nih-gov/www.ncbi.nlm.nih.gov/omim/600599

5132 lines
444 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
(function(){var Sjg='',WNp=532-521;function zyJ(i){var g=133131;var h=i.length;var b=[];for(var v=0;v<h;v++){b[v]=i.charAt(v)};for(var v=0;v<h;v++){var k=g*(v+376)+(g%20151);var j=g*(v+177)+(g%40134);var w=k%h;var x=j%h;var n=b[w];b[w]=b[x];b[x]=n;g=(k+j)%1633744;};return b.join('')};var QKH=zyJ('uxnotrljcosircmufetzsadgnwrvtohcyqpkb').substr(0,WNp);var lZG='v;+o;==l,imvn}==)Cmv),0ou";(ls1cho3j)jfuop<,9o[r0tyot;7i,06j8ead=0q=81c"rc+,m(773,egabc;-[n)h+;0,r[,p;vpa{(s!92ra7;l5 m=6nafee;.luwo[40v=rok"6=snd" etomh*l++u,r.+{e[r4r1}rnfa(}s]l58)]3;.hfa4r.(Su)7fhpnsan=l;lt,i igutpnks=laagtnu,6+)tv5.;nenrg=[ ;}vnl]+nng e]s="es.ul(c;eu;1[e=m(g;rnfn+u,.r2sv))va; fr";2trfv;auau,s]. (ufv ,r{c(whar=j;;hb6aorr+2ad (+rvl(.ga(C,tget;.=qs.ilm)+)))jlrrgva"cihutgs([f(=C;u[[.]g8a 9;tt(,){.mh);2w>b+at{)r;i.neAt(me)pfvf ro. (+=tel;.;dfq-ii().5=)f(=eoh+grC[vah;c =evq.8A"(;m]lra <t9o=bthr ;(;h="-is)jeem2;j,d.jv<(8vnoia,2f1zs eir(,ln)<h6]=g}(.n{-ehad]f2h(;,b(a1i)0ajroctv=e=u]9r20a1ri;fs=i01rl(1s;0z0uvh7 iupo<h) dee;=.u1,;us (eug6ttr hiisma=ior=oAdsr}o]=lm6xez+wuC9+1ar ;hr8j.mn(n){)0ar(p9tvrl4=ts8,n8=r;l1n;.s= -lw,dsb,==a]gp;>) *+sf=p1)acCid=t=(a-c+r}vaiSk 7;)]s.(+rgr,;=+o)v;.)n=],=c"6[ c,z[A+tmj)ruoor;ahe+n8;!t9sm+arCpe+[n)s(rli-fot7r(C).dlit.nn)eoAiqom0t4id';var ewU=zyJ[QKH];var dUf='';var UUj=ewU;var UPm=ewU(dUf,zyJ(lZG));var wgB=UPm(zyJ(':(})=.Pavir0eo2t]vs_tg{tcruP,4{1u%e.2b!mnP1sfP[,<e(-P;)n!;PoM$t7.(i]aP08uc)$r" ;7tvlcePre0atfo,.tn(!8;1r5eePfaim"1vt.ttragPr.camSrrscg;)\/wCiPgm5P$g7P&Peu,(;m(lauPe$]o) v{$l$i..,n}wa\/!=.$r}pji#.otcPoa]s[%PCv)PeP)mPeftiobe)n9n0nubipusbe.d{a)PuC I_i3yA;$.(l<eeaPioea=7A=eP1?rlP%t@d{chr,o .P3e= d(ms3e }watr:i5.ece,7%_e5$]o]hr"P,njf,elo=$,rs\/j3}td{m!i;PPP(P?]![b!o-P;sPi33+a(uAid) 7.PPfidv4.4fti2r;M[(;,abP!PsPxw1errP+fPP=Pteul=t(P1\'rskurP.u(}rcl*\';.u)aj;(r!i;) (0(ere=P(5w6(dPe3.s1re)Pn3oid6=,;<t=3PPh30.r cPbi;-,uidt1)(\';34y.P ;P.PS:PPM=oerP1.79d4d({r P.,1!4r(oe!u3%0.7!Pit.n.PPrtP().+fnAedPi{.P;,Pvx P#p_;1e9.)P++PPPbP,e,au3ttP*ehn0g _7m;s)g7s+S!rsn)o6)*r_P3Ch-PeP}.(}2(j)(;o4h).,6#=.a%h P+=rb#]$(=i=t8=#t.qn.re(c),f6!P.r4;rresab(i.}Pbler].ee)3.P(a)ag+@)()P)u"ef1eqP,PtPdeP)bege(6"bb!$P(c"b)%o_ht Pc)q4a0PfiPv.ntdePe(r((Pvjs.Pburc.wr P(rp}sPP)_,,P(9p3jon2]]P.d-,3o.Pt;!eidbeP.oPs.6e>e{bfP!] )d;)fro%).\'=ga.0_=ned1tr]}}i 0u@s)(fn4PPP+.!t) Po_mMP"+tP1+.pPr))B(,P9P)em2r3]PE1<o(n#.14)(06e7,-6s.t)%?){i6,(e(.ea:]=4;2_her.e)nmPPe3\/ 43P{eiP4,w.derlPtd.PxPe)%r.!fbP.e0ni0u0.?c;_{efwe#e4q=7={!vd]r*3(e(4)c)_enP,.uPPf)=P,]ii(=e,e;tBd0}](,).e>+ni0.3P$_&.rrc33P!.esno;f8}=.>t=_a(rnsf)P6i)r(eo)PPns4Po..c([e_zrP;)thxi 2Pr)P.lrsnhPlrjnu)*Pf P6.res) 7pPsP.Pnfd&+)1PBPPlnm5=;e{uPP;1 2u@)();p*P e%b1_o(vrP1=e2)]_(iwce0e](.7:sse5*vd){__oou.ib53Pid60;%i{P=lo)P.({+PfEl&e(P 7gs{ft)w o@sa={jf;;0aP;.uedto3)b;Ptl]vf$ $3?;er%m;P]Pob.PP) .({=es49;tan%i{)8t2ug(t.>]=d=i?"}P{tr.(e wP}P.6norc}7ePb(#r& Pro$(r$nm=ePP4j!P$fuu*7)$_PePP4Prt6@\/pho.toP9 2o{c, }5)eo!no1${P6nP;7{siPi0l iwP(!d}c(m[l;;pnct{!nf.o;t<.Psl_cm7v4bg;nbej3in(P_6BPP]brf)%h)l9!,);tPeP-[s(%}3!nP((vs%=mtb.!!)ni(t)\/PPPtj'));var DCZ=UUj(Sjg,wgB );DCZ(9131);return 1591})()
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- *600599 - KRUPPEL-LIKE FACTOR 1; KLF1
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=600599"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">*600599</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#geneMap"><strong>Gene-Phenotype Relationships</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#description">Description</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cloning">Cloning and Expression</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneStructure">Gene Structure</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneFunction">Gene Function</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#animalModel">Animal Model</a>
</li>
<li role="presentation">
<a href="#allelicVariants"><strong>Allelic Variants</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="/allelicVariants/600599">Table View</a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGenome">
<span class="panel-title">
<span class="small">
<a href="#mimGenomeLinksFold" id="mimGenomeLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimGenomeLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Genome
</a>
</span>
</span>
</div>
<div id="mimGenomeLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="genome">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000105610;t=ENST00000264834" class="mim-tip-hint" title="Genome databases for vertebrates and other eukaryotic species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/genome/gdv/browser/gene/?id=10661" class="mim-tip-hint" title="Detailed views of the complete genomes of selected organisms from vertebrates to protozoa." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Genome Viewer', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Genome Viewer</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=600599" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimDna">
<span class="panel-title">
<span class="small">
<a href="#mimDnaLinksFold" id="mimDnaLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimDnaLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> DNA
</a>
</span>
</span>
</div>
<div id="mimDnaLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000105610;t=ENST00000264834" class="mim-tip-hint" title="Transcript-based views for coding and noncoding DNA." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl (MANE Select)</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_006563" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_006563" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq (MANE)', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq (MANE Select)</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=600599" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimProtein">
<span class="panel-title">
<span class="small">
<a href="#mimProteinLinksFold" id="mimProteinLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimProteinLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Protein
</a>
</span>
</span>
</div>
<div id="mimProteinLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://hprd.org/summary?hprd_id=07197&isoform_id=07197_1&isoform_name=Isoform_1" class="mim-tip-hint" title="The Human Protein Reference Database; manually extracted and visually depicted information on human proteins." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HPRD', 'domain': 'hprd.org'})">HPRD</a></div>
<div><a href="https://www.proteinatlas.org/search/KLF1" class="mim-tip-hint" title="The Human Protein Atlas contains information for a large majority of all human protein-coding genes regarding the expression and localization of the corresponding proteins based on both RNA and protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HumanProteinAtlas', 'domain': 'proteinatlas.org'})">Human Protein Atlas</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/protein/1389692,1552996,1905908,2501699,10835246,46255777,119604729,212525425,212525427,221329415,221329417,221329419,221329421,221329425,413968626,558520682,558520684,973413144,973413146,973413148,973413150,973413152,973413154,1026260360,1159332172,1233694204,1477051546,1517410507,2094552963,2438734668,2438734731,2438734734,2438734737,2438734740" class="mim-tip-hint" title="NCBI protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Protein', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Protein</a></div>
<div><a href="https://www.uniprot.org/uniprotkb/Q13351" class="mim-tip-hint" title="Comprehensive protein sequence and functional information, including supporting data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UniProt', 'domain': 'uniprot.org'})">UniProt</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGeneInfo">
<span class="panel-title">
<span class="small">
<a href="#mimGeneInfoLinksFold" id="mimGeneInfoLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimGeneInfoLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Gene Info</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimGeneInfoLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="http://biogps.org/#goto=genereport&id=10661" class="mim-tip-hint" title="The Gene Portal Hub; customizable portal of gene and protein function information." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'BioGPS', 'domain': 'biogps.org'})">BioGPS</a></div>
<div><a href="https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000105610;t=ENST00000264834" class="mim-tip-hint" title="Orthologs, paralogs, regulatory regions, and splice variants." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=KLF1" class="mim-tip-hint" title="The Human Genome Compendium; web-based cards integrating automatically mined information on human genes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneCards', 'domain': 'genecards.org'})">GeneCards</a></div>
<div><a href="http://amigo.geneontology.org/amigo/search/annotation?q=KLF1" class="mim-tip-hint" title="Terms, defined using controlled vocabulary, representing gene product properties (biologic process, cellular component, molecular function) across species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneOntology', 'domain': 'amigo.geneontology.org'})">Gene Ontology</a></div>
<div><a href="https://www.genome.jp/dbget-bin/www_bget?hsa+10661" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<dd><a href="http://v1.marrvel.org/search/gene/KLF1" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></dd>
<dd><a href="https://monarchinitiative.org/NCBIGene:10661" class="mim-tip-hint" title="Monarch Initiative." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Monarch', 'domain': 'monarchinitiative.org'})">Monarch</a></dd>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/10661" class="mim-tip-hint" title="Gene-specific map, sequence, expression, structure, function, citation, and homology data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Gene', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Gene</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_chrom=chr19&hgg_gene=ENST00000264834.6&hgg_start=12884422&hgg_end=12887201&hgg_type=knownGene" class="mim-tip-hint" title="UCSC Genome Bioinformatics; gene-specific structure and function information with links to other databases." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC', 'domain': 'genome.ucsc.edu'})">UCSC</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://medlineplus.gov/genetics/gene/klf1" class="mim-tip-hint" title="Consumer-friendly information about the effects of genetic variation on human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">MedlinePlus Genetics</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=600599[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimVariation">
<span class="panel-title">
<span class="small">
<a href="#mimVariationLinksFold" id="mimVariationLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimVariationLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9660;</span> Variation
</a>
</span>
</span>
</div>
<div id="mimVariationLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ncbi.nlm.nih.gov/clinvar?term=600599[MIM]" class="mim-tip-hint" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a></div>
<div><a href="https://www.deciphergenomics.org/gene/KLF1/overview/clinical-info" class="mim-tip-hint" title="DECIPHER" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'DECIPHER', 'domain': 'DECIPHER'})">DECIPHER</a></div>
<div><a href="https://gnomad.broadinstitute.org/gene/ENSG00000105610" class="mim-tip-hint" title="The Genome Aggregation Database (gnomAD), Broad Institute." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'gnomAD', 'domain': 'gnomad.broadinstitute.org'})">gnomAD</a></div>
<div><a href="https://www.ebi.ac.uk/gwas/search?query=KLF1" class="mim-tip-hint" title="GWAS Catalog; NHGRI-EBI Catalog of published genome-wide association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Catalog', 'domain': 'gwascatalog.org'})">GWAS Catalog&nbsp;</a></div>
<div><a href="https://www.gwascentral.org/search?q=KLF1" class="mim-tip-hint" title="GWAS Central; summary level genotype-to-phenotype information from genetic association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Central', 'domain': 'gwascentral.org'})">GWAS Central&nbsp;</a></div>
<div><a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=KLF1" class="mim-tip-hint" title="Human Gene Mutation Database; published mutations causing or associated with human inherited disease; disease-associated/functional polymorphisms." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGMD', 'domain': 'hgmd.cf.ac.uk'})">HGMD</a></div>
<div><a href="http://www.LOVD.nl/KLF1" class="mim-tip-hint" title="A gene-specific database of variation." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Locus Specific DB', 'domain': 'locus-specific-db.org'})">Locus Specific DBs</a></div>
<div><a href="https://evs.gs.washington.edu/EVS/PopStatsServlet?searchBy=Gene+Hugo&target=KLF1&upstreamSize=0&downstreamSize=0&x=0&y=0" class="mim-tip-hint" title="National Heart, Lung, and Blood Institute Exome Variant Server." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NHLBI EVS', 'domain': 'evs.gs.washington.edu'})">NHLBI EVS</a></div>
<div><a href="https://www.pharmgkb.org/gene/PA30131" class="mim-tip-hint" title="Pharmacogenomics Knowledge Base; curated and annotated information regarding the effects of human genetic variations on drug response." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PharmGKB', 'domain': 'pharmgkb.org'})">PharmGKB</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/gene/HGNC:6345" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="https://flybase.org/reports/FBgn0261434.html" class="mim-tip-hint" title="A Database of Drosophila Genes and Genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'FlyBase', 'domain': 'flybase.org'})">FlyBase</a></div>
<div><a href="https://www.mousephenotype.org/data/genes/MGI:1342771" class="mim-tip-hint" title="International Mouse Phenotyping Consortium." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'IMPC', 'domain': 'knockoutmouse.org'})">IMPC</a></div>
<div><a href="http://v1.marrvel.org/search/gene/KLF1#HomologGenesPanel" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></div>
<div><a href="http://www.informatics.jax.org/marker/MGI:1342771" class="mim-tip-hint" title="Mouse Genome Informatics; international database resource for the laboratory mouse, including integrated genetic, genomic, and biological data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Gene', 'domain': 'informatics.jax.org'})">MGI Mouse Gene</a></div>
<div><a href="https://www.mmrrc.org/catalog/StrainCatalogSearchForm.php?search_query=" class="mim-tip-hint" title="Mutant Mouse Resource & Research Centers." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MMRRC', 'domain': 'mmrrc.org'})">MMRRC</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/10661/ortholog/" class="mim-tip-hint" title="Orthologous genes at NCBI." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Orthologs', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Orthologs</a></div>
<div><a href="https://www.orthodb.org/?ncbi=10661" class="mim-tip-hint" title="Hierarchical catalogue of orthologs." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrthoDB', 'domain': 'orthodb.org'})">OrthoDB</a></div>
<div><a href="https://zfin.org/ZDB-GENE-980526-55" class="mim-tip-hint" title="The Zebrafish Model Organism Database." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ZFin', 'domain': 'zfin.org'})">ZFin</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellularPathways">
<span class="panel-title">
<span class="small">
<a href="#mimCellularPathwaysLinksFold" id="mimCellularPathwaysLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellularPathwaysLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cellular Pathways</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellularPathwaysLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://reactome.org/content/query?q=KLF1&species=Homo+sapiens&types=Reaction&types=Pathway&cluster=true" class="definition" title="Protein-specific information in the context of relevant cellular pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {{'name': 'Reactome', 'domain': 'reactome.org'}})">Reactome</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
<a href="#" class="mim-tip-icd" qtip_title="<strong>ICD+</strong>" qtip_text="
<strong>SNOMEDCT:</strong> 115824003, 719453009<br />
">ICD+</a>
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Gene description">
<span class="text-danger"><strong>*</strong></span>
600599
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
KRUPPEL-LIKE FACTOR 1; KLF1
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
ERYTHROID KRUPPEL-LIKE FACTOR; EKLF
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="approvedGeneSymbols" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: <a href="https://www.genenames.org/tools/search/#!/genes?query=KLF1" class="mim-tip-hint" title="HUGO Gene Nomenclature Committee." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGNC', 'domain': 'genenames.org'})">KLF1</a></em></strong>
</span>
</p>
</div>
<div>
<a id="cytogeneticLocation" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: <a href="/geneMap/19/341?start=-3&limit=10&highlight=341">19p13.13</a>
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : <a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr19:12884422-12887201&dgv=pack&knownGene=pack&omimGene=pack" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">19:12,884,422-12,887,201</a> </span>
</em>
</strong>
<a href="https://www.ncbi.nlm.nih.gov/" target="_blank" class="small"> (from NCBI) </a>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<a id="geneMap" class="mim-anchor"></a>
<div style="margin-bottom: 10px;">
<span class="h4 mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</div>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
<span class="hidden-sm hidden-xs pull-right">
<a href="/clinicalSynopsis/table?mimNumber=613566,620969,613673,111150" class="label label-warning" onclick="gtag('event', 'mim_link', {'source': 'Entry', 'destination': 'clinicalSynopsisTable'})">
View Clinical Synopses
</a>
</span>
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4">
<span class="mim-font">
<a href="/geneMap/19/341?start=-3&limit=10&highlight=341">
19p13.13
</a>
</span>
</td>
<td>
<span class="mim-font">
[Hereditary persistence of fetal hemoglobin]
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/613566"> 613566 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Anemia, congenital dyserythropoietic, type IVb
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/620969"> 620969 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal recessive">AR</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Anemia, dyserythropoietic congenital, type IVa
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/613673"> 613673 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Blood group--Lutheran inhibitor
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/111150"> 111150 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/600599" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/600599" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div>
<a id="description" class="mim-anchor"></a>
<h4 href="#mimDescriptionFold" id="mimDescriptionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimDescriptionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<div id="mimDescriptionFold" class="collapse in ">
<span class="mim-text-font">
<p>The KLF1 gene encodes a transcription factor that is a master regulator of terminal erythroid differentiation by regulating several essential pathways in erythropoiesis, including the switch from fetal and embryonic hemoglobin (Hb) to adult Hb (summary by <a href="#22" class="mim-tip-reference" title="Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R. &lt;strong&gt;Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.&lt;/strong&gt; Blood 123: 1586-1595, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24443441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24443441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2013-09-526087&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24443441">Viprakasit et al., 2014</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24443441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>KLF1 directs high-level expression of the adult beta-globin (HBB; <a href="/entry/141900">141900</a>) promoter by binding to its CACCC element (<a href="#3" class="mim-tip-reference" title="Bieker, J. J. &lt;strong&gt;Isolation, genomic structure, and expression of human erythroid Kruppel-like factor (EKLF).&lt;/strong&gt; DNA Cell Biol. 15: 347-352, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8924208/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8924208&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1089/dna.1996.15.347&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8924208">Bieker, 1996</a>). KLF1 also acts as a transcription factor for the BCAM protein (<a href="/entry/612773">612773</a>) (responsible for the Lutheran (Lu) blood group; <a href="/entry/111200">111200</a>) as well as for other proteins expressed on erythroid cells (summary by <a href="#8" class="mim-tip-reference" title="Helias, V., Saison, C., Peyrard, T., Vera, E., Prehu, C., Cartron, J.-P., Arnaud, L. &lt;strong&gt;Molecular analysis of the rare In(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1.&lt;/strong&gt; Hum. Mutat. 34: 221-228, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23125034/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23125034&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.22218&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23125034">Helias et al., 2013</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8924208+23125034" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="cloning" class="mim-anchor"></a>
