nih-gov/www.ncbi.nlm.nih.gov/omim/600483

4946 lines
515 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- *600483 - FIBROBLAST GROWTH FACTOR 8; FGF8
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=600483"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">*600483</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#geneMap"><strong>Gene-Phenotype Relationships</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cloning">Cloning and Expression</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneStructure">Gene Structure</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneFunction">Gene Function</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#biochemicalFeatures">Biochemical Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#animalModel">Animal Model</a>
</li>
<li role="presentation">
<a href="#allelicVariants"><strong>Allelic Variants</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="/allelicVariants/600483">Table View</a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGenome">
<span class="panel-title">
<span class="small">
<a href="#mimGenomeLinksFold" id="mimGenomeLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimGenomeLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Genome
</a>
</span>
</span>
</div>
<div id="mimGenomeLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="genome">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000107831;t=ENST00000320185" class="mim-tip-hint" title="Genome databases for vertebrates and other eukaryotic species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/genome/gdv/browser/gene/?id=2253" class="mim-tip-hint" title="Detailed views of the complete genomes of selected organisms from vertebrates to protozoa." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Genome Viewer', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Genome Viewer</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=600483" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimDna">
<span class="panel-title">
<span class="small">
<a href="#mimDnaLinksFold" id="mimDnaLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimDnaLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> DNA
</a>
</span>
</span>
</div>
<div id="mimDnaLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000107831;t=ENST00000320185" class="mim-tip-hint" title="Transcript-based views for coding and noncoding DNA." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl (MANE Select)</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_001206389,NM_006119,NM_033163,NM_033164,NM_033165" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_033163" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq (MANE)', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq (MANE Select)</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=600483" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimProtein">
<span class="panel-title">
<span class="small">
<a href="#mimProteinLinksFold" id="mimProteinLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimProteinLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Protein
</a>
</span>
</span>
</div>
<div id="mimProteinLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://hprd.org/summary?hprd_id=02727&isoform_id=02727_1&isoform_name=Isoform_1" class="mim-tip-hint" title="The Human Protein Reference Database; manually extracted and visually depicted information on human proteins." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HPRD', 'domain': 'hprd.org'})">HPRD</a></div>
<div><a href="https://www.proteinatlas.org/search/FGF8" class="mim-tip-hint" title="The Human Protein Atlas contains information for a large majority of all human protein-coding genes regarding the expression and localization of the corresponding proteins based on both RNA and protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HumanProteinAtlas', 'domain': 'proteinatlas.org'})">Human Protein Atlas</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/protein/999172,1143262,1143271,1184865,1184867,1184869,1399443,1399444,1399445,1399446,1418264,1706791,2463548,3165383,5174439,15147346,15147348,15147350,21489896,46575705,59668916,118763975,118764311,119570131,119570132,119570133,119570134,119570135,329755303" class="mim-tip-hint" title="NCBI protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Protein', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Protein</a></div>
<div><a href="https://www.uniprot.org/uniprotkb/P55075" class="mim-tip-hint" title="Comprehensive protein sequence and functional information, including supporting data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UniProt', 'domain': 'uniprot.org'})">UniProt</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGeneInfo">
<span class="panel-title">
<span class="small">
<a href="#mimGeneInfoLinksFold" id="mimGeneInfoLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimGeneInfoLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Gene Info</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimGeneInfoLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="http://biogps.org/#goto=genereport&id=2253" class="mim-tip-hint" title="The Gene Portal Hub; customizable portal of gene and protein function information." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'BioGPS', 'domain': 'biogps.org'})">BioGPS</a></div>
<div><a href="https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000107831;t=ENST00000320185" class="mim-tip-hint" title="Orthologs, paralogs, regulatory regions, and splice variants." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=FGF8" class="mim-tip-hint" title="The Human Genome Compendium; web-based cards integrating automatically mined information on human genes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneCards', 'domain': 'genecards.org'})">GeneCards</a></div>
<div><a href="http://amigo.geneontology.org/amigo/search/annotation?q=FGF8" class="mim-tip-hint" title="Terms, defined using controlled vocabulary, representing gene product properties (biologic process, cellular component, molecular function) across species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneOntology', 'domain': 'amigo.geneontology.org'})">Gene Ontology</a></div>
<div><a href="https://www.genome.jp/dbget-bin/www_bget?hsa+2253" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<dd><a href="http://v1.marrvel.org/search/gene/FGF8" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></dd>
<dd><a href="https://monarchinitiative.org/NCBIGene:2253" class="mim-tip-hint" title="Monarch Initiative." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Monarch', 'domain': 'monarchinitiative.org'})">Monarch</a></dd>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/2253" class="mim-tip-hint" title="Gene-specific map, sequence, expression, structure, function, citation, and homology data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Gene', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Gene</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_chrom=chr10&hgg_gene=ENST00000320185.7&hgg_start=101770109&hgg_end=101780369&hgg_type=knownGene" class="mim-tip-hint" title="UCSC Genome Bioinformatics; gene-specific structure and function information with links to other databases." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC', 'domain': 'genome.ucsc.edu'})">UCSC</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://search.clinicalgenome.org/kb/genes/HGNC:3686" class="mim-tip-hint" title="A ClinGen curated resource of ratings for the strength of evidence supporting or refuting the clinical validity of the claim(s) that variation in a particular gene causes disease." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinGen Validity', 'domain': 'search.clinicalgenome.org'})">ClinGen Validity</a></div>
<div><a href="https://medlineplus.gov/genetics/gene/fgf8" class="mim-tip-hint" title="Consumer-friendly information about the effects of genetic variation on human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">MedlinePlus Genetics</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=600483[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimVariation">
<span class="panel-title">
<span class="small">
<a href="#mimVariationLinksFold" id="mimVariationLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimVariationLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9660;</span> Variation
</a>
</span>
</span>
</div>
<div id="mimVariationLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ncbi.nlm.nih.gov/clinvar?term=600483[MIM]" class="mim-tip-hint" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a></div>
<div><a href="https://gnomad.broadinstitute.org/gene/ENSG00000107831" class="mim-tip-hint" title="The Genome Aggregation Database (gnomAD), Broad Institute." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'gnomAD', 'domain': 'gnomad.broadinstitute.org'})">gnomAD</a></div>
<div><a href="https://www.gwascentral.org/search?q=FGF8" class="mim-tip-hint" title="GWAS Central; summary level genotype-to-phenotype information from genetic association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Central', 'domain': 'gwascentral.org'})">GWAS Central&nbsp;</a></div>
<div><a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=FGF8" class="mim-tip-hint" title="Human Gene Mutation Database; published mutations causing or associated with human inherited disease; disease-associated/functional polymorphisms." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGMD', 'domain': 'hgmd.cf.ac.uk'})">HGMD</a></div>
<div><a href="https://evs.gs.washington.edu/EVS/PopStatsServlet?searchBy=Gene+Hugo&target=FGF8&upstreamSize=0&downstreamSize=0&x=0&y=0" class="mim-tip-hint" title="National Heart, Lung, and Blood Institute Exome Variant Server." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NHLBI EVS', 'domain': 'evs.gs.washington.edu'})">NHLBI EVS</a></div>
<div><a href="https://www.pharmgkb.org/gene/PA28125" class="mim-tip-hint" title="Pharmacogenomics Knowledge Base; curated and annotated information regarding the effects of human genetic variations on drug response." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PharmGKB', 'domain': 'pharmgkb.org'})">PharmGKB</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/gene/HGNC:3686" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="https://www.mousephenotype.org/data/genes/MGI:99604" class="mim-tip-hint" title="International Mouse Phenotyping Consortium." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'IMPC', 'domain': 'knockoutmouse.org'})">IMPC</a></div>
<div><a href="http://v1.marrvel.org/search/gene/FGF8#HomologGenesPanel" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></div>
<div><a href="http://www.informatics.jax.org/marker/MGI:99604" class="mim-tip-hint" title="Mouse Genome Informatics; international database resource for the laboratory mouse, including integrated genetic, genomic, and biological data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Gene', 'domain': 'informatics.jax.org'})">MGI Mouse Gene</a></div>
<div><a href="https://www.mmrrc.org/catalog/StrainCatalogSearchForm.php?search_query=" class="mim-tip-hint" title="Mutant Mouse Resource & Research Centers." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MMRRC', 'domain': 'mmrrc.org'})">MMRRC</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/2253/ortholog/" class="mim-tip-hint" title="Orthologous genes at NCBI." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Orthologs', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Orthologs</a></div>
<div><a href="https://www.orthodb.org/?ncbi=2253" class="mim-tip-hint" title="Hierarchical catalogue of orthologs." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrthoDB', 'domain': 'orthodb.org'})">OrthoDB</a></div>
<div><a href="https://wormbase.org/db/gene/gene?name=WBGene00001185;class=Gene" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name'{'name': 'Wormbase Gene', 'domain': 'wormbase.org'})">Wormbase Gene</a></div>
<div><a href="https://zfin.org/ZDB-GENE-010122-1" class="mim-tip-hint" title="The Zebrafish Model Organism Database." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ZFin', 'domain': 'zfin.org'})">ZFin</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellularPathways">
<span class="panel-title">
<span class="small">
<a href="#mimCellularPathwaysLinksFold" id="mimCellularPathwaysLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellularPathwaysLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cellular Pathways</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellularPathwaysLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.genome.jp/dbget-bin/get_linkdb?-t+pathway+hsa:2253" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<div><a href="https://reactome.org/content/query?q=FGF8&species=Homo+sapiens&types=Reaction&types=Pathway&cluster=true" class="definition" title="Protein-specific information in the context of relevant cellular pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {{'name': 'Reactome', 'domain': 'reactome.org'}})">Reactome</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
&nbsp;
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Gene description">
<span class="text-danger"><strong>*</strong></span>
600483
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
FIBROBLAST GROWTH FACTOR 8; FGF8
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
ANDROGEN-INDUCED GROWTH FACTOR; AIGF
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="approvedGeneSymbols" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: <a href="https://www.genenames.org/tools/search/#!/genes?query=FGF8" class="mim-tip-hint" title="HUGO Gene Nomenclature Committee." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGNC', 'domain': 'genenames.org'})">FGF8</a></em></strong>
</span>
</p>
</div>
<div>
<a id="cytogeneticLocation" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: <a href="/geneMap/10/502?start=-3&limit=10&highlight=502">10q24.32</a>
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : <a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr10:101770109-101780369&dgv=pack&knownGene=pack&omimGene=pack" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">10:101,770,109-101,780,369</a> </span>
</em>
</strong>
<a href="https://www.ncbi.nlm.nih.gov/" target="_blank" class="small"> (from NCBI) </a>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<a id="geneMap" class="mim-anchor"></a>
<div style="margin-bottom: 10px;">
<span class="h4 mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</div>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1">
<span class="mim-font">
<a href="/geneMap/10/502?start=-3&limit=10&highlight=502">
10q24.32
</a>
</span>
</td>
<td>
<span class="mim-font">
Hypogonadotropic hypogonadism 6 with or without anosmia
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/612702"> 612702 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/600483" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/600483" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div>
<a id="cloning" class="mim-anchor"></a>
<h4 href="#mimCloningFold" id="mimCloningToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCloningToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<div id="mimCloningFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Fibroblast growth factors are secreted proteins that interact with FGF tyrosine kinase receptors to mediate growth and development. <a href="#18" class="mim-tip-reference" title="Lorenzi, M. V., Long, J. E., Miki, T., Aaronson, S. A. &lt;strong&gt;Expression cloning, developmental expression and chromosomal localization of fibroblast growth factor-8.&lt;/strong&gt; Oncogene 10: 2051-2055, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7761105/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7761105&lt;/a&gt;]" pmid="7761105">Lorenzi et al. (1995)</a> isolated a cDNA encoding Fgf8, or Aigf, from mouse testis. A 1.6-kb Fgf8 transcript was detected in testis, but not in other adult tissues analyzed. During development, expression of Fgf8 was restricted to embryonic days 9 through 13, suggesting to <a href="#18" class="mim-tip-reference" title="Lorenzi, M. V., Long, J. E., Miki, T., Aaronson, S. A. &lt;strong&gt;Expression cloning, developmental expression and chromosomal localization of fibroblast growth factor-8.&lt;/strong&gt; Oncogene 10: 2051-2055, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7761105/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7761105&lt;/a&gt;]" pmid="7761105">Lorenzi et al. (1995)</a> that Fgf8 plays a role during a discrete stage of mouse embryogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7761105" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using mouse Aigf to screen a placenta genomic phage library, <a href="#39" class="mim-tip-reference" title="Tanaka, A., Miyamoto, K., Matsuo, H., Matsumoto, K., Yoshida, H. &lt;strong&gt;Human androgen-induced growth factor in prostate and breast cancer cells: its molecular cloning and growth properties.&lt;/strong&gt; FEBS Lett. 363: 226-230, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7737407/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7737407&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0014-5793(95)00324-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7737407">Tanaka et al. (1995)</a> cloned human AIGF. The deduced 215-amino acid human protein is identical to mouse Aigf. RT-PCR detected AIGF expression in human prostate and breast cancer cell lines. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7737407" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#11" class="mim-tip-reference" title="Gemel, J., Gorry, M., Ehrlich, G. D., MacArthur, C. A. &lt;strong&gt;Structure and sequence of human FGF8.&lt;/strong&gt; Genomics 35: 253-257, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8661131/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8661131&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/geno.1996.0349&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8661131">Gemel et al. (1996)</a> noted that the mouse Fgf8 gene has at least 4 different first exons that can be alternatively spliced to generate at least 8 potential proteins, designated Fgf8a through Fgf8h, that differ at their N termini. Using mouse Fgf8g to screen a human placenta genomic DNA library, they obtained the human FGF8 genomic sequence and determined that it could generate transcripts corresponding to mouse Fgf8a, Fgf8b, Fgf8e, and Fgf8f, but not the other 4 mouse transcripts. FGF8B corresponds to the AIGF protein reported by <a href="#39" class="mim-tip-reference" title="Tanaka, A., Miyamoto, K., Matsuo, H., Matsumoto, K., Yoshida, H. &lt;strong&gt;Human androgen-induced growth factor in prostate and breast cancer cells: its molecular cloning and growth properties.&lt;/strong&gt; FEBS Lett. 363: 226-230, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7737407/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7737407&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0014-5793(95)00324-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7737407">Tanaka et al. (1995)</a>. The predicted mouse and human proteins share 98 to 100% identity. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8661131+7737407" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By RT-PCR of a human prostate cancer cell line using primers based on mouse Fgf8, <a href="#12" class="mim-tip-reference" title="Ghosh, A. K., Shankar, D. B., Shackleford, G. M., Wu, K., T&#x27;Ang, A., Miller, G. J., Zheng, J., Roy-Burman, P. &lt;strong&gt;Molecular cloning and characterization of human FGF8 alternative messenger RNA forms.&lt;/strong&gt; Cell Growth Diff. 7: 1425-1434, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8891346/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8891346&lt;/a&gt;]" pmid="8891346">Ghosh et al. (1996)</a> cloned FGF8A, FGF8B, and FGF8E. The deduced proteins contain 204, 215, and 233 amino acids, respectively. All 3 isoforms contain a predicted 23-amino acid signal sequence, and they differ only at the N termini of their mature forms; their C-terminal 180 amino acids are identical. Northern blot analysis of several adult and fetal tissues detected FGF8 expression in fetal kidney only. RT-PCR detected FGF8 expression in testis, prostate, and kidney, the only tissues examined. FGF8B was the predominant form in prostate, and both FGF8A and FGF8B were expressed in testis and kidney. FGF8B was also the predominant form expressed in normal prostate and prostate carcinoma cell lines. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8891346" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneStructure" class="mim-anchor"></a>
<h4 href="#mimGeneStructureFold" id="mimGeneStructureToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneStructureToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<div id="mimGeneStructureFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#11" class="mim-tip-reference" title="Gemel, J., Gorry, M., Ehrlich, G. D., MacArthur, C. A. &lt;strong&gt;Structure and sequence of human FGF8.&lt;/strong&gt; Genomics 35: 253-257, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8661131/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8661131&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/geno.1996.0349&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8661131">Gemel et al. (1996)</a> determined that the FGF8 gene contains 6 exons, including 4 alternative first exons, and spans about 6 kb. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8661131" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#47" class="mim-tip-reference" title="Yoshiura, K., Leysens, N. J., Chang, J., Ward, D., Murray, J. C., Muenke, M. &lt;strong&gt;Genomic structure, sequence, and mapping of human FGF8 with no evidence for its role in craniosynostosis/limb defect syndromes.&lt;/strong&gt; Am. J. Med. Genet. 72: 354-362, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9332670/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9332670&lt;/a&gt;]" pmid="9332670">Yoshiura et al. (1997)</a> described the genomic sequence of human FGF8 and demonstrated conservation between the human and mouse sequences, including alternatively spliced exons in the mouse. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9332670" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>By isotopic in situ hybridization, <a href="#21" class="mim-tip-reference" title="Mattei, M.-G., deLapeyriere, O., Bresnick, J., Dickson, C., Birnbaum, D., Mason, I. &lt;strong&gt;Mouse Fgf7 (fibroblast growth factor 7) and Fgf8 (fibroblast growth factor 8) genes map to chromosomes 2 and 19 respectively.&lt;/strong&gt; Mammalian Genome 6: 196-197, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7749227/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7749227&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00293012&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7749227">Mattei et al. (1995)</a> found that the Fgf8 gene maps to mouse chromosome 19 in region C3-D. On the basis of conserved regions of synteny between mouse chromosome 19 and human chromosomes (<a href="#4" class="mim-tip-reference" title="Copeland, N. G., Jenkins, N. A., Gilbert, D. J., Eppig, J. T., Maltais, L. J., Miller, J. C., Dietrich, W. F., Weaver, A., Lincoln, S. E., Steen, R. G., Stein, L. D., Nadeau, J. H., Lander, E. S. &lt;strong&gt;A genetic linkage map of the mouse: current applications and future prospects.&lt;/strong&gt; Science 262: 57-66, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8211130/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8211130&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.8211130&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8211130">Copeland et al., 1993</a>), they predicted that FGF8 maps to human chromosome 10q. Using a panel of human/rodent somatic cell hybrids, <a href="#18" class="mim-tip-reference" title="Lorenzi, M. V., Long, J. E., Miki, T., Aaronson, S. A. &lt;strong&gt;Expression cloning, developmental expression and chromosomal localization of fibroblast growth factor-8.&lt;/strong&gt; Oncogene 10: 2051-2055, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7761105/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7761105&lt;/a&gt;]" pmid="7761105">Lorenzi et al. (1995)</a> demonstrated that the FGF8 gene is indeed located on human chromosome 10. <a href="#46" class="mim-tip-reference" title="White, R. A., Dowler, L. L., Angeloni, S. V., Pasztor, L. M., MacArthur, C. A. &lt;strong&gt;Assignment of FGF8 to human chromosome 10q25-q26: mutations in FGF8 may be responsible for some types of acrocephalosyndactyly linked to this region.&lt;/strong&gt; Genomics 30: 109-111, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8595889/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8595889&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/geno.1995.0020&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8595889">White et al. (1995)</a> mapped FGF8 to 10q25-q26 using Southern blots of somatic cell hybrid DNAs containing portions of chromosome 10. By fluorescence in situ hybridization and by genetic linkage analysis, <a href="#47" class="mim-tip-reference" title="Yoshiura, K., Leysens, N. J., Chang, J., Ward, D., Murray, J. C., Muenke, M. &lt;strong&gt;Genomic structure, sequence, and mapping of human FGF8 with no evidence for its role in craniosynostosis/limb defect syndromes.&lt;/strong&gt; Am. J. Med. Genet. 72: 354-362, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9332670/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9332670&lt;/a&gt;]" pmid="9332670">Yoshiura et al. (1997)</a> mapped the FGF8 gene to 10q24. Using somatic cell hybrid analysis and fluorescence in situ hybridization, <a href="#30" class="mim-tip-reference" title="Payson, R. A., Wu, J., Liu, Y., Chiu, I.-M. &lt;strong&gt;The human FGF-8 gene localizes on chromosome 10q24 and is subjected to induction by androgen in breast cancer cells.&lt;/strong&gt; Oncogene 13: 47-53, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8700553/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8700553&lt;/a&gt;]" pmid="8700553">Payson et al. (1996)</a> mapped the FGF8 gene to 10q24. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8700553+7749227+8211130+9332670+8595889+7761105" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneFunction" class="mim-anchor"></a>
