucci, C., Croce, C. M., Falini, B.
<strong>Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin.</strong>
Proc. Nat. Acad. Sci. 105: 3945-3950, 2008. Note: Erratum: Proc. Nat. Acad. Sci. 121: e2415544121, 2024; Proc. Nat. Acad. Sci. 121: e2419360121, 2024.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18308931/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18308931</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18308931[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18308931" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0800135105" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Garzon2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Garzon, R., Heaphy, C. E. A., Havelange, V., Fabbri, M., Volinia, S., Tsao, T., Zanesi, N., Kornblau, S. M., Marcucci, G., Calin, G. A., Andreeff, M., Croce, C. M.
<strong>MicroRNA 29b functions in acute myeloid leukemia.</strong>
Blood 114: 5331-5341, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19850741/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19850741</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19850741[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19850741" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1182/blood-2009-03-211938" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Gelsi-Boyer2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gelsi-Boyer, V., Trouplin, V., Adelaide, J., Bonansea, J., Cervera, N., Carbuccia, N., Lagarde, A., Prebet, T., Nezri, M., Sainty, D., Olschwang, S., Xerri, L., Chaffanet, M., Mozziconacci, M.-J., Vey, N., Birnbaum, D.
<strong>Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia.</strong>
Brit. J. Haemat. 145: 788-800, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19388938/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19388938</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19388938" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1365-2141.2009.07697.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Grisendi2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Grisendi, S., Pandolfi, P. P.
<strong>NPM mutations in acute myelogenous leukemia. (Editorial)</strong>
New Eng. J. Med. 352: 291-292, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15659732/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15659732</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15659732" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMe048337" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Hahn2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hahn, C. N., Chong, C.-E., Carmichael, C. L., Wilkins, E. J., Brautigan, P. J., Li, X.-C., Babic, M., Lin, M., Carmagnac, A., Lee, Y. K., Kok, C. H., Gagliardi, L., and 16 others.
<strong>Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia.</strong>
Nature Genet. 43: 1012-1017, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21892162/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21892162</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21892162[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21892162" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.913" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Harutyunyan2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Harutyunyan, A., Klampfl, T., Cazzola, M., Kralovics, R.
<strong>p53 lesions in leukemic transformation. (Letter)</strong>
New Eng. J. Med. 364: 488-490, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21288114/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21288114</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21288114" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMc1012718" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Horwitz1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Horwitz, M., Benson, K. F., Li, F.-Q., Wolff, J., Leppert, M. F., Hobson, L., Mangelsdorf, M., Yu, S., Hewett, D., Richards, R. I., Raskind, W. H.
<strong>Genetic heterogeneity in familial acute myelogenous leukemia: evidence for a second locus at chromosome 16q21-23.2.</strong>
Am. J. Hum. Genet. 61: 873-881, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9382098/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9382098</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9382098" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/514894" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Horwitz1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Horwitz, M., Goode, E. L., Jarvik, G. P.
<strong>Anticipation in familial leukemia.</strong>
Am. J. Hum. Genet. 59: 990-998, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8900225/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8900225</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8900225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Horwitz1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Horwitz, M., Sabath, D. E., Smithson, W. A., Raddich, J.
<strong>A family inheriting different subtypes of acute myelogenous leukemia.</strong>
Am. J. Hemat. 52: 295-304, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8701948/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8701948</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8701948" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/(SICI)1096-8652(199608)52:4&lt;295::AID-AJH9&gt;3.0.CO;2-N" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Illendula2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Illendula, A., Pulikkan, J. A., Zong, H., Grembecka, J., Xue, L., Sen, S., Zhou, Y., Boulton, A., Kuntimaddi, A., Gao, Y., Rajewski, R. A., Guzman, M. L., Castilla, L. H., Bushweller, J. H.
<strong>A small-molecule inhibitor of the aberrant transcription factor CBF-beta-SMMHC delays leukemia in mice.</strong>
Science 347: 779-784, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25678665/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25678665</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=25678665[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25678665" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.aaa0314" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Ivey2016" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ivey, A., Hills, R. K., Simpson, M. A., Jovanovic, J. V., Gilkes, A., Grech, A., Patel, Y., Bhudia, N., Farah, H., Mason, J., Wall, K., Akiki, S., and 10 others.
<strong>Assessment of minimal residual disease in standard-risk AML.</strong>
New Eng. J. Med. 374: 422-433, 2016.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/26789727/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">26789727</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26789727" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa1507471" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="26" class="mim-anchor"></a>
<a id="Jin2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., Dick, J. E.
<strong>Targeting of CD44 eradicates human acute myeloid leukemic stem cells.</strong>
Nature Med. 12: 1167-1174, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16998484/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16998484</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16998484" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm1483" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="27" class="mim-anchor"></a>
<a id="Kode2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kode, A., Manavalan, J. S., Mosialou, I., Bhagat, G., Rathinam, C. V., Luo, N., Khiabanian, H., Lee, A., Murty, V. V., Friedman, R., Brum, A., Park, D., Galili, N., Mukherjee, S., Teruya-Feldstein, J., Raza, A., Rabadan, R., Berman, E., Kousteni, S.
<strong>Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts.</strong>
Nature 506: 240-244, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/24429522/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">24429522</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=24429522[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24429522" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature12883" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="28" class="mim-anchor"></a>
<a id="Le Beau1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Le Beau, M. M., Espinosa, R., III, Neuman, W. L., Stock, W., Roulston, D., Larson, R. A., Keinanen, M., Westbrook, C. A.
<strong>Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases.</strong>
Proc. Nat. Acad. Sci. 90: 5484-5488, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8516290/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8516290</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8516290" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.90.12.5484" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="29" class="mim-anchor"></a>
<a id="Lee2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lee, J. W., Kim, Y. G., Soung, Y. H., Han, K. J., Kim, S. Y., Rhim, H. S., Min, W. S., Nam, S. W., Park, W. S., Lee, J. Y., Yoo, N. J., Lee, S. H.
<strong>The JAK2 V617F mutation in de novo acute myelogenous leukemias.</strong>
Oncogene 25: 1434-1436, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16247455/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16247455</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16247455" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.onc.1209163" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="30" class="mim-anchor"></a>
<a id="Marcucci2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Marcucci, G., Maharry, K., Wu, Y.-Z., Radmacher, M. D., Mrozek, K., Margeson, D., Holland, K. B., Whitman, S. P., Becker, H., Schwind, S., Matzeler, K. H., Powell, B. L., Carter, T. H., Kolitz, J. E., Wetzler, M., Carroll, A. J., Baer, M. R., Caligiuri, M. A., Larson, R. A., Bloomfield, C. D.
<strong>IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study.</strong>
J. Clin. Oncol. 28: 2348-2355, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20368543/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20368543</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20368543[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20368543" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1200/JCO.2009.27.3730" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="31" class="mim-anchor"></a>
<a id="Mardis2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., Chen, K., Koboldt, D. C., Fulton, R. S., Delehaunty, K. D., McGrath, S. D., Fulton, L. A., Locke, D. P., and 46 others.
<strong>Recurring mutations found by sequencing an acute myeloid leukemia genome.</strong>
New Eng. J. Med. 361: 1058-1066, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19657110/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19657110</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19657110[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19657110" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa0903840" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="32" class="mim-anchor"></a>
<a id="Matsunaga2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., Akiyama, T., Kuroda, H., Kawano, Y., Kobune, M., Kato, J., Hirayama, Y., Sakamaki, S., Kohda, K., Miyake, K., Niitsu, Y.
<strong>Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia.</strong>
Nature Med. 9: 1158-1165, 2003. Note: Erratum: Nature Med. 11: 578 only, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12897778/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12897778</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12897778" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm909" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="33" class="mim-anchor"></a>
<a id="Miller2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Miller, C. A., Wilson, R. K., Ley, T. J.
<strong>Reply to Brewin et al. (Letter)</strong>
New Eng. J. Med. 369: 1473 only, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/24106950/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">24106950</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24106950" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMc1308782" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="34" class="mim-anchor"></a>
<a id="Mullican2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mullican, S. E., Zhang, S., Konopleva, M., Ruvolo, V., Andreeff, M., Milbrandt, J., Conneely, O. M.
<strong>Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia.</strong>
Nature Med. 13: 730-735, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17515897/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17515897</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17515897" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm1579" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="35" class="mim-anchor"></a>
<a id="Perl2019" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Perl, A. E., Martinelli, G., Cortes, J. E., Neubauer, A., Berman, E., Paolini, S., Montesinos, P., Baer, M. R., Larson, R. A., Ustun, C., Fabbiano, F., Erba, H. P., and 19 others.
<strong>Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML.</strong>
New Eng. J. Med. 381: 1728-1740, 2019. Note: Erratum: New Eng. J. Med. 386: 1868 only, 2022.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/31665578/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">31665578</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31665578" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa1902688" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="36" class="mim-anchor"></a>
<a id="Raffel2017" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Raffel, S., Falcone, M., Kneisel, N., Hansson, J., Wang, W., Lutz, C., Bullinger, L., Poschet, G., Nonnenmacher, Y., Barnert, A., Bahr, C., Zeisberger, P., and 22 others.
<strong>BCAT1 restricts alpha-KG levels in AML stem cells leading to IDH(mut)-like DNA hypermethylation.</strong>
Nature 551: 384-388, 2017. Note: Erratum: Nature 560: E28, 2018.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/29144447/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">29144447</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29144447" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature24294" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="37" class="mim-anchor"></a>
<a id="Rathert2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rathert, P., Roth, M., Neumann, T., Muerdter, F., Roe, J.-S., Muhar, M., Deswal, S., Cerny-Reiterer, S., Peter, B., Jude, J., Hoffmann, T., Boryn, L. M., and 11 others.
<strong>Transcriptional plasticity promotes primary and acquired resistance to BET inhibition.</strong>
Nature 525: 543-547, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/26367798/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">26367798</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=26367798[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26367798" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature14898" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="38" class="mim-anchor"></a>
<a id="Santos2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Santos, M. A., Faryabi, R. B., Ergen, A. V., Day, A. M., Malhowski, A., Canela, A., Onozawa, M., Lee, J.-E., Callen, E., Gutierrez-Martinez, P., Chen, H.-T., Wong, N., and 9 others.
<strong>DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.</strong>
Nature 514: 107-111, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25079327/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25079327</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=25079327[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25079327" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature13483" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="39" class="mim-anchor"></a>
<a id="Schlenk2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Schlenk, R. F., Dohner, K., Krauter, J., Frohling, S., Corbacioglu, A., Bullinger, L., Habdank, M., Spath, D., Morgan, M., Benner, A., Schlegelberger, B., Heil, G., Ganser, A., Dohner, H.