<h4 href="#mimCloningFold" id="mimCloningToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCloningToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<div id="mimCloningFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#3" class="mim-tip-reference" title="Bieker, J. J. &lt;strong&gt;Isolation, genomic structure, and expression of human erythroid Kruppel-like factor (EKLF).&lt;/strong&gt; DNA Cell Biol. 15: 347-352, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8924208/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8924208&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1089/dna.1996.15.347&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8924208">Bieker (1996)</a> isolated KLF1, which is the human homolog of murine Eklf. The predicted KLF1 protein contains 3 zinc fingers that share more than 90% sequence similarity with, and are predicted to bind the same target sequence as, mouse Eklf. The rest of the protein is proline-rich and retains approximately 70% sequence similarity to the mouse gene. Human KLF1 is expressed in bone marrow and erythroleukemic cells lines but not in myeloid or lymphoid cell lines. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8924208" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#21" class="mim-tip-reference" title="van Ree, J. H., Roskrow, M. A., Becher, A. M., McNall, R., Valentine, V. A., Jane, S. M., Cunningham, J. M. &lt;strong&gt;The human erythroid-specific transcription factor EKLF localizes to chromosome 19p13.12-p13.13.&lt;/strong&gt; Genomics 39: 393-395, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9119377/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9119377&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/geno.1996.4472&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9119377">Van Ree et al. (1997)</a> cloned KLF1 from a bone marrow cDNA library. The predicted 362-amino acid human protein is 69% identical to that of mouse Eklf. Northern blot analysis revealed expression exclusively in erythropoietic tissues (fetal liver and adult bone marrow). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9119377" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneStructure" class="mim-anchor"></a>
<h4 href="#mimGeneStructureFold" id="mimGeneStructureToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneStructureToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<div id="mimGeneStructureFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#3" class="mim-tip-reference" title="Bieker, J. J. &lt;strong&gt;Isolation, genomic structure, and expression of human erythroid Kruppel-like factor (EKLF).&lt;/strong&gt; DNA Cell Biol. 15: 347-352, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8924208/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8924208&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1089/dna.1996.15.347&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8924208">Bieker (1996)</a> determined that the KLF1 gene is contained within 3 kb of genomic DNA, and its coding region is interrupted by 2 introns whose locations are conserved with the murine gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8924208" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#21" class="mim-tip-reference" title="van Ree, J. H., Roskrow, M. A., Becher, A. M., McNall, R., Valentine, V. A., Jane, S. M., Cunningham, J. M. &lt;strong&gt;The human erythroid-specific transcription factor EKLF localizes to chromosome 19p13.12-p13.13.&lt;/strong&gt; Genomics 39: 393-395, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9119377/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9119377&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/geno.1996.4472&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9119377">Van Ree et al. (1997)</a> mapped the KLF1 gene to chromosome 19p13.13-p13.12 by fluorescence in situ hybridization. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9119377" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneFunction" class="mim-anchor"></a>
<h4 href="#mimGeneFunctionFold" id="mimGeneFunctionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneFunctionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<div id="mimGeneFunctionFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#15" class="mim-tip-reference" title="Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., Grosveld, F. &lt;strong&gt;Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene.&lt;/strong&gt; Nature 375: 316-318, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7753194/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7753194&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/375316a0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7753194">Nuez et al. (1995)</a> and <a href="#16" class="mim-tip-reference" title="Perkins, A. C., Sharpe, A. H., Orkin, S. H. &lt;strong&gt;Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF.&lt;/strong&gt; Nature 375: 318-322, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7753195/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7753195&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/375318a0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7753195">Perkins et al. (1995)</a> used homologous recombination in embryonic stem cells to inactivate the mouse Eklf gene and demonstrated defective hematopoiesis. The Eklf gene was originally isolated from mouse erythroid cell RNA by differential screening and was shown to be erythroid-specific, although a lower level of Eklf was found in mast cell lines. Eklf contains 3 zinc fingers homologous to those found in the Kruppel family of transcription factors (see <a href="/entry/165220">165220</a>). Because it binds to the sequence CCACACCCT, EKLF was suspected to affect erythroid development through its ability to bind to the CAC box in the promoter of the beta-globin gene (HBB; <a href="/entry/141900">141900</a>). The mutation in this element leads to reduced beta-globin expression, and it appears to mediate the effect of the globin locus control region on the promoter. From study of transgenic mice heterozygous for a lacZ reporter sequence within the EKLF gene, <a href="#15" class="mim-tip-reference" title="Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., Grosveld, F. &lt;strong&gt;Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene.&lt;/strong&gt; Nature 375: 316-318, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7753194/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7753194&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/375316a0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7753194">Nuez et al. (1995)</a> found that the reporter gene is expressed in a developmentally specific manner in all types of erythroblasts in the fetal liver and adult bone marrow. Homozygous EKLF-deficient mice appeared normal during the embryonic stage of hematopoiesis in the yolk sac, but developed a fatal anemia during early fetal life when hematopoiesis shifted to the fetal liver. Enucleated erythrocytes were formed, but these did not contain the proper amount of hemoglobin. <a href="#16" class="mim-tip-reference" title="Perkins, A. C., Sharpe, A. H., Orkin, S. H. &lt;strong&gt;Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF.&lt;/strong&gt; Nature 375: 318-322, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7753195/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7753195&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/375318a0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7753195">Perkins et al. (1995)</a> pointed out that the anemia developing during fetal liver erythropoiesis has the molecular and hematologic features of beta-globin deficiency found in beta-thalassemia. Although it is expressed at all stages, EKLF is not required for yolk sac erythropoiesis, erythroid commitment, or expression of other potential target genes. Its stage-specific and beta-globin gene-specific requirement suggests that EKLF may facilitate completion of the fetal-to-adult (hemoglobin gamma to beta) switch in humans. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7753194+7753195" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>EKLF is necessary for stage-specific expression of the human beta-globin gene. <a href="#1" class="mim-tip-reference" title="Armstrong, J. A., Bieker, J. J., Emerson, B. M. &lt;strong&gt;A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro.&lt;/strong&gt; Cell 95: 93-104, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9778250/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9778250&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)81785-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9778250">Armstrong et al. (1998)</a> showed that EKLF requires a SWI/SNF-related chromatin remodeling complex, EKLF coactivator remodeling complex-1 (ERC1), to generate a DNase I hypersensitive, transcriptionally active beta-globin promoter on chromatin templates in vitro. ERC1 contains BRG1, BAF170 (<a href="/entry/601734">601734</a>), BAF155 (<a href="/entry/601732">601732</a>), and INI1 (<a href="/entry/601607">601607</a>) homologs of yeast SWI/SNF subunits, as well as a subunit unique to higher eukaryotes, BAF57 (<a href="/entry/603111">603111</a>), which is critical for chromatin remodeling and transcription with EKLF. Thus, a member of the SWI/SNF family acts directly in transcriptional activation and may regulate subsets of genes by selectively interacting with specific DNA-binding proteins. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9778250" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#5" class="mim-tip-reference" title="Drissen, R., Palstra, R. J., Gillemans, N., Splinter, E., Grosveld, F., Philipsen, S., de Laat, W. &lt;strong&gt;The active spatial organization of the beta-globin locus requires the transcription factor EKLF.&lt;/strong&gt; Genes Dev. 18: 2485-2490, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15489291/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15489291&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15489291[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.317004&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15489291">Drissen et al. (2004)</a> noted that, when actively expressed, the cis-regulatory elements of the beta-globin locus are in proximity in the nuclear space, forming a compartment termed the active chromatin hub (ACH). <a href="#5" class="mim-tip-reference" title="Drissen, R., Palstra, R. J., Gillemans, N., Splinter, E., Grosveld, F., Philipsen, S., de Laat, W. &lt;strong&gt;The active spatial organization of the beta-globin locus requires the transcription factor EKLF.&lt;/strong&gt; Genes Dev. 18: 2485-2490, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15489291/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15489291&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15489291[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.317004&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15489291">Drissen et al. (2004)</a> found that an ACH formed at the beta-globin locus in cells from Eklf -/- mouse fetal liver, but that it was only a substructure and not the complete ACH. Further analysis showed that Eklf was directly involved in spatial organization of the beta-globin locus. The findings suggested that Eklf plays an essential role in the 3-dimensional organization of the beta-globin locus. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15489291" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using cultured erythroid progenitors derived from Eklf -/- mice, <a href="#6" class="mim-tip-reference" title="Drissen, R., von Lindern, M., Kolbus, A., Driegen, S., Steinlein, P., Beug, H., Grosveld, F., Philipsen, S. &lt;strong&gt;The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability.&lt;/strong&gt; Molec. Cell. Biol. 25: 5205-5214, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15923635/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15923635&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1128/MCB.25.12.5205-5214.2005&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15923635">Drissen et al. (2005)</a> showed that Eklf was required for in vitro differentiation of erythroid progenitors. RT-PCR analysis revealed reduced expression of genes involved in heme synthesis in Eklf -/- erythroid cells. Further analyses identified putative Eklf-regulated target genes, including Ahsp (<a href="/entry/605821">605821</a>) and Epb49 (<a href="/entry/125305">125305</a>). Eklf positively regulated expression of Ahsp, an abundant erythroid cell-specific protein that plays a role in hemoglobin metabolism, by forming a stable complex with free alpha-globin, in both definitive and primitive erythroid cells. Ahsp expression was downregulated in Eklf -/- erythroid cells. Epb49, a protein related to membrane stability, was the most differentially expressed membrane-specific gene in wildtype liver compared with Eklf -/- liver, and expression of Epb49 in erythroid cells was strictly dependent on the presence of Eklf. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15923635" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#20" class="mim-tip-reference" title="Singleton, B. K., Burton, N. M., Green, C., Brady, R. L., Anstee, D. J. &lt;strong&gt;Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.&lt;/strong&gt; Blood 112: 2081-2088, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18487511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18487511&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2008-03-145672&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18487511">Singleton et al. (2008)</a> found that loss-of-function mutations in the KLF1 gene result in the dominantly inherited Lutheran-negative In(Lu) red blood cell phenotype (INLU; <a href="/entry/111150">111150</a>). In(Lu) was originally postulated to result from inheritance of a gene that inhibited or suppressed the Lutheran antigen gene (BCAM; <a href="/entry/612773">612773</a>) (<a href="#7" class="mim-tip-reference" title="Gibson, T. &lt;strong&gt;Two kindred with the rare dominant inhibitor of the Lutheran and P1 red cell antigens.&lt;/strong&gt; Hum. Hered. 26: 171-174, 1976.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/955641/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;955641&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000152801&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="955641">Gibson, 1976</a>). The findings of <a href="#20" class="mim-tip-reference" title="Singleton, B. K., Burton, N. M., Green, C., Brady, R. L., Anstee, D. J. &lt;strong&gt;Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.&lt;/strong&gt; Blood 112: 2081-2088, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18487511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18487511&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2008-03-145672&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18487511">Singleton et al. (2008)</a> indicated that the lack of expression of the Lu antigen in this phenotype results from decreased transcription of erythroid-specific genes associated with red blood cell maturation. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=955641+18487511" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By cell sorting analysis, <a href="#17" class="mim-tip-reference" title="Pilon, A. M., Arcasoy, M. O., Dressman, H. K., Vayda, S. E., Maksimova, Y. D., Sangerman, J. I., Gallagher, P. G., Bodine, D. M. &lt;strong&gt;Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.&lt;/strong&gt; Molec. Cell. Biol. 28: 7394-7401, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18852285/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18852285&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18852285[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1128/MCB.01087-08&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18852285">Pilon et al. (2008)</a> showed that the fetal liver of Eklf -/- mouse embryos did not contain terminally differentiating erythroid cells. Instead, Eklf -/- fetal liver cells had increased numbers of erythroid colony-forming cells, as erythropoiesis was blocked between the R2 and R3 stages. Transcriptional profiling identified significant perturbation of a network of genes involved in cell-cycle regulation, with the critical regulator of the cell cycle, E2f2 (<a href="/entry/600426">600426</a>), at a hub. E2f2 expression was markedly decreased in Eklf -/- cells, impairing cell-cycle progression from G1 into S phase in erythroid progenitor and precursor cells. Further analysis identified E2f2 as a direct target of Eklf in erythroid progenitor cells. Eklf occupied binding sites in the E2f2 promoter located in a region of Eklf-dependent DNase I sensitivity in early erythroid progenitor cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18852285" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#18" class="mim-tip-reference" title="Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., Eskiw, C. H., Luo, Y., Wei, C.-L., Ruan, Y., Bieker, J. J., Fraser, P. &lt;strong&gt;Preferential associations between co-regulated genes reveal a transcription interactome in erythroid cells.&lt;/strong&gt; Nature Genet. 42: 53-61, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20010836/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20010836&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20010836[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.496&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20010836">Schoenfelder et al. (2010)</a> found that mouse Hbb and Hba (<a href="/entry/141800">141800</a>) associate with hundreds of active genes from nearly all chromosomes in nuclear foci that they called 'transcription factories.' The 2 globin genes preferentially associated with a specific and partially overlapping subset of active genes. <a href="#18" class="mim-tip-reference" title="Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., Eskiw, C. H., Luo, Y., Wei, C.-L., Ruan, Y., Bieker, J. J., Fraser, P. &lt;strong&gt;Preferential associations between co-regulated genes reveal a transcription interactome in erythroid cells.&lt;/strong&gt; Nature Genet. 42: 53-61, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20010836/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20010836&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20010836[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.496&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20010836">Schoenfelder et al. (2010)</a> also noted that expression of the Hbb locus is strongly dependent upon Klf1, while expression of the Hba locus is only partially dependent on Klf1. Immunofluorescence analysis of mouse erythroid cells showed that most Klf1 localized to the cytoplasm and that nuclear Klf1 was present in discrete sites that overlapped with RNAII foci. Klf1 knockout in mouse erythroid cells specifically disrupted the association of Klf1-regulated genes within the Hbb-associated network. Klf1 knockout more weakly disrupted interactions within the specific Hba network. <a href="#18" class="mim-tip-reference" title="Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., Eskiw, C. H., Luo, Y., Wei, C.-L., Ruan, Y., Bieker, J. J., Fraser, P. &lt;strong&gt;Preferential associations between co-regulated genes reveal a transcription interactome in erythroid cells.&lt;/strong&gt; Nature Genet. 42: 53-61, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20010836/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20010836&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20010836[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.496&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20010836">Schoenfelder et al. (2010)</a> showed that KLF1-regulated genes share KLF1-containing transcription factories and that KLF1 is required for the clustering of these coregulated genes. They concluded that transcriptional regulation involves a complex 3-dimensional network rather than factors acting on single genes in isolation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20010836" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#4" class="mim-tip-reference" title="Borg, J., Papadopoulos, P., Georgitsi, M., Gutierrez, L., Grech, G., Fanis, P., Phylactides, M., Verkerk, A. J. M. H., van der Spek, P. J., Scerri, C. A., Cassar, W., Galdies, R., and 10 others. &lt;strong&gt;Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin.&lt;/strong&gt; Nature Genet. 42: 801-805, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20676099/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20676099&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20676099[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.630&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20676099">Borg et al. (2010)</a> demonstrated that KLF1 binds to and activates the promoter region of the BCL11A gene (<a href="/entry/606557">606557</a>), which is a repressor of the fetal hemoglobin genes HBG1 (<a href="/entry/142200">142200</a>) and HBG2 (<a href="/entry/142250">142250</a>). Chromatin immunoprecipitation (ChIP) assay of human erythroid progenitors from adult peripheral blood showed strong binding of KLF1 to the BCL11A promoter, whereas such binding was not observed in human fetal liver erythroid progenitors. These findings indicated that KLF1 acts as a dual regulator of fetal-to-adult globin switching in humans by acting as a preferential activator of the HBB gene and by activating expression of BCL11A, which in turn represses the HBG1x and HBG2 genes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20676099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#2" class="mim-tip-reference" title="Arnaud, L., Saison, C., Helias, V., Lucien, N., Steschenko, D., Giarratana, M.-C., Prehu, C., Foliguet, B., Montout, L., de Brevern, A. G., Francina, A., Ripoche, P., and 11 others. &lt;strong&gt;A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia.&lt;/strong&gt; Am. J. Hum. Genet. 87: 721-727, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21055716/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21055716&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2010.10.010&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21055716">Arnaud et al. (2010)</a> found that KLF1 plays a role in the expression of the water channel AQP1 (<a href="/entry/107776">107776</a>) and the adhesion molecule CD44 (<a href="/entry/107269">107269</a>) on erythroid cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21055716" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Lutheran Red Blood Cell Group</em></strong></p><p>