<h4 href="#mimGeneFunctionFold" id="mimGeneFunctionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneFunctionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<div id="mimGeneFunctionFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#39" class="mim-tip-reference" title="Tanaka, A., Miyamoto, K., Matsuo, H., Matsumoto, K., Yoshida, H. &lt;strong&gt;Human androgen-induced growth factor in prostate and breast cancer cells: its molecular cloning and growth properties.&lt;/strong&gt; FEBS Lett. 363: 226-230, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7737407/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7737407&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0014-5793(95)00324-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7737407">Tanaka et al. (1995)</a> showed that AIGF stimulated growth of human prostate carcinoma cells and mouse fibroblasts and mammary carcinoma cells in a dose-dependent manner. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7737407" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#12" class="mim-tip-reference" title="Ghosh, A. K., Shankar, D. B., Shackleford, G. M., Wu, K., T&#x27;Ang, A., Miller, G. J., Zheng, J., Roy-Burman, P. &lt;strong&gt;Molecular cloning and characterization of human FGF8 alternative messenger RNA forms.&lt;/strong&gt; Cell Growth Diff. 7: 1425-1434, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8891346/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8891346&lt;/a&gt;]" pmid="8891346">Ghosh et al. (1996)</a> transfected human FGF8B in mouse fibroblasts and found that it induced an elongated spindle shape morphology and permitted higher cell density at confluence. Furthermore, FGF8B-transfected cells were strongly tumorigenic when injected into nude mice. FGF8A and FGF8E were moderately transforming in transfected cells, and these cells were moderately tumorigenic. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8891346" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>FGF8, alternatively referred to as AIGF, was originally isolated from the conditioned medium of an androgen-dependent carcinoma cell line. The temporal and spatial patterns of FGF8 gene expression suggest that FGF8 is involved in gastrulation, regionalization of the brain, and organogenesis of the limb and face as an embryonic epithelial factor. The adult expression of FGF8 is restricted to gonads, including testes and ovaries. <a href="#30" class="mim-tip-reference" title="Payson, R. A., Wu, J., Liu, Y., Chiu, I.-M. &lt;strong&gt;The human FGF-8 gene localizes on chromosome 10q24 and is subjected to induction by androgen in breast cancer cells.&lt;/strong&gt; Oncogene 13: 47-53, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8700553/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8700553&lt;/a&gt;]" pmid="8700553">Payson et al. (1996)</a> showed that FGF8 gene expression in a human breast cancer cell line is inducible by androgen. They stated that their findings will facilitate understanding of the molecular mechanism underlying hormone-responsive breast and prostate cancers. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8700553" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>FGF8 stimulates the androgen-dependent growth of mouse mammary carcinoma cells. Studies of mouse development also indicate that FGF8 may play an important role in growth and patterning of limbs, face, and central nervous system (<a href="#47" class="mim-tip-reference" title="Yoshiura, K., Leysens, N. J., Chang, J., Ward, D., Murray, J. C., Muenke, M. &lt;strong&gt;Genomic structure, sequence, and mapping of human FGF8 with no evidence for its role in craniosynostosis/limb defect syndromes.&lt;/strong&gt; Am. J. Med. Genet. 72: 354-362, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9332670/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9332670&lt;/a&gt;]" pmid="9332670">Yoshiura et al., 1997</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9332670" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#49" class="mim-tip-reference" title="Zammit, C., Coope, R., Gomm, J. J., Shousha, S., Johnston, C. L., Coombes, R. C. &lt;strong&gt;Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.&lt;/strong&gt; Brit. J. Cancer 86: 1097-1103, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11953856/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11953856&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=11953856[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.bjc.6600213&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11953856">Zammit et al. (2002)</a> found that FGF8 is expressed in increased levels in breast cancer and in lactating human breast; it was also detected in human milk. A survey of other normal tissues showed that FGF8 is expressed in the proliferative cells of the skin and epithelial cells in colon, ovary, fallopian tube, and uterus. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11953856" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#48" class="mim-tip-reference" title="Yu, S. R., Burkhardt, M., Nowak, M., Ries, J., Petrasek, Z., Scholpp, S., Schwille, P., Brand, M. &lt;strong&gt;Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.&lt;/strong&gt; Nature 461: 533-536, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19741606/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19741606&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature08391&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19741606">Yu et al. (2009)</a> showed that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by 2 essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence was provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, <a href="#48" class="mim-tip-reference" title="Yu, S. R., Burkhardt, M., Nowak, M., Ries, J., Petrasek, Z., Scholpp, S., Schwille, P., Brand, M. &lt;strong&gt;Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.&lt;/strong&gt; Nature 461: 533-536, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19741606/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19741606&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature08391&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19741606">Yu et al. (2009)</a> were able to alter the shape of the Fgf8 gradient. <a href="#48" class="mim-tip-reference" title="Yu, S. R., Burkhardt, M., Nowak, M., Ries, J., Petrasek, Z., Scholpp, S., Schwille, P., Brand, M. &lt;strong&gt;Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.&lt;/strong&gt; Nature 461: 533-536, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19741606/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19741606&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature08391&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19741606">Yu et al. (2009)</a> concluded that their results demonstrated that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19741606" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Role in Early Development</em></strong></p><p>
A molecular pathway leading to left-right asymmetry in the chick embryo has been described in which FGF8 is a right determinant and Sonic hedgehog (Shh; <a href="/entry/600725">600725</a>) is a left determinant. <a href="#23" class="mim-tip-reference" title="Meyers, E. N., Martin, G. R. &lt;strong&gt;Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH.&lt;/strong&gt; Science 285: 403-406, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10411502/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10411502&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.285.5426.403&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10411502">Meyers and Martin (1999)</a> presented evidence that in the mouse, FGF8 and Sonic hedgehog genes are also required for left-right axis determination, but with different functions from those reported in the chick. In the mouse, FGF8 is a left determinant, and Sonic hedgehog is required to prevent left determinants from being expressed on the right. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10411502" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The precise specification of left-right asymmetry is an essential process for patterning internal organs in vertebrates. In mouse embryonic development, the symmetry-breaking process in left-right determination is initiated by a leftward extraembryonic fluid flow on the surface of the ventral node. <a href="#40" class="mim-tip-reference" title="Tanaka, Y., Okada, Y., Hirokawa, N. &lt;strong&gt;FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination.&lt;/strong&gt; Nature 435: 172-177, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15889083/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15889083&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature03494&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15889083">Tanaka et al. (2005)</a> showed that FGF signaling triggers secretion of membrane-sheathed objects 0.3 to 5 microns in diameter, termed 'nodal vesicular parcels' (NVPs), which carry Sonic hedgehog and retinoic acid. These NVPs are transported leftward by the fluid flow and eventually fragment close to the left wall of the ventral node. The silencing effects of an FGF receptor (FGFR2; <a href="/entry/176943">176943</a>) inhibitor on NVP secretion and on a downstream rise in calcium were sufficiently reversed by exogenous Sonic hedgehog peptide or retinoic acid, suggesting that FGF-triggered surface accumulation of cargo morphogens may be essential for launching NVPs. <a href="#40" class="mim-tip-reference" title="Tanaka, Y., Okada, Y., Hirokawa, N. &lt;strong&gt;FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination.&lt;/strong&gt; Nature 435: 172-177, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15889083/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15889083&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature03494&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15889083">Tanaka et al. (2005)</a> proposed that NVP flow is a mode of extracellular transport that forms a left-right gradient of morphogens. Using time-lapse imaging, <a href="#40" class="mim-tip-reference" title="Tanaka, Y., Okada, Y., Hirokawa, N. &lt;strong&gt;FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination.&lt;/strong&gt; Nature 435: 172-177, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15889083/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15889083&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature03494&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15889083">Tanaka et al. (2005)</a> found that these NVPs were transported leftward once every 5 to 15 seconds. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15889083" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Fgf8 and Fgf4 (<a href="/entry/164980">164980</a>) are coexpressed in the primitive streak of the gastrulating mouse embryo. <a href="#38" class="mim-tip-reference" title="Sun, X., Meyers, E. N., Lewandoski, M., Martin, G. R. &lt;strong&gt;Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo.&lt;/strong&gt; Genes Dev. 13: 1834-1846, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10421635/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10421635&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10421635[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.13.14.1834&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10421635">Sun et al. (1999)</a> found that Fgf8 -/- embryos failed to express Fgf4 in the streak. Other observations indicated that Fgf8 is essential for gastrulation and showed that signaling via FGF8 and/or FGF4 is required for cell migration away from the primitive streak. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10421635" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#35" class="mim-tip-reference" title="Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A., Stern, C. D. &lt;strong&gt;Initiation of neural induction by FGF signalling before gastrulation.&lt;/strong&gt; Nature 406: 74-78, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10894544/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10894544&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/35017617&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10894544">Streit et al. (2000)</a> showed that FGF8-coated beads induce expression of the chick Erni gene (<a href="/entry/605105">605105</a>) to initiate neural induction before gastrulation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10894544" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Vertebrate segmentation requires a molecular oscillator, the segmentation clock, acting in presomitic mesoderm (PSM) cells to set the pace at which segmental boundaries are laid down. <a href="#5" class="mim-tip-reference" title="Dubrulle, J., McGrew, M. J., Pourquie, O. &lt;strong&gt;FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation.&lt;/strong&gt; Cell 106: 219-232, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11511349/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11511349&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(01)00437-8&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11511349">Dubrulle et al. (2001)</a> reported that FGF8, which is expressed in the posterior PSM, generates a moving wavefront at which level both segment boundary position and axial identity become determined. Furthermore, by manipulating boundary position in the chick embryo, they showed that Hox gene (see <a href="/entry/142950">142950</a>) expression is maintained in the appropriately numbered somite rather than at an absolute axial position. These results implicated FGF8 in ensuring tight coordination of the segmentation process and spatiotemporal HOX gene activation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11511349" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#15" class="mim-tip-reference" title="Jung, J., Zheng, M., Goldfarb, M., Zaret, K. S. &lt;strong&gt;Initiation of mammalian liver development from endoderm by fibroblast growth factors.&lt;/strong&gt; Science 284: 1998-2003, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10373120/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10373120&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.284.5422.1998&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10373120">Jung et al. (1999)</a> studied the initiation of mammalian liver development from endoderm by fibroblast growth factors. Close proximity of cardiac mesoderm, which expresses FGF1 (<a href="/entry/131220">131220</a>), FGF2 (<a href="/entry/134920">134920</a>), and FGF8, causes the foregut endoderm to develop into the liver. Treatment of isolated foregut endoderm from mouse embryos with FGF1 or FGF2, but not FGF8, was sufficient to replace cardiac mesoderm as an inducer of the liver gene expression program, the latter being the first step of hepatogenesis. The hepatogenic response was restricted to endoderm tissue, which selectively coexpresses FGF receptors 1 (<a href="/entry/136350">136350</a>) and 4 (<a href="/entry/134935">134935</a>). Further studies with FGFs and their specific inhibitors showed that FGF8 contributes to the morphogenic outgrowth of hepatic endoderm. Thus, different FGF signals appear to initiate distinct phases of liver development during mammalian organogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10373120" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#6" class="mim-tip-reference" title="Dubrulle, J., Pourquie, O. &lt;strong&gt;fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo.&lt;/strong&gt; Nature 427: 419-422, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14749824/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14749824&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature02216&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14749824">Dubrulle and Pourquie (2004)</a> demonstrated that transcription of Fgf8 mRNA is restricted to the growing posterior tip of the embryo in mouse. Fgf8 mRNA was progressively degraded in the newly formed tissues, resulting in the formation of an mRNA gradient in the posterior part of the embryo. This Fgf8 mRNA gradient was translated into a gradient of Fgf8 protein, which correlated with graded phosphorylation of the kinase AKT (<a href="/entry/164730">164730</a>), a downstream effector of FGF signaling. Such a mechanism provides an efficient means to monitor the timing of FGF signaling, coupling the differentiation of embryonic tissues to the posterior elongation of the embryo. In addition, <a href="#6" class="mim-tip-reference" title="Dubrulle, J., Pourquie, O. &lt;strong&gt;fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo.&lt;/strong&gt; Nature 427: 419-422, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14749824/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14749824&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature02216&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14749824">Dubrulle and Pourquie (2004)</a> concluded that this mechanism provides a novel model for morphogen gradient formation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14749824" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#16" class="mim-tip-reference" title="Ladher, R. K., Wright, T. J., Moon, A. M., Mansour, S. L., Schoenwolf, G. C. &lt;strong&gt;FGF8 initiates inner ear induction in chick and mouse.&lt;/strong&gt; Genes Dev. 19: 603-613, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15741321/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15741321&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15741321[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.1273605&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15741321">Ladher et al. (2005)</a> demonstrated that Fgf8 is required for otic induction in chicken and mouse embryos. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15741321" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#27" class="mim-tip-reference" title="Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W., Yost, H. J. &lt;strong&gt;FGF signalling during embryo development regulates cilia length in diverse epithelia.&lt;/strong&gt; Nature 458: 651-654, 2009. Note: Erratum: Nature 463: 384 only, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19242413/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19242413&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19242413[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07753&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19242413">Neugebauer et al. (2009)</a> provided several lines of evidence showing that fibroblast growth factor signaling regulates cilia length and function in diverse epithelia during zebrafish and Xenopus development. Morpholino knockdown of Fgfr1 (<a href="/entry/136350">136350</a>) in zebrafish cell-autonomously reduced cilia length in Kupffer vesicle and perturbed directional fluid flow required for left-right patterning of the embryo. Expression of a dominant-negative Fgfr1, treatment with a pharmacological inhibitor of FGF signaling, or genetic and morpholino reduction of redundant FGF ligands Fgf8 and Fgf24 reproduced this cilia length phenotype. Knockdown of Fgfr1 also resulted in shorter tethering of cilia in the otic vesicle and shorter motile cilia in the pronephric ducts. In Xenopus, expression of a dominant-negative fgfr1 resulted in shorter monocilia in the gastrocoel roof plate that control left-right patterning and in shorter multicilia in external mucociliary epithelium. <a href="#27" class="mim-tip-reference" title="Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W., Yost, H. J. &lt;strong&gt;FGF signalling during embryo development regulates cilia length in diverse epithelia.&lt;/strong&gt; Nature 458: 651-654, 2009. Note: Erratum: Nature 463: 384 only, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19242413/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19242413&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19242413[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07753&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19242413">Neugebauer et al. (2009)</a> concluded that their results indicated a fundamental and highly conserved role for FGF signaling in the regulation of cilia length in multiple tissues. Abrogation of Fgfr1 signaling downregulated expression of 2 ciliogenic transcription factors, foxj1 (<a href="/entry/602291">602291</a>) and rfx2 (<a href="/entry/142765">142765</a>), and of the intraflagellar transport gene ift88 (<a href="/entry/600595">600595</a>), indicating that FGF signaling mediates cilia length through an Fgf8/Fgf24-Fgfr1-intraflagellar transport pathway. <a href="#27" class="mim-tip-reference" title="Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W., Yost, H. J. &lt;strong&gt;FGF signalling during embryo development regulates cilia length in diverse epithelia.&lt;/strong&gt; Nature 458: 651-654, 2009. Note: Erratum: Nature 463: 384 only, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19242413/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19242413&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19242413[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07753&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19242413">Neugebauer et al. (2009)</a> proposed that a subset of developmental defects and diseases ascribed to FGF signaling are due in part to loss of cilia function. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19242413" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using fluorescence correlation spectroscopy and image analysis, <a href="#28" class="mim-tip-reference" title="Nowak, M., Machate, A., Yu, S. R., Gupta, M., Brand, M. &lt;strong&gt;Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.&lt;/strong&gt; Nature Cell Biol. 13: 153-158, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21258372/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21258372&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ncb2155&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21258372">Nowak et al. (2011)</a> showed that the ubiquitin ligase Cbl (<a href="/entry/165360">165360</a>) regulated Fgf8 signaling during zebrafish embryonic development through intracellular interpretation of the extracellular gradient. Fgf8-positive endosomes showed increased colocalization with Rab7 (<a href="/entry/602298">602298</a>), a marker of late endosomes, and Lamp1 (<a href="/entry/153330">153330</a>), a marker of lysosomes, during zebrafish development, indicating trafficking toward degradative endosomal compartments. Significant proportions of Fgf8-positive endosomes also colocalized with Rab11 (<a href="/entry/605570">605570</a>), a marker of recycling endosomes, caveolin-1 (CAV1; <a href="/entry/601047">601047</a>), a marker of caveolae, and a plasma membrane marker. Expression of a dominant-negative Cbl mutant resulted in reduced colocalization of Fgf8 endosomes with markers of degradative endosomal compartments, without altering the presence of Fgf8 in early and recycling endosomes. Similarly, expression of dominant-negative Cbl significantly reduced association of Fgfr1, the main receptor for Fgf8 during gastrulation, with Rab7 and increased its colocalization with Cav1. Further studies showed that dominant-negative Cbl caused a direct increase in Fgfr signaling complexes in target cells. <a href="#28" class="mim-tip-reference" title="Nowak, M., Machate, A., Yu, S. R., Gupta, M., Brand, M. &lt;strong&gt;Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.&lt;/strong&gt; Nature Cell Biol. 13: 153-158, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21258372/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21258372&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ncb2155&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21258372">Nowak et al. (2011)</a> concluded that endocytic sorting regulates morphogen gradient interpretation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21258372" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Role in Limb Development</em></strong></p><p>
For a review of the role of this gene in limb development, see <a href="#14" class="mim-tip-reference" title="Johnson, R. L., Tabin, C. J. &lt;strong&gt;Molecular models for vertebrate limb development.&lt;/strong&gt; Cell 90: 979-990, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9323126/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9323126&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80364-5&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9323126">Johnson and Tabin (1997)</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9323126" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using the Cre/loxP system, <a href="#36" class="mim-tip-reference" title="Sun, X., Lewandoski, M., Meyers, E. N., Liu, Y.-H., Maxson, R. E., Jr., Martin, G. R. &lt;strong&gt;Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development.&lt;/strong&gt; Nature Genet. 25: 83-86, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10802662/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10802662&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/75644&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10802662">Sun et al. (2000)</a> found that maintenance of Fgf9 (<a href="/entry/600921">600921</a>) and Fgf17 (<a href="/entry/603725">603725</a>) expression is dependent on Shh (<a href="/entry/600725">600725</a>), whereas Fgf8 expression is not. <a href="#36" class="mim-tip-reference" title="Sun, X., Lewandoski, M., Meyers, E. N., Liu, Y.-H., Maxson, R. E., Jr., Martin, G. R. &lt;strong&gt;Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development.&lt;/strong&gt; Nature Genet. 25: 83-86, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10802662/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10802662&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/75644&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10802662">Sun et al. (2000)</a> developed a model in which no individual Fgf expressed in the apical ectodermal ridge is solely necessary to maintain Shh expression, but instead the combined activity of 2 or more apical ectodermal ridge (AER) Fgfs function in a positive feedback loop with Shh to control limb development. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10802662" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#17" class="mim-tip-reference" title="Lewandoski, M., Sun, X., Martin, G. R. &lt;strong&gt;Fgf8 signalling from the AER is essential for normal limb development.&lt;/strong&gt; Nature Genet. 26: 460-463, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11101846/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11101846&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/82609&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11101846">Lewandoski et al. (2000)</a> reported that inactivating Fgf8 in early limb ectoderm caused a substantial reduction in limb-bud size, delay in Shh expression, misregulation of Fgf4 expression, and hypoplasia or aplasia of specific skeletal elements. The data indicated that Fgf8 is the only known AER-Fgf individually necessary for normal limb development. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11101846" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The expression pattern and activity of fibroblast growth factor-8 in experimental assays indicated that it has important roles in limb development, but early embryonic lethality resulting from mutation of Fgf8 in the germline of mice prevented direct assessment of these roles. <a href="#24" class="mim-tip-reference" title="Moon, A. M., Capecchi, M. R. &lt;strong&gt;Fgf8 is required for outgrowth and patterning of the limbs.&lt;/strong&gt; Nature Genet. 26: 455-459, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11101845/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11101845&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=11101845[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/82601&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11101845">Moon and Capecchi (2000)</a> found it possible to bypass embryonic lethality by conditional disruption of Fgf8 in the forelimb of developing mice and found a requirement for Fgf8 in the formation of the stylopod, anterior zeugopod, and autopod. Lack of Fgf8 in the apical ectodermal ridge (AER) altered expression of other Fgf genes, Shh, and Bmp2 (<a href="/entry/112261">112261</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11101845" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To determine the role of fibroblast growth factor signaling from the apical ectodermal ridge, <a href="#37" class="mim-tip-reference" title="Sun, X., Mariani, F. V., Martin, G. R. &lt;strong&gt;Functions of FGF signalling from the apical ectodermal ridge in limb development.