<strong>Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia.</strong>
New Eng. J. Med. 358: 1909-1918, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18450602/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18450602</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18450602" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa074306" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="40" class="mim-anchor"></a>
<a id="Shields2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shields, J. A., Stopyra, G. A., Marr, B. P., Shields, C. L., Pan, W., Eagle, R. C., Jr., Bernstein, J.
<strong>Bilateral orbital myeloid sarcoma as initial sign of acute myeloid leukemia: case report and review of the literature.</strong>
Arch. Ophthal. 121: 138-142, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12523908/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12523908</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12523908" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/archopht.121.1.138" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="41" class="mim-anchor"></a>
<a id="Shlush2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shlush, L. I., Zandi, S., Mitchell, A., Chen, W. C., Brandwein, J. M., Gupta, V., Kennedy, J. A., Schimmer, A. D., Schuh, A. C., Yee, K. W., McLeod, J. L., Doedens, M., and 14 others.
<strong>Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia.</strong>
Nature 506: 328-333, 2014. Note: Erratum: Nature 508: 420 only, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/24522528/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">24522528</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=24522528[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24522528" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature13038" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="42" class="mim-anchor"></a>
<a id="Smith2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Smith, C. C., Wang, Q., Chin, C.-S., Salerno, S., Damon, L. E., Levis, M. J., Perl, A. E., Travers, K. J., Wang, S., Hunt, J. P., Zarrinkar, P. P., Schadt, E. E., Kasarskis, A., Kuriyan, J., Shah, N. P.
<strong>Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia.</strong>
Nature 485: 260-263, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22504184/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22504184</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22504184[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22504184" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature11016" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="43" class="mim-anchor"></a>
<a id="Smith2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Smith, M. L., Cavenagh, J. D., Lister, T. A., Fitzgibbon, J.
<strong>Mutation of CEBPA in familial acute myeloid leukemia.</strong>
New Eng. J. Med. 351: 2403-2407, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15575056/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15575056</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15575056" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa041331" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="44" class="mim-anchor"></a>
<a id="Venstrom2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Venstrom, J. M., Pittari, G., Gooley, T. A., Chewning, J. H., Spellman, S., Haagenson, M., Gallagher, M. M., Malkki, M., Petersdorf, E., Dupont, B., Hsu, K. C.
<strong>HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1.</strong>
New Eng. J. Med. 367: 805-816, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22931314/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22931314</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22931314[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22931314" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa1200503" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="45" class="mim-anchor"></a>
<a id="Wong2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wong, T. N., Ramsingh, G., Young, A. L., Miller, C. A., Touma, W., Welch, J. S., Lamprecht, T. L., Shen, D., Hundal, J., Fulton, R. S., Heath, S., Baty, J. D., and 11 others.
<strong>Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukemia.</strong>
Nature 518: 552-555, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25487151/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25487151</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=25487151[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25487151" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature13968" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="46" class="mim-anchor"></a>
<a id="Yoshimi2019" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yoshimi, A., Lin, K.-T., Wiseman, D. H., Rahman, M. A., Pastore, A., Wang, B., Lee, S. C.-W., Micol, J.-B., Zhang, X. J., de Botton, S., Penard-Lacronique, V., Stein, E. M., and 17 others.
<strong>Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis.</strong>
Nature 574: 273-277, 2019.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/31578525/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">31578525</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=31578525[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31578525" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/s41586-019-1618-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Ada Hamosh - updated : 03/27/2020
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Ada Hamosh - updated : 03/27/2020<br>Ada Hamosh - updated : 09/17/2018<br>Ada Hamosh - updated : 02/08/2018<br>Ada Hamosh - updated : 02/19/2016<br>Ada Hamosh - updated : 2/17/2016<br>Ada Hamosh - updated : 2/3/2016<br>Ada Hamosh - updated : 3/9/2015<br>Ada Hamosh - updated : 12/2/2014<br>Ada Hamosh - updated : 4/24/2014<br>Ada Hamosh - updated : 3/13/2014<br>Ada Hamosh - updated : 11/25/2013<br>Ada Hamosh - updated : 7/9/2013<br>Ada Hamosh - updated : 9/6/2012<br>Cassandra L. Kniffin - updated : 8/2/2012<br>Ada Hamosh - updated : 6/27/2012<br>Ada Hamosh - updated : 2/8/2012<br>Marla J. F. O'Neill - updated : 11/2/2011<br>Ada Hamosh - updated : 10/4/2011<br>Cassandra L. Kniffin - updated : 5/4/2011<br>Ada Hamosh - updated : 2/15/2011<br>Cassandra L. Kniffin - updated : 12/16/2010<br>Cassandra L. Kniffin - updated : 10/6/2009<br>Ada Hamosh - updated : 9/15/2009<br>Marla J. F. O'Neill - updated : 6/10/2009<br>Cassandra L. Kniffin - updated : 7/30/2008<br>Patricia A. Hartz - updated : 6/9/2008<br>Marla J. F. O'Neill - updated : 5/14/2008<br>Cassandra L. Kniffin - updated : 3/26/2008<br>Marla J. F. O'Neill - updated : 7/2/2007<br>Paul J. Converse - updated : 11/17/2006<br>Cassandra L. Kniffin - updated : 6/20/2006<br>Marla J. F. O'Neill - updated : 4/12/2006<br>Ada Hamosh - updated : 8/26/2003<br>Victor A. McKusick - updated : 11/17/1999
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Moyra Smith : 1/14/1997
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 01/15/2025
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 06/26/2024<br>mgross : 04/03/2024<br>carol : 06/17/2022<br>alopez : 03/27/2020<br>alopez : 03/27/2020<br>alopez : 04/10/2019<br>alopez : 09/17/2018<br>carol : 07/12/2018<br>alopez : 02/08/2018<br>alopez : 02/19/2016<br>alopez : 2/17/2016<br>alopez : 2/3/2016<br>alopez : 3/9/2015<br>alopez : 12/2/2014<br>carol : 11/13/2014<br>ckniffin : 11/12/2014<br>alopez : 4/25/2014<br>alopez : 4/24/2014<br>alopez : 3/13/2014<br>carol : 12/6/2013<br>alopez : 11/25/2013<br>alopez : 11/25/2013<br>alopez : 7/9/2013<br>alopez : 7/9/2013<br>alopez : 4/15/2013<br>alopez : 9/10/2012<br>terry : 9/6/2012<br>carol : 8/6/2012<br>ckniffin : 8/2/2012<br>alopez : 7/3/2012<br>terry : 6/27/2012<br>alopez : 2/10/2012<br>terry : 2/8/2012<br>carol : 1/30/2012<br>carol : 11/2/2011<br>ckniffin : 10/24/2011<br>alopez : 10/11/2011<br>terry : 10/7/2011<br>terry : 10/4/2011<br>wwang : 5/19/2011<br>wwang : 5/11/2011<br>ckniffin : 5/4/2011<br>ckniffin : 5/2/2011<br>alopez : 2/17/2011<br>terry : 2/15/2011<br>carol : 12/16/2010<br>ckniffin : 12/16/2010<br>carol : 7/2/2010<br>alopez : 1/28/2010<br>wwang : 10/14/2009<br>ckniffin : 10/6/2009<br>alopez : 9/16/2009<br>terry : 9/15/2009<br>wwang : 6/12/2009<br>wwang : 6/12/2009<br>terry : 6/10/2009<br>ckniffin : 6/9/2009<br>wwang : 12/5/2008<br>ckniffin : 12/3/2008<br>mgross : 10/9/2008<br>wwang : 8/1/2008<br>ckniffin : 7/30/2008<br>mgross : 6/9/2008<br>carol : 5/14/2008<br>wwang : 4/8/2008<br>ckniffin : 3/26/2008<br>wwang : 7/5/2007<br>terry : 7/2/2007<br>ckniffin : 3/1/2007<br>mgross : 11/17/2006<br>wwang : 6/23/2006<br>ckniffin : 6/20/2006<br>wwang : 4/12/2006<br>terry : 4/12/2006<br>mgross : 5/17/2005<br>tkritzer : 2/7/2005<br>alopez : 9/2/2003<br>alopez : 8/26/2003<br>terry : 8/26/2003<br>carol : 11/13/2001<br>mgross : 12/6/1999<br>terry : 11/17/1999<br>mark : 1/14/1997<br>mark : 1/14/1997<br>mark : 1/14/1997
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>#</strong> 601626
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
LEUKEMIA, ACUTE MYELOID; AML
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
LEUKEMIA, ACUTE MYELOGENOUS
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
<div>
<div>
<p>
<span class="mim-font">
Other entities represented in this entry:
</span>
</p>
</div>
<div>
<span class="h3 mim-font">
LEUKEMIA, ACUTE MYELOID, SUSCEPTIBILITY TO, INCLUDED
</span>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>SNOMEDCT:</strong> 1162928000, 91861009; &nbsp;
<strong>ICD10CM:</strong> C92.0, C92.00; &nbsp;
<strong>ICD9CM:</strong> 205.0; &nbsp;
<strong>ORPHA:</strong> 167714, 319465, 319480, 519, 530995, 86845, 86846, 86851, 98277, 98835; &nbsp;
<strong>DO:</strong> 9119; &nbsp;
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
2p23.3
</span>
</td>
<td>
<span class="mim-font">
Acute myeloid leukemia, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
DNMT3A
</span>
</td>
<td>
<span class="mim-font">
602769
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
3q21.3
</span>
</td>
<td>
<span class="mim-font">
{Leukemia, acute myeloid, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant; Somatic mutation
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
GATA2
</span>
</td>
<td>
<span class="mim-font">
137295
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
3q27.3-q28
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant; Somatic mutation
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
LPP
</span>
</td>
<td>
<span class="mim-font">
600700
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
4q12
</span>
</td>
<td>
<span class="mim-font">
{Leukemia, acute myeloid}
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant; Somatic mutation
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
CHIC2
</span>
</td>
<td>
<span class="mim-font">
604332
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
4q12
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
KIT
</span>
</td>
<td>
<span class="mim-font">
164920
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
5p15.33
</span>
</td>
<td>
<span class="mim-font">
{Leukemia, acute myeloid}
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant; Somatic mutation
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
TERT
</span>
</td>
<td>
<span class="mim-font">
187270
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
5q35.1
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
NPM1
</span>
</td>
<td>
<span class="mim-font">
164040