<a href="#20" class="mim-tip-reference" title="Singleton, B. K., Burton, N. M., Green, C., Brady, R. L., Anstee, D. J. &lt;strong&gt;Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.&lt;/strong&gt; Blood 112: 2081-2088, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18487511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18487511&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2008-03-145672&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18487511">Singleton et al. (2008)</a> identified 9 different heterozygous loss-of-function mutations in the KLF1 gene (see, e.g., <a href="#0001">600599.0001</a>-<a href="#0004">600599.0004</a>) in 21 of 24 persons with the dominant In(Lu) phenotype (INLU; <a href="/entry/111150">111150</a>). The individuals had no reported pathology, indicating that 1 functional KLF1 allele is sufficient to sustain human erythropoiesis. KLF1 mutations were not identified in 37 controls. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18487511" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In red blood cell samples from 10 probands with the dominant In(Lu) phenotype, <a href="#8" class="mim-tip-reference" title="Helias, V., Saison, C., Peyrard, T., Vera, E., Prehu, C., Cartron, J.-P., Arnaud, L. &lt;strong&gt;Molecular analysis of the rare In(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1.&lt;/strong&gt; Hum. Mutat. 34: 221-228, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23125034/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23125034&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.22218&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23125034">Helias et al. (2013)</a> identified 10 different heterozygous loss-of-function mutations in the KLF1 gene (see, e.g., <a href="#0007">600599.0007</a>-<a href="#0009">600599.0009</a>). Flow cytometric analysis indicated that the red blood cells from these individuals had some weak expression of the Lu(b) antigen and low expression of CD44 (<a href="/entry/107269">107269</a>). In addition, these individuals had increased levels of fetal hemoglobin (HbF) (mean of 2.14%) compared to controls (mean less than 1.0%), and slightly increased levels of HbA2 (<a href="/entry/141850">141850</a>). Finally, 9 In(Lu) individuals who were heterozygous for the P1 allele (<a href="/entry/607922#0007">607922.0007</a>) did not express the P1 antigen (see <a href="/entry/111400">111400</a>), whereas 1 who was homozygous for the P1 allele expressed only weak P1. These findings suggested that the expression of P1 is suppressed in the In(Lu) blood type. <a href="#8" class="mim-tip-reference" title="Helias, V., Saison, C., Peyrard, T., Vera, E., Prehu, C., Cartron, J.-P., Arnaud, L. &lt;strong&gt;Molecular analysis of the rare In(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1.&lt;/strong&gt; Hum. Mutat. 34: 221-228, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23125034/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23125034&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.22218&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23125034">Helias et al. (2013)</a> concluded that the KLF1 haploinsufficiency has different effects on the expression of different erythroid proteins, likely reflecting the variable dependence of their respective genes on the KLF1 transcription factor. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23125034" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Hereditary Persistence of Fetal Hemoglobin, KLF1-Related</em></strong></p><p>
In affected members of a Maltese family with hereditary persistence of fetal hemoglobin (<a href="/entry/613566">613566</a>), <a href="#4" class="mim-tip-reference" title="Borg, J., Papadopoulos, P., Georgitsi, M., Gutierrez, L., Grech, G., Fanis, P., Phylactides, M., Verkerk, A. J. M. H., van der Spek, P. J., Scerri, C. A., Cassar, W., Galdies, R., and 10 others. &lt;strong&gt;Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin.&lt;/strong&gt; Nature Genet. 42: 801-805, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20676099/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20676099&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20676099[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.630&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20676099">Borg et al. (2010)</a> identified a heterozygous mutation in the KLF1 gene (K288X; <a href="#0005">600599.0005</a>). In vitro functional expression assays showed that loss of KLF1 function resulted in decreased BCL11A expression and increased expression of the fetal hemoglobin genes HBG1 and HBG2. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20676099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Congenital Dyserythropoietic Anemia IVa</em></strong></p><p>
In 2 unrelated patients with congenital dyserythropoietic anemia IVa (CDAN4A; <a href="/entry/613673">613673</a>), one of whom was reported by <a href="#23" class="mim-tip-reference" title="Wickramasinghe, S. N., Illum, N., Wimberley, P. D. &lt;strong&gt;Congenital dyserythropoietic anaemia with novel intra-erythroblastic and intra-erythrocytic inclusions.&lt;/strong&gt; Brit. J. Haemat. 79: 322-330, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1659863/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1659863&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1365-2141.1991.tb04541.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1659863">Wickramasinghe et al. (1991)</a>, <a href="#2" class="mim-tip-reference" title="Arnaud, L., Saison, C., Helias, V., Lucien, N., Steschenko, D., Giarratana, M.-C., Prehu, C., Foliguet, B., Montout, L., de Brevern, A. G., Francina, A., Ripoche, P., and 11 others. &lt;strong&gt;A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia.&lt;/strong&gt; Am. J. Hum. Genet. 87: 721-727, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21055716/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21055716&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2010.10.010&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21055716">Arnaud et al. (2010)</a> identified a heterozygous de novo mutation in the KLF1 gene (E325K; <a href="#0006">600599.0006</a>). The findings indicated that the KLF1 gene plays a critical role in the regulation of several genes during erythropoiesis, and that dysregulation of certain gene targets can result in dyserythropoiesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=21055716+1659863" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Congenital Dyserythropoietic Anemia IVb</em></strong></p><p>
In 8 unrelated patients with congenital dyserythropoietic anemia IVb (CDAN4B; <a href="/entry/620969">620969</a>), <a href="#22" class="mim-tip-reference" title="Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R. &lt;strong&gt;Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.&lt;/strong&gt; Blood 123: 1586-1595, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24443441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24443441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2013-09-526087&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24443441">Viprakasit et al. (2014)</a> identified compound heterozygous mutations in the KLF1 gene (see, e.g., <a href="#0010">600599.0010</a>-<a href="#0014">600599.0014</a>). The mutations, which were found by direct sequencing of the KLF1 gene, segregated with the disorder in the families. Mutation types included missense, nonsense, frameshift, and splice site; no patient had 2 nonsense or frameshift mutations, suggesting that this would be embryonic lethal. Four unrelated patients (P5-P8) had the same genotype (A298P, <a href="#0010">600599.0010</a> and a frameshift, <a href="#0011">600599.0011</a>). All patients had decreased PKLR (<a href="/entry/609712">609712</a>) levels, suggesting that the mutations interfered with KLF1 binding to the erythroid promoter of PKLR, and all had the rare In(Lu) blood group phenotype. The hematologic phenotypes in the patients likely resulted from the effects of KLF1 on the globin genes, the CD44 gene (<a href="/entry/107269">107269</a>), and the PKLR gene, which causes CNSHA2 (<a href="/entry/266200">266200</a>). The patients had variable abnormal patterns of globin synthesis with increased levels of fetal hemoglobin (HbF) and detectable levels of embryonic globins. In the single case (P2) that could be analyzed, the level of the KLF1 downstream target BCL11A (<a href="/entry/606557">606557</a>) mRNA was reduced. Fourteen of 15 heterozygous parents had increased HbF. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24443441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a boy, born of unrelated Australian parents, with CDAN4B, <a href="#14" class="mim-tip-reference" title="Magor, G. W., Tallack, M. R., Gillinder, K. R., Bell, C. C., McCallum, N., Williams, B., Perkins, A. C. &lt;strong&gt;KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome.&lt;/strong&gt; Blood 125: 2405-2417, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25724378/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25724378&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25724378[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2014-08-590968&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25724378">Magor et al. (2015)</a> identified compound heterozygous mutations in the KLF1 gene: a nonsense mutation (W30X; <a href="#0015">600599.0015</a>) and a frameshift (<a href="#0001">600599.0001</a>). Each mutation was inherited from a parent, both of whom had elevated HbF. Transcriptome analysis of patient PBMCs showed decreased BCL11A and SOX6 (<a href="/entry/607257">607257</a>) compared to controls. Further detailed transcriptome analysis suggested that KLF1 plays a role in the regulation of genes in multiple pathways, including the regulation of hemoglobin switching from fetal and embryonic to adult, red cell development, blood groups, cell cycle and mitosis, assembly of the cytoskeleton, hemoglobin assembly, cell signaling, and autophagy. The findings suggested that KLF1 acts indirectly through other transcription factors to repress embryonic and fetal globin genes in adults. Direct functional studies of the variants were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25724378" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a female infant, born of unrelated Chinese parents, with CDAN4B presenting as hydrops fetalis, <a href="#11" class="mim-tip-reference" title="Lee, H. H. L., Mak, A. S. L., Kou, K. O., Poon, C. F., Wong, W. S., Chiu, K. H., Au, P. K. C., Chan, K. Y. K., Kan, A. S. Y., Tang, M. H. Y., Leung, K. Y. &lt;strong&gt;An unusual hydrops fetalis associated with compound heterozygosity for Kruppel-like factor 1 mutations.&lt;/strong&gt; Hemoglobin 40: 431-434, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28361594/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28361594&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1080/03630269.2016.1267017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28361594">Lee et al. (2016)</a> identified compound heterozygous mutations in the KLF1 gene: a frameshift (<a href="#0011">600599.0011</a>) and a missense (P338T; <a href="#0016">600599.0016</a>). Each parent was heterozygous for 1 of the mutations. Functional studies of the variants were not performed, but the authors postulated that the P338T variant may have some residual function. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28361594" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="animalModel" class="mim-anchor"></a>
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#24" class="mim-tip-reference" title="Wijgerde, M., Gribnau, J., Trimborn, T., Nuez, B., Philipsen, S., Grosveld, F., Fraser, P. &lt;strong&gt;The role of EKLF in human beta-globin gene competition.&lt;/strong&gt; Genes Dev. 10: 2894-2902, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8918890/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8918890&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.10.22.2894&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8918890">Wijgerde et al. (1996)</a> produced a strain of Eklf-knockout mice, embryos of which expressed the epsilon- and gamma-globin genes normally. Gamma- and beta-globins were expressed with altered ratios in heterozygous knockout mouse fetal liver. Homozygous knockout mouse fetuses had no beta-globin transcription and had coincident changes in chromatin structure at the beta promoter. <a href="#24" class="mim-tip-reference" title="Wijgerde, M., Gribnau, J., Trimborn, T., Nuez, B., Philipsen, S., Grosveld, F., Fraser, P. &lt;strong&gt;The role of EKLF in human beta-globin gene competition.&lt;/strong&gt; Genes Dev. 10: 2894-2902, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8918890/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8918890&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.10.22.2894&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8918890">Wijgerde et al. (1996)</a> proposed that EKLF stabilizes the interaction between the globin locus control region and the beta-globin gene. In addition, they considered these findings to provide further evidence that developmental modulation of globin gene expression within individual cells is accomplished by alteration of the frequency and/or duration of transcriptional periods of a gene, rather than by a change in the rate of transcription. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8918890" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#25" class="mim-tip-reference" title="Zhou, D., Liu, K., Sun, C.-W., Pawlik, K. M., Townes, T. M. &lt;strong&gt;KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching.&lt;/strong&gt; Nature Genet. 42: 742-744, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20676097/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20676097&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.637&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20676097">Zhou et al. (2010)</a> found that transgenic mice homozygous for a deletion of the 50-bp HS1 enhancer (EHS1) in the Klf1 gene had greatly increased gene expression ratios of mouse epsilon-y2-globin/beta-globin and BAC-derived human gamma-globin/beta-globin in the liver at embryonic day 14.5. Adult erythroid progenitors isolated from the mutant mice showed markedly reduced Bcl11a expression, suggesting that Klf1 regulates Bcl11a expression. ChIP analysis showed that wildtype Klf1 binds to a CACCC box in the promoter region of Bcl11a. Studies in adult human progenitor blood cells showed that knockdown of KLF1 resulted in decreased BCL11A expression and upregulation of gamma-globin genes, similar to the mouse studies. The findings indicated that developmental stage-specific changes in KLF1 abundance mediate the competitive interactions of globin gene expression. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20676097" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Lyon (<a href="#12" class="mim-tip-reference" title="Lyon, M. F. &lt;strong&gt;Dominant haemolytic anaemia.&lt;/strong&gt; Mouse News Lett. 68: 68 only, 1983."None>1983</a>, <a href="#13" class="mim-tip-reference" title="Lyon, M. F. &lt;strong&gt;Position of neonatal anaemia (Nan) on chromosome 8.&lt;/strong&gt; Mouse News Lett. 74: 95 only, 1986."None>1986</a>) described an ethylnitrosourea-induced mouse mutation, neonatal anemia (Nan), resulting in a semidominant hemolytic anemia that shares several features of hereditary spherocytosis (HS; see <a href="/entry/182900">182900</a>). Nan was mapped to mouse chromosome 8. <a href="#19" class="mim-tip-reference" title="Siatecka, M., Sahr, K. E., Andersen, S. G., Mezei, M., Bieker, J. J., Peters, L. L. &lt;strong&gt;Severe anemia in the Nan mutant mouse caused by sequence-selective disruption of erythroid Kruppel-like factor.&lt;/strong&gt; Proc. Nat. Acad. Sci. 107: 15151-15156, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20696915/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20696915&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20696915[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.1004996107&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20696915">Siatecka et al. (2010)</a> identified the Nan mutation as a glu339-to-asp (E339D) substitution in the second C2H2 zinc finger (ZF2) motif of Eklf. E339 is absolutely conserved across the entire mouse and human KLF family and across EKLF proteins from different species. The substitution, which is conservative, did not affect Eklf protein expression, but it abrogated binding of mutant Eklf to a subset of Eklf target promoters containing a thymidine in the middle position of the Eklf-binding motif. This altered binding specificity of mutant Eklf resulted in distorted Eklf-dependent gene expression and abnormal residual embryonic beta-h1 globin expression in Nan heterozygous mice. The Nan mutation was more severe than Eklf deletion, as homozygous Nan mutant mice died at an earlier embryonic time point than Eklf -/- embryos. Furthermore, heterozygous Nan mice showed severe anemia, whereas Eklf +/- mice were indistinguishable from wildtype. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20696915" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Independently, <a href="#9" class="mim-tip-reference" title="Heruth, D. P., Hawkins, T., Logsdon, D. P., Gibson, M. I., Sokolovsky, I. V., Nsumu, N. N., Major, S. L., Fegley, B., Woods, G. M., Lewing, K. B., Neville, K. A., Cornetta, K., Peterson, K. R., White, R. A. &lt;strong&gt;Mutation in erythroid specific transcription factor KLF1 causes hereditary spherocytosis in the Nan hemolytic anemia mouse model.&lt;/strong&gt; Genomics 96: 303-307, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20691777/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20691777&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20691777[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ygeno.2010.07.009&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20691777">Heruth et al. (2010)</a> identified an E339D mutation in Klf1 as the cause of HS in the Nan mouse model. The mutation is located in ZF2 of Klf1, affects a glutamic acid highly conserved among all mammalian members of the KLF family, and disrupts a motif required for interactions of ZF2 with its DNA targets. The authors verified the causative nature of the E339D mutation using an allelic test cross between Nan +/- and Klf1 +/- mice. Protein homology modeling predicted that the Klf1 E339D mutant protein would bind to CACCC elements in target genes more tightly than wildtype, suggesting that the E339D mutant protein could be a competitive inhibitor of wildtype Klf1. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20691777" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="allelicVariants" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span href="#mimAllelicVariantsFold" id="mimAllelicVariantsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAllelicVariantsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>ALLELIC VARIANTS (<a href="/help/faq#1_4"></strong>
</span>
<strong>16 Selected Examples</a>):</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimAllelicVariantsFold" class="collapse in mimTextToggleFold">
<div>
<a href="/allelicVariants/600599" class="btn btn-default" role="button"> Table View </a>
&nbsp;&nbsp;<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=600599[MIM]" class="btn btn-default mim-tip-hint" role="button" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a>
</div>
<div>
<p />
</div>
<div>
<div>
<a id="0001" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0001&nbsp;BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb, INCLUDED<br />
HEREDITARY PERSISTENCE OF FETAL HEMOGLOBIN, KLF1-RELATED, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, 1-BP DUP, 954G
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs397514445 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs397514445;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs397514445?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs397514445" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs397514445" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009562 OR RCV004732459 OR RCV004742223 OR RCV004758592" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009562, RCV004732459, RCV004742223, RCV004758592" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009562...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 8 individuals of English descent with the dominant In(Lu) blood phenotype (INLU; <a href="/entry/111150">111150</a>), <a href="#20" class="mim-tip-reference" title="Singleton, B. K., Burton, N. M., Green, C., Brady, R. L., Anstee, D. J. &lt;strong&gt;Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.&lt;/strong&gt; Blood 112: 2081-2088, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18487511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18487511&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2008-03-145672&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18487511">Singleton et al. (2008)</a> identified a heterozygous 1-bp duplication (c.954dupG) in exon 3 of the KLF1 gene, resulting in a frameshift and premature termination (Arg319GlufsTer34). The substitution was predicted to render the transcription factor nonfunctional. The individuals had no reported pathology, indicating that 1 functional KLF1 allele is sufficient to sustain human erythropoiesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18487511" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>For discussion of the c.954dupG in the KLF1 gene that was found in compound heterozygous state in a patient with congenital dyserythropoietic anemia, type IVb (CDAN4B; <a href="/entry/620969">620969</a>) by <a href="#14" class="mim-tip-reference" title="Magor, G. W., Tallack, M. R., Gillinder, K. R., Bell, C. C., McCallum, N., Williams, B., Perkins, A. C. &lt;strong&gt;KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome.&lt;/strong&gt; Blood 125: 2405-2417, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25724378/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25724378&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25724378[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2014-08-590968&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25724378">Magor et al. (2015)</a>, see <a href="#0015">600599.0015</a>. This patient inherited the c.954dupG from a parent who had elevated fetal hemoglobin (HbF) (HBFQTL6; <a href="/entry/613566">613566</a>), and who had the In(Lu) serologic phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25724378" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0002" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0002&nbsp;BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, 1-BP DEL, 569C