&lt;/strong&gt; Nature 418: 501-508, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12152071/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12152071&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature00902&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12152071">Sun et al. (2002)</a> inactivated Fgf4 and Fgf8 in apical ectodermal ridge cells or their precursors at different stages of mouse limb development. <a href="#37" class="mim-tip-reference" title="Sun, X., Mariani, F. V., Martin, G. R. &lt;strong&gt;Functions of FGF signalling from the apical ectodermal ridge in limb development.&lt;/strong&gt; Nature 418: 501-508, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12152071/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12152071&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature00902&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12152071">Sun et al. (2002)</a> showed that Fgf4 and Fgf8 regulate cell number in the nascent limb bud and are required for survival of cells located far from the apical ectodermal ridge. On the basis of the skeletal phenotypes observed, <a href="#37" class="mim-tip-reference" title="Sun, X., Mariani, F. V., Martin, G. R. &lt;strong&gt;Functions of FGF signalling from the apical ectodermal ridge in limb development.&lt;/strong&gt; Nature 418: 501-508, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12152071/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12152071&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature00902&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12152071">Sun et al. (2002)</a> concluded that these functions are essential to ensure that sufficient progenitor cells are available to form the normal complement of skeletal elements, and perhaps other limb tissues. In the absence of both Fgf4 and Fgf8 activities, limb development fails. None of 23 newborn double knockout mice examined had hindlimbs. In contrast, forelimbs contained elements of all 3 limb segments but were shorter and thinner than normal. <a href="#37" class="mim-tip-reference" title="Sun, X., Mariani, F. V., Martin, G. R. &lt;strong&gt;Functions of FGF signalling from the apical ectodermal ridge in limb development.&lt;/strong&gt; Nature 418: 501-508, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12152071/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12152071&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature00902&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12152071">Sun et al. (2002)</a> found that in double homozygotes, forelimb proximal elements were invariably missing or severely hypoplastic when distal elements were present. They suggested that these observations argue against the progress zone model, which had been the prevailing model of limb proximal-distal patterning. <a href="#37" class="mim-tip-reference" title="Sun, X., Mariani, F. V., Martin, G. R. &lt;strong&gt;Functions of FGF signalling from the apical ectodermal ridge in limb development.&lt;/strong&gt; Nature 418: 501-508, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12152071/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12152071&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature00902&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12152071">Sun et al. (2002)</a> hypothesized that limb skeletal patterning is achieved as a function of basic cellular processes including cell division, cell survival, and stereotypic behaviors of chondrocyte progenitors such as aggregate formation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12152071" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a series of experiments involving removal of the apical ectodermal ridge from chick limb buds, <a href="#7" class="mim-tip-reference" title="Dudley, A. T., Ros, M. A., Tabin, C. J. &lt;strong&gt;A re-examination of proximodistal patterning during vertebrate limb development.&lt;/strong&gt; Nature 418: 539-544, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12152081/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12152081&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature00945&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12152081">Dudley et al. (2002)</a> demonstrated that the various limb bud segments are specified early in limb development as distinct domains, with subsequent development involving expansion of progenitor populations before differentiation. <a href="#7" class="mim-tip-reference" title="Dudley, A. T., Ros, M. A., Tabin, C. J. &lt;strong&gt;A re-examination of proximodistal patterning during vertebrate limb development.&lt;/strong&gt; Nature 418: 539-544, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12152081/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12152081&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature00945&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12152081">Dudley et al. (2002)</a> also found that the distal limb mesenchyme becomes progressively determined, that is, irreversibly fixed, to a progressively limited range of potential proximodistal fates. Their observations, coupled with those of <a href="#37" class="mim-tip-reference" title="Sun, X., Mariani, F. V., Martin, G. R. &lt;strong&gt;Functions of FGF signalling from the apical ectodermal ridge in limb development.&lt;/strong&gt; Nature 418: 501-508, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12152071/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12152071&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature00902&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12152071">Sun et al. (2002)</a>, refuted the progress zone model of vertebrate limb development. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=12152071+12152081" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Classical models of craniofacial development argue that the neural crest is prepatterned or preprogrammed to make specific head structures before its migration from the neural tube. In contrast, recent studies in several vertebrates, including mouse, chick, and zebrafish, have provided evidence for plasticity in patterning neural crest populations. Using tissue transposition and molecular analyses in avian embryos, <a href="#42" class="mim-tip-reference" title="Trainor, P. A., Ariza-McNaughton, L., Krumlauf, R. &lt;strong&gt;Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning.&lt;/strong&gt; Science 295: 1288-1291, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11847340/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11847340&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1064540&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11847340">Trainor et al. (2002)</a> reconciled these findings by demonstrating that classical manipulation experiments, which form the basis of the prepatterning model, involved transplantation of a local signaling center, the isthmic organizer. FGF8 signaling from the isthmus alters HOXA2 (<a href="/entry/142960">142960</a>) expression and consequently branchial arch patterning, demonstrating that neural crest cells are patterned by environmental signals. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11847340" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#19" class="mim-tip-reference" title="Mariani, F. V., Ahn, C. P., Martin, G. R. &lt;strong&gt;Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning.&lt;/strong&gt; Nature 453: 401-405, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18449196/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18449196&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18449196[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature06876&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18449196">Mariani et al. (2008)</a> demonstrated that mouse limbs lacking Fgf4 (<a href="/entry/164920">164920</a>), Fgf9 (<a href="/entry/600921">600921</a>), and Fgf17 (<a href="/entry/603725">603725</a>) have normal skeletal pattern, indicating that Fgf8 is sufficient among apical ectodermal ridge fibroblast growth factors (AER-FGFs) to sustain normal limb formation. Inactivation of Fgf8 alone causes a mild skeletal phenotype; however, when <a href="#19" class="mim-tip-reference" title="Mariani, F. V., Ahn, C. P., Martin, G. R. &lt;strong&gt;Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning.&lt;/strong&gt; Nature 453: 401-405, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18449196/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18449196&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18449196[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature06876&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18449196">Mariani et al. (2008)</a> also removed different combinations of the other AER-FGF genes, they obtained unexpected skeletal phenotypes of increasing severity, reflecting the contribution that each FGF can make to the total AER-FGF signal. Analysis of the compound mutant limb buds revealed that, in addition to sustaining cell survival, AER-FGFs regulate proximal-distal patterning gene expression during early limb bud development, providing genetic evidence that AER-FGFs function to specify a distal domain and challenging the longstanding hypothesis that AER-FGF signaling is permissive rather than instructive for limb patterning. <a href="#19" class="mim-tip-reference" title="Mariani, F. V., Ahn, C. P., Martin, G. R. &lt;strong&gt;Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning.&lt;/strong&gt; Nature 453: 401-405, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18449196/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18449196&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18449196[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature06876&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18449196">Mariani et al. (2008)</a> also developed a 2-signal model for proximal-distal patterning to explain early specification. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18449196" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Limb bud outgrowth is driven by signals in a positive feedback loop involving Fgf genes, Sonic hedgehog (<a href="/entry/600725">600725</a>), and Gremlin-1 (GREM1; <a href="/entry/603054">603054</a>). Precise termination of these signals is essential to restrict limb bud size. That the sequence in mouse limb buds is different from that in chick limb buds drove <a href="#44" class="mim-tip-reference" title="Verheyden, J. M., Sun, X. &lt;strong&gt;An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth.&lt;/strong&gt; Nature 454: 638-641, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18594511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18594511&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18594511[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07085&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18594511">Verheyden and Sun (2008)</a> to explore alternative mechanisms. By analyzing compound mouse mutants defective in genes comprising the positive loop, <a href="#44" class="mim-tip-reference" title="Verheyden, J. M., Sun, X. &lt;strong&gt;An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth.&lt;/strong&gt; Nature 454: 638-641, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18594511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18594511&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18594511[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07085&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18594511">Verheyden and Sun (2008)</a> provided genetic evidence that Fgf signaling can repress Grem1 expression, revealing a novel Fgf/Grem1 inhibitory loop. The repression occurs in both mouse and chick limb buds and is dependent on high Fgf activity. These data supported a mechanism where the positive Fgf/Shh loop drives outgrowth and an increase in FGF signaling, which triggers the Fgf/Grem1 inhibitory loop. The inhibitory loop then operates to terminate outgrowth signals in the order observed in either mouse or chick limb buds. <a href="#44" class="mim-tip-reference" title="Verheyden, J. M., Sun, X. &lt;strong&gt;An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth.&lt;/strong&gt; Nature 454: 638-641, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18594511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18594511&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18594511[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07085&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18594511">Verheyden and Sun (2008)</a> concluded that their study unveils the concept of a self-promoting and self-terminating circuit that may be used to attain proper tissue size in a broad spectrum of developmental and regenerative settings. <a href="#44" class="mim-tip-reference" title="Verheyden, J. M., Sun, X. &lt;strong&gt;An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth.&lt;/strong&gt; Nature 454: 638-641, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18594511/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18594511&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18594511[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07085&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18594511">Verheyden and Sun (2008)</a> demonstrated that Fgf8 repression of Fgf4 expression is dependent on Grem1 but not Sonic hedgehog. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18594511" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#3" class="mim-tip-reference" title="Cooper, K. L., Hu, J. K.-H., ten Berge, D., Fernandez-Teran, M., Ros, M. A., Tabin, C. J. &lt;strong&gt;Initiation of proximal-distal patterning in the vertebrate limb by signals and growth.&lt;/strong&gt; Science 332: 1083-1086, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21617075/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21617075&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21617075[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1199499&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21617075">Cooper et al. (2011)</a> observed that mesenchymal cells cultured in the combination of the 3 signaling molecules retinoic acid, Fgf8, and Wnt3a (<a href="/entry/606359">606359</a>) to which early limb cells are normally exposed maintain the capacity to form both proximal and distal structures despite the passage of time and continued proliferation. This strongly argues against a mechanism linking proximodistal specification to a cell cycle-based internal clock. <a href="#3" class="mim-tip-reference" title="Cooper, K. L., Hu, J. K.-H., ten Berge, D., Fernandez-Teran, M., Ros, M. A., Tabin, C. J. &lt;strong&gt;Initiation of proximal-distal patterning in the vertebrate limb by signals and growth.&lt;/strong&gt; Science 332: 1083-1086, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21617075/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21617075&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21617075[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1199499&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21617075">Cooper et al. (2011)</a> concluded that the trigger for initiating the process of specification of the zeugopod and autopod is the cessation due to displacement of retinoic acid exposure. Similar conclusions were independently reached by <a href="#32" class="mim-tip-reference" title="Rosello-Diez, A., Ros, M. A., Torres, M. &lt;strong&gt;Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision.&lt;/strong&gt; Science 332: 1086-1088, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21617076/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21617076&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1199489&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21617076">Rosello-Diez et al. (2011)</a>. Using heterotopic transplantation of intact and recombinant chick limb buds, <a href="#32" class="mim-tip-reference" title="Rosello-Diez, A., Ros, M. A., Torres, M. &lt;strong&gt;Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision.&lt;/strong&gt; Science 332: 1086-1088, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21617076/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21617076&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1199489&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21617076">Rosello-Diez et al. (2011)</a> identified signals in the embryo trunk that proximalize distal limb cells to generate a complete proximodistal axis. In these transplants, retinoic acid induces proximalization, which is counteracted by fibroblast growth factors from the distal limb bud; these related actions suggested that the first limb bud proximodistal regionalization results from the balance between proximal and distal signals. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=21617076+21617075" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#25" class="mim-tip-reference" title="Nacu, E., Gromberg, E., Oliveira, C. R., Drechsel, D., Tanaka, E. M. &lt;strong&gt;FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration.&lt;/strong&gt; Nature 533: 407-410, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/27120163/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;27120163&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature17972&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="27120163">Nacu et al. (2016)</a> clarified the molecular basis of the requirement for both anterior and posterior tissue during limb regeneration and supernumerary limb formation in axolotls. <a href="#25" class="mim-tip-reference" title="Nacu, E., Gromberg, E., Oliveira, C. R., Drechsel, D., Tanaka, E. M. &lt;strong&gt;FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration.&lt;/strong&gt; Nature 533: 407-410, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/27120163/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;27120163&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature17972&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="27120163">Nacu et al. (2016)</a> showed that the 2 tissues provide complementary cross-inductive signals that are required for limb outgrowth. A blastema composed solely of anterior tissue normally regresses rather than forming a limb, but activation of hedgehog (HH) signaling was sufficient to drive regeneration of an anterior blastema to completion owing to its ability to maintain fibroblast growth factor (FGF) expression, the key signaling activity responsible for blastema outgrowth. In blastemas composed solely of posterior tissue, HH signaling was not sufficient to drive regeneration; however, ectopic expression of FGF8 together with endogenous HH signaling was sufficient. In axolotls, FGF8 is expressed only in the anterior mesenchyme and maintenance of its expression depends on SHH (<a href="/entry/600725">600725</a>) signaling from posterior tissue. <a href="#25" class="mim-tip-reference" title="Nacu, E., Gromberg, E., Oliveira, C. R., Drechsel, D., Tanaka, E. M. &lt;strong&gt;FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration.&lt;/strong&gt; Nature 533: 407-410, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/27120163/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;27120163&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature17972&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="27120163">Nacu et al. (2016)</a> concluded that their data identified key anteriorly and posteriorly localized signals that promote limb regeneration. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=27120163" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Role in Brain Development</em></strong></p><p>
<a href="#9" class="mim-tip-reference" title="Fukuchi-Shimogori, T., Grove, E. A. &lt;strong&gt;Neocortex patterning by the secreted signaling molecule FGF8.&lt;/strong&gt; Science 294: 1071-1074, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11567107/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11567107&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1064252&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11567107">Fukuchi-Shimogori and Grove (2001)</a> provided evidence that FGF8 regulates development of the area map of neurogenesis from a source in the anterior telencephalon. Using electroporation-mediated gene transfer in mouse embryos, they showed that augmenting the endogenous anterior FGF8 signal shifts area boundaries posteriorly, reducing the signal shifts them anteriorly, and introducing a posterior source of FGF8 elicits partial area duplications, revealed by ectopic somatosensory barrel fields. <a href="#9" class="mim-tip-reference" title="Fukuchi-Shimogori, T., Grove, E. A. &lt;strong&gt;Neocortex patterning by the secreted signaling molecule FGF8.&lt;/strong&gt; Science 294: 1071-1074, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11567107/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11567107&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1064252&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11567107">Fukuchi-Shimogori and Grove (2001)</a> concluded that their findings support a role for FGF signaling in specifying positional identity in the neocortex. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11567107" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using in utero microelectroporation to manipulate gene expression and function in mouse cortical primordium, <a href="#10" class="mim-tip-reference" title="Fukuchi-Shimogori, T., Grove, E. A. &lt;strong&gt;Emx2 patterns the neocortex by regulating FGF positional signaling.&lt;/strong&gt; Nature Neurosci. 6: 825-831, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12872126/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12872126&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nn1093&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12872126">Fukuchi-Shimogori and Grove (2003)</a> found that the transcription factor Emx2 (<a href="/entry/600035">600035</a>) regulates Fgf8 in the development of neocortical area patterning. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12872126" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#34" class="mim-tip-reference" title="Storm, E. E., Rubenstein, J. L. R., Martin, G. R. &lt;strong&gt;Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain.&lt;/strong&gt; Proc. Nat. Acad. Sci. 100: 1757-1762, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12574514/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12574514&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12574514[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0337736100&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12574514">Storm et al. (2003)</a> investigated the effects of varying the level of Fgf8 expression in the mouse forebrain. They detected 2 distinct responses, one that was proportionate with Fgf8 expression and another that was not. The latter response, which led to effects on cell survival, displayed a paradoxical relationship to Fgf8 dosage. Either eliminating or increasing Fgf8 expression increased apoptosis, whereas reducing Fgf8 expression had the opposite effect. To explain these counterintuitive observations, the authors suggested that an FGF8-dependent cell-survival pathway is negatively regulated by intracellular inhibitors produced in proportion to FGF8 concentration. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12574514" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#13" class="mim-tip-reference" title="Gunhaga, L., Marklund, M., Sjodal, M., Hsieh, J.-C., Jessell, T. M., Edlund, T. &lt;strong&gt;Specification of dorsal telencephalic character by sequential Wnt and FGF signaling.&lt;/strong&gt; Nature Neurosci. 6: 701-707, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12766771/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12766771&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nn1068&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12766771">Gunhaga et al. (2003)</a> examined the signals that induce the initial early dorsal character of telencephalic cells. Studies in vitro and in chick embryos showed that Wnt3A (<a href="/entry/606359">606359</a>) inhibited the generation of ventral telencephalic cells and was required to induce early dorsal characterization at the neural plate stage. Later, at the early neural tube stage, FGF8 signaling was required to characterize the dorsal telencephalic cells definitively, as defined by EMX1 (<a href="/entry/600034">600034</a>) expression. The authors emphasized that the sequential signaling of Wnt3A and FGF8 was required for dorsal characterization of the cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12766771" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Role in Eye Development</em></strong></p><p>
<a href="#20" class="mim-tip-reference" title="Martinez-Morales, J.-R., Del Bene, F., Nica, G., Hammerschmidt, M., Bovolenta, P., Wittbrodt, J. &lt;strong&gt;Differentiation of the vertebrate retina is coordinated by an FGF signaling center.&lt;/strong&gt; Dev. Cell 8: 565-574, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15809038/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15809038&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.devcel.2005.01.022&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15809038">Martinez-Morales et al. (2005)</a> demonstrated that Fgf3 and Fgf8 cooperate in initiating neuronal differentiation in the zebrafish retina. In both chicken and zebrafish, Fgf8 triggered retinal progenitor cells to undergo terminal mitosis and differentiate into retinal ganglion cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15809038" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Role in Tooth Development</em></strong></p><p>
Dlx1 (<a href="/entry/600029">600029</a>) and Dlx2 (<a href="/entry/126255">126255</a>) are involved in patterning of murine dentition, since loss of these transcription factors results in early developmental failure in upper molar teeth. <a href="#41" class="mim-tip-reference" title="Thomas, B. L., Liu, J. K., Rubenstein, J. L. R., Sharpe, P. T. &lt;strong&gt;Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch.&lt;/strong&gt; Development 127: 217-224, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10603340/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10603340&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1242/dev.127.2.217&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10603340">Thomas et al. (2000)</a> found that Fgf8, which was expressed in the epithelium overlying the mesenchyme in the mouse first branchial arch, regulated the mesenchymal expression of Dlx2. Fgf8 also inhibited expression of Dlx2 in the epithelium by a signaling pathway that required the mesenchyme. Bmp4 (<a href="/entry/112262">112262</a>), which was coexpressed with Ldx2 in distal oral epithelium, regulated Dlx2 expression by planar signaling. <a href="#41" class="mim-tip-reference" title="Thomas, B. L., Liu, J. K., Rubenstein, J. L. R., Sharpe, P. T. &lt;strong&gt;Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch.&lt;/strong&gt; Development 127: 217-224, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10603340/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10603340&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1242/dev.127.2.217&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10603340">Thomas et al. (2000)</a> concluded that Bmp4 and Fgf8 maintain strict epithelial and mesenchymal expression domains of Dlx2 in the first branchial arch of developing mice. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10603340" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="biochemicalFeatures" class="mim-anchor"></a>