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
9p24.1
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
JAK2
</span>
</td>
<td>
<span class="mim-font">
147796
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
9q34.13
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
NUP214
</span>
</td>
<td>
<span class="mim-font">
114350
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
10p12.31
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant; Somatic mutation
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
AF10
</span>
</td>
<td>
<span class="mim-font">
602409
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
11q14.2
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
PICALM
</span>
</td>
<td>
<span class="mim-font">
603025
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
12p13.2
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
ETV6
</span>
</td>
<td>
<span class="mim-font">
600618
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
12p12.1
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
KRAS
</span>
</td>
<td>
<span class="mim-font">
190070
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
13q12.2
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
FLT3
</span>
</td>
<td>
<span class="mim-font">
136351
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
13q12.2
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, reduced survival in, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
FLT3
</span>
</td>
<td>
<span class="mim-font">
136351
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
19p13.3
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant; Somatic mutation
</span>
</td>
<td>
<span class="mim-font">
1
</span>
</td>
<td>
<span class="mim-font">
SH3GL1
</span>
</td>
<td>
<span class="mim-font">
601768
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
19q13.11
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid, somatic
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
CEBPA
</span>
</td>
<td>
<span class="mim-font">
116897
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
19q13.11
</span>
</td>
<td>
<span class="mim-font">
?Leukemia, acute myeloid
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant; Somatic mutation
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
CEBPA
</span>
</td>
<td>
<span class="mim-font">
116897
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
21q22.12
</span>
</td>
<td>
<span class="mim-font">
Leukemia, acute myeloid
</span>
</td>
<td>
<span class="mim-font">
601626
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant; Somatic mutation
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
RUNX1
</span>
</td>
<td>
<span class="mim-font">
151385
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because of evidence that acute myeloid leukemia (AML) can be caused by heterozygous mutation in the CEBPA gene (116897) on chromosome 19p13. One such family has been reported.</p><p>Somatic mutations in several genes have been found in cases of AML, e.g., in the CEBPA, ETV6 (600618), JAK2 (147796), KRAS2 (190070), NRAS (164790), HIPK2 (606868), FLT3 (136351), TET2 (612839), ASXL1 (612990), IDH1 (147700), CBL (165360), DNMT3A (602769), NPM1 (164040), SF3B1 (605590), and KIT (164920) genes. Other causes of AML include fusion genes generated by chromosomal translocations; see, for example, 600358 and 159555.</p><p>Susceptibility to the development of acute myeloid leukemia may be caused by germline mutations in some genes, including GATA2 (137295), TERC (602322), and TERT (187270).</p><p>AML may also be part of the phenotypic spectrum of inherited disorders, including platelet disorder with associated myeloid malignancy (FPDMM; 601399), caused by mutation in the RUNX1 gene (151385), and telomere-related pulmonary fibrosis and/or bone marrow failure (PFBMFT1, 614742 and PFBMFT2, 614743), caused by mutation in the TERT or the TERC gene.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Shields et al. (2003) published a case report on acute myeloid leukemia that presented as bilateral orbital myeloid sarcoma (or chloroma) in a previously healthy 25-month-old boy. Bone marrow biopsy revealed blasts and cells with maturing monocytic features. A final diagnosis of M5b AML was made. The authors reviewed the literature and concluded that leukemia may be the most likely diagnosis in a child with bilateral soft tissue orbital tumors. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>AML is often treated with allogeneic hematopoietic stem-cell transplantation (HSCT), and it is most sensitive to natural killer (NK)-cell reactivity. Venstrom et al. (2012) assessed clinical data, HLA genotyping results, and donor cell lines or genomic DNA for 1,277 patients with AML who had received HSCT from unrelated donors matched for HLA-A, -B, -C, -DR, and -DQ or with a single mismatch. They performed donor KIR genotyping and evaluated the clinical effect of donor KIR genotype and donor and recipient HLA genotypes. Patients with AML who received allografts from donors who were positive for KIR2DS1 (604952) had a lower rate of relapse than those with allografts from donors who were negative for KIR2DS1 (26.5% vs 32.5%; hazard ratio, 0.76; 95% confidence interval, 0.61 to 0.96; P = 0.02). Of allografts from donors with KIR2DS1, those from donors who were homozygous or heterozygous for HLA-C1 antigens could mediate this antileukemic effect, whereas those from donors who were homozygous for HLA-C2 did not provide any advantage. Recipients of KIR2DS1-positive allografts mismatched for a single HLA-C locus had a lower relapse rate than recipients of KIR2DS1-negative allografts with a mismatch at the same locus (17.1% vs 35.6%; hazard ratio, 0.40; 95% CI, 0.20 to 0.78; P = 0.007). KIR3DS1 (620778), in positive genetic linkage disequilibrium with KIR2DS1, had no effect on leukemia relapse but was associated with decreased mortality (60.1% vs 66.9% without KIR3DS1; hazard ratio, 0.83; 95% CI, 0.71 to 0.96; P = 0.01). Venstrom et al. (2012) concluded that activating KIR genes from donors were associated with distinct outcomes of allogeneic HSCT for AML. Donor KIR2DS1 appeared to provide protection against relapse in an HLA-C-dependent manner, and donor KIR3DS1 was associated with reduced mortality. </p><p>The transcription factor fusion CBFB (121360)-SMMHC (MYH11; 160745), expressed in AML with the chromosome inversion inv(16)(p13q22), outcompetes wildtype CBFB for binding to the transcription factor RUNX1, deregulates RUNX1 activity in hematopoiesis, and induces AML. Treatment of inv(16) AML with nonselective cytotoxic chemotherapy results in a good initial response but limited long-term survival. Illendula et al. (2015) reported the development of a protein-protein interaction inhibitor, AI-10-49, that selectively binds to CBFB-SMMHC and disrupts its binding to RUNX1. AI-10-49 restores RUNX1 transcriptional activity, displays favorable pharmacokinetics, and delays leukemia progression in mice. Treatment of primary inv(16) AML patient blasts with AI-10-49 triggers selective cell death. Illendula et al. (2015) concluded that direct inhibition of the oncogenic CBFB-SMMHC fusion protein may be an effective therapeutic approach for inv(16) AML. </p><p>Fong et al. (2015) used primary mouse hematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 (see 159555) to generate several single-cell clones that demonstrated resistance, in vitro and in vivo, to the prototypical bromodomain and extra terminal protein (BET) inhibitor I-BET. Resistance to I-BET conferred cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance was not mediated through increased drug efflux or metabolism, emerged from leukemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 (608749) was globally reduced in resistant cells, whereas the expression of key target genes such as Myc (190080) remained unaltered, highlighting the existence of alternative mechanisms to regulate transcription. Fong et al. (2015) demonstrated that resistance to BET inhibitors, in human and mouse leukemia cells, is in part a consequence of increased Wnt/beta-catenin (see 116806) signaling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Fong et al. (2015) concluded that their findings provided insights into the biology of AML, highlighted potential therapeutic limitations of BET inhibitors, and identified strategies that may enhance the clinical utility of these unique targeted therapies. </p><p>Rathert et al. (2015) performed a chromatin-focused RNAi screen in a sensitive MLL-AF9;Nras(G12D)-driven AML mouse model to identify factors involved in primary and acquired BET resistance in leukemia. The screen showed that suppression of the Polycomb repressive complex-2 (PRC2; see 606245), contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression did not directly affect the regulation of Brd4-dependent transcripts, but facilitated the remodeling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggered acute MYC repression in human leukemias regardless of their sensitivity, resistant leukemias were uniformly characterized by their ability to rapidly restore MYC transcription. This process involved the activation and recruitment of WNT (see 606359) signaling components, which compensated for the loss of BRD4 and drove resistance in various cancer models. Additional studies revealed that BET-resistant states are characterized by remodeled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Rathert et al. (2015) concluded that their results identified and validated WNT signaling as a driver and candidate biomarker of primary and acquired BET resistance in leukemia, and implicated the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies. </p><p>Perl et al. (2019) reported the results of a phase 3 clinical trial of gilteritinib versus salvage chemotherapy for refractory FLT3-mutated AML. The 247 patients randomized to be treated with gilteritinib had significantly longer survival than the 124 patients in the standard salvage chemotherapy group (9.3 vs 5.6 months, hazard ratio for death 0.64, 95% confidence interval 0.49-0.83, p less than 0.001). The percentage with complete remission with full or partial hematologic recovery was 34% in the gilteritinib group and 15.3% in the chemotherapy group. Adverse events were less common in the gilteritinib group than in the chemotherapy group. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Biochemical Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Garzon et al. (2009) provided evidence supporting a tumor suppressor role for miR29A (610782) and miR29B (610783) in AML. Overexpression of both microRNAs reduced cell growth and induced apoptosis in AML cell lines. Injection of miR29B in a xenograft mouse model of AML resulted in tumor shrinkage. Northern blot analysis showed that the 2 microRNAs targeted genes involved in apoptosis, the cell cycle, and cell proliferation. Transfection of leukemic cells with miR29A and miR29B resulted in specific downregulation of CXXC6 (TET1; 607790), MCL1 (159552), and CDK6 (603368). Studies of 45 samples from patients with AML showed an inverse correlation between MCL1 and miR29B. Although 42% of the miR29A-correlated genes were also correlated with miR29B, there were some differences: genes related to protein metabolism were found overrepresented in miR29B-correlated genes, and genes related to immune function were overrepresented in miR29A-correlated genes. Finally, there was a downregulation of both miR29A and miR29B in primary AML samples with monosomy 7 (252270). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Pathogenesis</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Kode et al. (2014) showed that an activating mutation of beta-catenin (116806) in mouse osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of AML with common chromosomal aberrations and cell-autonomous progression. Activated beta-catenin stimulates expression of the Notch (see NOTCH1, 190198) ligand Jag1 (601920) in osteoblasts. Subsequent activation of Notch signaling in hematopoietic stem cell progenitors induces the malignant changes. Genetic or pharmacologic inhibition of Notch signaling ameliorates AML and demonstrates the pathogenic role of the Notch pathway. In 38% of patients with myelodysplastic syndromes (see MDS, 614286) or AML, increased beta-catenin signaling and nuclear accumulation was identified in osteoblasts, and these patients showed increased Notch signaling in hematopoietic cells. Kode et al. (2014) concluded that their findings demonstrated that genetic alterations in osteoblasts can induce acute myeloid leukemia, identify molecular signals leading to this transformation, and suggested a potential novel pharmacotherapeutic approach to acute myeloid leukemia. </p><p>Shlush et al. (2014) found recurrent DNMT3A (602769) mutations at high allele frequency in highly purified hematopoietic stem cells (HSCs) as well as progenitor and mature cell fractions from the blood of AML patients, but these cells did not have the coincident NPM1 (164040) mutations present in AML blasts. DNMT3A mutation-bearing HSCs showed a multilineage repopulation advantage over nonmutated HSCs in xenografts, establishing their identity as preleukemic HSCs. Preleukemic HSCs were found in remission samples, indicating that they survive chemotherapy. Shlush et al. (2014) concluded that DNMT3A mutations arise early in AML evolution, probably in HSCs, leading to a clonally expanded pool of preleukemic HSCs from which AML evolves. </p><p>Santos et al. (2014) showed that the histone methyltransferase MLL4 (606834), a suppressor of B-cell lymphoma, is required for stem cell activity and an aggressive form of AML harboring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukemic blasts, which protects mice from death related to AML. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 (602681) protects MLL4-null MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM (607585) or BRCA1 (113705) sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Santos et al. (2014) showed that restriction enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21 (CDKN1A; 116899) activity. The authors concluded that they had uncovered an unexpected tumor-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in AML. </p><p>By performing high-resolution proteomic analysis of human AML stem cell and non-stem cell populations, Raffel et al. (2017) found the branched-chain amino acid (BCAA) pathway enriched and BCAT1 (113520) protein and transcripts overexpressed in leukemia stem cells. Raffel et al. (2017) showed that BCAT1, which transfers alpha-amino groups from BCAAs to alpha-ketoglutarate, is a critical regulator of intracellular alpha-ketoglutarate homeostasis. Further to its role in the tricarboxylic acid cycle, alpha-ketoglutarate is an essential cofactor for alpha-ketoglutarate-dependent dioxygenases such as EGLN1 (606425) and the ten-eleven translocation (TET) family of DNA demethylases. Knockdown of BCAT1 in leukemia cells caused accumulation of alpha-ketoglutarate, leading to EGLN1-mediated HIF1-alpha (603348) protein degradation. This resulted in a growth and survival defect and abrogated leukemia-initiating potential. By contrast, overexpression of BCAT1 in leukemia cells decreased intracellular alpha-ketoglutarate levels and caused DNA hypermethylation through altered TET activity. AML with high levels of BCAT1 (BCAT1-high) displayed a DNA hypermethylation phenotype similar to cases carrying a mutant isocitrate dehydrogenase (see IDH1, 147700) (IDH-mut), in which TET2 (612839) is inhibited by the oncometabolite 2-hydroxyglutarate. High levels of BCAT1 strongly correlated with shorter overall survival in IDH-wildtype-TET2-wildtype, but not IDH-mut or TET2-mut, AML. BCAT1-high AML showed robust enrichment for leukemia stem cell signatures, and paired sample analysis showed a significant increase in BCAT1 levels upon disease relapse. In summary, by limiting intracellular alpha-ketoglutarate, BCAT1 links BCAA catabolism to HIF1-alpha stability and regulation of the epigenomic landscape, mimicking the effects of IDH mutations. </p><p>Abelson et al. (2018) used deep sequencing to analyze genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign age-related clonal hematopoiesis. They analyzed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Abelson et al. (2018) developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. The authors concluded that their findings provided proof of concept that it is possible to discriminate age-related clonal hematopoiesis from pre-AML many years before malignant transformation. </p><p>Yoshimi et al. (2019) used analysis of transcriptomes from 982 patients with AML to identify frequent overlap of mutations in IDH2 (147650) and SRSF2 (600813) that together promote leukemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, coexpression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, coexpression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3 (611347), a member of the integrator complex, concordant with increased stalling of RNA polymerase II. Aberrant INTS3 splicing contributed to leukemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. Yoshimi et al. (2019) concluded that their data identified a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukemias, provided functional evidence that mutations in splicing factors drive myeloid malignancy development, and identified spliceosomal changes as a mediator of IDH2-mutant leukemogenesis. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Cytogenetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Loss of chromosome 5q is observed in 10 to 15% of patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia and in 40% of patients with therapy-related MDS or AML. In addition, patients with 5q deletion syndrome (153550) show hematologic abnormalities, including refractory anemia and abnormal megakaryocytes. By cytogenetic analysis and hybridization techniques, Le Beau et al. (1993) identified a common 2.8-Mb critical region containing the EGR1 gene (128990) on chromosome 5q31 that was deleted in 135 patients with hematologic abnormalities and 5q deletions, including 85 patients with de novo MDS or AML, 33 with therapy-related MDS or AML, and 17 with MDS and the 5q deletion syndrome. Le Beau et al. (1993) postulated that EGR1 or another closely-linked gene may act as a tumor suppressor gene. </p><p>Baozhang et al. (1999) reported a family with 7 cases of related leukemias among 22 members in 3 consecutive generations consistent with autosomal dominant inheritance. One of the patients and her father were found to have rearrangement and a rearrangement/amplification, respectively, of the ERBB oncogene (131550). </p><p>Horwitz et al. (1996) reported evidence of anticipation in familial acute myelogenous leukemia. Horwitz et al. (1996) further studied those pedigrees and others from the literature. In 49 affected individuals from 9 families transmitting autosomal dominant AML, the mean age of onset was 57 years in the grandparental generation, 32 years in the parental generation, and 13 years in the youngest generation (p less than 0.001). Horwitz et al. (1996) also reported evidence of anticipation in autosomal dominant chronic lymphocytic leukemia (CLL; 151400) (p = 0.008). In 18 affected individuals from 7 pedigrees with autosomal dominant CLL, the mean age of onset in the parental generation was 66 years, versus 51 years in the younger generation. Based on this evidence of anticipation, Horwitz et al. (1996) suggested that dynamic mutations of unstable DNA sequence repeats could be a common mechanism of inherited hematopoietic malignancy. They proposed 3 possible candidate chromosomal regions for familial leukemia with anticipation: 21q22.1-22.2, 11q23.3 in the vicinity of the CBL2 gene (165360), and 16q22 in the vicinity of the CBFB gene (121360). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Horwitz et al. (1997) presented evidence suggesting that there is a locus for acute myelogenous leukemia on chromosome 16q22. They studied a family with 11 relevant meioses transmitting autosomal dominant AML and myelodysplasia. They excluded linkage to 21q22.1-q22.2 and to 9p22-p21, and found a maximum 2-point lod score of 2.82 with the microsatellite marker D16S522 at recombination fraction theta = 0.0. Haplotype analysis showed a 23.5-cM region of 16q22 that was inherited in common by all affected family members and extended from D16S451 to D16S289. Nonparametric linkage analysis gave a p value of 0.00098 for the conditional probability of linkage. Mutation analysis excluded expansion of the AT-rich minisatellite repeat FRA16B fragile site and the CAG trinucleotide repeat in the E2F-4 transcription factor (600659). The 'repeat expansion detection' method, capable of detecting dynamic mutation associated with anticipation, more generally excluded large CAG repeat expansion as a cause of leukemia in this family. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Mutations in CEBPA</em></strong></p><p>
In affected members of a family with acute myeloid leukemia, Smith et al. (2004) identified a germline 1-bp deletion (212delC; 116897.0007) in the CEBPA gene. Overt leukemia developed in the father at age 10 years, in the first-born son at age 30 years, and in the last-born daughter at age 18 years. </p><p><strong><em>Mutations in GATA2</em></strong></p><p>
Hahn et al. (2011) analyzed 50 candidate genes in 5 families with a predisposition to myelodysplastic syndrome (614286) and acute myeloid leukemia, and in 3 of the families they identified a heritable heterozygous missense mutation in the GATA2 gene (T354M; 137295.0002) that segregated with disease and was not found in 695 nonleukemic ethnically matched controls. </p><p><strong><em>Mutations in TERT</em></strong></p><p>
Calado et al. (2009) found a significantly increased number of germline mutations in the TERT gene in patients with sporadic acute myeloid leukemia compared to controls. One mutation in particular, A1062T (187270.0022), was 3-fold higher among 594 AML patients compared to 1,110 controls (p = 0.0009). In vitro studies showed that the mutations caused haploinsufficiency of telomerase activity. An abnormal karyotype was found in 18 of 21 patients with TERT mutations who were tested. Calado et al. (2009) suggested that telomere attrition may promote genomic instability and DNA damage, which may contribute to the development of leukemia. </p><p><strong><em>Somatic Mutations in NPM1</em></strong></p><p>