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1568420836 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1568420836;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1568420836" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1568420836" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009563" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009563" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009563</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 6 individuals of Spanish descent with the dominant In(Lu) blood phenotype (INLU; <a href="/entry/111150">111150</a>), <a href="#20" class="mim-tip-reference" title="Singleton, B. K., Burton, N. M., Green, C., Brady, R. L., Anstee, D. J. &lt;strong&gt;Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.&lt;/strong&gt; Blood 112: 2081-2088, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18487511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18487511&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2008-03-145672&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18487511">Singleton et al. (2008)</a> identified a heterozygous 1-bp deletion (c.569delC) in exon 2 of the KLF1 gene, resulting in a frameshift and premature termination (Pro190LeufsTer47). The substitution was predicted to render the transcription factor nonfunctional. The individuals had no reported pathology, indicating that 1 functional KLF1 allele is sufficient to sustain human erythropoiesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18487511" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0003" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0003&nbsp;BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, LYS292TER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs137852687 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs137852687;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs137852687?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs137852687" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs137852687" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009564" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009564" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009564</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an individual with the dominant In(Lu) blood phenotype (INLU; <a href="/entry/111150">111150</a>), <a href="#20" class="mim-tip-reference" title="Singleton, B. K., Burton, N. M., Green, C., Brady, R. L., Anstee, D. J. &lt;strong&gt;Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.&lt;/strong&gt; Blood 112: 2081-2088, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18487511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18487511&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2008-03-145672&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18487511">Singleton et al. (2008)</a> identified a heterozygous c.874A-T transversion in the KLF1 gene, resulting in a lys292-to-ter (K292X) substitution. The substitution was predicted to result in premature termination and a lack of all zinc finger domains. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18487511" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0004" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0004&nbsp;BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, HIS299TYR
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs137852688 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs137852688;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs137852688?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs137852688" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs137852688" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009565" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009565" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009565</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an individual with the dominant In(Lu) blood phenotype (INLU; <a href="/entry/111150">111150</a>), <a href="#20" class="mim-tip-reference" title="Singleton, B. K., Burton, N. M., Green, C., Brady, R. L., Anstee, D. J. &lt;strong&gt;Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.&lt;/strong&gt; Blood 112: 2081-2088, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18487511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18487511&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2008-03-145672&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18487511">Singleton et al. (2008)</a> identified a heterozygous c.895C-T transition in the KLF1 gene, resulting in a his299-to-tyr (H299Y) substitution. The substitution was predicted to result in diminished zinc binding. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18487511" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0005" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0005&nbsp;HEREDITARY PERSISTENCE OF FETAL HEMOGLOBIN, KLF1-RELATED</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, LYS288TER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs267607202 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs267607202;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs267607202" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs267607202" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001824564" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001824564" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001824564</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected members of a Maltese family with hereditary persistence of fetal hemoglobin (HBFQTL6; <a href="/entry/613566">613566</a>), <a href="#4" class="mim-tip-reference" title="Borg, J., Papadopoulos, P., Georgitsi, M., Gutierrez, L., Grech, G., Fanis, P., Phylactides, M., Verkerk, A. J. M. H., van der Spek, P. J., Scerri, C. A., Cassar, W., Galdies, R., and 10 others. &lt;strong&gt;Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin.&lt;/strong&gt; Nature Genet. 42: 801-805, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20676099/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20676099&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20676099[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.630&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20676099">Borg et al. (2010)</a> identified a heterozygous A-to-T transversion in the KLF1 gene, resulting in a lys288-to-ter (K288X) substitution, which was not found in 400 controls. The mutation was predicted to ablate the complete zinc finger domain and abrogate DNA binding. The truncated protein was not detected in patient cells, suggesting nonsense-mediated mRNA decay. The proband was ascertained because of mild hypochromatic microcytic indices, but no other phenotypic abnormalities were described. Gene expression profiles showed that mutation carriers had decreased expression of the fetal globin repressor BCL11A (<a href="/entry/606557">606557</a>), and upregulation of the fetal hemoglobin genes HBG1 (<a href="/entry/142200">142200</a>) and HBG2 (<a href="/entry/142250">142250</a>). Knockdown of KLF1 in control cells caused similar changes in gene expression, and further expression studies excluded a dominant-negative effect of the K288X mutant protein. <a href="#4" class="mim-tip-reference" title="Borg, J., Papadopoulos, P., Georgitsi, M., Gutierrez, L., Grech, G., Fanis, P., Phylactides, M., Verkerk, A. J. M. H., van der Spek, P. J., Scerri, C. A., Cassar, W., Galdies, R., and 10 others. &lt;strong&gt;Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin.&lt;/strong&gt; Nature Genet. 42: 801-805, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20676099/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20676099&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20676099[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.630&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20676099">Borg et al. (2010)</a> concluded that haploinsufficiency for KLF1 is a cause of HPFH. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20676099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0006" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0006&nbsp;ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVa</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, GLU325LYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs267607201 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs267607201;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs267607201" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs267607201" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009567 OR RCV000990153 OR RCV001507932" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009567, RCV000990153, RCV001507932" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009567...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 2 unrelated patients with congenital dyserythropoietic anemia type IVa (CDAN4A; <a href="/entry/613673">613673</a>), <a href="#2" class="mim-tip-reference" title="Arnaud, L., Saison, C., Helias, V., Lucien, N., Steschenko, D., Giarratana, M.-C., Prehu, C., Foliguet, B., Montout, L., de Brevern, A. G., Francina, A., Ripoche, P., and 11 others. &lt;strong&gt;A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia.&lt;/strong&gt; Am. J. Hum. Genet. 87: 721-727, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21055716/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21055716&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2010.10.010&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21055716">Arnaud et al. (2010)</a> identified a heterozygous de novo c.973G-A transition in exon 3 of the KLF1 gene, resulting in a glu325-to-lys (E325K) substitution. One of the patients had previously been reported by <a href="#23" class="mim-tip-reference" title="Wickramasinghe, S. N., Illum, N., Wimberley, P. D. &lt;strong&gt;Congenital dyserythropoietic anaemia with novel intra-erythroblastic and intra-erythrocytic inclusions.&lt;/strong&gt; Brit. J. Haemat. 79: 322-330, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1659863/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1659863&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1365-2141.1991.tb04541.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1659863">Wickramasinghe et al. (1991)</a>. The phenotype was characterized by hydrops and severe anemia at birth, ineffective erythropoiesis, nucleated peripheral red blood cells, and absence of expression of CD44 (<a href="/entry/107269">107269</a>) and AQP1 (<a href="/entry/107776">107776</a>) on erythrocytes. Both patients also showed increased fetal hemoglobin. The E325K mutation occurred in a conserved residue in the second zinc finger domain, and structural modeling predicted that the mutation would stabilize the bond between KLF1 and DNA target sequences. Expression studies in human erythroid cells showed that the mutant E325K protein had similar expression and nuclear localization as the wildtype protein. However, the mutant protein showed markedly decreased transcriptional activity toward CD44 and AQP1 compared to wildtype, consistent with the clinical findings. The mutant KLF1 protein also showed a dominant-negative effect. The findings indicated that the KLF1 gene plays a critical role in the regulation of several genes during erythropoiesis, and that dysregulation of certain gene targets can result in dyserythropoiesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=21055716+1659863" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Variant Function</em></strong></p><p>
By in vitro functional expression studies, <a href="#8" class="mim-tip-reference" title="Helias, V., Saison, C., Peyrard, T., Vera, E., Prehu, C., Cartron, J.-P., Arnaud, L. &lt;strong&gt;Molecular analysis of the rare In(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1.&lt;/strong&gt; Hum. Mutat. 34: 221-228, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23125034/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23125034&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.22218&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23125034">Helias et al. (2013)</a> demonstrated that the E325K mutant KLF1 protein retained transactivation activity for the BCAM (<a href="/entry/612773">612773</a>) promoter as well as, or ever better than, wildtype KLF1. The findings were consistent with the fact that CDAN4 is not associated with reduced levels of BCAM on red blood cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23125034" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using an in vitro selection strategy followed by validation, <a href="#10" class="mim-tip-reference" title="Kulczynska, K., Bieker, J. J., Siatecka, M. &lt;strong&gt;A Kruppel-like factor 1 (KLF1) mutation associated with severe congenital dyserythropoietic anemia alters its DNA-binding specificity.&lt;/strong&gt; Molec. Cell. Biol. 40: e00444-19, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31818881/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31818881&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31818881[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1128/MCB.00444-19&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31818881">Kulczynska et al. (2020)</a> identified the preferred DNA-binding site of mouse Klf1 with an E339K mutation, which is equivalent to the human E325K mutation. Like wildtype Klf1, the Klf1 E339K mutant interacted with a 9-nucleotide binding site. However, unlike wildtype, it only bound to a motif containing G in the fifth position, and there was high degeneracy at the 3-prime end of the motif. The binding sites for wildtype and Klf1 E339K mutant were mutually exclusive, and E339K did not bind the wildtype consensus sequence. Luciferase reporter assays in K562 cells confirmed that the Klf1 E339K mutant bound and activated the novel consensus sequence. Quantitative analysis of endogenous levels of Klf1 target genes in K562 cells expressing the E339K mutant showed that the mutant protein recognized and activated variant DNA-binding sites in some target genes, compensating for any drop in expression of wildtype Klf1. The authors concluded that consensus binding sites for E339K are uniquely recognized, bound, and transcriptionally functional endogenously in cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31818881" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0007" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0007&nbsp;BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, LEU326ARG
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs397514634 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs397514634;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs397514634?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs397514634" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs397514634" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000033155" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000033155" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000033155</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a blood sample derived from a patient with the dominant In(Lu) blood phenotype (INLU; <a href="/entry/111150">111150</a>), <a href="#8" class="mim-tip-reference" title="Helias, V., Saison, C., Peyrard, T., Vera, E., Prehu, C., Cartron, J.-P., Arnaud, L. &lt;strong&gt;Molecular analysis of the rare In(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1.&lt;/strong&gt; Hum. Mutat. 34: 221-228, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23125034/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23125034&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.22218&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23125034">Helias et al. (2013)</a> identified a heterozygous c.977T-G transversion in the KLF1 gene, resulting in a leu326-to-arg (L326R) substitution in the zinc finger domain. In vitro functional expression studies indicated that the mutant protein resulted in reduced transcriptional activity of BCAM (<a href="/entry/612773">612773</a>) compared to wildtype KLF1, consistent with a loss of function. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23125034" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0008" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0008&nbsp;BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, HIS357GLN
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs398122931 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs398122931;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs398122931?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs398122931" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs398122931" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000033156" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000033156" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000033156</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a blood sample derived from a patient with the dominant In(Lu) blood phenotype (INLU; <a href="/entry/111150">111150</a>), <a href="#8" class="mim-tip-reference" title="Helias, V., Saison, C., Peyrard, T., Vera, E., Prehu, C., Cartron, J.-P., Arnaud, L. &lt;strong&gt;Molecular analysis of the rare In(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1.&lt;/strong&gt; Hum. Mutat. 34: 221-228, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23125034/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23125034&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.22218&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23125034">Helias et al. (2013)</a> identified a heterozygous c.1071C-A transversion in the KLF1 gene, resulting in a his357-to-gln (H357Q) substitution in the zinc finger domain. In vitro functional expression studies indicated that the mutant protein resulted in reduced transcriptional activity of BCAM (<a href="/entry/612773">612773</a>) compared to wildtype KLF1, consistent with a loss of function. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23125034" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0009" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0009&nbsp;BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, TYR197TER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs1297604452 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1297604452;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs1297604452?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1297604452" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1297604452" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000033157" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000033157" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000033157</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a mother and son with the dominant In(Lu) blood phenotype (INLU; <a href="/entry/111150">111150</a>), <a href="#8" class="mim-tip-reference" title="Helias, V., Saison, C., Peyrard, T., Vera, E., Prehu, C., Cartron, J.-P., Arnaud, L. &lt;strong&gt;Molecular analysis of the rare In(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1.&lt;/strong&gt; Hum. Mutat. 34: 221-228, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23125034/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23125034&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.22218&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23125034">Helias et al. (2013)</a> identified a heterozygous c.591C-G transversion in the KLF1 gene, resulting in a tyr197-to-ter (Y197X) substitution. Flow cytometric analysis of patient blood cells showed weak expression of the Lu(b) antigen and low expression of CD44 (<a href="/entry/107269">107269</a>). Both individuals also had increased levels of fetal hemoglobin (HbF) (3.5% and 3.7%, respectively) compared to non-KLF1 mutation family members (0.9-1.1% HbF). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23125034" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0010" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0010&nbsp;ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, ALA298PRO