<h4 href="#mimBiochemicalFeaturesFold" id="mimBiochemicalFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimBiochemicalFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Biochemical Features</strong>
</span>
</h4>
</div>
<div id="mimBiochemicalFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#29" class="mim-tip-reference" title="Olsen, S. K., Li, J. Y. H., Bromleigh, C., Eliseenkova, A. V., Ibrahimi, O. A., Lao, Z., Zhang, F., Linhardt, R. J., Joyner, A. L., Mohammadi, M. &lt;strong&gt;Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain.&lt;/strong&gt; Genes Dev. 20: 185-198, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16384934/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16384934&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16384934[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.1365406&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16384934">Olsen et al. (2006)</a> solved the crystal structure of FGF8B in complex with the 'c' splice isoform of FGFR2 (<a href="/entry/176943">176943</a>) and, using surface plasmon resonance, characterized the receptor binding specificities of FGF8A and FGF8B. They found that, compared with FGF8A, FGF8B makes an additional contact between phe32 (F32) of FGF8B and the hydrophobic groove within Ig domain 3 of the receptor that is also present in the c isoforms of FGFR1 (<a href="/entry/136350">136350</a>) and FGFR3 (<a href="/entry/134934">134934</a>) and in FGFR4 (<a href="/entry/134935">134935</a>). Mutation of F32 to alanine (F32A) reduced the affinity of FGF8B toward all these receptors to levels characteristic of FGF8A. Analysis of the mid-hindbrain patterning of the FGF8B F32A mutant in chicken embryos and mouse midbrain explants showed that this mutation functionally converted FGF8B to FGF8A. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16384934" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Hypogonadotropic Hypogonadism 6 with or without Anosmia</em></strong></p><p>
Using a candidate gene approach, <a href="#8" class="mim-tip-reference" title="Falardeau, J., Chung, W. C. J., Beenken, A., Raivio, T., Plummer, L., Sidis, Y., Jacobson-Dickman, E. E., Eliseenkova, A. V., Ma, J., Dwyer, A., Quinton, R., Na, S., and 9 others. &lt;strong&gt;Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.&lt;/strong&gt; J. Clin. Invest. 118: 2822-2831, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18596921/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18596921&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18596921[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI34538&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18596921">Falardeau et al. (2008)</a> screened the FGF8 gene in 461 unrelated probands with idiopathic hypogonadotropic hypogonadism (IHH), including 193 normosmic patients, 237 anosmic patients, and 21 patients with adult-onset idiopathic hypogonadotropic hypogonadism (see HH6, <a href="/entry/612702">612702</a>). They identified 6 mutations in the FGF8 gene, in 2 familial cases of Kallmann syndrome (<a href="#0002">600483.0002</a> and <a href="#0005">600483.0005</a>, respectively), 1 familial case of IHH (<a href="#0004">600483.0004</a>), 2 sporadic cases of IHH (<a href="#0001">600483.0001</a> and <a href="#0003">600483.0003</a>, respectively) and 1 case of adult-onset IHH (<a href="#0006">600483.0006</a>). Probands harboring an FGF8 mutation were screened for other loci underlying IHH, and 2 probands with normosmic IHH (see <a href="#0003">600483.0003</a> and <a href="#0004">600483.0004</a>, respectively) were found to carry additional mutations in the FGFR1 gene (see <a href="/entry/136350#0023">136350.0023</a>-<a href="/entry/136350#0025">136350.0025</a>, respectively). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18596921" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By sequencing the FGF8 gene in 2 unrelated probands from Brazil with hypogonadotropic hypogonadism-6, one with and one without anosmia, <a href="#43" class="mim-tip-reference" title="Trarbach, E. B., Abreu, A. P., Silveira, L. F. G., Garmes, H. M., Baptista, M. T. M., Teles, M. G., Costa, E. M. F., Mohammadi, M., Pitteloud, N., Mendonca, B. B., Latronico, A. C. &lt;strong&gt;Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency.&lt;/strong&gt; J. Clin. Endocr. Metab. 95: 3491-3496, 2010. Note: Erratum: J. Clin. Endocr. Metab. 96: 2624 only, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20463092/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20463092&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2010-0176&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20463092">Trarbach et al. (2010)</a> identified different heterozygous nonsense mutations (R127X, <a href="#0007">600483.0007</a> and R129X, <a href="#0008">600483.0008</a>). Both patients had a family history of the disorder. Both mutations mapped to the core domain of the protein, affected all 4 FGF8 isoforms, and led to deletion of a large portion of the protein, predicted to result in nonfunctional FGF8 ligands. The mutations were not found in 150 Brazilian control individuals. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20463092" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Hypoplastic Femurs and Pelvis</em></strong></p><p>
<a href="#33" class="mim-tip-reference" title="Socha, M., Sowinska-Seidler, A., Melo, U. S., Kragesteen, B. K., Franke, M., Heinrich, V., Schopflin, R., Nagel, I., Gruchy, N., Mundlos, S., Sreenivasan, V. K. A., Lopez, C., Vingron, M., Bukowska-Olech, E., Spielmann, M., Jamsheer, A. &lt;strong&gt;Position effects at the FGF8 locus are associated with femoral hypoplasia.&lt;/strong&gt; Am. J. Hum. Genet. 108: 1725-1734, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34433009/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34433009&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34433009[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2021.08.001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34433009">Socha et al. (2021)</a> reported 2 families with hypoplastic femurs and pelvis (HYPOFP; <a href="/entry/619545">619545</a>) and overlapping duplications at chromosome 10q24.32 that segregated with disease. Breakpoint sequencing showed tandem orientation in both duplications, which in family 1 involved 533,943 kb (chr10q24.32(103,012,761_103,546,704)x3; GRCh37), and in family 2 involved 542,061 kb (chr10q24.32(103,001,852_103,543,913)x3; GRCh37). The duplications involved 6 genes, including BTRC (<a href="/entry/603482">603482</a>), POLL (<a href="/entry/606343">606343</a>), DPCD (<a href="/entry/616467">616467</a>), FBXW4 (<a href="/entry/608071">608071</a>), FGF8, and NPM3 (<a href="/entry/606456">606456</a>). The authors noted that the duplications almost completely overlapped with split-hand/foot malformation (SHFM3; <a href="/entry/246560">246560</a>)-associated 10q24.32 duplications, with the only gene unique to the femoral hypoplasia phenotype being FGF8. Analysis of local chromosome architecture in patient fibroblasts showed strong ectopic interaction between FGF8 and an approximately 230-kb region within the neighboring topologically associating domain of BTRC. Expression analysis in patient fibroblasts showed a 2.9-fold increase in expression of FGF8 and a 2.3-fold increase in expression of BTRC. Analysis of transgenic mouse models suggested that the phenotype is mostly likely due to position effects causing altered FGF8 expression rather than gene dosage effects. The authors noted that other genes within the duplicated fragments might also contribute to the phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34433009" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Associations Pending Confirmation</em></strong></p><p>
<a href="#31" class="mim-tip-reference" title="Riley, B. M., Mansilla, M. A., Ma, J., Daack-Hirsch, S., Maher, B. S., Raffensperger, L. M., Russo, E. T., Vieira, A. R., Dode, C., Mohammadi, M., Marazita, M. L., Murray, J. C. &lt;strong&gt;Impaired FGF signaling contributes to cleft lip and palate.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 4512-4517, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17360555/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17360555&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17360555[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0607956104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17360555">Riley et al. (2007)</a> analyzed 12 genes involved in the fibroblast growth factor signaling pathway in nonsyndromic cleft lip or palate families and identified 7 likely disease-causing mutations in which structural analysis predicted functional impairment in the FGFR1, FGFR2, FGFR3 (<a href="/entry/134934">134934</a>), and FGF8 genes. One patient with apparent nonsyndromic cleft lip and palate had a de novo asp73-to-his (D73H) substitution in the FGF8 gene, predicted to reduce binding affinity of FGF8 towards its cognate receptors. <a href="#31" class="mim-tip-reference" title="Riley, B. M., Mansilla, M. A., Ma, J., Daack-Hirsch, S., Maher, B. S., Raffensperger, L. M., Russo, E. T., Vieira, A. R., Dode, C., Mohammadi, M., Marazita, M. L., Murray, J. C. &lt;strong&gt;Impaired FGF signaling contributes to cleft lip and palate.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 4512-4517, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17360555/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17360555&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17360555[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0607956104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17360555">Riley et al. (2007)</a> suggested that the FGF signaling pathway may contribute to as much as 3 to 5% of nonsyndromic cleft lip or palate. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17360555" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Exclusion Studies</em></strong></p><p>
Since FGF8 maps to the same chromosomal region as FGFR2 (<a href="/entry/176943">176943</a>), is a ligand for FGFR2, and has an expression pattern consistent with limb and craniofacial anomalies, <a href="#47" class="mim-tip-reference" title="Yoshiura, K., Leysens, N. J., Chang, J., Ward, D., Murray, J. C., Muenke, M. &lt;strong&gt;Genomic structure, sequence, and mapping of human FGF8 with no evidence for its role in craniosynostosis/limb defect syndromes.&lt;/strong&gt; Am. J. Med. Genet. 72: 354-362, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9332670/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9332670&lt;/a&gt;]" pmid="9332670">Yoshiura et al. (1997)</a> screened 2 kindreds with Pfeiffer syndrome (<a href="/entry/101600">101600</a>) previously linked to markers from 10q24-q25 and a large number of individuals with craniosynostosis and limb anomalies for mutations in the coding sequence of FGF8. No mutations were found. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9332670" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="animalModel" class="mim-anchor"></a>
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#22" class="mim-tip-reference" title="Meyers, E. N., Lewandoski, M., Martin, G. R. &lt;strong&gt;An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination.&lt;/strong&gt; Nature Genet. 18: 136-141, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9462741/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9462741&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0298-136&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9462741">Meyers et al. (1998)</a> generated a mouse line carrying a hypomorphic Fgf8 allele that could be converted to a null allele or reverted to wildtype by Cre- and Flp-mediated recombination. They found that homozygosity for the Fgf8-null allele resulted in defective gastrulation. Embryos carrying different combinations of hypomorphic, null, and wildtype alleles showed a range of phenotypes, including deletion and/or malformation of major brain structures, abnormal development of the heart, posterior compartment, or craniofacial structures, and generally retarded development. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9462741" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#45" class="mim-tip-reference" title="Watanabe, Y., Miyagawa-Tomita, S., Vincent, S. D., Kelly, R. G., Moon, A. M., Buckingham, M. E. &lt;strong&gt;Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries.&lt;/strong&gt; Circ. Res. 106: 495-503, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20035084/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20035084&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20035084[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1161/CIRCRESAHA.109.201665&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20035084">Watanabe et al. (2010)</a> generated compound Fgf8 and Fgf10 (<a href="/entry/602115">602115</a>) mutant mice in the cardiac and pharyngeal mesoderm. They found that pharyngeal arch artery (PAA) development was perturbed by Fgf8 deletion. The frequency and severity of PAA and outflow tract (OFT) defects increased with decreasing expression of Fgf8 and Fgf10. <a href="#45" class="mim-tip-reference" title="Watanabe, Y., Miyagawa-Tomita, S., Vincent, S. D., Kelly, R. G., Moon, A. M., Buckingham, M. E. &lt;strong&gt;Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries.&lt;/strong&gt; Circ. Res. 106: 495-503, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20035084/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20035084&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20035084[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1161/CIRCRESAHA.109.201665&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20035084">Watanabe et al. (2010)</a> concluded that there is functional overlap of mesodermal FGF8 and FGF10 during second heart field/OFT and PAA development, and that FGF10 has a role in formation of the arterial pole of the heart. The findings indicated that the sensitivity of these processes is influenced by incremental reductions in FGF levels. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20035084" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#26" class="mim-tip-reference" title="Naiche, L. A., Holder, N., Lewandoski, M. &lt;strong&gt;FGF4 and FGF8 comprise the wavefront activity that controls somatogenesis.&lt;/strong&gt; Proc. Nat. Acad. Sci. 108: 4018-4023, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21368122/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21368122&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21368122[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.1007417108&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21368122">Naiche et al. (2011)</a> showed that deletion of both Fgf4 and Fgf8 in PSM of mouse embryos resulted in loss of expression of most PSM genes, including cycling genes, Wnt pathway genes, and markers of undifferentiated PSM. In contrast, markers of nascent somite cell fate expanded throughout the PSM. Restoration of Wnt signaling only partially restored PSM markers, and premature PSM differentiation continued. <a href="#26" class="mim-tip-reference" title="Naiche, L. A., Holder, N., Lewandoski, M. &lt;strong&gt;FGF4 and FGF8 comprise the wavefront activity that controls somatogenesis.&lt;/strong&gt; Proc. Nat. Acad. Sci. 108: 4018-4023, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21368122/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21368122&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21368122[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.1007417108&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21368122">Naiche et al. (2011)</a> concluded that FGF signaling operates independently of Wnt signaling to maintain the wavefront signal that controls somatogenesis and that FGF4 and FGF8 are the sole signaling mediators of this wavefront activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21368122" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#2" class="mim-tip-reference" title="Boulet, A. M., Capecchi, M. R. &lt;strong&gt;Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo.&lt;/strong&gt; Dev. Biol. 371: 235-245, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22954964/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22954964&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22954964[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ydbio.2012.08.017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22954964">Boulet and Capecchi (2012)</a> reported that loss of expression of both Fgf4 and Fgf8 in mice during late gastrulation resulted in thoracic vertebrae and ribs with abnormal morphology, malformed or absent lumbar and sacral vertebrae, and no tail vertebrae. Expression of Wnt3a in tail and transcription factor T (<a href="/entry/601397">601397</a>) in nascent mesoderm was severely reduced. Expression of genes in the Notch (see <a href="/entry/190198">190198</a>) signaling pathway involved in segmentation were also severely affected. After production of 15 to 20 somites, somite formation ceased. The defects appeared to result from a failure to produce sufficient paraxial mesoderm. <a href="#2" class="mim-tip-reference" title="Boulet, A. M., Capecchi, M. R. &lt;strong&gt;Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo.&lt;/strong&gt; Dev. Biol. 371: 235-245, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22954964/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22954964&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22954964[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ydbio.2012.08.017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22954964">Boulet and Capecchi (2012)</a> proposed that FGF4 and FGF8 are required to maintain a population of progenitor cells in the epiblast that generates mesoderm and contributes to the stem-cell population that is incorporated in the tailbud and required for axial elongation of the mouse embryo after gastrulation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22954964" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="allelicVariants" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span href="#mimAllelicVariantsFold" id="mimAllelicVariantsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAllelicVariantsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>ALLELIC VARIANTS (<a href="/help/faq#1_4"></strong>
</span>
<strong>8 Selected Examples</a>):</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimAllelicVariantsFold" class="collapse in mimTextToggleFold">
<div>
<a href="/allelicVariants/600483" class="btn btn-default" role="button"> Table View </a>
&nbsp;&nbsp;<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=600483[MIM]" class="btn btn-default mim-tip-hint" role="button" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a>
</div>
<div>
<p />
</div>
<div>
<div>
<a id="0001" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0001&nbsp;HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
FGF8, HIS14ASN
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs137852659 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs137852659;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs137852659" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs137852659" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000030886" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000030886" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000030886</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 32-year-old woman of mixed European descent with normosmic idiopathic hypogonadotropic hypogonadism (HH6; <a href="/entry/612702">612702</a>), <a href="#8" class="mim-tip-reference" title="Falardeau, J., Chung, W. C. J., Beenken, A., Raivio, T., Plummer, L., Sidis, Y., Jacobson-Dickman, E. E., Eliseenkova, A. V., Ma, J., Dwyer, A., Quinton, R., Na, S., and 9 others. &lt;strong&gt;Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.&lt;/strong&gt; J. Clin. Invest. 118: 2822-2831, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18596921/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18596921&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18596921[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI34538&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18596921">Falardeau et al. (2008)</a> identified heterozygosity for a 40C-A transversion in exon 1B of the FGF8 gene, resulting in a his14-to-asn (H14N) substitution at a highly conserved residue within the hydrophobic signal peptide present in all 4 isoforms of the protein. Additional features in the patient included high-arched palate and osteoporotic fractures. The mutation was not found in 180 ethnically matched controls, and the patient's daughter, who did not carry the mutation, initiated pubertal development at age 11 years. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18596921" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0002" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0002&nbsp;HYPOGONADOTROPIC HYPOGONADISM 6 WITH ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
FGF8, PRO26LEU
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs137852660 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs137852660;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs137852660?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs137852660" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs137852660" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009692 OR RCV000239300 OR RCV000767027" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009692, RCV000239300, RCV000767027" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009692...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 28-year-old man of mixed European descent who had been diagnosed at age 16 with hypogonadism and who was found to have a decreased sense of smell, consistent with Kallmann syndrome (HH6; <a href="/entry/612702">612702</a>), <a href="#8" class="mim-tip-reference" title="Falardeau, J., Chung, W. C. J., Beenken, A., Raivio, T., Plummer, L., Sidis, Y., Jacobson-Dickman, E. E., Eliseenkova, A. V., Ma, J., Dwyer, A., Quinton, R., Na, S., and 9 others. &lt;strong&gt;Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.&lt;/strong&gt; J. Clin. Invest. 118: 2822-2831, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18596921/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18596921&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18596921[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI34538&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18596921">Falardeau et al. (2008)</a> identified heterozygosity for a 77C-T transition in exon 1C of the FGF8 gene, resulting in a pro26-to-leu (P26L) substitution at a highly conserved residue present in the FGF8e and FGF8f isoforms of the protein. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function. Brain MRI in the proband revealed partial empty sella and bilateral hypoplastic olfactory bulbs and tracts. His father, who carried the mutation, had a history of decreasing olfaction; the mutation was not found in his asymptomatic mother or in 180 ethnically matched controls. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18596921" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0003" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0003&nbsp;HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
FGF8, PHE40LEU
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs137852661 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs137852661;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs137852661" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs137852661" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000030887" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000030887" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000030887</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 19-year-old man who was evaluated at age 15.5 years for delayed puberty and found to have a hypogonadal serum testosterone level with undetectable serum gonadotropins (HH6; <a href="/entry/612702">612702</a>), <a href="#8" class="mim-tip-reference" title="Falardeau, J., Chung, W. C. J., Beenken, A., Raivio, T., Plummer, L., Sidis, Y., Jacobson-Dickman, E. E., Eliseenkova, A. V., Ma, J., Dwyer, A., Quinton, R., Na, S., and 9 others. &lt;strong&gt;Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.&lt;/strong&gt; J. Clin. Invest. 118: 2822-2831, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18596921/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18596921&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18596921[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI34538&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18596921">Falardeau et al. (2008)</a> identified homozygosity for a 118T-C transition in exon 1C of the FGF8 gene, resulting in a phe40-to-leu (F40L) substitution at a highly conserved residue present in the FGF8e and FGF8f isoforms of the protein. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function; the mutation was not found in 180 ethnically matched controls. The patient, who had a normal brain MRI, was also found to be compound heterozygous for mutations in the FGFR1 gene, Q784H (<a href="/entry/136350#0023">136350.0023</a>) and D768Y (<a href="/entry/136350#0024">136350.0024</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18596921" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0004" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0004&nbsp;HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
FGF8, LYS100GLU
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs137852662 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs137852662;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs137852662" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs137852662" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000030888" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000030888" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000030888</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 10-year-old boy of mixed European descent who was born with microphallus and found to have undetectable serum testosterone and gonadotropins and normal olfaction (HH6; <a href="/entry/612702">612702</a>), <a href="#8" class="mim-tip-reference" title="Falardeau, J., Chung, W. C. J., Beenken, A., Raivio, T., Plummer, L., Sidis, Y., Jacobson-Dickman, E. E., Eliseenkova, A. V., Ma, J., Dwyer, A., Quinton, R., Na, S., and 9 others. &lt;strong&gt;Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.&lt;/strong&gt; J. Clin. Invest. 118: 2822-2831, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18596921/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18596921&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18596921[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI34538&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18596921">Falardeau et al. (2008)</a> identified heterozygosity for a de novo 298A-G transition in exon 1D of the FGF8 gene, resulting in a lys100-to-glu (K100E) substitution at a highly conserved residue present in all 4 isoforms of the protein. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function. The mutation was not found in either parent or in 180 ethnically matched controls. Both the patient and his father, who had normal olfaction, bilateral hearing loss, and a history of delayed puberty, were also found to be heterozygous for a mutation in the FGFR1 gene (R250Q; <a href="/entry/136350#0025">136350.0025</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18596921" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0005" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0005&nbsp;HYPOGONADOTROPIC HYPOGONADISM 6 WITH OR WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