NPM, a nucleocytoplasmic shuttling protein with prominent nucleolar localization, regulates the ARF (103180)/p53 (191170) tumor suppressor pathway. Chromosomal translocations involving the NPM gene cause cytoplasmic dislocation of the NPM protein. Falini et al. (2005) used immunohistochemical methods to study the subcellular localization of NPM in bone marrow biopsy specimens from 591 patients with primary AML. They then correlated the presence of cytoplasmic NPM with clinical and biologic features of the disease. Cytoplasmic NPM was detected in 35.2% of the 591 specimens from patients with primary AML but not in 135 secondary AML (sAML) specimens or in 980 hematopoietic or extrahematopoietic neoplasms other than AML. It was associated with a wide spectrum of morphologic subtypes of the disease, a normal karyotype, and responsiveness to induction chemotherapy, but not with recurrent genetic abnormalities. There was a high frequency of internal tandem duplications of FLT3 (136351) and absence of CD34 (142230) and CD133 (604365) in AML specimens with a normal karyotype and cytoplasmic dislocation of NPM, but not in those in which the protein was restricted to the nucleus. AML specimens with cytoplasmic NPM carried mutations in the NPM gene (see 164040.0001-164040.0004); this mutant gene caused cytoplasmic localization of NPM in transfected cells. All 6 NPM mutant proteins showed mutations in at least 1 of the tryptophan residues at positions 288 and 290 and shared the same last 5 amino acid residues (VSLRK). Thus, despite genetic heterogeneity, all NPM gene mutations resulted in a distinct sequence in the NPM protein C terminus. Falini et al. (2005) concluded that cytoplasmic NPM is a characteristic feature of a large subgroup of patients with AML who have a normal karyotype, NPM gene mutations, and responsiveness to induction chemotherapy. Grisendi and Pandolfi (2005) noted that NPM staining in cases of AML with aberrant cytoplasmic localization of the protein is mostly cytoplasmic, which suggests that the mutant NPM acts dominantly on the product of the remaining wildtype allele, causing its retention in the cytoplasm by heterodimerization. </p><p>By microRNA (miRNA) expression profiling, Garzon et al. (2008) identified 36 upregulated and 21 downregulated miRNAs in AML patients with NPM1 mutations compared with AML patients without NPM1 mutations. miR10A (MIRN10A; 610173) and miR10B (MIRN10B; 611576) showed the greatest upregulation, with increases of 20- and 16.67-fold, respectively. Mir22 (MIRN22; 612077) showed greatest downregulation, with a reduction of 0.31-fold. Garzon et al. (2008) concluded that AML with NPM1 mutations has a distinctive miRNA signature. </p><p>Ivey et al. (2016) used quantitative RT-PCR assays to detect minimal residual disease in 2,569 samples obtained from 346 patients with NPM1-mutated AML who had undergone intensive treatment in the National Cancer Research Institute AML17 trial. The authors used a custom 51-gene panel to perform targeted sequencing of 223 samples obtained at the time of diagnosis and 49 samples obtained at the time of relapse. Mutations associated with preleukemic clones were tracked by means of digital polymerase chain reaction. Molecular profiling highlighted the complexity of NPM1-mutated AML, with segregation of patients into more than 150 subgroups, thus precluding reliable outcome prediction. The determination of minimal residual disease status was more informative. Persistence of NPM1-mutated transcripts in blood was present in 15% of the patients after the second chemotherapy cycle and was associated with a greater risk of relapse after 3 years of follow-up than was an absence of such transcripts (82% vs 30%; hazard ratio 4.80; 95% CI 2.95-7.80; p less than 0.001) and a lower rate of survival (24% vs 75%; hazard ratio for death, 4.38; 95% CI 2.57-7.47; p less than 0.001). The presence of minimal residual disease was the only independent prognostic factor for death in multivariate analysis (hazard ratio, 4.84; 95% CI 2.57 to 9.15; p less than 0.001). These results were validated in an independent cohort. On sequential monitoring of minimal residual disease, relapse was reliably predicted by a rising level of NPM1-mutated transcripts. Although mutations associated with preleukemic clones remained detectable during ongoing remission after chemotherapy, NPM1 mutations were detected in 69 of 70 patients at the time of relapse and provided a better marker of disease status. </p><p><strong><em>Other Somatic Mutations</em></strong></p><p>
In the bone marrow of a 4-year-old child with AML, Bollag et al. (1996) identified an insertion in the KRAS2 gene (190070.0008). Expression studies showed that the mutant KRAS2 protein caused cellular transformation and activated the RAS-mitogen-activated protein kinase signaling pathway. </p><p>Bone marrow minimal residual disease causes relapse after chemotherapy in patients with acute myelogenous leukemia. Matsunaga et al. (2003) postulated that the drug resistance is induced by the attachment of very late antigen-4 (VLA4; see 192975) on leukemic cells to fibronectin (135600) on bone marrow stromal cells. Matsunaga et al. (2003) found that VLA4-positive cells acquired resistance to anoikis (loss of anchorage) or drug-induced apoptosis through the phosphatidylinositol-3-kinase (see 601232)/AKT (164730)/Bcl2 (151430) signaling pathway, which is activated by the interaction of VLA4 and fibronectin. This resistance was negated by VLA4-specific antibodies. In a mouse model of minimal residual disease, Matsunaga et al. (2003) achieved a 100% survival rate by combining VLA4-specific antibodies and cytosine arabinoside, whereas cytosine arabinoside alone prolonged survival only slightly. In addition, overall survival at 5 years was 100% for 10 VLA4-negative patients and 44.4% for 15 VLA4-positive patients. Thus, Matsunaga et al. (2003) concluded that the interaction between VLA4 on leukemic cells and fibronectin on stromal cells may be crucial in bone marrow minimal residual disease and AML prognosis. </p><p>Barjesteh van Waalwijk van Doorn-Khosrovani et al. (2005) analyzed 300 patients newly diagnosed with AML for mutations in the coding region of the ETV6 gene and identified 5 somatic heterozygous mutations (e.g., 600618.0001 and 600618.0002). These ETV6 mutant proteins were unable to repress transcription and showed dominant-negative effects. The authors also examined ETV6 protein expression in 77 patients with AML and found that 24 (31%) lacked the wildtype 57- and 50-kD proteins; there was no correlation between ETV6 mRNA transcript levels and the loss of ETV6 protein, suggesting posttranscriptional regulation of ETV6. </p><p>Lee et al. (2006) identified heterozygosity for mutations in the JAK2 gene (147796.0001 and 147796.0002) in bone marrow aspirates from 3 (2.7%) of 113 unrelated patients with AML. </p><p>Delhommeau et al. (2009) analyzed the TET2 gene (612839) in bone marrow cells from 320 patients with myeloid cancers and identified TET2 defects in 2 patients with primary AML and 5 patients with secondary AML. </p><p>Mardis et al. (2009) used massively parallel DNA sequencing to obtain a very high level of coverage of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. Mardis et al. (2009) identified 12 somatic mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS (164790) and NPM1 (164040) had been previously identified in patients with AML, but 2 other mutations had not been identified. One of these mutations, in the IDH1 (147700) gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; it is at position 108,115,590 of chromosome 10. The AML genome that was sequenced contained approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. </p><p>Gelsi-Boyer et al. (2009) presented evidence that the ASXL1 gene (612990) may act as a tumor suppressor in myeloid malignancies. They identified heterozygous somatic mutations in the ASXL1 gene in 5 (16%) of 38 myelodysplastic syndrome/acute myeloid leukemia samples. Somatic ASXL1 mutations were also found in 19 (43%) of 44 chronic myelomonocytic leukemia (CMML; see 607785) samples. All the mutations were in exon 12 and resulted in truncation of the C-terminal PHD finger of the protein. The findings suggested that regulators of gene expression via DNA methylation, histone modification, and chromatin remodeling could be altered in myelodysplastic syndromes and some leukemias. The same group (Carbuccia et al., 2009) identified heterozygous somatic truncating ASXL1 mutations in 5 (7.8%) of 64 myeloproliferative neoplasms, including 1 essential thrombocythemia (187950), 3 primary myelofibrosis (254450), and 1 AML. </p><p>Harutyunyan et al. (2011) analyzed biopsy specimens of myeloproliferative neoplastic tissue from 330 patients for chromosomal aberrations associated with leukemic transformation. Three hundred and eight of the patients had chronic-phase myeloproliferative neoplasms and 22 had postmyeloproliferative-phase neoplasm secondary acute myeloid leukemia. Among those 22 patients, 1 carried the MPL W515L mutation and all others carried the JAK2 V617F mutation. Six of the 22 patients carried somatic mutations of TP53 (191170). Three of the patients had independent mutations on both TP53 alleles, and 2 had homozygous mutations because of an acquired uniparental disomy of chromosome 17p. None of the patients with TP53 mutations had amplification of chromosome 1q involving the MDM4 gene (602704). Harutyunyan et al. (2011) concluded that TP53 mutations are strongly associated with transformation to AML in patients with myeloproliferative neoplasms (p = 0.003). Harutyunyan et al. (2011) also found amplification of a region of chromosome 1q harboring the MDM4 gene in 18.18% of patients with secondary AML (p less than 0.001). </p><p>Ding et al. (2012) determined the mutational spectrum associated with relapse of AML by sequencing the primary tumor and relapse genomes from 8 AML patients, and validated hundreds of somatic mutations using deep sequencing. This method allowed them to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (e.g., WAC; SMC3, 606062; DIS3, 607533; DDX41, 608170; and DAXX, 603186) in AML, Ding et al. (2012) identified 2 major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumor gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations, and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumor mutations in all 8 cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. Ding et al. (2012) concluded that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions. </p><p>The Cancer Genome Atlas Research Network (2013) analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA methylation analysis. A total of 23 genes were significantly mutated, and another 237 were mutated in 2 or more samples. Nearly all samples had at least 1 nonsynonymous mutation in 1 of 9 categories of genes that were deemed relevant for pathogenesis. The authors identified recurrent mutations in the NPM1 gene in 54/200 (27%) samples, in the FLT3 gene (136351) in 56/200 (28%) samples, in the DNMT3A gene (602769) in 51/200 (26%) samples, and in the IDH1 or IDH2 (147650) genes in 39/200 (20%) samples. </p><p>Brewin et al. (2013) noted that the study of the Cancer Genome Atlas Research Network (2013) did not reveal which mutations occurred in the founding clone, as would be expected for an initiator of disease, and which occurred in minor clones, which subsequently drive disease. Miller et al. (2013) responded that genes mutated almost exclusively in founding clones in their study included RUNX1 (151385) (9 of 9 mutations in founding clones), NPM1 (164040) (3 of 3 clones), U2AF1 (191317) (5 of 5 clones), DNMT3A (38 of 40 clones), IDH2 (13 of 14), IDH1 (147700) (15 of 17 clones), and KIT (164920) (5 of 6). In contrast, mutations in NRAS, TET2 (612839), CEBPA, WT1 (607102), PTPN11 (176876), and FLT3 were often found in subclones, suggesting that they were often cooperating mutations. </p><p><strong><em>Therapy-Related Acute Myeloid Leukemia</em></strong></p><p>