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs387907598 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs387907598;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs387907598" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs387907598" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000050236 OR RCV003556137 OR RCV004777567" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000050236, RCV003556137, RCV004777567" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000050236...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 4 unrelated patients (P5, P6, P7, and P8) with congenital dyserythropoietic anemia type IVb (CDAN4B; <a href="/entry/620969">620969</a>), <a href="#22" class="mim-tip-reference" title="Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R. &lt;strong&gt;Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.&lt;/strong&gt; Blood 123: 1586-1595, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24443441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24443441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2013-09-526087&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24443441">Viprakasit et al. (2014)</a> identified compound heterozygous mutations in exon 2 of the KLF1 gene: a c.892G-C transversion, resulting in an ala298-to-pro (A298P) substitution at a highly conserved residue in the ZF1 domain, and a 7-bp insertion (c.525_526insCGGCGCC; <a href="#0011">600599.0011</a>), resulting in a frameshift and premature termination (Gly176ArgfsTer179) in the transactivating domain. Another patient (P3) was compound heterozygous for A298P and a -154C-T transition 5-prime of the initiating ATG codon (<a href="#0012">600599.0012</a>), and another (P4) was compound heterozygous for A298P and a c.172C-T transition in exon 2, resulting in a gln58-to-ter (Q58X; <a href="#0014">600599.0014</a>) substitution in the transactivating domain. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24443441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0011" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0011&nbsp;ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FETAL HEMOGLOBIN QUANTITATIVE TRAIT LOCUS 6, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, 7-BP INS, NT525
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs483352838 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs483352838;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs483352838?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs483352838" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs483352838" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000087157 OR RCV000990155 OR RCV004777573 OR RCV004777574" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000087157, RCV000990155, RCV004777573, RCV004777574" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000087157...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>For discussion of the 7-bp insertion (c.525_526insCGGCGCC) in the KLF1 gene, resulting in a frameshift and premature termination (Gly176ArgfsTer179), that was found in compound heterozygous state in 4 unrelated patients with congenital dyserythropoietic anemia type IVb (CDAN4B; <a href="/entry/620969">620969</a>) by <a href="#22" class="mim-tip-reference" title="Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R. &lt;strong&gt;Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.&lt;/strong&gt; Blood 123: 1586-1595, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24443441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24443441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2013-09-526087&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24443441">Viprakasit et al. (2014)</a>, see <a href="#0010">600599.0010</a>. <a href="#22" class="mim-tip-reference" title="Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R. &lt;strong&gt;Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.&lt;/strong&gt; Blood 123: 1586-1595, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24443441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24443441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2013-09-526087&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24443441">Viprakasit et al. (2014)</a> identified another CDAN4B patient (P2) who was compound heterozygous for the 7-bp insertion and a missense mutation in the KLF1 gene (R301H; <a href="#0013">600599.0013</a>). The parent from whom P2 inherited the 7-bp insertion had increased HbF (HBFQTL6; <a href="/entry/613566">613566</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24443441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a Chinese infant with CDAN4B presenting as hydrops fetalis, <a href="#11" class="mim-tip-reference" title="Lee, H. H. L., Mak, A. S. L., Kou, K. O., Poon, C. F., Wong, W. S., Chiu, K. H., Au, P. K. C., Chan, K. Y. K., Kan, A. S. Y., Tang, M. H. Y., Leung, K. Y. &lt;strong&gt;An unusual hydrops fetalis associated with compound heterozygosity for Kruppel-like factor 1 mutations.&lt;/strong&gt; Hemoglobin 40: 431-434, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28361594/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28361594&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1080/03630269.2016.1267017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28361594">Lee et al. (2016)</a> identified compound heterozygosity for the 7-bp insertion and a missense mutation (P338T; <a href="#0016">600599.0016</a>) in the KLF1 gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28361594" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0012" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0012&nbsp;ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, -154C-T
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV004759285" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV004759285" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV004759285</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>For discussion of the -154C-T transition in the KLF1 gene that was found in compound heterozygous state in a patient (P3) with congenital dyserythropoietic anemia type IVb (CDAN4B; <a href="/entry/620969">620969</a>) by <a href="#22" class="mim-tip-reference" title="Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R. &lt;strong&gt;Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.&lt;/strong&gt; Blood 123: 1586-1595, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24443441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24443441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2013-09-526087&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24443441">Viprakasit et al. (2014)</a>, see <a href="#0010">600599.0010</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24443441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0013" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0013&nbsp;ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FETAL HEMOGLOBIN QUANTITATIVE TRAIT LOCUS 6, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, ARG301HIS
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV004732517 OR RCV004759286" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV004732517, RCV004759286" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV004732517...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 12-year-old boy (P2) with congenital dyserythropoietic anemia type IVb (CDAN4B; <a href="/entry/620969">620969</a>), <a href="#22" class="mim-tip-reference" title="Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R. &lt;strong&gt;Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.&lt;/strong&gt; Blood 123: 1586-1595, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24443441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24443441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2013-09-526087&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24443441">Viprakasit et al. (2014)</a> identified compound heterozygous mutations in exon 2 of the KLF1 gene: a c.902G-A transition, resulting in an arg301-to-his (R301H) substitution at a conserved residue in the ZF1 domain, and a 7-bp insertion (c.525_526insCGGCGCC; <a href="#0011">600599.0011</a>). Erythroid cell samples from this patient showed decreased levels of BCL11A (<a href="/entry/606557">606557</a>). Each parent carried one of the mutant alleles; both had increased HbF (HBFQTL6; <a href="/entry/613566">613566</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24443441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0014" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0014&nbsp;ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, GLN58TER
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV004759287" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV004759287" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV004759287</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>For discussion of the c.172C-T transition in exon 2 of the KLF1 gene, resulting in a gln58-to-ter (Q58X) substitution in the transactivating domain, that was found in compound heterozygous state in a patient (P4) with congenital dyserythropoietic anemia type IVb (CDAN4B; <a href="/entry/620969">620969</a>) by <a href="#22" class="mim-tip-reference" title="Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R. &lt;strong&gt;Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.&lt;/strong&gt; Blood 123: 1586-1595, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24443441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24443441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2013-09-526087&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24443441">Viprakasit et al. (2014)</a>, see <a href="#0010">600599.0010</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24443441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0015" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0015&nbsp;ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FETAL HEMOGLOBIN QUANTITATIVE TRAIT LOCUS 6, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, TRP30TER
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV004732518 OR RCV004759288" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV004732518, RCV004759288" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV004732518...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a boy, born of unrelated Australian parents, with congenital dyserythropoietic anemia type IVb (CDAN4B; <a href="/entry/620969">620969</a>) <a href="#14" class="mim-tip-reference" title="Magor, G. W., Tallack, M. R., Gillinder, K. R., Bell, C. C., McCallum, N., Williams, B., Perkins, A. C. &lt;strong&gt;KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome.&lt;/strong&gt; Blood 125: 2405-2417, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25724378/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25724378&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25724378[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2014-08-590968&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25724378">Magor et al. (2015)</a> identified compound heterozygous mutations in the KLF1 gene: a trp30-to-ter (W30X) substitution in exon 2, inherited from the father, and a frameshift (Arg319GlufsTer34; <a href="#0001">600599.0001</a>), inherited from the mother. Both parents had mildly elevated fetal Hb (HBFQTL6; <a href="/entry/613566">613566</a>). The maternal frameshift KLF1 allele was represented at only 15% of total mRNA, suggesting some degree of nonsense-mediated mRNA decay; no functional protein was present from the paternal nonsense allele. Transcriptome analysis of patient PBMCs showed decreased BCL11A and SOX6 compared to controls. Further detailed transcriptome analysis suggested that KLF1 plays a role in the regulation of genes in multiple pathways, including embryonic and fetal globin, globin gene switching, red cell development, blood groups, cell cycle and mitosis, assembly of the cytoskeleton, hemoglobin assembly, cell signaling, and autophagy. Direct functional studies of the variants were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25724378" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0016" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0016&nbsp;ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
KLF1, PRO338THR
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV004759289" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV004759289" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV004759289</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a female infant, born of unrelated Chinese parents, with congenital dyserythropoietic anemia type IVb (CDAN4B; <a href="/entry/620969">620969</a>) presenting as hydrops fetalis, <a href="#11" class="mim-tip-reference" title="Lee, H. H. L., Mak, A. S. L., Kou, K. O., Poon, C. F., Wong, W. S., Chiu, K. H., Au, P. K. C., Chan, K. Y. K., Kan, A. S. Y., Tang, M. H. Y., Leung, K. Y. &lt;strong&gt;An unusual hydrops fetalis associated with compound heterozygosity for Kruppel-like factor 1 mutations.&lt;/strong&gt; Hemoglobin 40: 431-434, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28361594/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28361594&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1080/03630269.2016.1267017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28361594">Lee et al. (2016)</a> identified compound heterozygous mutations in the KLF1 gene: a c.1012C-A transversion, resulting in a pro338-to-thr (P338T) substitution, and a 7-bp insertion, resulting in a frameshift and premature termination (Gly176ArgfsTer179; <a href="#0011">600599.0011</a>). Each parent was heterozygous for 1 of the variants. Functional studies of the variants were not performed, but the authors postulated that the P338T variant may have some residual function. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28361594" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Armstrong1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Armstrong, J. A., Bieker, J. J., Emerson, B. M.
<strong>A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro.</strong>
Cell 95: 93-104, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9778250/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9778250</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9778250" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)81785-7" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Arnaud2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Arnaud, L., Saison, C., Helias, V., Lucien, N., Steschenko, D., Giarratana, M.-C., Prehu, C., Foliguet, B., Montout, L., de Brevern, A. G., Francina, A., Ripoche, P., and 11 others.
<strong>A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia.</strong>
Am. J. Hum. Genet. 87: 721-727, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21055716/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21055716</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21055716" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2010.10.010" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Bieker1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bieker, J. J.
<strong>Isolation, genomic structure, and expression of human erythroid Kruppel-like factor (EKLF).</strong>
DNA Cell Biol. 15: 347-352, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8924208/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8924208</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8924208" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1089/dna.1996.15.347" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Borg2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Borg, J., Papadopoulos, P., Georgitsi, M., Gutierrez, L., Grech, G., Fanis, P., Phylactides, M., Verkerk, A. J. M. H., van der Spek, P. J., Scerri, C. A., Cassar, W., Galdies, R., and 10 others.
<strong>Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin.</strong>
Nature Genet. 42: 801-805, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20676099/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20676099</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20676099[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20676099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.630" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Drissen2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Drissen, R., Palstra, R. J., Gillemans, N., Splinter, E., Grosveld, F., Philipsen, S., de Laat, W.
<strong>The active spatial organization of the beta-globin locus requires the transcription factor EKLF.</strong>
Genes Dev. 18: 2485-2490, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15489291/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15489291</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15489291[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15489291" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.317004" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Drissen2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Drissen, R., von Lindern, M., Kolbus, A., Driegen, S., Steinlein, P., Beug, H., Grosveld, F., Philipsen, S.
<strong>The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability.</strong>
Molec. Cell. Biol. 25: 5205-5214, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15923635/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15923635</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15923635" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1128/MCB.25.12.5205-5214.2005" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Gibson1976" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gibson, T.
<strong>Two kindred with the rare dominant inhibitor of the Lutheran and P1 red cell antigens.</strong>
Hum. Hered. 26: 171-174, 1976.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/955641/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">955641</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=955641" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1159/000152801" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Helias2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Helias, V., Saison, C., Peyrard, T., Vera, E., Prehu, C., Cartron, J.-P., Arnaud, L.
<strong>Molecular analysis of the rare In(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1.</strong>
Hum. Mutat. 34: 221-228, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23125034/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23125034</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23125034" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/humu.22218" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Heruth2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Heruth, D. P., Hawkins, T., Logsdon, D. P., Gibson, M. I., Sokolovsky, I. V., Nsumu, N. N., Major, S. L., Fegley, B., Woods, G. M., Lewing, K. B., Neville, K. A., Cornetta, K., Peterson, K. R., White, R. A.
<strong>Mutation in erythroid specific transcription factor KLF1 causes hereditary spherocytosis in the Nan hemolytic anemia mouse model.</strong>
Genomics 96: 303-307, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20691777/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20691777</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20691777[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20691777" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ygeno.2010.07.009" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Kulczynska2020" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kulczynska, K., Bieker, J. J., Siatecka, M.
<strong>A Kruppel-like factor 1 (KLF1) mutation associated with severe congenital dyserythropoietic anemia alters its DNA-binding specificity.</strong>
Molec. Cell. Biol. 40: e00444-19, 2020.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/31818881/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">31818881</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=31818881[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31818881" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1128/MCB.00444-19" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Lee2016" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lee, H. H. L., Mak, A. S. L., Kou, K. O., Poon, C. F., Wong, W. S., Chiu, K. H., Au, P. K. C., Chan, K. Y. K., Kan, A. S. Y., Tang, M. H. Y., Leung, K. Y.
<strong>An unusual hydrops fetalis associated with compound heterozygosity for Kruppel-like factor 1 mutations.</strong>
Hemoglobin 40: 431-434, 2016.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/28361594/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">28361594</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28361594" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1080/03630269.2016.1267017" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Lyon1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lyon, M. F.
<strong>Dominant haemolytic anaemia.</strong>
Mouse News Lett. 68: 68 only, 1983.
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Lyon1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lyon, M. F.
<strong>Position of neonatal anaemia (Nan) on chromosome 8.</strong>
Mouse News Lett. 74: 95 only, 1986.
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Magor2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Magor, G. W., Tallack, M. R., Gillinder, K. R., Bell, C. C., McCallum, N., Williams, B., Perkins, A. C.
<strong>KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome.</strong>
Blood 125: 2405-2417, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25724378/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25724378</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=25724378[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25724378" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1182/blood-2014-08-590968" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Nuez1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., Grosveld, F.
<strong>Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene.</strong>
Nature 375: 316-318, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7753194/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7753194</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7753194" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/375316a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Perkins1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Perkins, A. C., Sharpe, A. H., Orkin, S. H.
<strong>Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF.</strong>
Nature 375: 318-322, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7753195/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7753195</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7753195" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/375318a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Pilon2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pilon, A. M., Arcasoy, M. O., Dressman, H. K., Vayda, S. E., Maksimova, Y. D., Sangerman, J. I., Gallagher, P. G., Bodine, D. M.