FGF8, ARG127GLY
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs137852663 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs137852663;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs137852663?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs137852663" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs137852663" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009695" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009695" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009695</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 19-year-old woman of mixed European descent who was born with cleft lip and palate and was evaluated at age 14 years for primary amenorrhea and lack of breast development and found to have anosmia and undetectable serum gonadotropins (HH6; <a href="/entry/612702">612702</a>), <a href="#8" class="mim-tip-reference" title="Falardeau, J., Chung, W. C. J., Beenken, A., Raivio, T., Plummer, L., Sidis, Y., Jacobson-Dickman, E. E., Eliseenkova, A. V., Ma, J., Dwyer, A., Quinton, R., Na, S., and 9 others. &lt;strong&gt;Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.&lt;/strong&gt; J. Clin. Invest. 118: 2822-2831, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18596921/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18596921&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18596921[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI34538&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18596921">Falardeau et al. (2008)</a> identified heterozygosity for a 379C-G transversion in exon 2 of the FGF8 gene, resulting in an arg127-to-gly (R127G) substitution at a highly conserved residue present in all 4 isoforms of the protein. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function. Additional features in the patient included short stature, hypertelorism, flattened bridge of the nose, hyperlaxity of the digits, camptodactyly, and mild scoliosis; further examination revealed color blindness and bilateral hearing loss, and imaging studies showed normal olfactory bulbs and nerves, normal renal ultrasound, and very low bone density. The proband's mother, who also carried the mutation, had normosmic hypogonadotropic hypogonadism. The proband's dizygotic twin sibs had markedly different phenotypes: one harbored the R127G mutation and had severe Kallmann syndrome, with microphallus, undescended testes, absent puberty, and cleft lip/palate, whereas the other did not carry the mutation and underwent normal puberty but had short stature. The father, who was wildtype for FGF8, had a normal sense of smell but a history of delayed puberty, and the paternal grandmother also had a history of delayed puberty. The mutation was not found in 180 ethnically matched controls. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18596921" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0006" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0006&nbsp;RECLASSIFIED - VARIANT OF UNKNOWN SIGNIFICANCE</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
FGF8, THR229MET
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs137852664 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs137852664;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs137852664?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs137852664" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs137852664" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009697 OR RCV000988442 OR RCV001531080" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009697, RCV000988442, RCV001531080" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009697...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>This variant, formerly titled HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA (<a href="/entry/612702">612702</a>), has been reclassified based on the findings of <a href="#1" class="mim-tip-reference" title="Arauz, R. F., Solomon, B. D., Pineda-Alvarez, D. E., Gropman, A. L., Parsons, J. A., Roessler, E., Muenke, M. &lt;strong&gt;A hypomorphic allele in the FGF8 gene contributes to holoprosencephaly and is allelic to gonadotropin-releasing hormone deficiency in humans.&lt;/strong&gt; Mol. Syndromol. 1: 59-66, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21045958/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21045958&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21045958[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000302285&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21045958">Arauz et al. (2010)</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21045958" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 40-year-old man of mixed European descent who presented for evaluation of infertility and decreased libido and was found to have undetectable serum gonadotropins with hypogonadal testosterone levels, <a href="#8" class="mim-tip-reference" title="Falardeau, J., Chung, W. C. J., Beenken, A., Raivio, T., Plummer, L., Sidis, Y., Jacobson-Dickman, E. E., Eliseenkova, A. V., Ma, J., Dwyer, A., Quinton, R., Na, S., and 9 others. &lt;strong&gt;Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.&lt;/strong&gt; J. Clin. Invest. 118: 2822-2831, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18596921/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18596921&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18596921[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI34538&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18596921">Falardeau et al. (2008)</a> identified heterozygosity for a 686C-T transition in exon 3 of the FGF8 gene, resulting in a thr229-to-met (T229M) substitution at a highly conserved residue in the C-terminal tail. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function, and the mutation was not found in 180 ethnically matched controls. The patient had normal brain MRI, renal ultrasound, and bone density; he was subsequently diagnosed with Graves disease (see <a href="/entry/275000">275000</a>), type 2 diabetes (see <a href="/entry/125853">125853</a>), and hypertension (see <a href="/entry/145500">145500</a>). There was no family history of reproductive or olfactory defects. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18596921" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#1" class="mim-tip-reference" title="Arauz, R. F., Solomon, B. D., Pineda-Alvarez, D. E., Gropman, A. L., Parsons, J. A., Roessler, E., Muenke, M. &lt;strong&gt;A hypomorphic allele in the FGF8 gene contributes to holoprosencephaly and is allelic to gonadotropin-releasing hormone deficiency in humans.&lt;/strong&gt; Mol. Syndromol. 1: 59-66, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21045958/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21045958&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21045958[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000302285&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21045958">Arauz et al. (2010)</a> identified a heterozygous T229M substitution in 1 of 360 unrelated patients with holoprosencephaly (<a href="/entry/236100">236100</a>). The patient had semilobar HPE, microcephaly, cleft palate, seizures, diabetes insipidus, and severe neurologic impairment. The mutation was also found in her dizygotic twin sister, who had above-average intelligence, a single central incisor, and hypotelorism; she had subtle midline anomalies with olfactory bulb dysplasia apparent in brain MRI at age 1 year, but no evidence of midline abnormalities on follow-up imaging at age 8 years. The mother, who also carried the mutation, had mild hypotelorism and above-average intelligence. None had signs of hypogonadotropic hypogonadism or any endocrine disturbance. Based on the highly variable phenotype in this family, <a href="#1" class="mim-tip-reference" title="Arauz, R. F., Solomon, B. D., Pineda-Alvarez, D. E., Gropman, A. L., Parsons, J. A., Roessler, E., Muenke, M. &lt;strong&gt;A hypomorphic allele in the FGF8 gene contributes to holoprosencephaly and is allelic to gonadotropin-releasing hormone deficiency in humans.&lt;/strong&gt; Mol. Syndromol. 1: 59-66, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21045958/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21045958&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21045958[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000302285&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21045958">Arauz et al. (2010)</a> concluded that there must be additional genetic and/or environmental factors in the pathogenesis of HPE. However, defects in FGF8 may play a rare role in midline defects. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21045958" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0007" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0007&nbsp;HYPOGONADOTROPIC HYPOGONADISM 6 WITH OR WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
FGF8, ARG127TER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs137852663 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs137852663;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs137852663?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs137852663" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs137852663" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000735418 OR RCV001007971" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000735418, RCV001007971" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000735418...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an 18-year-old Brazilian woman with familial hypogonadotropic hypogonadism 6 and moderate microsmia (HH6; <a href="/entry/612702">612702</a>), <a href="#43" class="mim-tip-reference" title="Trarbach, E. B., Abreu, A. P., Silveira, L. F. G., Garmes, H. M., Baptista, M. T. M., Teles, M. G., Costa, E. M. F., Mohammadi, M., Pitteloud, N., Mendonca, B. B., Latronico, A. C. &lt;strong&gt;Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency.&lt;/strong&gt; J. Clin. Endocr. Metab. 95: 3491-3496, 2010. Note: Erratum: J. Clin. Endocr. Metab. 96: 2624 only, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20463092/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20463092&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2010-0176&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20463092">Trarbach et al. (2010)</a> sequenced the FGF8 gene and identified a heterozygous c.763C-T transition (c.763C-T, NM_033163) in the FGF8 gene, resulting in an arg127-to-ter (R127X) substitution in the highly conserved FGF beta-trefoil core domain. Four sibs of the patient with HH6 without anosmia were also heterozygous for the mutation, which was not found in 150 unaffected Brazilian control individuals. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20463092" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0008" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0008&nbsp;HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
FGF8, ARG129TER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs876661330 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs876661330;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs876661330?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs876661330" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs876661330" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000223728 OR RCV000735419 OR RCV001658044" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000223728, RCV000735419, RCV001658044" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000223728...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 30-year-old Brazilian man with familial hypogonadotropic hypogonadism without anosmia (HH6; <a href="/entry/612702">612702</a>), <a href="#43" class="mim-tip-reference" title="Trarbach, E. B., Abreu, A. P., Silveira, L. F. G., Garmes, H. M., Baptista, M. T. M., Teles, M. G., Costa, E. M. F., Mohammadi, M., Pitteloud, N., Mendonca, B. B., Latronico, A. C. &lt;strong&gt;Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency.&lt;/strong&gt; J. Clin. Endocr. Metab. 95: 3491-3496, 2010. Note: Erratum: J. Clin. Endocr. Metab. 96: 2624 only, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20463092/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20463092&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2010-0176&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20463092">Trarbach et al. (2010)</a> sequenced the FGF8 gene and identified a heterozygous c.769C-T transition (c.769C-T, NM_033163) resulting in an arg129-to-ter (R129X) substitution in the highly conserved FGF beta-trefoil core domain. The patient's affected sister was also heterozygous for the mutation, which was not found in 150 unaffected Brazilian control individuals. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20463092" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Arauz2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Arauz, R. F., Solomon, B. D., Pineda-Alvarez, D. E., Gropman, A. L., Parsons, J. A., Roessler, E., Muenke, M.
<strong>A hypomorphic allele in the FGF8 gene contributes to holoprosencephaly and is allelic to gonadotropin-releasing hormone deficiency in humans.</strong>
Mol. Syndromol. 1: 59-66, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21045958/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21045958</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21045958[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21045958" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1159/000302285" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Boulet2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Boulet, A. M., Capecchi, M. R.
<strong>Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo.</strong>
Dev. Biol. 371: 235-245, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22954964/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22954964</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22954964[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22954964" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ydbio.2012.08.017" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Cooper2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cooper, K. L., Hu, J. K.-H., ten Berge, D., Fernandez-Teran, M., Ros, M. A., Tabin, C. J.
<strong>Initiation of proximal-distal patterning in the vertebrate limb by signals and growth.</strong>
Science 332: 1083-1086, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21617075/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21617075</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21617075[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21617075" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1199499" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Copeland1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Copeland, N. G., Jenkins, N. A., Gilbert, D. J., Eppig, J. T., Maltais, L. J., Miller, J. C., Dietrich, W. F., Weaver, A., Lincoln, S. E., Steen, R. G., Stein, L. D., Nadeau, J. H., Lander, E. S.
<strong>A genetic linkage map of the mouse: current applications and future prospects.</strong>
Science 262: 57-66, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8211130/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8211130</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8211130" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.8211130" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Dubrulle2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Dubrulle, J., McGrew, M. J., Pourquie, O.
<strong>FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation.</strong>
Cell 106: 219-232, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11511349/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11511349</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11511349" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(01)00437-8" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Dubrulle2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Dubrulle, J., Pourquie, O.
<strong>fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo.</strong>
Nature 427: 419-422, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14749824/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14749824</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14749824" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature02216" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Dudley2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Dudley, A. T., Ros, M. A., Tabin, C. J.
<strong>A re-examination of proximodistal patterning during vertebrate limb development.</strong>
Nature 418: 539-544, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12152081/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12152081</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12152081" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature00945" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Falardeau2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Falardeau, J., Chung, W. C. J., Beenken, A., Raivio, T., Plummer, L., Sidis, Y., Jacobson-Dickman, E. E., Eliseenkova, A. V., Ma, J., Dwyer, A., Quinton, R., Na, S., and 9 others.
<strong>Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.</strong>
J. Clin. Invest. 118: 2822-2831, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18596921/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18596921</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18596921[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18596921" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI34538" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Fukuchi-Shimogori2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fukuchi-Shimogori, T., Grove, E. A.
<strong>Neocortex patterning by the secreted signaling molecule FGF8.</strong>
Science 294: 1071-1074, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11567107/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11567107</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11567107" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1064252" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Fukuchi-Shimogori2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fukuchi-Shimogori, T., Grove, E. A.
<strong>Emx2 patterns the neocortex by regulating FGF positional signaling.</strong>
Nature Neurosci. 6: 825-831, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12872126/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12872126</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12872126" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nn1093" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Gemel1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gemel, J., Gorry, M., Ehrlich, G. D., MacArthur, C. A.
<strong>Structure and sequence of human FGF8.</strong>
Genomics 35: 253-257, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8661131/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8661131</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8661131" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1006/geno.1996.0349" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Ghosh1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ghosh, A. K., Shankar, D. B., Shackleford, G. M., Wu, K., T'Ang, A., Miller, G. J., Zheng, J., Roy-Burman, P.
<strong>Molecular cloning and characterization of human FGF8 alternative messenger RNA forms.</strong>
Cell Growth Diff. 7: 1425-1434, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8891346/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8891346</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8891346" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Gunhaga2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gunhaga, L., Marklund, M., Sjodal, M., Hsieh, J.-C., Jessell, T. M., Edlund, T.
<strong>Specification of dorsal telencephalic character by sequential Wnt and FGF signaling.</strong>
Nature Neurosci. 6: 701-707, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12766771/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12766771</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12766771" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nn1068" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Johnson1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Johnson, R. L., Tabin, C. J.
<strong>Molecular models for vertebrate limb development.</strong>
Cell 90: 979-990, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9323126/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9323126</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9323126" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)80364-5" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Jung1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jung, J., Zheng, M., Goldfarb, M., Zaret, K. S.
<strong>Initiation of mammalian liver development from endoderm by fibroblast growth factors.</strong>
Science 284: 1998-2003, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10373120/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10373120</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10373120" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.284.5422.1998" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Ladher2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ladher, R. K., Wright, T. J., Moon, A. M., Mansour, S. L., Schoenwolf, G. C.
<strong>FGF8 initiates inner ear induction in chick and mouse.</strong>
Genes Dev. 19: 603-613, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15741321/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15741321</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15741321[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15741321" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.1273605" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Lewandoski2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lewandoski, M., Sun, X., Martin, G. R.
<strong>Fgf8 signalling from the AER is essential for normal limb development.</strong>
Nature Genet. 26: 460-463, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11101846/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11101846</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11101846" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/82609" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Lorenzi1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lorenzi, M. V., Long, J. E., Miki, T., Aaronson, S. A.
<strong>Expression cloning, developmental expression and chromosomal localization of fibroblast growth factor-8.</strong>
Oncogene 10: 2051-2055, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7761105/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7761105</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7761105" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Mariani2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mariani, F. V., Ahn, C. P., Martin, G. R.
<strong>Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning.</strong>
Nature 453: 401-405, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18449196/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18449196</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18449196[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18449196" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature06876" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Martinez-Morales2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Martinez-Morales, J.-R., Del Bene, F., Nica, G., Hammerschmidt, M., Bovolenta, P., Wittbrodt, J.
<strong>Differentiation of the vertebrate retina is coordinated by an FGF signaling center.</strong>
Dev. Cell 8: 565-574, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15809038/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15809038</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15809038" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.devcel.2005.01.022" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Mattei1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mattei, M.-G., deLapeyriere, O., Bresnick, J., Dickson, C., Birnbaum, D., Mason, I.
<strong>Mouse Fgf7 (fibroblast growth factor 7) and Fgf8 (fibroblast growth factor 8) genes map to chromosomes 2 and 19 respectively.</strong>
Mammalian Genome 6: 196-197, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7749227/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7749227</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7749227" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00293012" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Meyers1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Meyers, E. N., Lewandoski, M., Martin, G. R.
<strong>An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination.</strong>
Nature Genet. 18: 136-141, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9462741/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9462741</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9462741" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng0298-136" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Meyers1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Meyers, E. N., Martin, G. R.
<strong>Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH.</strong>
Science 285: 403-406, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10411502/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10411502</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10411502" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.285.5426.403" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Moon2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Moon, A. M., Capecchi, M. R.
<strong>Fgf8 is required for outgrowth and patterning of the limbs.</strong>
Nature Genet. 26: 455-459, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11101845/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11101845</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=11101845[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11101845" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/82601" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Nacu2016" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Nacu, E., Gromberg, E., Oliveira, C. R., Drechsel, D., Tanaka, E. M.
<strong>FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration.</strong>
Nature 533: 407-410, 2016.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/27120163/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">27120163</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=27120163" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature17972" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="26" class="mim-anchor"></a>
<a id="Naiche2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Naiche, L. A., Holder, N., Lewandoski, M.