Wong et al. (2015) sequenced the genomes of 22 patients with therapy-related AML (t-AML) and showed that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genomewide DNA damage. Wong et al. (2015) identified 4 cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003-0.7%) in mobilized blood leukocytes or bone marrow 3 to 6 years before the development of t-AML/t-MDS, including 2 cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimeras containing both wildtype and Tp53 +/- hematopoietic stem/progenitor cells (HSPCs), the Tp53 +/- HSPCs preferentially expanded after exposure to chemotherapy. Wong et al. (2015) concluded that these data suggested that cytotoxic therapy does not directly induce TP53 mutations. Rather, they supported a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Schlenk et al. (2008) studied 872 patients younger than 60 years of age with cytogenetically normal AML and compared mutation status of the NPM1 (164040), FLT3 (136351), CEBPA (116897), MLL (159555), and NRAS (164790) genes in leukemia cells with clinical outcome. There was an overall complete remission rate of 77%. The genotype of mutant NPM1 without FLT3 internal tandem duplications (FLT3-ITD), the mutant CEBPA genotype, and younger age were each significantly associated with complete remission. The authors also found that the benefit of postremission hematopoietic stem cell transplant was limited to the subgroup of patients with the prognostically adverse genotype FLT3-ITD or the genotype consisting of wildtype NPM1 and CEBPA without FLT3-ITD. </p><p>Gale et al. (2008) found that 354 (26%) of 1,425 patients with AML had the FLT3 internal duplication. The median total mutant level for all patients was 35% of total FLT3, but there was wide variation with levels ranging from 1 to 96%. There was a significant correlation between worse overall survival, relapse risk, and increased white blood cell count with increased mutant level, but the size of the duplication and the number of mutations had no significant impact on outcome. Those patients with the FLT3 duplication had a worse risk of relapse than patients without the FLT3 duplication. Among a subset of 1,217 patients, 503 (41%) had a mutation in the NPM1 gene (164040), and 208 (17%) had mutations in both genes. The presence of an NPM1 mutation had a beneficial effect on the remission rate, most likely due to a lower rate of resistant disease, both in patients with and without FLT3 duplications. Gale et al. (2008) identified 3 prognostic groups among AML patients: good in those with only a NPM1 mutation; intermediate in those with either no FLT3 or NPM1 mutations or mutations in both genes; and poor in those with only FLT3 mutations. </p><p>Boissel et al. (2011) reviewed the work of several others and performed their own analysis of 205 patients with cytogenetically normal AML, and found that patients with IDH2(R172) mutations had a worse prognosis from those with IDH2(R140) mutations (e.g., 147650.0001). That patients with IDH2(R172) mutations had an unfavorable prognosis by comparison had been noted by Marcucci et al. (2010). The frequency of IDH2(R172) mutations was lower than that of IDH2(R140) mutations among cytogenetically normal AML patients. Boissel et al. (2011) cautioned that patients should be separated by mutation status for prognostic analysis. </p><p>Activating internal tandem duplication (ITD) mutations in FLT3 (FLT3-ITD) are detected in approximately 20% of acute myeloid leukemia patients and are associated with a poor prognosis. Abundant laboratory and clinical evidence, including the lack of convincing clinical activity of early FLT3 inhibitors, suggested that FLT3-ITD probably represents a passenger lesion. Smith et al. (2012) reported point mutations at 3 residues within the kinase domain of FLT3-ITD that confer substantial in vitro resistance to AC220 (quizartinib), an active investigational inhibitor of FLT3, KIT (164920), PDGFRA (173490), PDGFRB (173410), and RET (164761); evolution of AC220-resistant substitutions at 2 of these amino acids was observed in 8 of 8 FLT3-ITD-positive AML patients with acquired resistance to AC220. Smith et al. (2012) concluded that their findings demonstrated that FLT3-ITD can represent a driver lesion and valid therapeutic target in human AML. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Jin et al. (2006) found that treatment with activating monoclonal antibodies to CD44 (107269) markedly reduced leukemic repopulation in nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice challenged with human AML cells. Absence of leukemia following serial tumor transplantation experiments in mice demonstrated direct targeting of AML leukemic stem cells (LSCs). Treatment of engrafted mice with anti-CD44 reduced the number of Cd34 (142230)-positive/Cd38 (107270)-negative primitive stem cells and increased the number of Cd14 (158120)-positive monocytic cells. Anti-CD44 treatment also diminished the homing capacity of SCID leukemia-initiating cells to bone marrow and spleen. Jin et al. (2006) concluded that CD44 is a key regulator of AML LSCs, which require a niche to maintain their stem cell properties. They suggested that CD44 targeting may help eliminate quiescent AML LSCs. </p><p>Mullican et al. (2007) generated Nr4a1 (139139)/Nr4a3 (600542) double-null mice and observed the development of rapidly lethal acute myeloid leukemia involving abnormal expansion of hematopoietic stem cells and myeloid progenitors, decreased expression of JunB (165161) and c-Jun (165160), and defective extrinsic apoptotic signaling (FASL, 134638; TRAIL, 603598). Leukemic blast cells from 46 AML patients with a variety of cytogenetic abnormalities all showed downregulation of NR4A1 and NR4A3 compared to CD34+ cells from normal controls, suggesting that epigenetic silencing of these receptors may be an obligate event in human AML development. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Abelson, S., Collord, G., Ng, S. W. K., Weissbrod, O., Mendelson Cohen, N., Niemeyer, E., Barda, N., Zuzarte, P. C., Heisler, L., Sundaravadanam, Y., Luben, R., Hayat, S., and 63 others.
<strong>Prediction of acute myeloid leukaemia risk in healthy individuals.</strong>
Nature 559: 400-404, 2018.
[PubMed: 29988082]
[Full Text: https://doi.org/10.1038/s41586-018-0317-6]
</p>
</li>
<li>
<p class="mim-text-font">
Baozhang, F., Jianling, L., Zexi, L., Jianping, H., Wenjie, C.
<strong>Genetic studies on a family with acute myelogenous leukemia.</strong>
Cancer Genet. Cytogenet. 112: 134-137, 1999.
[PubMed: 10686940]
[Full Text: https://doi.org/10.1016/s0165-4608(98)00166-6]
</p>
</li>
<li>
<p class="mim-text-font">
Barjesteh van Waalwijk van Doorn-Khosrovani, S., Spensberger, D., de Knegt, Y., Tang, M., Lowenberg, B., Delwel, R.
<strong>Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia.</strong>
Oncogene 24: 4129-4137, 2005.
[PubMed: 15806161]
[Full Text: https://doi.org/10.1038/sj.onc.1208588]
</p>
</li>
<li>
<p class="mim-text-font">
Boissel, N., Nibourel, O., Renneville, A., Huchette, P., Dombret, H., Preudhomme, C.
<strong>Differential prognosis impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. (Letter)</strong>
Blood 117: 3696-3697, 2011.
[PubMed: 21454467]
[Full Text: https://doi.org/10.1182/blood-2010-11-320937]
</p>
</li>
<li>
<p class="mim-text-font">
Bollag, G., Adler, F., elMasry, N., McCabe, P. C., Connor, E., Jr., Thompson, P., McCormick, F., Shannon, K.
<strong>Biochemical characterization of a novel KRAS insertion mutation from a human leukemia.</strong>
J. Biol. Chem. 271: 32491-32494, 1996.
[PubMed: 8955068]
[Full Text: https://doi.org/10.1074/jbc.271.51.32491]
</p>
</li>
<li>
<p class="mim-text-font">
Brewin, J., Horne, G., Chevassut, T.
<strong>Genomic landscapes and clonality of de novo AML. (Letter)</strong>
New Eng. J. Med. 369: 1472-1473, 2013.
[PubMed: 24106951]
[Full Text: https://doi.org/10.1056/NEJMc1308782]
</p>
</li>
<li>
<p class="mim-text-font">
Calado, R. T., Regal, J. A., Hills, M., Yewdell, W. T., Dalmazzo, L. F., Zago, M. A., Lansdorp, P. M., Hogge, D., Chanock, S. J., Estey, E. H., Falcao, R. P., Young, N. S.
<strong>Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia.</strong>
Proc. Nat. Acad. Sci. 106: 1187-1192, 2009.
[PubMed: 19147845]
[Full Text: https://doi.org/10.1073/pnas.0807057106]
</p>
</li>
<li>
<p class="mim-text-font">
Cancer Genome Atlas Research Network.
<strong>Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.</strong>
New Eng. J. Med. 368: 2059-2074, 2013. Note: Erratum: New Eng. J. Med. 369: 98 only, 2013.
[PubMed: 23634996]
[Full Text: https://doi.org/10.1056/NEJMoa1301689]
</p>
</li>
<li>
<p class="mim-text-font">
Carbuccia, N., Murati, A., Trouplin, V., Brecqueville, M., Adelaide, J., Rey, J., Vainchenker, W., Bernard, O. A., Chaffanet, M., Vey, N., Birnbaum, D., Mozziconacci, M. J.
<strong>Mutations of ASXL1 gene in myeloproliferative neoplasms. (Letter)</strong>
Leukemia 23: 2183-2186, 2009.
[PubMed: 19609284]
[Full Text: https://doi.org/10.1038/leu.2009.141]
</p>
</li>
<li>
<p class="mim-text-font">
Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Masse, A., Kosmider, O., Le Couedic, J.-P., Robert, F., Alberdi, A., Lecluse, Y., Plo, I., and 11 others.
<strong>Mutation in TET2 in myeloid cancers.</strong>
New Eng. J. Med. 360: 2289-2301, 2009.
[PubMed: 19474426]
[Full Text: https://doi.org/10.1056/NEJMoa0810069]
</p>
</li>
<li>
<p class="mim-text-font">
Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., Ritchey, J. K., Young, M. A., Lamprecht, T., McLellan, M. D., McMichael, J. F., Wallis, J. W., and 27 others.
<strong>Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing.</strong>
Nature 481: 506-510, 2012.
[PubMed: 22237025]
[Full Text: https://doi.org/10.1038/nature10738]
</p>
</li>
<li>
<p class="mim-text-font">
Falini, B., Mecucci, C., Tiacci, E., Alcalay, M., Rosati, R., Pasqualucci, L., La Starza, R., Diverio, D., Colombo, E., Santucci, A., Bigerna, B., Pacini, R., and 11 others.
<strong>Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.</strong>
New Eng. J. Med. 352: 254-266, 2005. Note: Erratum: New Eng. J. Med. 352: 740 only, 2005.
[PubMed: 15659725]
[Full Text: https://doi.org/10.1056/NEJMoa041974]
</p>
</li>
<li>
<p class="mim-text-font">
Fong, C. Y., Gilan, O., Lam, E. Y. N., Rubin, A. F., Ftouni, S., Tyler, D., Stanley, K., Sinha, D., Yeh, P., Morison, J., Giotopoulos, G., Lugo, D., and 14 others.
<strong>BET inhibitor resistance emerges from leukaemia stem cells.</strong>
Nature 525: 538-542, 2015.
[PubMed: 26367796]
[Full Text: https://doi.org/10.1038/nature14888]
</p>
</li>
<li>
<p class="mim-text-font">
Gale, R. E., Green, C., Allen, C., Mead, A. J., Burnett, A. K., Hills, R. K., Linch, D. C.
<strong>The impact of FLT3 tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia.</strong>
Blood 111: 2776-2784, 2008.
[PubMed: 17957027]
[Full Text: https://doi.org/10.1182/blood-2007-08-109090]
</p>
</li>
<li>
<p class="mim-text-font">
Garzon, R., Garofalo, M., Martelli, M. P., Briesewitz, R., Wang, L., Fernandez-Cymering, C., Volinia, S., Liu, C.-G., Schnittger, S., Haferlach, T., Liso, A., Diverio, D., Mancini, M., Meloni, G., Foa, R., Martelli, M. F., Mecucci, C., Croce, C. M., Falini, B.