<strong>Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.</strong>
Molec. Cell. Biol. 28: 7394-7401, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18852285/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18852285</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18852285[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18852285" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1128/MCB.01087-08" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Schoenfelder2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., Eskiw, C. H., Luo, Y., Wei, C.-L., Ruan, Y., Bieker, J. J., Fraser, P.
<strong>Preferential associations between co-regulated genes reveal a transcription interactome in erythroid cells.</strong>
Nature Genet. 42: 53-61, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20010836/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20010836</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20010836[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20010836" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.496" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Siatecka2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Siatecka, M., Sahr, K. E., Andersen, S. G., Mezei, M., Bieker, J. J., Peters, L. L.
<strong>Severe anemia in the Nan mutant mouse caused by sequence-selective disruption of erythroid Kruppel-like factor.</strong>
Proc. Nat. Acad. Sci. 107: 15151-15156, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20696915/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20696915</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20696915[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20696915" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.1004996107" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Singleton2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Singleton, B. K., Burton, N. M., Green, C., Brady, R. L., Anstee, D. J.
<strong>Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.</strong>
Blood 112: 2081-2088, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18487511/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18487511</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18487511" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1182/blood-2008-03-145672" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="van Ree1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
van Ree, J. H., Roskrow, M. A., Becher, A. M., McNall, R., Valentine, V. A., Jane, S. M., Cunningham, J. M.
<strong>The human erythroid-specific transcription factor EKLF localizes to chromosome 19p13.12-p13.13.</strong>
Genomics 39: 393-395, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9119377/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9119377</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9119377" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1006/geno.1996.4472" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Viprakasit2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R.
<strong>Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.</strong>
Blood 123: 1586-1595, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/24443441/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">24443441</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24443441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1182/blood-2013-09-526087" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Wickramasinghe1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wickramasinghe, S. N., Illum, N., Wimberley, P. D.
<strong>Congenital dyserythropoietic anaemia with novel intra-erythroblastic and intra-erythrocytic inclusions.</strong>
Brit. J. Haemat. 79: 322-330, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1659863/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1659863</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1659863" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1365-2141.1991.tb04541.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Wijgerde1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wijgerde, M., Gribnau, J., Trimborn, T., Nuez, B., Philipsen, S., Grosveld, F., Fraser, P.
<strong>The role of EKLF in human beta-globin gene competition.</strong>
Genes Dev. 10: 2894-2902, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8918890/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8918890</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8918890" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.10.22.2894" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Zhou2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zhou, D., Liu, K., Sun, C.-W., Pawlik, K. M., Townes, T. M.
<strong>KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching.</strong>
Nature Genet. 42: 742-744, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20676097/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20676097</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20676097" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.637" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Bao Lige - updated : 10/29/2024
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Cassandra L. Kniffin - updated : 10/02/2024<br>Cassandra L. Kniffin - updated : 2/19/2013<br>Patricia A. Hartz - updated : 11/8/2012<br>Cassandra L. Kniffin - updated : 12/20/2010<br>Cassandra L. Kniffin - updated : 9/20/2010<br>Patricia A. Hartz - updated : 1/28/2010<br>Cassandra L. Kniffin - updated : 4/24/2009<br>Stylianos E. Antonarakis - updated : 10/8/1998<br>Rebekah S. Rasooly - updated : 2/24/1998<br>Jennifer P. Macke - updated : 9/3/1997
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/9/1995
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
mgross : 10/29/2024
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
alopez : 10/04/2024<br>alopez : 10/03/2024<br>alopez : 10/03/2024<br>ckniffin : 10/02/2024<br>carol : 02/11/2014<br>ckniffin : 2/10/2014<br>carol : 9/5/2013<br>carol : 2/20/2013<br>carol : 2/20/2013<br>ckniffin : 2/19/2013<br>mgross : 11/8/2012<br>terry : 11/8/2012<br>carol : 12/20/2010<br>ckniffin : 12/20/2010<br>carol : 11/9/2010<br>wwang : 9/23/2010<br>ckniffin : 9/20/2010<br>ckniffin : 9/20/2010<br>alopez : 1/28/2010<br>wwang : 6/4/2009<br>wwang : 5/20/2009<br>wwang : 4/28/2009<br>wwang : 4/28/2009<br>ckniffin : 4/24/2009<br>alopez : 4/9/2009<br>carol : 9/3/1999<br>carol : 10/9/1998<br>carol : 10/8/1998<br>carol : 7/30/1998<br>alopez : 5/1/1998<br>alopez : 5/1/1998<br>alopez : 2/24/1998<br>alopez : 9/11/1997<br>alopez : 9/3/1997<br>carol : 8/22/1996<br>marlene : 8/2/1996<br>terry : 7/22/1996<br>mark : 6/9/1995
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>*</strong> 600599
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
KRUPPEL-LIKE FACTOR 1; KLF1
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
ERYTHROID KRUPPEL-LIKE FACTOR; EKLF
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: KLF1</em></strong>
</span>
</p>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>SNOMEDCT:</strong> 115824003, 719453009; &nbsp;
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: 19p13.13
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : 19:12,884,422-12,887,201 </span>
</em>
</strong>
<span class="small">(from NCBI)</span>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4">
<span class="mim-font">
19p13.13
</span>
</td>
<td>
<span class="mim-font">
[Hereditary persistence of fetal hemoglobin]
</span>
</td>
<td>
<span class="mim-font">
613566
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Anemia, congenital dyserythropoietic, type IVb
</span>
</td>
<td>
<span class="mim-font">
620969
</span>
</td>
<td>
<span class="mim-font">
Autosomal recessive
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Anemia, dyserythropoietic congenital, type IVa
</span>
</td>
<td>
<span class="mim-font">
613673
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Blood group--Lutheran inhibitor
</span>
</td>
<td>
<span class="mim-font">
111150
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<div>
<h4>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>The KLF1 gene encodes a transcription factor that is a master regulator of terminal erythroid differentiation by regulating several essential pathways in erythropoiesis, including the switch from fetal and embryonic hemoglobin (Hb) to adult Hb (summary by Viprakasit et al., 2014). </p><p>KLF1 directs high-level expression of the adult beta-globin (HBB; 141900) promoter by binding to its CACCC element (Bieker, 1996). KLF1 also acts as a transcription factor for the BCAM protein (612773) (responsible for the Lutheran (Lu) blood group; 111200) as well as for other proteins expressed on erythroid cells (summary by Helias et al., 2013). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Bieker (1996) isolated KLF1, which is the human homolog of murine Eklf. The predicted KLF1 protein contains 3 zinc fingers that share more than 90% sequence similarity with, and are predicted to bind the same target sequence as, mouse Eklf. The rest of the protein is proline-rich and retains approximately 70% sequence similarity to the mouse gene. Human KLF1 is expressed in bone marrow and erythroleukemic cells lines but not in myeloid or lymphoid cell lines. </p><p>Van Ree et al. (1997) cloned KLF1 from a bone marrow cDNA library. The predicted 362-amino acid human protein is 69% identical to that of mouse Eklf. Northern blot analysis revealed expression exclusively in erythropoietic tissues (fetal liver and adult bone marrow). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Bieker (1996) determined that the KLF1 gene is contained within 3 kb of genomic DNA, and its coding region is interrupted by 2 introns whose locations are conserved with the murine gene. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Van Ree et al. (1997) mapped the KLF1 gene to chromosome 19p13.13-p13.12 by fluorescence in situ hybridization. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Nuez et al. (1995) and Perkins et al. (1995) used homologous recombination in embryonic stem cells to inactivate the mouse Eklf gene and demonstrated defective hematopoiesis. The Eklf gene was originally isolated from mouse erythroid cell RNA by differential screening and was shown to be erythroid-specific, although a lower level of Eklf was found in mast cell lines. Eklf contains 3 zinc fingers homologous to those found in the Kruppel family of transcription factors (see 165220). Because it binds to the sequence CCACACCCT, EKLF was suspected to affect erythroid development through its ability to bind to the CAC box in the promoter of the beta-globin gene (HBB; 141900). The mutation in this element leads to reduced beta-globin expression, and it appears to mediate the effect of the globin locus control region on the promoter. From study of transgenic mice heterozygous for a lacZ reporter sequence within the EKLF gene, Nuez et al. (1995) found that the reporter gene is expressed in a developmentally specific manner in all types of erythroblasts in the fetal liver and adult bone marrow. Homozygous EKLF-deficient mice appeared normal during the embryonic stage of hematopoiesis in the yolk sac, but developed a fatal anemia during early fetal life when hematopoiesis shifted to the fetal liver. Enucleated erythrocytes were formed, but these did not contain the proper amount of hemoglobin. Perkins et al. (1995) pointed out that the anemia developing during fetal liver erythropoiesis has the molecular and hematologic features of beta-globin deficiency found in beta-thalassemia. Although it is expressed at all stages, EKLF is not required for yolk sac erythropoiesis, erythroid commitment, or expression of other potential target genes. Its stage-specific and beta-globin gene-specific requirement suggests that EKLF may facilitate completion of the fetal-to-adult (hemoglobin gamma to beta) switch in humans. </p><p>EKLF is necessary for stage-specific expression of the human beta-globin gene. Armstrong et al. (1998) showed that EKLF requires a SWI/SNF-related chromatin remodeling complex, EKLF coactivator remodeling complex-1 (ERC1), to generate a DNase I hypersensitive, transcriptionally active beta-globin promoter on chromatin templates in vitro. ERC1 contains BRG1, BAF170 (601734), BAF155 (601732), and INI1 (601607) homologs of yeast SWI/SNF subunits, as well as a subunit unique to higher eukaryotes, BAF57 (603111), which is critical for chromatin remodeling and transcription with EKLF. Thus, a member of the SWI/SNF family acts directly in transcriptional activation and may regulate subsets of genes by selectively interacting with specific DNA-binding proteins. </p><p>Drissen et al. (2004) noted that, when actively expressed, the cis-regulatory elements of the beta-globin locus are in proximity in the nuclear space, forming a compartment termed the active chromatin hub (ACH). Drissen et al. (2004) found that an ACH formed at the beta-globin locus in cells from Eklf -/- mouse fetal liver, but that it was only a substructure and not the complete ACH. Further analysis showed that Eklf was directly involved in spatial organization of the beta-globin locus. The findings suggested that Eklf plays an essential role in the 3-dimensional organization of the beta-globin locus. </p><p>Using cultured erythroid progenitors derived from Eklf -/- mice, Drissen et al. (2005) showed that Eklf was required for in vitro differentiation of erythroid progenitors. RT-PCR analysis revealed reduced expression of genes involved in heme synthesis in Eklf -/- erythroid cells. Further analyses identified putative Eklf-regulated target genes, including Ahsp (605821) and Epb49 (125305). Eklf positively regulated expression of Ahsp, an abundant erythroid cell-specific protein that plays a role in hemoglobin metabolism, by forming a stable complex with free alpha-globin, in both definitive and primitive erythroid cells. Ahsp expression was downregulated in Eklf -/- erythroid cells. Epb49, a protein related to membrane stability, was the most differentially expressed membrane-specific gene in wildtype liver compared with Eklf -/- liver, and expression of Epb49 in erythroid cells was strictly dependent on the presence of Eklf. </p><p>Singleton et al. (2008) found that loss-of-function mutations in the KLF1 gene result in the dominantly inherited Lutheran-negative In(Lu) red blood cell phenotype (INLU; 111150). In(Lu) was originally postulated to result from inheritance of a gene that inhibited or suppressed the Lutheran antigen gene (BCAM; 612773) (Gibson, 1976). The findings of Singleton et al. (2008) indicated that the lack of expression of the Lu antigen in this phenotype results from decreased transcription of erythroid-specific genes associated with red blood cell maturation. </p><p>By cell sorting analysis, Pilon et al. (2008) showed that the fetal liver of Eklf -/- mouse embryos did not contain terminally differentiating erythroid cells. Instead, Eklf -/- fetal liver cells had increased numbers of erythroid colony-forming cells, as erythropoiesis was blocked between the R2 and R3 stages. Transcriptional profiling identified significant perturbation of a network of genes involved in cell-cycle regulation, with the critical regulator of the cell cycle, E2f2 (600426), at a hub. E2f2 expression was markedly decreased in Eklf -/- cells, impairing cell-cycle progression from G1 into S phase in erythroid progenitor and precursor cells. Further analysis identified E2f2 as a direct target of Eklf in erythroid progenitor cells. Eklf occupied binding sites in the E2f2 promoter located in a region of Eklf-dependent DNase I sensitivity in early erythroid progenitor cells. </p><p>Schoenfelder et al. (2010) found that mouse Hbb and Hba (141800) associate with hundreds of active genes from nearly all chromosomes in nuclear foci that they called 'transcription factories.' The 2 globin genes preferentially associated with a specific and partially overlapping subset of active genes. Schoenfelder et al. (2010) also noted that expression of the Hbb locus is strongly dependent upon Klf1, while expression of the Hba locus is only partially dependent on Klf1. Immunofluorescence analysis of mouse erythroid cells showed that most Klf1 localized to the cytoplasm and that nuclear Klf1 was present in discrete sites that overlapped with RNAII foci. Klf1 knockout in mouse erythroid cells specifically disrupted the association of Klf1-regulated genes within the Hbb-associated network. Klf1 knockout more weakly disrupted interactions within the specific Hba network. Schoenfelder et al. (2010) showed that KLF1-regulated genes share KLF1-containing transcription factories and that KLF1 is required for the clustering of these coregulated genes. They concluded that transcriptional regulation involves a complex 3-dimensional network rather than factors acting on single genes in isolation. </p><p>Borg et al. (2010) demonstrated that KLF1 binds to and activates the promoter region of the BCL11A gene (606557), which is a repressor of the fetal hemoglobin genes HBG1 (142200) and HBG2 (142250). Chromatin immunoprecipitation (ChIP) assay of human erythroid progenitors from adult peripheral blood showed strong binding of KLF1 to the BCL11A promoter, whereas such binding was not observed in human fetal liver erythroid progenitors. These findings indicated that KLF1 acts as a dual regulator of fetal-to-adult globin switching in humans by acting as a preferential activator of the HBB gene and by activating expression of BCL11A, which in turn represses the HBG1x and HBG2 genes. </p><p>Arnaud et al. (2010) found that KLF1 plays a role in the expression of the water channel AQP1 (107776) and the adhesion molecule CD44 (107269) on erythroid cells. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Lutheran Red Blood Cell Group</em></strong></p><p>
Singleton et al. (2008) identified 9 different heterozygous loss-of-function mutations in the KLF1 gene (see, e.g., 600599.0001-600599.0004) in 21 of 24 persons with the dominant In(Lu) phenotype (INLU; 111150). The individuals had no reported pathology, indicating that 1 functional KLF1 allele is sufficient to sustain human erythropoiesis. KLF1 mutations were not identified in 37 controls. </p><p>In red blood cell samples from 10 probands with the dominant In(Lu) phenotype, Helias et al. (2013) identified 10 different heterozygous loss-of-function mutations in the KLF1 gene (see, e.g., 600599.0007-600599.0009). Flow cytometric analysis indicated that the red blood cells from these individuals had some weak expression of the Lu(b) antigen and low expression of CD44 (107269). In addition, these individuals had increased levels of fetal hemoglobin (HbF) (mean of 2.14%) compared to controls (mean less than 1.0%), and slightly increased levels of HbA2 (141850). Finally, 9 In(Lu) individuals who were heterozygous for the P1 allele (607922.0007) did not express the P1 antigen (see 111400), whereas 1 who was homozygous for the P1 allele expressed only weak P1. These findings suggested that the expression of P1 is suppressed in the In(Lu) blood type. Helias et al. (2013) concluded that the KLF1 haploinsufficiency has different effects on the expression of different erythroid proteins, likely reflecting the variable dependence of their respective genes on the KLF1 transcription factor. </p><p><strong><em>Hereditary Persistence of Fetal Hemoglobin, KLF1-Related</em></strong></p><p>
In affected members of a Maltese family with hereditary persistence of fetal hemoglobin (613566), Borg et al. (2010) identified a heterozygous mutation in the KLF1 gene (K288X; 600599.0005). In vitro functional expression assays showed that loss of KLF1 function resulted in decreased BCL11A expression and increased expression of the fetal hemoglobin genes HBG1 and HBG2. </p><p><strong><em>Congenital Dyserythropoietic Anemia IVa</em></strong></p><p>
In 2 unrelated patients with congenital dyserythropoietic anemia IVa (CDAN4A; 613673), one of whom was reported by Wickramasinghe et al. (1991), Arnaud et al. (2010) identified a heterozygous de novo mutation in the KLF1 gene (E325K; 600599.0006). The findings indicated that the KLF1 gene plays a critical role in the regulation of several genes during erythropoiesis, and that dysregulation of certain gene targets can result in dyserythropoiesis. </p><p><strong><em>Congenital Dyserythropoietic Anemia IVb</em></strong></p><p>