<strong>FGF4 and FGF8 comprise the wavefront activity that controls somatogenesis.</strong>
Proc. Nat. Acad. Sci. 108: 4018-4023, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21368122/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21368122</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21368122[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21368122" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.1007417108" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="27" class="mim-anchor"></a>
<a id="Neugebauer2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W., Yost, H. J.
<strong>FGF signalling during embryo development regulates cilia length in diverse epithelia.</strong>
Nature 458: 651-654, 2009. Note: Erratum: Nature 463: 384 only, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19242413/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19242413</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19242413[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19242413" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature07753" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="28" class="mim-anchor"></a>
<a id="Nowak2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Nowak, M., Machate, A., Yu, S. R., Gupta, M., Brand, M.
<strong>Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.</strong>
Nature Cell Biol. 13: 153-158, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21258372/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21258372</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21258372" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ncb2155" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="29" class="mim-anchor"></a>
<a id="Olsen2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Olsen, S. K., Li, J. Y. H., Bromleigh, C., Eliseenkova, A. V., Ibrahimi, O. A., Lao, Z., Zhang, F., Linhardt, R. J., Joyner, A. L., Mohammadi, M.
<strong>Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain.</strong>
Genes Dev. 20: 185-198, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16384934/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16384934</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16384934[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16384934" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.1365406" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="30" class="mim-anchor"></a>
<a id="Payson1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Payson, R. A., Wu, J., Liu, Y., Chiu, I.-M.
<strong>The human FGF-8 gene localizes on chromosome 10q24 and is subjected to induction by androgen in breast cancer cells.</strong>
Oncogene 13: 47-53, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8700553/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8700553</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8700553" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="31" class="mim-anchor"></a>
<a id="Riley2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Riley, B. M., Mansilla, M. A., Ma, J., Daack-Hirsch, S., Maher, B. S., Raffensperger, L. M., Russo, E. T., Vieira, A. R., Dode, C., Mohammadi, M., Marazita, M. L., Murray, J. C.
<strong>Impaired FGF signaling contributes to cleft lip and palate.</strong>
Proc. Nat. Acad. Sci. 104: 4512-4517, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17360555/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17360555</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17360555[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17360555" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0607956104" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="32" class="mim-anchor"></a>
<a id="Rosello-Diez2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rosello-Diez, A., Ros, M. A., Torres, M.
<strong>Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision.</strong>
Science 332: 1086-1088, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21617076/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21617076</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21617076" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1199489" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="33" class="mim-anchor"></a>
<a id="Socha2021" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Socha, M., Sowinska-Seidler, A., Melo, U. S., Kragesteen, B. K., Franke, M., Heinrich, V., Schopflin, R., Nagel, I., Gruchy, N., Mundlos, S., Sreenivasan, V. K. A., Lopez, C., Vingron, M., Bukowska-Olech, E., Spielmann, M., Jamsheer, A.
<strong>Position effects at the FGF8 locus are associated with femoral hypoplasia.</strong>
Am. J. Hum. Genet. 108: 1725-1734, 2021.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/34433009/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">34433009</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=34433009[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34433009" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2021.08.001" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="34" class="mim-anchor"></a>
<a id="Storm2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Storm, E. E., Rubenstein, J. L. R., Martin, G. R.
<strong>Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain.</strong>
Proc. Nat. Acad. Sci. 100: 1757-1762, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12574514/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12574514</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12574514[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12574514" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0337736100" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="35" class="mim-anchor"></a>
<a id="Streit2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A., Stern, C. D.
<strong>Initiation of neural induction by FGF signalling before gastrulation.</strong>
Nature 406: 74-78, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10894544/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10894544</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10894544" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/35017617" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="36" class="mim-anchor"></a>
<a id="Sun2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sun, X., Lewandoski, M., Meyers, E. N., Liu, Y.-H., Maxson, R. E., Jr., Martin, G. R.
<strong>Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development.</strong>
Nature Genet. 25: 83-86, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10802662/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10802662</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10802662" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/75644" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="37" class="mim-anchor"></a>
<a id="Sun2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sun, X., Mariani, F. V., Martin, G. R.
<strong>Functions of FGF signalling from the apical ectodermal ridge in limb development.</strong>
Nature 418: 501-508, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12152071/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12152071</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12152071" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature00902" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="38" class="mim-anchor"></a>
<a id="Sun1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sun, X., Meyers, E. N., Lewandoski, M., Martin, G. R.
<strong>Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo.</strong>
Genes Dev. 13: 1834-1846, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10421635/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10421635</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=10421635[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10421635" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.13.14.1834" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="39" class="mim-anchor"></a>
<a id="Tanaka1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tanaka, A., Miyamoto, K., Matsuo, H., Matsumoto, K., Yoshida, H.
<strong>Human androgen-induced growth factor in prostate and breast cancer cells: its molecular cloning and growth properties.</strong>
FEBS Lett. 363: 226-230, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7737407/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7737407</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7737407" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0014-5793(95)00324-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="40" class="mim-anchor"></a>
<a id="Tanaka2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tanaka, Y., Okada, Y., Hirokawa, N.
<strong>FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination.</strong>
Nature 435: 172-177, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15889083/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15889083</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15889083" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature03494" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="41" class="mim-anchor"></a>
<a id="Thomas2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Thomas, B. L., Liu, J. K., Rubenstein, J. L. R., Sharpe, P. T.
<strong>Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch.</strong>
Development 127: 217-224, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10603340/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10603340</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10603340" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1242/dev.127.2.217" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="42" class="mim-anchor"></a>
<a id="Trainor2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Trainor, P. A., Ariza-McNaughton, L., Krumlauf, R.
<strong>Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning.</strong>
Science 295: 1288-1291, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11847340/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11847340</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11847340" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1064540" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="43" class="mim-anchor"></a>
<a id="Trarbach2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Trarbach, E. B., Abreu, A. P., Silveira, L. F. G., Garmes, H. M., Baptista, M. T. M., Teles, M. G., Costa, E. M. F., Mohammadi, M., Pitteloud, N., Mendonca, B. B., Latronico, A. C.
<strong>Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency.</strong>
J. Clin. Endocr. Metab. 95: 3491-3496, 2010. Note: Erratum: J. Clin. Endocr. Metab. 96: 2624 only, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20463092/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20463092</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20463092" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jc.2010-0176" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="44" class="mim-anchor"></a>
<a id="Verheyden2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Verheyden, J. M., Sun, X.
<strong>An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth.</strong>
Nature 454: 638-641, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18594511/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18594511</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18594511[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18594511" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature07085" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="45" class="mim-anchor"></a>
<a id="Watanabe2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Watanabe, Y., Miyagawa-Tomita, S., Vincent, S. D., Kelly, R. G., Moon, A. M., Buckingham, M. E.
<strong>Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries.</strong>
Circ. Res. 106: 495-503, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20035084/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20035084</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20035084[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20035084" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1161/CIRCRESAHA.109.201665" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="46" class="mim-anchor"></a>
<a id="White1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
White, R. A., Dowler, L. L., Angeloni, S. V., Pasztor, L. M., MacArthur, C. A.
<strong>Assignment of FGF8 to human chromosome 10q25-q26: mutations in FGF8 may be responsible for some types of acrocephalosyndactyly linked to this region.</strong>
Genomics 30: 109-111, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8595889/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8595889</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8595889" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1006/geno.1995.0020" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="47" class="mim-anchor"></a>
<a id="Yoshiura1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yoshiura, K., Leysens, N. J., Chang, J., Ward, D., Murray, J. C., Muenke, M.
<strong>Genomic structure, sequence, and mapping of human FGF8 with no evidence for its role in craniosynostosis/limb defect syndromes.</strong>
Am. J. Med. Genet. 72: 354-362, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9332670/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9332670</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9332670" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="48" class="mim-anchor"></a>
<a id="Yu2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yu, S. R., Burkhardt, M., Nowak, M., Ries, J., Petrasek, Z., Scholpp, S., Schwille, P., Brand, M.
<strong>Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.</strong>
Nature 461: 533-536, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19741606/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19741606</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19741606" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature08391" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="49" class="mim-anchor"></a>
<a id="Zammit2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zammit, C., Coope, R., Gomm, J. J., Shousha, S., Johnston, C. L., Coombes, R. C.
<strong>Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.</strong>
Brit. J. Cancer 86: 1097-1103, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11953856/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11953856</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=11953856[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11953856" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.bjc.6600213" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Marla J. F. O'Neill - updated : 09/28/2021
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Sonja A. Rasmussen - updated : 12/14/2018<br>Ada Hamosh - updated : 07/07/2016<br>Paul J. Converse - updated : 10/13/2015<br>Paul J. Converse - updated : 9/11/2015<br>Paul J. Converse - updated : 9/10/2015<br>Marla J. F. O'Neill - updated : 9/27/2012<br>Cassandra L. Kniffin - updated : 3/5/2012<br>Ada Hamosh - updated : 7/19/2011<br>Ada Hamosh - updated : 2/18/2010<br>Ada Hamosh - updated : 10/19/2009<br>Ada Hamosh - updated : 4/16/2009<br>Marla J. F. O'Neill - updated : 3/23/2009<br>Patricia A. Hartz - updated : 12/1/2008<br>Ada Hamosh - updated : 10/20/2008<br>Ada Hamosh - updated : 6/12/2008<br>Marla J. F. O'Neill - updated : 4/30/2007<br>Ada Hamosh - updated : 5/25/2005<br>Patricia A. Hartz - updated : 5/12/2005<br>Patricia A. Hartz - updated : 4/19/2005<br>Patricia A. Hartz - updated : 4/12/2004<br>Ada Hamosh - updated : 3/23/2004<br>Cassandra L. Kniffin - updated : 7/28/2003<br>Cassandra L. Kniffin - updated : 6/2/2003<br>Victor A. McKusick - updated : 3/27/2003<br>Ada Hamosh - updated : 8/7/2002<br>Victor A. McKusick - updated : 7/1/2002<br>Ada Hamosh - updated : 2/20/2002<br>Ada Hamosh - updated : 11/14/2001<br>Stylianos E. Antonarakis - updated : 8/2/2001<br>Victor A. McKusick - updated : 11/22/2000<br>Ada Hamosh - updated : 7/5/2000<br>Ada Hamosh - updated : 5/1/2000<br>Victor A. McKusick - updated : 10/21/1999<br>Ada Hamosh - updated : 7/16/1999<br>Ada Hamosh - updated : 6/18/1999<br>Ada Hamosh - updated : 4/9/1998<br>Victor A. McKusick - updated : 3/27/1998<br>Victor A. McKusick - updated : 11/11/1997<br>Moyra Smith - updated : 7/4/1996<br>Alan F. Scott - updated : 11/14/1995
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 4/9/1995
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
alopez : 04/28/2023
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 09/29/2021<br>carol : 09/28/2021<br>carol : 12/18/2018<br>carol : 12/14/2018<br>carol : 09/12/2016<br>alopez : 07/07/2016<br>mgross : 10/13/2015<br>mgross : 10/13/2015<br>mgross : 9/11/2015<br>mgross : 9/10/2015<br>carol : 10/17/2012<br>carol : 9/27/2012<br>carol : 3/23/2012<br>terry : 3/23/2012<br>ckniffin : 3/5/2012<br>alopez : 7/19/2011<br>terry : 2/18/2010<br>alopez : 10/26/2009<br>terry : 10/19/2009<br>alopez : 4/21/2009<br>terry : 4/16/2009<br>wwang : 3/30/2009<br>terry : 3/23/2009<br>mgross : 12/2/2008<br>terry : 12/1/2008<br>alopez : 10/21/2008<br>terry : 10/20/2008<br>terry : 10/8/2008<br>alopez : 6/19/2008<br>terry : 6/12/2008<br>wwang : 4/30/2007<br>tkritzer : 6/2/2005<br>terry : 5/25/2005<br>wwang : 5/20/2005<br>terry : 5/12/2005<br>mgross : 4/21/2005<br>terry : 4/19/2005<br>mgross : 4/12/2004<br>alopez : 3/24/2004<br>terry : 3/23/2004<br>alopez : 8/29/2003<br>ckniffin : 7/30/2003<br>carol : 7/28/2003<br>ckniffin : 7/28/2003<br>alopez : 7/28/2003<br>carol : 6/2/2003<br>ckniffin : 6/2/2003<br>cwells : 4/1/2003<br>terry : 3/27/2003<br>alopez : 8/8/2002<br>alopez : 8/8/2002<br>terry : 8/7/2002<br>cwells : 7/24/2002<br>terry : 7/1/2002<br>terry : 2/20/2002<br>terry : 2/20/2002<br>alopez : 11/15/2001<br>terry : 11/14/2001<br>mgross : 8/2/2001<br>mgross : 8/2/2001<br>carol : 11/28/2000<br>terry : 11/22/2000<br>terry : 11/22/2000<br>mgross : 7/5/2000<br>mgross : 7/5/2000<br>terry : 7/5/2000<br>alopez : 5/1/2000<br>carol : 10/21/1999<br>alopez : 7/16/1999<br>alopez : 7/16/1999<br>terry : 7/16/1999<br>terry : 7/16/1999<br>alopez : 6/18/1999<br>alopez : 6/18/1999<br>psherman : 4/15/1998<br>alopez : 4/9/1998<br>psherman : 3/27/1998<br>dholmes : 3/6/1998<br>terry : 11/14/1997<br>terry : 11/11/1997<br>jamie : 2/18/1997<br>carol : 8/10/1996<br>mark : 7/4/1996<br>mark : 7/4/1996<br>terry : 4/17/1996<br>mark : 3/1/1996<br>terry : 3/1/1996<br>joanna : 1/26/1996<br>mark : 8/3/1995<br>mark : 4/9/1995
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>*</strong> 600483
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
FIBROBLAST GROWTH FACTOR 8; FGF8
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
ANDROGEN-INDUCED GROWTH FACTOR; AIGF
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: FGF8</em></strong>
</span>
</p>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: 10q24.32
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : 10:101,770,109-101,780,369 </span>
</em>
</strong>
<span class="small">(from NCBI)</span>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1">
<span class="mim-font">
10q24.32
</span>
</td>
<td>
<span class="mim-font">
Hypogonadotropic hypogonadism 6 with or without anosmia
</span>
</td>
<td>
<span class="mim-font">
612702
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<div>
<h4>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Fibroblast growth factors are secreted proteins that interact with FGF tyrosine kinase receptors to mediate growth and development. Lorenzi et al. (1995) isolated a cDNA encoding Fgf8, or Aigf, from mouse testis. A 1.6-kb Fgf8 transcript was detected in testis, but not in other adult tissues analyzed. During development, expression of Fgf8 was restricted to embryonic days 9 through 13, suggesting to Lorenzi et al. (1995) that Fgf8 plays a role during a discrete stage of mouse embryogenesis. </p><p>Using mouse Aigf to screen a placenta genomic phage library, Tanaka et al. (1995) cloned human AIGF. The deduced 215-amino acid human protein is identical to mouse Aigf. RT-PCR detected AIGF expression in human prostate and breast cancer cell lines. </p><p>Gemel et al. (1996) noted that the mouse Fgf8 gene has at least 4 different first exons that can be alternatively spliced to generate at least 8 potential proteins, designated Fgf8a through Fgf8h, that differ at their N termini. Using mouse Fgf8g to screen a human placenta genomic DNA library, they obtained the human FGF8 genomic sequence and determined that it could generate transcripts corresponding to mouse Fgf8a, Fgf8b, Fgf8e, and Fgf8f, but not the other 4 mouse transcripts. FGF8B corresponds to the AIGF protein reported by Tanaka et al. (1995). The predicted mouse and human proteins share 98 to 100% identity. </p><p>By RT-PCR of a human prostate cancer cell line using primers based on mouse Fgf8, Ghosh et al. (1996) cloned FGF8A, FGF8B, and FGF8E. The deduced proteins contain 204, 215, and 233 amino acids, respectively. All 3 isoforms contain a predicted 23-amino acid signal sequence, and they differ only at the N termini of their mature forms; their C-terminal 180 amino acids are identical. Northern blot analysis of several adult and fetal tissues detected FGF8 expression in fetal kidney only. RT-PCR detected FGF8 expression in testis, prostate, and kidney, the only tissues examined. FGF8B was the predominant form in prostate, and both FGF8A and FGF8B were expressed in testis and kidney. FGF8B was also the predominant form expressed in normal prostate and prostate carcinoma cell lines. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Gemel et al. (1996) determined that the FGF8 gene contains 6 exons, including 4 alternative first exons, and spans about 6 kb. </p><p>Yoshiura et al. (1997) described the genomic sequence of human FGF8 and demonstrated conservation between the human and mouse sequences, including alternatively spliced exons in the mouse. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>By isotopic in situ hybridization, Mattei et al. (1995) found that the Fgf8 gene maps to mouse chromosome 19 in region C3-D. On the basis of conserved regions of synteny between mouse chromosome 19 and human chromosomes (Copeland et al., 1993), they predicted that FGF8 maps to human chromosome 10q. Using a panel of human/rodent somatic cell hybrids, Lorenzi et al. (1995) demonstrated that the FGF8 gene is indeed located on human chromosome 10. White et al. (1995) mapped FGF8 to 10q25-q26 using Southern blots of somatic cell hybrid DNAs containing portions of chromosome 10. By fluorescence in situ hybridization and by genetic linkage analysis, Yoshiura et al. (1997) mapped the FGF8 gene to 10q24. Using somatic cell hybrid analysis and fluorescence in situ hybridization, Payson et al. (1996) mapped the FGF8 gene to 10q24. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Tanaka et al. (1995) showed that AIGF stimulated growth of human prostate carcinoma cells and mouse fibroblasts and mammary carcinoma cells in a dose-dependent manner. </p><p>Ghosh et al. (1996) transfected human FGF8B in mouse fibroblasts and found that it induced an elongated spindle shape morphology and permitted higher cell density at confluence. Furthermore, FGF8B-transfected cells were strongly tumorigenic when injected into nude mice. FGF8A and FGF8E were moderately transforming in transfected cells, and these cells were moderately tumorigenic. </p><p>FGF8, alternatively referred to as AIGF, was originally isolated from the conditioned medium of an androgen-dependent carcinoma cell line. The temporal and spatial patterns of FGF8 gene expression suggest that FGF8 is involved in gastrulation, regionalization of the brain, and organogenesis of the limb and face as an embryonic epithelial factor. The adult expression of FGF8 is restricted to gonads, including testes and ovaries. Payson et al. (1996) showed that FGF8 gene expression in a human breast cancer cell line is inducible by androgen. They stated that their findings will facilitate understanding of the molecular mechanism underlying hormone-responsive breast and prostate cancers. </p><p>FGF8 stimulates the androgen-dependent growth of mouse mammary carcinoma cells. Studies of mouse development also indicate that FGF8 may play an important role in growth and patterning of limbs, face, and central nervous system (Yoshiura et al., 1997). </p><p>Zammit et al. (2002) found that FGF8 is expressed in increased levels in breast cancer and in lactating human breast; it was also detected in human milk. A survey of other normal tissues showed that FGF8 is expressed in the proliferative cells of the skin and epithelial cells in colon, ovary, fallopian tube, and uterus. </p><p>Yu et al. (2009) showed that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by 2 essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence was provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, Yu et al. (2009) were able to alter the shape of the Fgf8 gradient. Yu et al. (2009) concluded that their results demonstrated that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism. </p><p><strong><em>Role in Early Development</em></strong></p><p>