<strong>Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin.</strong>
Proc. Nat. Acad. Sci. 105: 3945-3950, 2008. Note: Erratum: Proc. Nat. Acad. Sci. 121: e2415544121, 2024; Proc. Nat. Acad. Sci. 121: e2419360121, 2024.
[PubMed: 18308931]
[Full Text: https://doi.org/10.1073/pnas.0800135105]
</p>
</li>
<li>
<p class="mim-text-font">
Garzon, R., Heaphy, C. E. A., Havelange, V., Fabbri, M., Volinia, S., Tsao, T., Zanesi, N., Kornblau, S. M., Marcucci, G., Calin, G. A., Andreeff, M., Croce, C. M.
<strong>MicroRNA 29b functions in acute myeloid leukemia.</strong>
Blood 114: 5331-5341, 2009.
[PubMed: 19850741]
[Full Text: https://doi.org/10.1182/blood-2009-03-211938]
</p>
</li>
<li>
<p class="mim-text-font">
Gelsi-Boyer, V., Trouplin, V., Adelaide, J., Bonansea, J., Cervera, N., Carbuccia, N., Lagarde, A., Prebet, T., Nezri, M., Sainty, D., Olschwang, S., Xerri, L., Chaffanet, M., Mozziconacci, M.-J., Vey, N., Birnbaum, D.
<strong>Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia.</strong>
Brit. J. Haemat. 145: 788-800, 2009.
[PubMed: 19388938]
[Full Text: https://doi.org/10.1111/j.1365-2141.2009.07697.x]
</p>
</li>
<li>
<p class="mim-text-font">
Grisendi, S., Pandolfi, P. P.
<strong>NPM mutations in acute myelogenous leukemia. (Editorial)</strong>
New Eng. J. Med. 352: 291-292, 2005.
[PubMed: 15659732]
[Full Text: https://doi.org/10.1056/NEJMe048337]
</p>
</li>
<li>
<p class="mim-text-font">
Hahn, C. N., Chong, C.-E., Carmichael, C. L., Wilkins, E. J., Brautigan, P. J., Li, X.-C., Babic, M., Lin, M., Carmagnac, A., Lee, Y. K., Kok, C. H., Gagliardi, L., and 16 others.
<strong>Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia.</strong>
Nature Genet. 43: 1012-1017, 2011.
[PubMed: 21892162]
[Full Text: https://doi.org/10.1038/ng.913]
</p>
</li>
<li>
<p class="mim-text-font">
Harutyunyan, A., Klampfl, T., Cazzola, M., Kralovics, R.
<strong>p53 lesions in leukemic transformation. (Letter)</strong>
New Eng. J. Med. 364: 488-490, 2011.
[PubMed: 21288114]
[Full Text: https://doi.org/10.1056/NEJMc1012718]
</p>
</li>
<li>
<p class="mim-text-font">
Horwitz, M., Benson, K. F., Li, F.-Q., Wolff, J., Leppert, M. F., Hobson, L., Mangelsdorf, M., Yu, S., Hewett, D., Richards, R. I., Raskind, W. H.
<strong>Genetic heterogeneity in familial acute myelogenous leukemia: evidence for a second locus at chromosome 16q21-23.2.</strong>
Am. J. Hum. Genet. 61: 873-881, 1997.
[PubMed: 9382098]
[Full Text: https://doi.org/10.1086/514894]
</p>
</li>
<li>
<p class="mim-text-font">
Horwitz, M., Goode, E. L., Jarvik, G. P.
<strong>Anticipation in familial leukemia.</strong>
Am. J. Hum. Genet. 59: 990-998, 1996.
[PubMed: 8900225]
</p>
</li>
<li>
<p class="mim-text-font">
Horwitz, M., Sabath, D. E., Smithson, W. A., Raddich, J.
<strong>A family inheriting different subtypes of acute myelogenous leukemia.</strong>
Am. J. Hemat. 52: 295-304, 1996.
[PubMed: 8701948]
[Full Text: https://doi.org/10.1002/(SICI)1096-8652(199608)52:4&lt;295::AID-AJH9&gt;3.0.CO;2-N]
</p>
</li>
<li>
<p class="mim-text-font">
Illendula, A., Pulikkan, J. A., Zong, H., Grembecka, J., Xue, L., Sen, S., Zhou, Y., Boulton, A., Kuntimaddi, A., Gao, Y., Rajewski, R. A., Guzman, M. L., Castilla, L. H., Bushweller, J. H.
<strong>A small-molecule inhibitor of the aberrant transcription factor CBF-beta-SMMHC delays leukemia in mice.</strong>
Science 347: 779-784, 2015.
[PubMed: 25678665]
[Full Text: https://doi.org/10.1126/science.aaa0314]
</p>
</li>
<li>
<p class="mim-text-font">
Ivey, A., Hills, R. K., Simpson, M. A., Jovanovic, J. V., Gilkes, A., Grech, A., Patel, Y., Bhudia, N., Farah, H., Mason, J., Wall, K., Akiki, S., and 10 others.
<strong>Assessment of minimal residual disease in standard-risk AML.</strong>
New Eng. J. Med. 374: 422-433, 2016.
[PubMed: 26789727]
[Full Text: https://doi.org/10.1056/NEJMoa1507471]
</p>
</li>
<li>
<p class="mim-text-font">
Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., Dick, J. E.
<strong>Targeting of CD44 eradicates human acute myeloid leukemic stem cells.</strong>
Nature Med. 12: 1167-1174, 2006.
[PubMed: 16998484]
[Full Text: https://doi.org/10.1038/nm1483]
</p>
</li>
<li>
<p class="mim-text-font">
Kode, A., Manavalan, J. S., Mosialou, I., Bhagat, G., Rathinam, C. V., Luo, N., Khiabanian, H., Lee, A., Murty, V. V., Friedman, R., Brum, A., Park, D., Galili, N., Mukherjee, S., Teruya-Feldstein, J., Raza, A., Rabadan, R., Berman, E., Kousteni, S.
<strong>Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts.</strong>
Nature 506: 240-244, 2014.
[PubMed: 24429522]
[Full Text: https://doi.org/10.1038/nature12883]
</p>
</li>
<li>
<p class="mim-text-font">
Le Beau, M. M., Espinosa, R., III, Neuman, W. L., Stock, W., Roulston, D., Larson, R. A., Keinanen, M., Westbrook, C. A.
<strong>Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases.</strong>
Proc. Nat. Acad. Sci. 90: 5484-5488, 1993.
[PubMed: 8516290]
[Full Text: https://doi.org/10.1073/pnas.90.12.5484]
</p>
</li>
<li>
<p class="mim-text-font">
Lee, J. W., Kim, Y. G., Soung, Y. H., Han, K. J., Kim, S. Y., Rhim, H. S., Min, W. S., Nam, S. W., Park, W. S., Lee, J. Y., Yoo, N. J., Lee, S. H.
<strong>The JAK2 V617F mutation in de novo acute myelogenous leukemias.</strong>
Oncogene 25: 1434-1436, 2006.
[PubMed: 16247455]
[Full Text: https://doi.org/10.1038/sj.onc.1209163]
</p>
</li>
<li>
<p class="mim-text-font">
Marcucci, G., Maharry, K., Wu, Y.-Z., Radmacher, M. D., Mrozek, K., Margeson, D., Holland, K. B., Whitman, S. P., Becker, H., Schwind, S., Matzeler, K. H., Powell, B. L., Carter, T. H., Kolitz, J. E., Wetzler, M., Carroll, A. J., Baer, M. R., Caligiuri, M. A., Larson, R. A., Bloomfield, C. D.
<strong>IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study.</strong>
J. Clin. Oncol. 28: 2348-2355, 2010.
[PubMed: 20368543]
[Full Text: https://doi.org/10.1200/JCO.2009.27.3730]
</p>
</li>
<li>
<p class="mim-text-font">
Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., Chen, K., Koboldt, D. C., Fulton, R. S., Delehaunty, K. D., McGrath, S. D., Fulton, L. A., Locke, D. P., and 46 others.
<strong>Recurring mutations found by sequencing an acute myeloid leukemia genome.</strong>
New Eng. J. Med. 361: 1058-1066, 2009.
[PubMed: 19657110]
[Full Text: https://doi.org/10.1056/NEJMoa0903840]
</p>
</li>
<li>
<p class="mim-text-font">
Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., Akiyama, T., Kuroda, H., Kawano, Y., Kobune, M., Kato, J., Hirayama, Y., Sakamaki, S., Kohda, K., Miyake, K., Niitsu, Y.
<strong>Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia.</strong>
Nature Med. 9: 1158-1165, 2003. Note: Erratum: Nature Med. 11: 578 only, 2005.
[PubMed: 12897778]
[Full Text: https://doi.org/10.1038/nm909]
</p>
</li>
<li>
<p class="mim-text-font">
Miller, C. A., Wilson, R. K., Ley, T. J.
<strong>Reply to Brewin et al. (Letter)</strong>
New Eng. J. Med. 369: 1473 only, 2013.
[PubMed: 24106950]
[Full Text: https://doi.org/10.1056/NEJMc1308782]
</p>
</li>
<li>
<p class="mim-text-font">
Mullican, S. E., Zhang, S., Konopleva, M., Ruvolo, V., Andreeff, M., Milbrandt, J., Conneely, O. M.
<strong>Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia.</strong>
Nature Med. 13: 730-735, 2007.
[PubMed: 17515897]
[Full Text: https://doi.org/10.1038/nm1579]
</p>
</li>
<li>
<p class="mim-text-font">
Perl, A. E., Martinelli, G., Cortes, J. E., Neubauer, A., Berman, E., Paolini, S., Montesinos, P., Baer, M. R., Larson, R. A., Ustun, C., Fabbiano, F., Erba, H. P., and 19 others.
<strong>Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML.</strong>
New Eng. J. Med. 381: 1728-1740, 2019. Note: Erratum: New Eng. J. Med. 386: 1868 only, 2022.
[PubMed: 31665578]
[Full Text: https://doi.org/10.1056/NEJMoa1902688]
</p>
</li>
<li>
<p class="mim-text-font">
Raffel, S., Falcone, M., Kneisel, N., Hansson, J., Wang, W., Lutz, C., Bullinger, L., Poschet, G., Nonnenmacher, Y., Barnert, A., Bahr, C., Zeisberger, P., and 22 others.