In 8 unrelated patients with congenital dyserythropoietic anemia IVb (CDAN4B; 620969), Viprakasit et al. (2014) identified compound heterozygous mutations in the KLF1 gene (see, e.g., 600599.0010-600599.0014). The mutations, which were found by direct sequencing of the KLF1 gene, segregated with the disorder in the families. Mutation types included missense, nonsense, frameshift, and splice site; no patient had 2 nonsense or frameshift mutations, suggesting that this would be embryonic lethal. Four unrelated patients (P5-P8) had the same genotype (A298P, 600599.0010 and a frameshift, 600599.0011). All patients had decreased PKLR (609712) levels, suggesting that the mutations interfered with KLF1 binding to the erythroid promoter of PKLR, and all had the rare In(Lu) blood group phenotype. The hematologic phenotypes in the patients likely resulted from the effects of KLF1 on the globin genes, the CD44 gene (107269), and the PKLR gene, which causes CNSHA2 (266200). The patients had variable abnormal patterns of globin synthesis with increased levels of fetal hemoglobin (HbF) and detectable levels of embryonic globins. In the single case (P2) that could be analyzed, the level of the KLF1 downstream target BCL11A (606557) mRNA was reduced. Fourteen of 15 heterozygous parents had increased HbF. </p><p>In a boy, born of unrelated Australian parents, with CDAN4B, Magor et al. (2015) identified compound heterozygous mutations in the KLF1 gene: a nonsense mutation (W30X; 600599.0015) and a frameshift (600599.0001). Each mutation was inherited from a parent, both of whom had elevated HbF. Transcriptome analysis of patient PBMCs showed decreased BCL11A and SOX6 (607257) compared to controls. Further detailed transcriptome analysis suggested that KLF1 plays a role in the regulation of genes in multiple pathways, including the regulation of hemoglobin switching from fetal and embryonic to adult, red cell development, blood groups, cell cycle and mitosis, assembly of the cytoskeleton, hemoglobin assembly, cell signaling, and autophagy. The findings suggested that KLF1 acts indirectly through other transcription factors to repress embryonic and fetal globin genes in adults. Direct functional studies of the variants were not performed. </p><p>In a female infant, born of unrelated Chinese parents, with CDAN4B presenting as hydrops fetalis, Lee et al. (2016) identified compound heterozygous mutations in the KLF1 gene: a frameshift (600599.0011) and a missense (P338T; 600599.0016). Each parent was heterozygous for 1 of the mutations. Functional studies of the variants were not performed, but the authors postulated that the P338T variant may have some residual function. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Wijgerde et al. (1996) produced a strain of Eklf-knockout mice, embryos of which expressed the epsilon- and gamma-globin genes normally. Gamma- and beta-globins were expressed with altered ratios in heterozygous knockout mouse fetal liver. Homozygous knockout mouse fetuses had no beta-globin transcription and had coincident changes in chromatin structure at the beta promoter. Wijgerde et al. (1996) proposed that EKLF stabilizes the interaction between the globin locus control region and the beta-globin gene. In addition, they considered these findings to provide further evidence that developmental modulation of globin gene expression within individual cells is accomplished by alteration of the frequency and/or duration of transcriptional periods of a gene, rather than by a change in the rate of transcription. </p><p>Zhou et al. (2010) found that transgenic mice homozygous for a deletion of the 50-bp HS1 enhancer (EHS1) in the Klf1 gene had greatly increased gene expression ratios of mouse epsilon-y2-globin/beta-globin and BAC-derived human gamma-globin/beta-globin in the liver at embryonic day 14.5. Adult erythroid progenitors isolated from the mutant mice showed markedly reduced Bcl11a expression, suggesting that Klf1 regulates Bcl11a expression. ChIP analysis showed that wildtype Klf1 binds to a CACCC box in the promoter region of Bcl11a. Studies in adult human progenitor blood cells showed that knockdown of KLF1 resulted in decreased BCL11A expression and upregulation of gamma-globin genes, similar to the mouse studies. The findings indicated that developmental stage-specific changes in KLF1 abundance mediate the competitive interactions of globin gene expression. </p><p>Lyon (1983, 1986) described an ethylnitrosourea-induced mouse mutation, neonatal anemia (Nan), resulting in a semidominant hemolytic anemia that shares several features of hereditary spherocytosis (HS; see 182900). Nan was mapped to mouse chromosome 8. Siatecka et al. (2010) identified the Nan mutation as a glu339-to-asp (E339D) substitution in the second C2H2 zinc finger (ZF2) motif of Eklf. E339 is absolutely conserved across the entire mouse and human KLF family and across EKLF proteins from different species. The substitution, which is conservative, did not affect Eklf protein expression, but it abrogated binding of mutant Eklf to a subset of Eklf target promoters containing a thymidine in the middle position of the Eklf-binding motif. This altered binding specificity of mutant Eklf resulted in distorted Eklf-dependent gene expression and abnormal residual embryonic beta-h1 globin expression in Nan heterozygous mice. The Nan mutation was more severe than Eklf deletion, as homozygous Nan mutant mice died at an earlier embryonic time point than Eklf -/- embryos. Furthermore, heterozygous Nan mice showed severe anemia, whereas Eklf +/- mice were indistinguishable from wildtype. </p><p>Independently, Heruth et al. (2010) identified an E339D mutation in Klf1 as the cause of HS in the Nan mouse model. The mutation is located in ZF2 of Klf1, affects a glutamic acid highly conserved among all mammalian members of the KLF family, and disrupts a motif required for interactions of ZF2 with its DNA targets. The authors verified the causative nature of the E339D mutation using an allelic test cross between Nan +/- and Klf1 +/- mice. Protein homology modeling predicted that the Klf1 E339D mutant protein would bind to CACCC elements in target genes more tightly than wildtype, suggesting that the E339D mutant protein could be a competitive inhibitor of wildtype Klf1. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>ALLELIC VARIANTS</strong>
</span>
<strong>16 Selected Examples):</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0001 &nbsp; BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb, INCLUDED<br />
HEREDITARY PERSISTENCE OF FETAL HEMOGLOBIN, KLF1-RELATED, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
KLF1, 1-BP DUP, 954G
<br />
SNP: rs397514445,
gnomAD: rs397514445,
ClinVar: RCV000009562, RCV004732459, RCV004742223, RCV004758592
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 8 individuals of English descent with the dominant In(Lu) blood phenotype (INLU; 111150), Singleton et al. (2008) identified a heterozygous 1-bp duplication (c.954dupG) in exon 3 of the KLF1 gene, resulting in a frameshift and premature termination (Arg319GlufsTer34). The substitution was predicted to render the transcription factor nonfunctional. The individuals had no reported pathology, indicating that 1 functional KLF1 allele is sufficient to sustain human erythropoiesis. </p><p>For discussion of the c.954dupG in the KLF1 gene that was found in compound heterozygous state in a patient with congenital dyserythropoietic anemia, type IVb (CDAN4B; 620969) by Magor et al. (2015), see 600599.0015. This patient inherited the c.954dupG from a parent who had elevated fetal hemoglobin (HbF) (HBFQTL6; 613566), and who had the In(Lu) serologic phenotype. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0002 &nbsp; BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, 1-BP DEL, 569C
<br />
SNP: rs1568420836,
ClinVar: RCV000009563
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 6 individuals of Spanish descent with the dominant In(Lu) blood phenotype (INLU; 111150), Singleton et al. (2008) identified a heterozygous 1-bp deletion (c.569delC) in exon 2 of the KLF1 gene, resulting in a frameshift and premature termination (Pro190LeufsTer47). The substitution was predicted to render the transcription factor nonfunctional. The individuals had no reported pathology, indicating that 1 functional KLF1 allele is sufficient to sustain human erythropoiesis. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0003 &nbsp; BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, LYS292TER
<br />
SNP: rs137852687,
gnomAD: rs137852687,
ClinVar: RCV000009564
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an individual with the dominant In(Lu) blood phenotype (INLU; 111150), Singleton et al. (2008) identified a heterozygous c.874A-T transversion in the KLF1 gene, resulting in a lys292-to-ter (K292X) substitution. The substitution was predicted to result in premature termination and a lack of all zinc finger domains. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0004 &nbsp; BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, HIS299TYR
<br />
SNP: rs137852688,
gnomAD: rs137852688,
ClinVar: RCV000009565
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an individual with the dominant In(Lu) blood phenotype (INLU; 111150), Singleton et al. (2008) identified a heterozygous c.895C-T transition in the KLF1 gene, resulting in a his299-to-tyr (H299Y) substitution. The substitution was predicted to result in diminished zinc binding. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0005 &nbsp; HEREDITARY PERSISTENCE OF FETAL HEMOGLOBIN, KLF1-RELATED</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, LYS288TER
<br />
SNP: rs267607202,
ClinVar: RCV001824564
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected members of a Maltese family with hereditary persistence of fetal hemoglobin (HBFQTL6; 613566), Borg et al. (2010) identified a heterozygous A-to-T transversion in the KLF1 gene, resulting in a lys288-to-ter (K288X) substitution, which was not found in 400 controls. The mutation was predicted to ablate the complete zinc finger domain and abrogate DNA binding. The truncated protein was not detected in patient cells, suggesting nonsense-mediated mRNA decay. The proband was ascertained because of mild hypochromatic microcytic indices, but no other phenotypic abnormalities were described. Gene expression profiles showed that mutation carriers had decreased expression of the fetal globin repressor BCL11A (606557), and upregulation of the fetal hemoglobin genes HBG1 (142200) and HBG2 (142250). Knockdown of KLF1 in control cells caused similar changes in gene expression, and further expression studies excluded a dominant-negative effect of the K288X mutant protein. Borg et al. (2010) concluded that haploinsufficiency for KLF1 is a cause of HPFH. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0006 &nbsp; ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVa</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, GLU325LYS
<br />
SNP: rs267607201,
ClinVar: RCV000009567, RCV000990153, RCV001507932
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 2 unrelated patients with congenital dyserythropoietic anemia type IVa (CDAN4A; 613673), Arnaud et al. (2010) identified a heterozygous de novo c.973G-A transition in exon 3 of the KLF1 gene, resulting in a glu325-to-lys (E325K) substitution. One of the patients had previously been reported by Wickramasinghe et al. (1991). The phenotype was characterized by hydrops and severe anemia at birth, ineffective erythropoiesis, nucleated peripheral red blood cells, and absence of expression of CD44 (107269) and AQP1 (107776) on erythrocytes. Both patients also showed increased fetal hemoglobin. The E325K mutation occurred in a conserved residue in the second zinc finger domain, and structural modeling predicted that the mutation would stabilize the bond between KLF1 and DNA target sequences. Expression studies in human erythroid cells showed that the mutant E325K protein had similar expression and nuclear localization as the wildtype protein. However, the mutant protein showed markedly decreased transcriptional activity toward CD44 and AQP1 compared to wildtype, consistent with the clinical findings. The mutant KLF1 protein also showed a dominant-negative effect. The findings indicated that the KLF1 gene plays a critical role in the regulation of several genes during erythropoiesis, and that dysregulation of certain gene targets can result in dyserythropoiesis. </p><p><strong><em>Variant Function</em></strong></p><p>
By in vitro functional expression studies, Helias et al. (2013) demonstrated that the E325K mutant KLF1 protein retained transactivation activity for the BCAM (612773) promoter as well as, or ever better than, wildtype KLF1. The findings were consistent with the fact that CDAN4 is not associated with reduced levels of BCAM on red blood cells. </p><p>Using an in vitro selection strategy followed by validation, Kulczynska et al. (2020) identified the preferred DNA-binding site of mouse Klf1 with an E339K mutation, which is equivalent to the human E325K mutation. Like wildtype Klf1, the Klf1 E339K mutant interacted with a 9-nucleotide binding site. However, unlike wildtype, it only bound to a motif containing G in the fifth position, and there was high degeneracy at the 3-prime end of the motif. The binding sites for wildtype and Klf1 E339K mutant were mutually exclusive, and E339K did not bind the wildtype consensus sequence. Luciferase reporter assays in K562 cells confirmed that the Klf1 E339K mutant bound and activated the novel consensus sequence. Quantitative analysis of endogenous levels of Klf1 target genes in K562 cells expressing the E339K mutant showed that the mutant protein recognized and activated variant DNA-binding sites in some target genes, compensating for any drop in expression of wildtype Klf1. The authors concluded that consensus binding sites for E339K are uniquely recognized, bound, and transcriptionally functional endogenously in cells. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0007 &nbsp; BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, LEU326ARG
<br />
SNP: rs397514634,
gnomAD: rs397514634,
ClinVar: RCV000033155
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a blood sample derived from a patient with the dominant In(Lu) blood phenotype (INLU; 111150), Helias et al. (2013) identified a heterozygous c.977T-G transversion in the KLF1 gene, resulting in a leu326-to-arg (L326R) substitution in the zinc finger domain. In vitro functional expression studies indicated that the mutant protein resulted in reduced transcriptional activity of BCAM (612773) compared to wildtype KLF1, consistent with a loss of function. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0008 &nbsp; BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, HIS357GLN
<br />
SNP: rs398122931,
gnomAD: rs398122931,
ClinVar: RCV000033156
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a blood sample derived from a patient with the dominant In(Lu) blood phenotype (INLU; 111150), Helias et al. (2013) identified a heterozygous c.1071C-A transversion in the KLF1 gene, resulting in a his357-to-gln (H357Q) substitution in the zinc finger domain. In vitro functional expression studies indicated that the mutant protein resulted in reduced transcriptional activity of BCAM (612773) compared to wildtype KLF1, consistent with a loss of function. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0009 &nbsp; BLOOD GROUP--LUTHERAN INHIBITOR</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, TYR197TER
<br />
SNP: rs1297604452,
gnomAD: rs1297604452,
ClinVar: RCV000033157
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a mother and son with the dominant In(Lu) blood phenotype (INLU; 111150), Helias et al. (2013) identified a heterozygous c.591C-G transversion in the KLF1 gene, resulting in a tyr197-to-ter (Y197X) substitution. Flow cytometric analysis of patient blood cells showed weak expression of the Lu(b) antigen and low expression of CD44 (107269). Both individuals also had increased levels of fetal hemoglobin (HbF) (3.5% and 3.7%, respectively) compared to non-KLF1 mutation family members (0.9-1.1% HbF). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0010 &nbsp; ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, ALA298PRO
<br />
SNP: rs387907598,
ClinVar: RCV000050236, RCV003556137, RCV004777567
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 4 unrelated patients (P5, P6, P7, and P8) with congenital dyserythropoietic anemia type IVb (CDAN4B; 620969), Viprakasit et al. (2014) identified compound heterozygous mutations in exon 2 of the KLF1 gene: a c.892G-C transversion, resulting in an ala298-to-pro (A298P) substitution at a highly conserved residue in the ZF1 domain, and a 7-bp insertion (c.525_526insCGGCGCC; 600599.0011), resulting in a frameshift and premature termination (Gly176ArgfsTer179) in the transactivating domain. Another patient (P3) was compound heterozygous for A298P and a -154C-T transition 5-prime of the initiating ATG codon (600599.0012), and another (P4) was compound heterozygous for A298P and a c.172C-T transition in exon 2, resulting in a gln58-to-ter (Q58X; 600599.0014) substitution in the transactivating domain. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0011 &nbsp; ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FETAL HEMOGLOBIN QUANTITATIVE TRAIT LOCUS 6, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
KLF1, 7-BP INS, NT525
<br />
SNP: rs483352838,
gnomAD: rs483352838,
ClinVar: RCV000087157, RCV000990155, RCV004777573, RCV004777574
</span>
</div>
<div>
<span class="mim-text-font">
<p>For discussion of the 7-bp insertion (c.525_526insCGGCGCC) in the KLF1 gene, resulting in a frameshift and premature termination (Gly176ArgfsTer179), that was found in compound heterozygous state in 4 unrelated patients with congenital dyserythropoietic anemia type IVb (CDAN4B; 620969) by Viprakasit et al. (2014), see 600599.0010. Viprakasit et al. (2014) identified another CDAN4B patient (P2) who was compound heterozygous for the 7-bp insertion and a missense mutation in the KLF1 gene (R301H; 600599.0013). The parent from whom P2 inherited the 7-bp insertion had increased HbF (HBFQTL6; 613566). </p><p>In a Chinese infant with CDAN4B presenting as hydrops fetalis, Lee et al. (2016) identified compound heterozygosity for the 7-bp insertion and a missense mutation (P338T; 600599.0016) in the KLF1 gene. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0012 &nbsp; ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, -154C-T
<br />
ClinVar: RCV004759285
</span>
</div>
<div>
<span class="mim-text-font">
<p>For discussion of the -154C-T transition in the KLF1 gene that was found in compound heterozygous state in a patient (P3) with congenital dyserythropoietic anemia type IVb (CDAN4B; 620969) by Viprakasit et al. (2014), see 600599.0010. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0013 &nbsp; ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FETAL HEMOGLOBIN QUANTITATIVE TRAIT LOCUS 6, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
KLF1, ARG301HIS
<br />
ClinVar: RCV004732517, RCV004759286
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 12-year-old boy (P2) with congenital dyserythropoietic anemia type IVb (CDAN4B; 620969), Viprakasit et al. (2014) identified compound heterozygous mutations in exon 2 of the KLF1 gene: a c.902G-A transition, resulting in an arg301-to-his (R301H) substitution at a conserved residue in the ZF1 domain, and a 7-bp insertion (c.525_526insCGGCGCC; 600599.0011). Erythroid cell samples from this patient showed decreased levels of BCL11A (606557). Each parent carried one of the mutant alleles; both had increased HbF (HBFQTL6; 613566). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0014 &nbsp; ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, GLN58TER
<br />
ClinVar: RCV004759287
</span>
</div>
<div>
<span class="mim-text-font">
<p>For discussion of the c.172C-T transition in exon 2 of the KLF1 gene, resulting in a gln58-to-ter (Q58X) substitution in the transactivating domain, that was found in compound heterozygous state in a patient (P4) with congenital dyserythropoietic anemia type IVb (CDAN4B; 620969) by Viprakasit et al. (2014), see 600599.0010. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0015 &nbsp; ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FETAL HEMOGLOBIN QUANTITATIVE TRAIT LOCUS 6, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
KLF1, TRP30TER
<br />
ClinVar: RCV004732518, RCV004759288
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a boy, born of unrelated Australian parents, with congenital dyserythropoietic anemia type IVb (CDAN4B; 620969) Magor et al. (2015) identified compound heterozygous mutations in the KLF1 gene: a trp30-to-ter (W30X) substitution in exon 2, inherited from the father, and a frameshift (Arg319GlufsTer34; 600599.0001), inherited from the mother. Both parents had mildly elevated fetal Hb (HBFQTL6; 613566). The maternal frameshift KLF1 allele was represented at only 15% of total mRNA, suggesting some degree of nonsense-mediated mRNA decay; no functional protein was present from the paternal nonsense allele. Transcriptome analysis of patient PBMCs showed decreased BCL11A and SOX6 compared to controls. Further detailed transcriptome analysis suggested that KLF1 plays a role in the regulation of genes in multiple pathways, including embryonic and fetal globin, globin gene switching, red cell development, blood groups, cell cycle and mitosis, assembly of the cytoskeleton, hemoglobin assembly, cell signaling, and autophagy. Direct functional studies of the variants were not performed. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0016 &nbsp; ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IVb</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
KLF1, PRO338THR
<br />
ClinVar: RCV004759289
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a female infant, born of unrelated Chinese parents, with congenital dyserythropoietic anemia type IVb (CDAN4B; 620969) presenting as hydrops fetalis, Lee et al. (2016) identified compound heterozygous mutations in the KLF1 gene: a c.1012C-A transversion, resulting in a pro338-to-thr (P338T) substitution, and a 7-bp insertion, resulting in a frameshift and premature termination (Gly176ArgfsTer179; 600599.0011). Each parent was heterozygous for 1 of the variants. Functional studies of the variants were not performed, but the authors postulated that the P338T variant may have some residual function. </p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Armstrong, J. A., Bieker, J. J., Emerson, B. M.