A molecular pathway leading to left-right asymmetry in the chick embryo has been described in which FGF8 is a right determinant and Sonic hedgehog (Shh; 600725) is a left determinant. Meyers and Martin (1999) presented evidence that in the mouse, FGF8 and Sonic hedgehog genes are also required for left-right axis determination, but with different functions from those reported in the chick. In the mouse, FGF8 is a left determinant, and Sonic hedgehog is required to prevent left determinants from being expressed on the right. </p><p>The precise specification of left-right asymmetry is an essential process for patterning internal organs in vertebrates. In mouse embryonic development, the symmetry-breaking process in left-right determination is initiated by a leftward extraembryonic fluid flow on the surface of the ventral node. Tanaka et al. (2005) showed that FGF signaling triggers secretion of membrane-sheathed objects 0.3 to 5 microns in diameter, termed 'nodal vesicular parcels' (NVPs), which carry Sonic hedgehog and retinoic acid. These NVPs are transported leftward by the fluid flow and eventually fragment close to the left wall of the ventral node. The silencing effects of an FGF receptor (FGFR2; 176943) inhibitor on NVP secretion and on a downstream rise in calcium were sufficiently reversed by exogenous Sonic hedgehog peptide or retinoic acid, suggesting that FGF-triggered surface accumulation of cargo morphogens may be essential for launching NVPs. Tanaka et al. (2005) proposed that NVP flow is a mode of extracellular transport that forms a left-right gradient of morphogens. Using time-lapse imaging, Tanaka et al. (2005) found that these NVPs were transported leftward once every 5 to 15 seconds. </p><p>Fgf8 and Fgf4 (164980) are coexpressed in the primitive streak of the gastrulating mouse embryo. Sun et al. (1999) found that Fgf8 -/- embryos failed to express Fgf4 in the streak. Other observations indicated that Fgf8 is essential for gastrulation and showed that signaling via FGF8 and/or FGF4 is required for cell migration away from the primitive streak. </p><p>Streit et al. (2000) showed that FGF8-coated beads induce expression of the chick Erni gene (605105) to initiate neural induction before gastrulation. </p><p>Vertebrate segmentation requires a molecular oscillator, the segmentation clock, acting in presomitic mesoderm (PSM) cells to set the pace at which segmental boundaries are laid down. Dubrulle et al. (2001) reported that FGF8, which is expressed in the posterior PSM, generates a moving wavefront at which level both segment boundary position and axial identity become determined. Furthermore, by manipulating boundary position in the chick embryo, they showed that Hox gene (see 142950) expression is maintained in the appropriately numbered somite rather than at an absolute axial position. These results implicated FGF8 in ensuring tight coordination of the segmentation process and spatiotemporal HOX gene activation. </p><p>Jung et al. (1999) studied the initiation of mammalian liver development from endoderm by fibroblast growth factors. Close proximity of cardiac mesoderm, which expresses FGF1 (131220), FGF2 (134920), and FGF8, causes the foregut endoderm to develop into the liver. Treatment of isolated foregut endoderm from mouse embryos with FGF1 or FGF2, but not FGF8, was sufficient to replace cardiac mesoderm as an inducer of the liver gene expression program, the latter being the first step of hepatogenesis. The hepatogenic response was restricted to endoderm tissue, which selectively coexpresses FGF receptors 1 (136350) and 4 (134935). Further studies with FGFs and their specific inhibitors showed that FGF8 contributes to the morphogenic outgrowth of hepatic endoderm. Thus, different FGF signals appear to initiate distinct phases of liver development during mammalian organogenesis. </p><p>Dubrulle and Pourquie (2004) demonstrated that transcription of Fgf8 mRNA is restricted to the growing posterior tip of the embryo in mouse. Fgf8 mRNA was progressively degraded in the newly formed tissues, resulting in the formation of an mRNA gradient in the posterior part of the embryo. This Fgf8 mRNA gradient was translated into a gradient of Fgf8 protein, which correlated with graded phosphorylation of the kinase AKT (164730), a downstream effector of FGF signaling. Such a mechanism provides an efficient means to monitor the timing of FGF signaling, coupling the differentiation of embryonic tissues to the posterior elongation of the embryo. In addition, Dubrulle and Pourquie (2004) concluded that this mechanism provides a novel model for morphogen gradient formation. </p><p>Ladher et al. (2005) demonstrated that Fgf8 is required for otic induction in chicken and mouse embryos. </p><p>Neugebauer et al. (2009) provided several lines of evidence showing that fibroblast growth factor signaling regulates cilia length and function in diverse epithelia during zebrafish and Xenopus development. Morpholino knockdown of Fgfr1 (136350) in zebrafish cell-autonomously reduced cilia length in Kupffer vesicle and perturbed directional fluid flow required for left-right patterning of the embryo. Expression of a dominant-negative Fgfr1, treatment with a pharmacological inhibitor of FGF signaling, or genetic and morpholino reduction of redundant FGF ligands Fgf8 and Fgf24 reproduced this cilia length phenotype. Knockdown of Fgfr1 also resulted in shorter tethering of cilia in the otic vesicle and shorter motile cilia in the pronephric ducts. In Xenopus, expression of a dominant-negative fgfr1 resulted in shorter monocilia in the gastrocoel roof plate that control left-right patterning and in shorter multicilia in external mucociliary epithelium. Neugebauer et al. (2009) concluded that their results indicated a fundamental and highly conserved role for FGF signaling in the regulation of cilia length in multiple tissues. Abrogation of Fgfr1 signaling downregulated expression of 2 ciliogenic transcription factors, foxj1 (602291) and rfx2 (142765), and of the intraflagellar transport gene ift88 (600595), indicating that FGF signaling mediates cilia length through an Fgf8/Fgf24-Fgfr1-intraflagellar transport pathway. Neugebauer et al. (2009) proposed that a subset of developmental defects and diseases ascribed to FGF signaling are due in part to loss of cilia function. </p><p>Using fluorescence correlation spectroscopy and image analysis, Nowak et al. (2011) showed that the ubiquitin ligase Cbl (165360) regulated Fgf8 signaling during zebrafish embryonic development through intracellular interpretation of the extracellular gradient. Fgf8-positive endosomes showed increased colocalization with Rab7 (602298), a marker of late endosomes, and Lamp1 (153330), a marker of lysosomes, during zebrafish development, indicating trafficking toward degradative endosomal compartments. Significant proportions of Fgf8-positive endosomes also colocalized with Rab11 (605570), a marker of recycling endosomes, caveolin-1 (CAV1; 601047), a marker of caveolae, and a plasma membrane marker. Expression of a dominant-negative Cbl mutant resulted in reduced colocalization of Fgf8 endosomes with markers of degradative endosomal compartments, without altering the presence of Fgf8 in early and recycling endosomes. Similarly, expression of dominant-negative Cbl significantly reduced association of Fgfr1, the main receptor for Fgf8 during gastrulation, with Rab7 and increased its colocalization with Cav1. Further studies showed that dominant-negative Cbl caused a direct increase in Fgfr signaling complexes in target cells. Nowak et al. (2011) concluded that endocytic sorting regulates morphogen gradient interpretation. </p><p><strong><em>Role in Limb Development</em></strong></p><p>
For a review of the role of this gene in limb development, see Johnson and Tabin (1997). </p><p>Using the Cre/loxP system, Sun et al. (2000) found that maintenance of Fgf9 (600921) and Fgf17 (603725) expression is dependent on Shh (600725), whereas Fgf8 expression is not. Sun et al. (2000) developed a model in which no individual Fgf expressed in the apical ectodermal ridge is solely necessary to maintain Shh expression, but instead the combined activity of 2 or more apical ectodermal ridge (AER) Fgfs function in a positive feedback loop with Shh to control limb development. </p><p>Lewandoski et al. (2000) reported that inactivating Fgf8 in early limb ectoderm caused a substantial reduction in limb-bud size, delay in Shh expression, misregulation of Fgf4 expression, and hypoplasia or aplasia of specific skeletal elements. The data indicated that Fgf8 is the only known AER-Fgf individually necessary for normal limb development. </p><p>The expression pattern and activity of fibroblast growth factor-8 in experimental assays indicated that it has important roles in limb development, but early embryonic lethality resulting from mutation of Fgf8 in the germline of mice prevented direct assessment of these roles. Moon and Capecchi (2000) found it possible to bypass embryonic lethality by conditional disruption of Fgf8 in the forelimb of developing mice and found a requirement for Fgf8 in the formation of the stylopod, anterior zeugopod, and autopod. Lack of Fgf8 in the apical ectodermal ridge (AER) altered expression of other Fgf genes, Shh, and Bmp2 (112261). </p><p>To determine the role of fibroblast growth factor signaling from the apical ectodermal ridge, Sun et al. (2002) inactivated Fgf4 and Fgf8 in apical ectodermal ridge cells or their precursors at different stages of mouse limb development. Sun et al. (2002) showed that Fgf4 and Fgf8 regulate cell number in the nascent limb bud and are required for survival of cells located far from the apical ectodermal ridge. On the basis of the skeletal phenotypes observed, Sun et al. (2002) concluded that these functions are essential to ensure that sufficient progenitor cells are available to form the normal complement of skeletal elements, and perhaps other limb tissues. In the absence of both Fgf4 and Fgf8 activities, limb development fails. None of 23 newborn double knockout mice examined had hindlimbs. In contrast, forelimbs contained elements of all 3 limb segments but were shorter and thinner than normal. Sun et al. (2002) found that in double homozygotes, forelimb proximal elements were invariably missing or severely hypoplastic when distal elements were present. They suggested that these observations argue against the progress zone model, which had been the prevailing model of limb proximal-distal patterning. Sun et al. (2002) hypothesized that limb skeletal patterning is achieved as a function of basic cellular processes including cell division, cell survival, and stereotypic behaviors of chondrocyte progenitors such as aggregate formation. </p><p>In a series of experiments involving removal of the apical ectodermal ridge from chick limb buds, Dudley et al. (2002) demonstrated that the various limb bud segments are specified early in limb development as distinct domains, with subsequent development involving expansion of progenitor populations before differentiation. Dudley et al. (2002) also found that the distal limb mesenchyme becomes progressively determined, that is, irreversibly fixed, to a progressively limited range of potential proximodistal fates. Their observations, coupled with those of Sun et al. (2002), refuted the progress zone model of vertebrate limb development. </p><p>Classical models of craniofacial development argue that the neural crest is prepatterned or preprogrammed to make specific head structures before its migration from the neural tube. In contrast, recent studies in several vertebrates, including mouse, chick, and zebrafish, have provided evidence for plasticity in patterning neural crest populations. Using tissue transposition and molecular analyses in avian embryos, Trainor et al. (2002) reconciled these findings by demonstrating that classical manipulation experiments, which form the basis of the prepatterning model, involved transplantation of a local signaling center, the isthmic organizer. FGF8 signaling from the isthmus alters HOXA2 (142960) expression and consequently branchial arch patterning, demonstrating that neural crest cells are patterned by environmental signals. </p><p>Mariani et al. (2008) demonstrated that mouse limbs lacking Fgf4 (164920), Fgf9 (600921), and Fgf17 (603725) have normal skeletal pattern, indicating that Fgf8 is sufficient among apical ectodermal ridge fibroblast growth factors (AER-FGFs) to sustain normal limb formation. Inactivation of Fgf8 alone causes a mild skeletal phenotype; however, when Mariani et al. (2008) also removed different combinations of the other AER-FGF genes, they obtained unexpected skeletal phenotypes of increasing severity, reflecting the contribution that each FGF can make to the total AER-FGF signal. Analysis of the compound mutant limb buds revealed that, in addition to sustaining cell survival, AER-FGFs regulate proximal-distal patterning gene expression during early limb bud development, providing genetic evidence that AER-FGFs function to specify a distal domain and challenging the longstanding hypothesis that AER-FGF signaling is permissive rather than instructive for limb patterning. Mariani et al. (2008) also developed a 2-signal model for proximal-distal patterning to explain early specification. </p><p>Limb bud outgrowth is driven by signals in a positive feedback loop involving Fgf genes, Sonic hedgehog (600725), and Gremlin-1 (GREM1; 603054). Precise termination of these signals is essential to restrict limb bud size. That the sequence in mouse limb buds is different from that in chick limb buds drove Verheyden and Sun (2008) to explore alternative mechanisms. By analyzing compound mouse mutants defective in genes comprising the positive loop, Verheyden and Sun (2008) provided genetic evidence that Fgf signaling can repress Grem1 expression, revealing a novel Fgf/Grem1 inhibitory loop. The repression occurs in both mouse and chick limb buds and is dependent on high Fgf activity. These data supported a mechanism where the positive Fgf/Shh loop drives outgrowth and an increase in FGF signaling, which triggers the Fgf/Grem1 inhibitory loop. The inhibitory loop then operates to terminate outgrowth signals in the order observed in either mouse or chick limb buds. Verheyden and Sun (2008) concluded that their study unveils the concept of a self-promoting and self-terminating circuit that may be used to attain proper tissue size in a broad spectrum of developmental and regenerative settings. Verheyden and Sun (2008) demonstrated that Fgf8 repression of Fgf4 expression is dependent on Grem1 but not Sonic hedgehog. </p><p>Cooper et al. (2011) observed that mesenchymal cells cultured in the combination of the 3 signaling molecules retinoic acid, Fgf8, and Wnt3a (606359) to which early limb cells are normally exposed maintain the capacity to form both proximal and distal structures despite the passage of time and continued proliferation. This strongly argues against a mechanism linking proximodistal specification to a cell cycle-based internal clock. Cooper et al. (2011) concluded that the trigger for initiating the process of specification of the zeugopod and autopod is the cessation due to displacement of retinoic acid exposure. Similar conclusions were independently reached by Rosello-Diez et al. (2011). Using heterotopic transplantation of intact and recombinant chick limb buds, Rosello-Diez et al. (2011) identified signals in the embryo trunk that proximalize distal limb cells to generate a complete proximodistal axis. In these transplants, retinoic acid induces proximalization, which is counteracted by fibroblast growth factors from the distal limb bud; these related actions suggested that the first limb bud proximodistal regionalization results from the balance between proximal and distal signals. </p><p>Nacu et al. (2016) clarified the molecular basis of the requirement for both anterior and posterior tissue during limb regeneration and supernumerary limb formation in axolotls. Nacu et al. (2016) showed that the 2 tissues provide complementary cross-inductive signals that are required for limb outgrowth. A blastema composed solely of anterior tissue normally regresses rather than forming a limb, but activation of hedgehog (HH) signaling was sufficient to drive regeneration of an anterior blastema to completion owing to its ability to maintain fibroblast growth factor (FGF) expression, the key signaling activity responsible for blastema outgrowth. In blastemas composed solely of posterior tissue, HH signaling was not sufficient to drive regeneration; however, ectopic expression of FGF8 together with endogenous HH signaling was sufficient. In axolotls, FGF8 is expressed only in the anterior mesenchyme and maintenance of its expression depends on SHH (600725) signaling from posterior tissue. Nacu et al. (2016) concluded that their data identified key anteriorly and posteriorly localized signals that promote limb regeneration. </p><p><strong><em>Role in Brain Development</em></strong></p><p>
Fukuchi-Shimogori and Grove (2001) provided evidence that FGF8 regulates development of the area map of neurogenesis from a source in the anterior telencephalon. Using electroporation-mediated gene transfer in mouse embryos, they showed that augmenting the endogenous anterior FGF8 signal shifts area boundaries posteriorly, reducing the signal shifts them anteriorly, and introducing a posterior source of FGF8 elicits partial area duplications, revealed by ectopic somatosensory barrel fields. Fukuchi-Shimogori and Grove (2001) concluded that their findings support a role for FGF signaling in specifying positional identity in the neocortex. </p><p>Using in utero microelectroporation to manipulate gene expression and function in mouse cortical primordium, Fukuchi-Shimogori and Grove (2003) found that the transcription factor Emx2 (600035) regulates Fgf8 in the development of neocortical area patterning. </p><p>Storm et al. (2003) investigated the effects of varying the level of Fgf8 expression in the mouse forebrain. They detected 2 distinct responses, one that was proportionate with Fgf8 expression and another that was not. The latter response, which led to effects on cell survival, displayed a paradoxical relationship to Fgf8 dosage. Either eliminating or increasing Fgf8 expression increased apoptosis, whereas reducing Fgf8 expression had the opposite effect. To explain these counterintuitive observations, the authors suggested that an FGF8-dependent cell-survival pathway is negatively regulated by intracellular inhibitors produced in proportion to FGF8 concentration. </p><p>Gunhaga et al. (2003) examined the signals that induce the initial early dorsal character of telencephalic cells. Studies in vitro and in chick embryos showed that Wnt3A (606359) inhibited the generation of ventral telencephalic cells and was required to induce early dorsal characterization at the neural plate stage. Later, at the early neural tube stage, FGF8 signaling was required to characterize the dorsal telencephalic cells definitively, as defined by EMX1 (600034) expression. The authors emphasized that the sequential signaling of Wnt3A and FGF8 was required for dorsal characterization of the cells. </p><p><strong><em>Role in Eye Development</em></strong></p><p>
Martinez-Morales et al. (2005) demonstrated that Fgf3 and Fgf8 cooperate in initiating neuronal differentiation in the zebrafish retina. In both chicken and zebrafish, Fgf8 triggered retinal progenitor cells to undergo terminal mitosis and differentiate into retinal ganglion cells. </p><p><strong><em>Role in Tooth Development</em></strong></p><p>