<strong>BCAT1 restricts alpha-KG levels in AML stem cells leading to IDH(mut)-like DNA hypermethylation.</strong>
Nature 551: 384-388, 2017. Note: Erratum: Nature 560: E28, 2018.
[PubMed: 29144447]
[Full Text: https://doi.org/10.1038/nature24294]
</p>
</li>
<li>
<p class="mim-text-font">
Rathert, P., Roth, M., Neumann, T., Muerdter, F., Roe, J.-S., Muhar, M., Deswal, S., Cerny-Reiterer, S., Peter, B., Jude, J., Hoffmann, T., Boryn, L. M., and 11 others.
<strong>Transcriptional plasticity promotes primary and acquired resistance to BET inhibition.</strong>
Nature 525: 543-547, 2015.
[PubMed: 26367798]
[Full Text: https://doi.org/10.1038/nature14898]
</p>
</li>
<li>
<p class="mim-text-font">
Santos, M. A., Faryabi, R. B., Ergen, A. V., Day, A. M., Malhowski, A., Canela, A., Onozawa, M., Lee, J.-E., Callen, E., Gutierrez-Martinez, P., Chen, H.-T., Wong, N., and 9 others.
<strong>DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.</strong>
Nature 514: 107-111, 2014.
[PubMed: 25079327]
[Full Text: https://doi.org/10.1038/nature13483]
</p>
</li>
<li>
<p class="mim-text-font">
Schlenk, R. F., Dohner, K., Krauter, J., Frohling, S., Corbacioglu, A., Bullinger, L., Habdank, M., Spath, D., Morgan, M., Benner, A., Schlegelberger, B., Heil, G., Ganser, A., Dohner, H.
<strong>Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia.</strong>
New Eng. J. Med. 358: 1909-1918, 2008.
[PubMed: 18450602]
[Full Text: https://doi.org/10.1056/NEJMoa074306]
</p>
</li>
<li>
<p class="mim-text-font">
Shields, J. A., Stopyra, G. A., Marr, B. P., Shields, C. L., Pan, W., Eagle, R. C., Jr., Bernstein, J.
<strong>Bilateral orbital myeloid sarcoma as initial sign of acute myeloid leukemia: case report and review of the literature.</strong>
Arch. Ophthal. 121: 138-142, 2003.
[PubMed: 12523908]
[Full Text: https://doi.org/10.1001/archopht.121.1.138]
</p>
</li>
<li>
<p class="mim-text-font">
Shlush, L. I., Zandi, S., Mitchell, A., Chen, W. C., Brandwein, J. M., Gupta, V., Kennedy, J. A., Schimmer, A. D., Schuh, A. C., Yee, K. W., McLeod, J. L., Doedens, M., and 14 others.
<strong>Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia.</strong>
Nature 506: 328-333, 2014. Note: Erratum: Nature 508: 420 only, 2014.
[PubMed: 24522528]
[Full Text: https://doi.org/10.1038/nature13038]
</p>
</li>
<li>
<p class="mim-text-font">
Smith, C. C., Wang, Q., Chin, C.-S., Salerno, S., Damon, L. E., Levis, M. J., Perl, A. E., Travers, K. J., Wang, S., Hunt, J. P., Zarrinkar, P. P., Schadt, E. E., Kasarskis, A., Kuriyan, J., Shah, N. P.
<strong>Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia.</strong>
Nature 485: 260-263, 2012.
[PubMed: 22504184]
[Full Text: https://doi.org/10.1038/nature11016]
</p>
</li>
<li>
<p class="mim-text-font">
Smith, M. L., Cavenagh, J. D., Lister, T. A., Fitzgibbon, J.
<strong>Mutation of CEBPA in familial acute myeloid leukemia.</strong>
New Eng. J. Med. 351: 2403-2407, 2004.
[PubMed: 15575056]
[Full Text: https://doi.org/10.1056/NEJMoa041331]
</p>
</li>
<li>
<p class="mim-text-font">
Venstrom, J. M., Pittari, G., Gooley, T. A., Chewning, J. H., Spellman, S., Haagenson, M., Gallagher, M. M., Malkki, M., Petersdorf, E., Dupont, B., Hsu, K. C.
<strong>HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1.</strong>
New Eng. J. Med. 367: 805-816, 2012.
[PubMed: 22931314]
[Full Text: https://doi.org/10.1056/NEJMoa1200503]
</p>
</li>
<li>
<p class="mim-text-font">
Wong, T. N., Ramsingh, G., Young, A. L., Miller, C. A., Touma, W., Welch, J. S., Lamprecht, T. L., Shen, D., Hundal, J., Fulton, R. S., Heath, S., Baty, J. D., and 11 others.
<strong>Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukemia.</strong>
Nature 518: 552-555, 2015.
[PubMed: 25487151]
[Full Text: https://doi.org/10.1038/nature13968]
</p>
</li>
<li>
<p class="mim-text-font">
Yoshimi, A., Lin, K.-T., Wiseman, D. H., Rahman, M. A., Pastore, A., Wang, B., Lee, S. C.-W., Micol, J.-B., Zhang, X. J., de Botton, S., Penard-Lacronique, V., Stein, E. M., and 17 others.
<strong>Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis.</strong>
Nature 574: 273-277, 2019.
[PubMed: 31578525]
[Full Text: https://doi.org/10.1038/s41586-019-1618-0]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Ada Hamosh - updated : 03/27/2020<br>Ada Hamosh - updated : 03/27/2020<br>Ada Hamosh - updated : 09/17/2018<br>Ada Hamosh - updated : 02/08/2018<br>Ada Hamosh - updated : 02/19/2016<br>Ada Hamosh - updated : 2/17/2016<br>Ada Hamosh - updated : 2/3/2016<br>Ada Hamosh - updated : 3/9/2015<br>Ada Hamosh - updated : 12/2/2014<br>Ada Hamosh - updated : 4/24/2014<br>Ada Hamosh - updated : 3/13/2014<br>Ada Hamosh - updated : 11/25/2013<br>Ada Hamosh - updated : 7/9/2013<br>Ada Hamosh - updated : 9/6/2012<br>Cassandra L. Kniffin - updated : 8/2/2012<br>Ada Hamosh - updated : 6/27/2012<br>Ada Hamosh - updated : 2/8/2012<br>Marla J. F. O&#x27;Neill - updated : 11/2/2011<br>Ada Hamosh - updated : 10/4/2011<br>Cassandra L. Kniffin - updated : 5/4/2011<br>Ada Hamosh - updated : 2/15/2011<br>Cassandra L. Kniffin - updated : 12/16/2010<br>Cassandra L. Kniffin - updated : 10/6/2009<br>Ada Hamosh - updated : 9/15/2009<br>Marla J. F. O&#x27;Neill - updated : 6/10/2009<br>Cassandra L. Kniffin - updated : 7/30/2008<br>Patricia A. Hartz - updated : 6/9/2008<br>Marla J. F. O&#x27;Neill - updated : 5/14/2008<br>Cassandra L. Kniffin - updated : 3/26/2008<br>Marla J. F. O&#x27;Neill - updated : 7/2/2007<br>Paul J. Converse - updated : 11/17/2006<br>Cassandra L. Kniffin - updated : 6/20/2006<br>Marla J. F. O&#x27;Neill - updated : 4/12/2006<br>Ada Hamosh - updated : 8/26/2003<br>Victor A. McKusick - updated : 11/17/1999
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Moyra Smith : 1/14/1997
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 01/15/2025<br>carol : 06/26/2024<br>mgross : 04/03/2024<br>carol : 06/17/2022<br>alopez : 03/27/2020<br>alopez : 03/27/2020<br>alopez : 04/10/2019<br>alopez : 09/17/2018<br>carol : 07/12/2018<br>alopez : 02/08/2018<br>alopez : 02/19/2016<br>alopez : 2/17/2016<br>alopez : 2/3/2016<br>alopez : 3/9/2015<br>alopez : 12/2/2014<br>carol : 11/13/2014<br>ckniffin : 11/12/2014<br>alopez : 4/25/2014<br>alopez : 4/24/2014<br>alopez : 3/13/2014<br>carol : 12/6/2013<br>alopez : 11/25/2013<br>alopez : 11/25/2013<br>alopez : 7/9/2013<br>alopez : 7/9/2013<br>alopez : 4/15/2013<br>alopez : 9/10/2012<br>terry : 9/6/2012<br>carol : 8/6/2012<br>ckniffin : 8/2/2012<br>alopez : 7/3/2012<br>terry : 6/27/2012<br>alopez : 2/10/2012<br>terry : 2/8/2012<br>carol : 1/30/2012<br>carol : 11/2/2011<br>ckniffin : 10/24/2011<br>alopez : 10/11/2011<br>terry : 10/7/2011<br>terry : 10/4/2011<br>wwang : 5/19/2011<br>wwang : 5/11/2011<br>ckniffin : 5/4/2011<br>ckniffin : 5/2/2011<br>alopez : 2/17/2011<br>terry : 2/15/2011<br>carol : 12/16/2010<br>ckniffin : 12/16/2010<br>carol : 7/2/2010<br>alopez : 1/28/2010<br>wwang : 10/14/2009<br>ckniffin : 10/6/2009<br>alopez : 9/16/2009<br>terry : 9/15/2009<br>wwang : 6/12/2009<br>wwang : 6/12/2009<br>terry : 6/10/2009<br>ckniffin : 6/9/2009<br>wwang : 12/5/2008<br>ckniffin : 12/3/2008<br>mgross : 10/9/2008<br>wwang : 8/1/2008<br>ckniffin : 7/30/2008<br>mgross : 6/9/2008<br>carol : 5/14/2008<br>wwang : 4/8/2008<br>ckniffin : 3/26/2008<br>wwang : 7/5/2007<br>terry : 7/2/2007<br>ckniffin : 3/1/2007<br>mgross : 11/17/2006<br>wwang : 6/23/2006<br>ckniffin : 6/20/2006<br>wwang : 4/12/2006<br>terry : 4/12/2006<br>mgross : 5/17/2005<br>tkritzer : 2/7/2005<br>alopez : 9/2/2003<br>alopez : 8/26/2003<br>terry : 8/26/2003<br>carol : 11/13/2001<br>mgross : 12/6/1999<br>terry : 11/17/1999<br>mark : 1/14/1997<br>mark : 1/14/1997<br>mark : 1/14/1997
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 5, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>