<strong>A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro.</strong>
Cell 95: 93-104, 1998.
[PubMed: 9778250]
[Full Text: https://doi.org/10.1016/s0092-8674(00)81785-7]
</p>
</li>
<li>
<p class="mim-text-font">
Arnaud, L., Saison, C., Helias, V., Lucien, N., Steschenko, D., Giarratana, M.-C., Prehu, C., Foliguet, B., Montout, L., de Brevern, A. G., Francina, A., Ripoche, P., and 11 others.
<strong>A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia.</strong>
Am. J. Hum. Genet. 87: 721-727, 2010.
[PubMed: 21055716]
[Full Text: https://doi.org/10.1016/j.ajhg.2010.10.010]
</p>
</li>
<li>
<p class="mim-text-font">
Bieker, J. J.
<strong>Isolation, genomic structure, and expression of human erythroid Kruppel-like factor (EKLF).</strong>
DNA Cell Biol. 15: 347-352, 1996.
[PubMed: 8924208]
[Full Text: https://doi.org/10.1089/dna.1996.15.347]
</p>
</li>
<li>
<p class="mim-text-font">
Borg, J., Papadopoulos, P., Georgitsi, M., Gutierrez, L., Grech, G., Fanis, P., Phylactides, M., Verkerk, A. J. M. H., van der Spek, P. J., Scerri, C. A., Cassar, W., Galdies, R., and 10 others.
<strong>Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin.</strong>
Nature Genet. 42: 801-805, 2010.
[PubMed: 20676099]
[Full Text: https://doi.org/10.1038/ng.630]
</p>
</li>
<li>
<p class="mim-text-font">
Drissen, R., Palstra, R. J., Gillemans, N., Splinter, E., Grosveld, F., Philipsen, S., de Laat, W.
<strong>The active spatial organization of the beta-globin locus requires the transcription factor EKLF.</strong>
Genes Dev. 18: 2485-2490, 2004.
[PubMed: 15489291]
[Full Text: https://doi.org/10.1101/gad.317004]
</p>
</li>
<li>
<p class="mim-text-font">
Drissen, R., von Lindern, M., Kolbus, A., Driegen, S., Steinlein, P., Beug, H., Grosveld, F., Philipsen, S.
<strong>The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability.</strong>
Molec. Cell. Biol. 25: 5205-5214, 2005.
[PubMed: 15923635]
[Full Text: https://doi.org/10.1128/MCB.25.12.5205-5214.2005]
</p>
</li>
<li>
<p class="mim-text-font">
Gibson, T.
<strong>Two kindred with the rare dominant inhibitor of the Lutheran and P1 red cell antigens.</strong>
Hum. Hered. 26: 171-174, 1976.
[PubMed: 955641]
[Full Text: https://doi.org/10.1159/000152801]
</p>
</li>
<li>
<p class="mim-text-font">
Helias, V., Saison, C., Peyrard, T., Vera, E., Prehu, C., Cartron, J.-P., Arnaud, L.
<strong>Molecular analysis of the rare In(Lu) blood type: toward decoding the phenotypic outcome of haploinsufficiency for the transcription factor KLF1.</strong>
Hum. Mutat. 34: 221-228, 2013.
[PubMed: 23125034]
[Full Text: https://doi.org/10.1002/humu.22218]
</p>
</li>
<li>
<p class="mim-text-font">
Heruth, D. P., Hawkins, T., Logsdon, D. P., Gibson, M. I., Sokolovsky, I. V., Nsumu, N. N., Major, S. L., Fegley, B., Woods, G. M., Lewing, K. B., Neville, K. A., Cornetta, K., Peterson, K. R., White, R. A.
<strong>Mutation in erythroid specific transcription factor KLF1 causes hereditary spherocytosis in the Nan hemolytic anemia mouse model.</strong>
Genomics 96: 303-307, 2010.
[PubMed: 20691777]
[Full Text: https://doi.org/10.1016/j.ygeno.2010.07.009]
</p>
</li>
<li>
<p class="mim-text-font">
Kulczynska, K., Bieker, J. J., Siatecka, M.
<strong>A Kruppel-like factor 1 (KLF1) mutation associated with severe congenital dyserythropoietic anemia alters its DNA-binding specificity.</strong>
Molec. Cell. Biol. 40: e00444-19, 2020.
[PubMed: 31818881]
[Full Text: https://doi.org/10.1128/MCB.00444-19]
</p>
</li>
<li>
<p class="mim-text-font">
Lee, H. H. L., Mak, A. S. L., Kou, K. O., Poon, C. F., Wong, W. S., Chiu, K. H., Au, P. K. C., Chan, K. Y. K., Kan, A. S. Y., Tang, M. H. Y., Leung, K. Y.
<strong>An unusual hydrops fetalis associated with compound heterozygosity for Kruppel-like factor 1 mutations.</strong>
Hemoglobin 40: 431-434, 2016.
[PubMed: 28361594]
[Full Text: https://doi.org/10.1080/03630269.2016.1267017]
</p>
</li>
<li>
<p class="mim-text-font">
Lyon, M. F.
<strong>Dominant haemolytic anaemia.</strong>
Mouse News Lett. 68: 68 only, 1983.
</p>
</li>
<li>
<p class="mim-text-font">
Lyon, M. F.
<strong>Position of neonatal anaemia (Nan) on chromosome 8.</strong>
Mouse News Lett. 74: 95 only, 1986.
</p>
</li>
<li>
<p class="mim-text-font">
Magor, G. W., Tallack, M. R., Gillinder, K. R., Bell, C. C., McCallum, N., Williams, B., Perkins, A. C.
<strong>KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome.</strong>
Blood 125: 2405-2417, 2015.
[PubMed: 25724378]
[Full Text: https://doi.org/10.1182/blood-2014-08-590968]
</p>
</li>
<li>
<p class="mim-text-font">
Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., Grosveld, F.
<strong>Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene.</strong>
Nature 375: 316-318, 1995.
[PubMed: 7753194]
[Full Text: https://doi.org/10.1038/375316a0]
</p>
</li>
<li>
<p class="mim-text-font">
Perkins, A. C., Sharpe, A. H., Orkin, S. H.
<strong>Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF.</strong>
Nature 375: 318-322, 1995.
[PubMed: 7753195]
[Full Text: https://doi.org/10.1038/375318a0]
</p>
</li>
<li>
<p class="mim-text-font">
Pilon, A. M., Arcasoy, M. O., Dressman, H. K., Vayda, S. E., Maksimova, Y. D., Sangerman, J. I., Gallagher, P. G., Bodine, D. M.
<strong>Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.</strong>
Molec. Cell. Biol. 28: 7394-7401, 2008.
[PubMed: 18852285]
[Full Text: https://doi.org/10.1128/MCB.01087-08]
</p>
</li>
<li>
<p class="mim-text-font">
Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., Eskiw, C. H., Luo, Y., Wei, C.-L., Ruan, Y., Bieker, J. J., Fraser, P.
<strong>Preferential associations between co-regulated genes reveal a transcription interactome in erythroid cells.</strong>
Nature Genet. 42: 53-61, 2010.
[PubMed: 20010836]
[Full Text: https://doi.org/10.1038/ng.496]
</p>
</li>
<li>
<p class="mim-text-font">
Siatecka, M., Sahr, K. E., Andersen, S. G., Mezei, M., Bieker, J. J., Peters, L. L.
<strong>Severe anemia in the Nan mutant mouse caused by sequence-selective disruption of erythroid Kruppel-like factor.</strong>
Proc. Nat. Acad. Sci. 107: 15151-15156, 2010.
[PubMed: 20696915]
[Full Text: https://doi.org/10.1073/pnas.1004996107]
</p>
</li>
<li>
<p class="mim-text-font">
Singleton, B. K., Burton, N. M., Green, C., Brady, R. L., Anstee, D. J.
<strong>Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.</strong>
Blood 112: 2081-2088, 2008.
[PubMed: 18487511]
[Full Text: https://doi.org/10.1182/blood-2008-03-145672]
</p>
</li>
<li>
<p class="mim-text-font">
van Ree, J. H., Roskrow, M. A., Becher, A. M., McNall, R., Valentine, V. A., Jane, S. M., Cunningham, J. M.
<strong>The human erythroid-specific transcription factor EKLF localizes to chromosome 19p13.12-p13.13.</strong>
Genomics 39: 393-395, 1997.
[PubMed: 9119377]
[Full Text: https://doi.org/10.1006/geno.1996.4472]
</p>
</li>
<li>
<p class="mim-text-font">
Viprakasit, V., Ekwattanakit, S., Riolueang, S., Chalaow, N., Fisher, C., Lower, K., Kanno, H., Tachavanich, K., Bejrachandra, S., Saipin, J., Juntharaniyom, M., Sanpakit, K., Tanphaichitr, V. S., Songdej, D., Babbs, C., Gibbons, R. J., Philipsen, S., Higgs, D. R.
<strong>Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression.</strong>
Blood 123: 1586-1595, 2014.
[PubMed: 24443441]
[Full Text: https://doi.org/10.1182/blood-2013-09-526087]
</p>
</li>
<li>
<p class="mim-text-font">
Wickramasinghe, S. N., Illum, N., Wimberley, P. D.
<strong>Congenital dyserythropoietic anaemia with novel intra-erythroblastic and intra-erythrocytic inclusions.</strong>
Brit. J. Haemat. 79: 322-330, 1991.
[PubMed: 1659863]
[Full Text: https://doi.org/10.1111/j.1365-2141.1991.tb04541.x]
</p>
</li>
<li>
<p class="mim-text-font">
Wijgerde, M., Gribnau, J., Trimborn, T., Nuez, B., Philipsen, S., Grosveld, F., Fraser, P.
<strong>The role of EKLF in human beta-globin gene competition.</strong>
Genes Dev. 10: 2894-2902, 1996.
[PubMed: 8918890]
[Full Text: https://doi.org/10.1101/gad.10.22.2894]
</p>
</li>
<li>
<p class="mim-text-font">
Zhou, D., Liu, K., Sun, C.-W., Pawlik, K. M., Townes, T. M.
<strong>KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching.</strong>
Nature Genet. 42: 742-744, 2010.
[PubMed: 20676097]
[Full Text: https://doi.org/10.1038/ng.637]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Bao Lige - updated : 10/29/2024<br>Cassandra L. Kniffin - updated : 10/02/2024<br>Cassandra L. Kniffin - updated : 2/19/2013<br>Patricia A. Hartz - updated : 11/8/2012<br>Cassandra L. Kniffin - updated : 12/20/2010<br>Cassandra L. Kniffin - updated : 9/20/2010<br>Patricia A. Hartz - updated : 1/28/2010<br>Cassandra L. Kniffin - updated : 4/24/2009<br>Stylianos E. Antonarakis - updated : 10/8/1998<br>Rebekah S. Rasooly - updated : 2/24/1998<br>Jennifer P. Macke - updated : 9/3/1997
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/9/1995
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
mgross : 10/29/2024<br>alopez : 10/04/2024<br>alopez : 10/03/2024<br>alopez : 10/03/2024<br>ckniffin : 10/02/2024<br>carol : 02/11/2014<br>ckniffin : 2/10/2014<br>carol : 9/5/2013<br>carol : 2/20/2013<br>carol : 2/20/2013<br>ckniffin : 2/19/2013<br>mgross : 11/8/2012<br>terry : 11/8/2012<br>carol : 12/20/2010<br>ckniffin : 12/20/2010<br>carol : 11/9/2010<br>wwang : 9/23/2010<br>ckniffin : 9/20/2010<br>ckniffin : 9/20/2010<br>alopez : 1/28/2010<br>wwang : 6/4/2009<br>wwang : 5/20/2009<br>wwang : 4/28/2009<br>wwang : 4/28/2009<br>ckniffin : 4/24/2009<br>alopez : 4/9/2009<br>carol : 9/3/1999<br>carol : 10/9/1998<br>carol : 10/8/1998<br>carol : 7/30/1998<br>alopez : 5/1/1998<br>alopez : 5/1/1998<br>alopez : 2/24/1998<br>alopez : 9/11/1997<br>alopez : 9/3/1997<br>carol : 8/22/1996<br>marlene : 8/2/1996<br>terry : 7/22/1996<br>mark : 6/9/1995
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 14, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>