Dlx1 (600029) and Dlx2 (126255) are involved in patterning of murine dentition, since loss of these transcription factors results in early developmental failure in upper molar teeth. Thomas et al. (2000) found that Fgf8, which was expressed in the epithelium overlying the mesenchyme in the mouse first branchial arch, regulated the mesenchymal expression of Dlx2. Fgf8 also inhibited expression of Dlx2 in the epithelium by a signaling pathway that required the mesenchyme. Bmp4 (112262), which was coexpressed with Ldx2 in distal oral epithelium, regulated Dlx2 expression by planar signaling. Thomas et al. (2000) concluded that Bmp4 and Fgf8 maintain strict epithelial and mesenchymal expression domains of Dlx2 in the first branchial arch of developing mice. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Biochemical Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Olsen et al. (2006) solved the crystal structure of FGF8B in complex with the 'c' splice isoform of FGFR2 (176943) and, using surface plasmon resonance, characterized the receptor binding specificities of FGF8A and FGF8B. They found that, compared with FGF8A, FGF8B makes an additional contact between phe32 (F32) of FGF8B and the hydrophobic groove within Ig domain 3 of the receptor that is also present in the c isoforms of FGFR1 (136350) and FGFR3 (134934) and in FGFR4 (134935). Mutation of F32 to alanine (F32A) reduced the affinity of FGF8B toward all these receptors to levels characteristic of FGF8A. Analysis of the mid-hindbrain patterning of the FGF8B F32A mutant in chicken embryos and mouse midbrain explants showed that this mutation functionally converted FGF8B to FGF8A. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Hypogonadotropic Hypogonadism 6 with or without Anosmia</em></strong></p><p>
Using a candidate gene approach, Falardeau et al. (2008) screened the FGF8 gene in 461 unrelated probands with idiopathic hypogonadotropic hypogonadism (IHH), including 193 normosmic patients, 237 anosmic patients, and 21 patients with adult-onset idiopathic hypogonadotropic hypogonadism (see HH6, 612702). They identified 6 mutations in the FGF8 gene, in 2 familial cases of Kallmann syndrome (600483.0002 and 600483.0005, respectively), 1 familial case of IHH (600483.0004), 2 sporadic cases of IHH (600483.0001 and 600483.0003, respectively) and 1 case of adult-onset IHH (600483.0006). Probands harboring an FGF8 mutation were screened for other loci underlying IHH, and 2 probands with normosmic IHH (see 600483.0003 and 600483.0004, respectively) were found to carry additional mutations in the FGFR1 gene (see 136350.0023-136350.0025, respectively). </p><p>By sequencing the FGF8 gene in 2 unrelated probands from Brazil with hypogonadotropic hypogonadism-6, one with and one without anosmia, Trarbach et al. (2010) identified different heterozygous nonsense mutations (R127X, 600483.0007 and R129X, 600483.0008). Both patients had a family history of the disorder. Both mutations mapped to the core domain of the protein, affected all 4 FGF8 isoforms, and led to deletion of a large portion of the protein, predicted to result in nonfunctional FGF8 ligands. The mutations were not found in 150 Brazilian control individuals. </p><p><strong><em>Hypoplastic Femurs and Pelvis</em></strong></p><p>
Socha et al. (2021) reported 2 families with hypoplastic femurs and pelvis (HYPOFP; 619545) and overlapping duplications at chromosome 10q24.32 that segregated with disease. Breakpoint sequencing showed tandem orientation in both duplications, which in family 1 involved 533,943 kb (chr10q24.32(103,012,761_103,546,704)x3; GRCh37), and in family 2 involved 542,061 kb (chr10q24.32(103,001,852_103,543,913)x3; GRCh37). The duplications involved 6 genes, including BTRC (603482), POLL (606343), DPCD (616467), FBXW4 (608071), FGF8, and NPM3 (606456). The authors noted that the duplications almost completely overlapped with split-hand/foot malformation (SHFM3; 246560)-associated 10q24.32 duplications, with the only gene unique to the femoral hypoplasia phenotype being FGF8. Analysis of local chromosome architecture in patient fibroblasts showed strong ectopic interaction between FGF8 and an approximately 230-kb region within the neighboring topologically associating domain of BTRC. Expression analysis in patient fibroblasts showed a 2.9-fold increase in expression of FGF8 and a 2.3-fold increase in expression of BTRC. Analysis of transgenic mouse models suggested that the phenotype is mostly likely due to position effects causing altered FGF8 expression rather than gene dosage effects. The authors noted that other genes within the duplicated fragments might also contribute to the phenotype. </p><p><strong><em>Associations Pending Confirmation</em></strong></p><p>
Riley et al. (2007) analyzed 12 genes involved in the fibroblast growth factor signaling pathway in nonsyndromic cleft lip or palate families and identified 7 likely disease-causing mutations in which structural analysis predicted functional impairment in the FGFR1, FGFR2, FGFR3 (134934), and FGF8 genes. One patient with apparent nonsyndromic cleft lip and palate had a de novo asp73-to-his (D73H) substitution in the FGF8 gene, predicted to reduce binding affinity of FGF8 towards its cognate receptors. Riley et al. (2007) suggested that the FGF signaling pathway may contribute to as much as 3 to 5% of nonsyndromic cleft lip or palate. </p><p><strong><em>Exclusion Studies</em></strong></p><p>
Since FGF8 maps to the same chromosomal region as FGFR2 (176943), is a ligand for FGFR2, and has an expression pattern consistent with limb and craniofacial anomalies, Yoshiura et al. (1997) screened 2 kindreds with Pfeiffer syndrome (101600) previously linked to markers from 10q24-q25 and a large number of individuals with craniosynostosis and limb anomalies for mutations in the coding sequence of FGF8. No mutations were found. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Meyers et al. (1998) generated a mouse line carrying a hypomorphic Fgf8 allele that could be converted to a null allele or reverted to wildtype by Cre- and Flp-mediated recombination. They found that homozygosity for the Fgf8-null allele resulted in defective gastrulation. Embryos carrying different combinations of hypomorphic, null, and wildtype alleles showed a range of phenotypes, including deletion and/or malformation of major brain structures, abnormal development of the heart, posterior compartment, or craniofacial structures, and generally retarded development. </p><p>Watanabe et al. (2010) generated compound Fgf8 and Fgf10 (602115) mutant mice in the cardiac and pharyngeal mesoderm. They found that pharyngeal arch artery (PAA) development was perturbed by Fgf8 deletion. The frequency and severity of PAA and outflow tract (OFT) defects increased with decreasing expression of Fgf8 and Fgf10. Watanabe et al. (2010) concluded that there is functional overlap of mesodermal FGF8 and FGF10 during second heart field/OFT and PAA development, and that FGF10 has a role in formation of the arterial pole of the heart. The findings indicated that the sensitivity of these processes is influenced by incremental reductions in FGF levels. </p><p>Naiche et al. (2011) showed that deletion of both Fgf4 and Fgf8 in PSM of mouse embryos resulted in loss of expression of most PSM genes, including cycling genes, Wnt pathway genes, and markers of undifferentiated PSM. In contrast, markers of nascent somite cell fate expanded throughout the PSM. Restoration of Wnt signaling only partially restored PSM markers, and premature PSM differentiation continued. Naiche et al. (2011) concluded that FGF signaling operates independently of Wnt signaling to maintain the wavefront signal that controls somatogenesis and that FGF4 and FGF8 are the sole signaling mediators of this wavefront activity. </p><p>Boulet and Capecchi (2012) reported that loss of expression of both Fgf4 and Fgf8 in mice during late gastrulation resulted in thoracic vertebrae and ribs with abnormal morphology, malformed or absent lumbar and sacral vertebrae, and no tail vertebrae. Expression of Wnt3a in tail and transcription factor T (601397) in nascent mesoderm was severely reduced. Expression of genes in the Notch (see 190198) signaling pathway involved in segmentation were also severely affected. After production of 15 to 20 somites, somite formation ceased. The defects appeared to result from a failure to produce sufficient paraxial mesoderm. Boulet and Capecchi (2012) proposed that FGF4 and FGF8 are required to maintain a population of progenitor cells in the epiblast that generates mesoderm and contributes to the stem-cell population that is incorporated in the tailbud and required for axial elongation of the mouse embryo after gastrulation. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>ALLELIC VARIANTS</strong>
</span>
<strong>8 Selected Examples):</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0001 &nbsp; HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FGF8, HIS14ASN
<br />
SNP: rs137852659,
ClinVar: RCV000030886
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 32-year-old woman of mixed European descent with normosmic idiopathic hypogonadotropic hypogonadism (HH6; 612702), Falardeau et al. (2008) identified heterozygosity for a 40C-A transversion in exon 1B of the FGF8 gene, resulting in a his14-to-asn (H14N) substitution at a highly conserved residue within the hydrophobic signal peptide present in all 4 isoforms of the protein. Additional features in the patient included high-arched palate and osteoporotic fractures. The mutation was not found in 180 ethnically matched controls, and the patient's daughter, who did not carry the mutation, initiated pubertal development at age 11 years. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0002 &nbsp; HYPOGONADOTROPIC HYPOGONADISM 6 WITH ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FGF8, PRO26LEU
<br />
SNP: rs137852660,
gnomAD: rs137852660,
ClinVar: RCV000009692, RCV000239300, RCV000767027
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 28-year-old man of mixed European descent who had been diagnosed at age 16 with hypogonadism and who was found to have a decreased sense of smell, consistent with Kallmann syndrome (HH6; 612702), Falardeau et al. (2008) identified heterozygosity for a 77C-T transition in exon 1C of the FGF8 gene, resulting in a pro26-to-leu (P26L) substitution at a highly conserved residue present in the FGF8e and FGF8f isoforms of the protein. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function. Brain MRI in the proband revealed partial empty sella and bilateral hypoplastic olfactory bulbs and tracts. His father, who carried the mutation, had a history of decreasing olfaction; the mutation was not found in his asymptomatic mother or in 180 ethnically matched controls. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0003 &nbsp; HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FGF8, PHE40LEU
<br />
SNP: rs137852661,
ClinVar: RCV000030887
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 19-year-old man who was evaluated at age 15.5 years for delayed puberty and found to have a hypogonadal serum testosterone level with undetectable serum gonadotropins (HH6; 612702), Falardeau et al. (2008) identified homozygosity for a 118T-C transition in exon 1C of the FGF8 gene, resulting in a phe40-to-leu (F40L) substitution at a highly conserved residue present in the FGF8e and FGF8f isoforms of the protein. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function; the mutation was not found in 180 ethnically matched controls. The patient, who had a normal brain MRI, was also found to be compound heterozygous for mutations in the FGFR1 gene, Q784H (136350.0023) and D768Y (136350.0024). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0004 &nbsp; HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FGF8, LYS100GLU
<br />
SNP: rs137852662,
ClinVar: RCV000030888
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 10-year-old boy of mixed European descent who was born with microphallus and found to have undetectable serum testosterone and gonadotropins and normal olfaction (HH6; 612702), Falardeau et al. (2008) identified heterozygosity for a de novo 298A-G transition in exon 1D of the FGF8 gene, resulting in a lys100-to-glu (K100E) substitution at a highly conserved residue present in all 4 isoforms of the protein. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function. The mutation was not found in either parent or in 180 ethnically matched controls. Both the patient and his father, who had normal olfaction, bilateral hearing loss, and a history of delayed puberty, were also found to be heterozygous for a mutation in the FGFR1 gene (R250Q; 136350.0025). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0005 &nbsp; HYPOGONADOTROPIC HYPOGONADISM 6 WITH OR WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FGF8, ARG127GLY
<br />
SNP: rs137852663,
gnomAD: rs137852663,
ClinVar: RCV000009695
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 19-year-old woman of mixed European descent who was born with cleft lip and palate and was evaluated at age 14 years for primary amenorrhea and lack of breast development and found to have anosmia and undetectable serum gonadotropins (HH6; 612702), Falardeau et al. (2008) identified heterozygosity for a 379C-G transversion in exon 2 of the FGF8 gene, resulting in an arg127-to-gly (R127G) substitution at a highly conserved residue present in all 4 isoforms of the protein. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function. Additional features in the patient included short stature, hypertelorism, flattened bridge of the nose, hyperlaxity of the digits, camptodactyly, and mild scoliosis; further examination revealed color blindness and bilateral hearing loss, and imaging studies showed normal olfactory bulbs and nerves, normal renal ultrasound, and very low bone density. The proband's mother, who also carried the mutation, had normosmic hypogonadotropic hypogonadism. The proband's dizygotic twin sibs had markedly different phenotypes: one harbored the R127G mutation and had severe Kallmann syndrome, with microphallus, undescended testes, absent puberty, and cleft lip/palate, whereas the other did not carry the mutation and underwent normal puberty but had short stature. The father, who was wildtype for FGF8, had a normal sense of smell but a history of delayed puberty, and the paternal grandmother also had a history of delayed puberty. The mutation was not found in 180 ethnically matched controls. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0006 &nbsp; RECLASSIFIED - VARIANT OF UNKNOWN SIGNIFICANCE</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FGF8, THR229MET
<br />
SNP: rs137852664,
gnomAD: rs137852664,
ClinVar: RCV000009697, RCV000988442, RCV001531080
</span>
</div>
<div>
<span class="mim-text-font">
<p>This variant, formerly titled HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA (612702), has been reclassified based on the findings of Arauz et al. (2010). </p><p>In a 40-year-old man of mixed European descent who presented for evaluation of infertility and decreased libido and was found to have undetectable serum gonadotropins with hypogonadal testosterone levels, Falardeau et al. (2008) identified heterozygosity for a 686C-T transition in exon 3 of the FGF8 gene, resulting in a thr229-to-met (T229M) substitution at a highly conserved residue in the C-terminal tail. Structural and in vitro biochemical analysis of the mutation demonstrated a loss of function, and the mutation was not found in 180 ethnically matched controls. The patient had normal brain MRI, renal ultrasound, and bone density; he was subsequently diagnosed with Graves disease (see 275000), type 2 diabetes (see 125853), and hypertension (see 145500). There was no family history of reproductive or olfactory defects. </p><p>Arauz et al. (2010) identified a heterozygous T229M substitution in 1 of 360 unrelated patients with holoprosencephaly (236100). The patient had semilobar HPE, microcephaly, cleft palate, seizures, diabetes insipidus, and severe neurologic impairment. The mutation was also found in her dizygotic twin sister, who had above-average intelligence, a single central incisor, and hypotelorism; she had subtle midline anomalies with olfactory bulb dysplasia apparent in brain MRI at age 1 year, but no evidence of midline abnormalities on follow-up imaging at age 8 years. The mother, who also carried the mutation, had mild hypotelorism and above-average intelligence. None had signs of hypogonadotropic hypogonadism or any endocrine disturbance. Based on the highly variable phenotype in this family, Arauz et al. (2010) concluded that there must be additional genetic and/or environmental factors in the pathogenesis of HPE. However, defects in FGF8 may play a rare role in midline defects. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0007 &nbsp; HYPOGONADOTROPIC HYPOGONADISM 6 WITH OR WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FGF8, ARG127TER
<br />
SNP: rs137852663,
gnomAD: rs137852663,
ClinVar: RCV000735418, RCV001007971
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an 18-year-old Brazilian woman with familial hypogonadotropic hypogonadism 6 and moderate microsmia (HH6; 612702), Trarbach et al. (2010) sequenced the FGF8 gene and identified a heterozygous c.763C-T transition (c.763C-T, NM_033163) in the FGF8 gene, resulting in an arg127-to-ter (R127X) substitution in the highly conserved FGF beta-trefoil core domain. Four sibs of the patient with HH6 without anosmia were also heterozygous for the mutation, which was not found in 150 unaffected Brazilian control individuals. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0008 &nbsp; HYPOGONADOTROPIC HYPOGONADISM 6 WITHOUT ANOSMIA</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
FGF8, ARG129TER
<br />
SNP: rs876661330,
gnomAD: rs876661330,
ClinVar: RCV000223728, RCV000735419, RCV001658044
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 30-year-old Brazilian man with familial hypogonadotropic hypogonadism without anosmia (HH6; 612702), Trarbach et al. (2010) sequenced the FGF8 gene and identified a heterozygous c.769C-T transition (c.769C-T, NM_033163) resulting in an arg129-to-ter (R129X) substitution in the highly conserved FGF beta-trefoil core domain. The patient's affected sister was also heterozygous for the mutation, which was not found in 150 unaffected Brazilian control individuals. </p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Arauz, R. F., Solomon, B. D., Pineda-Alvarez, D. E., Gropman, A. L., Parsons, J. A., Roessler, E., Muenke, M.
<strong>A hypomorphic allele in the FGF8 gene contributes to holoprosencephaly and is allelic to gonadotropin-releasing hormone deficiency in humans.</strong>
Mol. Syndromol. 1: 59-66, 2010.
[PubMed: 21045958]
[Full Text: https://doi.org/10.1159/000302285]
</p>
</li>
<li>
<p class="mim-text-font">
Boulet, A. M., Capecchi, M. R.
<strong>Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo.</strong>
Dev. Biol. 371: 235-245, 2012.
[PubMed: 22954964]
[Full Text: https://doi.org/10.1016/j.ydbio.2012.08.017]
</p>
</li>
<li>
<p class="mim-text-font">
Cooper, K. L., Hu, J. K.-H., ten Berge, D., Fernandez-Teran, M., Ros, M. A., Tabin, C. J.
<strong>Initiation of proximal-distal patterning in the vertebrate limb by signals and growth.</strong>
Science 332: 1083-1086, 2011.
[PubMed: 21617075]
[Full Text: https://doi.org/10.1126/science.1199499]
</p>
</li>
<li>
<p class="mim-text-font">
Copeland, N. G., Jenkins, N. A., Gilbert, D. J., Eppig, J. T., Maltais, L. J., Miller, J. C., Dietrich, W. F., Weaver, A., Lincoln, S. E., Steen, R. G., Stein, L. D., Nadeau, J. H., Lander, E. S.
<strong>A genetic linkage map of the mouse: current applications and future prospects.</strong>
Science 262: 57-66, 1993.
[PubMed: 8211130]
[Full Text: https://doi.org/10.1126/science.8211130]
</p>
</li>
<li>
<p class="mim-text-font">
Dubrulle, J., McGrew, M. J., Pourquie, O.
<strong>FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation.</strong>
Cell 106: 219-232, 2001.
[PubMed: 11511349]
[Full Text: https://doi.org/10.1016/s0092-8674(01)00437-8]
</p>
</li>
<li>
<p class="mim-text-font">
Dubrulle, J., Pourquie, O.
<strong>fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo.</strong>
Nature 427: 419-422, 2004.
[PubMed: 14749824]
[Full Text: https://doi.org/10.1038/nature02216]
</p>
</li>
<li>
<p class="mim-text-font">
Dudley, A. T., Ros, M. A., Tabin, C. J.
<strong>A re-examination of proximodistal patterning during vertebrate limb development.</strong>
Nature 418: 539-544, 2002.
[PubMed: 12152081]
[Full Text: https://doi.org/10.1038/nature00945]
</p>
</li>
<li>
<p class="mim-text-font">
Falardeau, J., Chung, W. C. J., Beenken, A., Raivio, T., Plummer, L., Sidis, Y., Jacobson-Dickman, E. E., Eliseenkova, A. V., Ma, J., Dwyer, A., Quinton, R., Na, S., and 9 others.
<strong>Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.</strong>
J. Clin. Invest. 118: 2822-2831, 2008.
[PubMed: 18596921]
[Full Text: https://doi.org/10.1172/JCI34538]
</p>
</li>
<li>
<p class="mim-text-font">
Fukuchi-Shimogori, T., Grove, E. A.
<strong>Neocortex patterning by the secreted signaling molecule FGF8.</strong>
Science 294: 1071-1074, 2001.
[PubMed: 11567107]
[Full Text: https://doi.org/10.1126/science.1064252]
</p>
</li>
<li>
<p class="mim-text-font">
Fukuchi-Shimogori, T., Grove, E. A.
<strong>Emx2 patterns the neocortex by regulating FGF positional signaling.</strong>
Nature Neurosci. 6: 825-831, 2003.
[PubMed: 12872126]
[Full Text: https://doi.org/10.1038/nn1093]
</p>
</li>
<li>
<p class="mim-text-font">
Gemel, J., Gorry, M., Ehrlich, G. D., MacArthur, C. A.
<strong>Structure and sequence of human FGF8.</strong>
Genomics 35: 253-257, 1996.
[PubMed: 8661131]
[Full Text: https://doi.org/10.1006/geno.1996.0349]
</p>
</li>
<li>
<p class="mim-text-font">
Ghosh, A. K., Shankar, D. B., Shackleford, G. M., Wu, K., T'Ang, A., Miller, G. J., Zheng, J., Roy-Burman, P.
<strong>Molecular cloning and characterization of human FGF8 alternative messenger RNA forms.</strong>
Cell Growth Diff. 7: 1425-1434, 1996.
[PubMed: 8891346]
</p>
</li>
<li>
<p class="mim-text-font">
Gunhaga, L., Marklund, M., Sjodal, M., Hsieh, J.-C., Jessell, T. M., Edlund, T.
<strong>Specification of dorsal telencephalic character by sequential Wnt and FGF signaling.</strong>
Nature Neurosci. 6: 701-707, 2003.
[PubMed: 12766771]
[Full Text: https://doi.org/10.1038/nn1068]
</p>
</li>
<li>
<p class="mim-text-font">
Johnson, R. L., Tabin, C. J.
<strong>Molecular models for vertebrate limb development.</strong>
Cell 90: 979-990, 1997.
[PubMed: 9323126]
[Full Text: https://doi.org/10.1016/s0092-8674(00)80364-5]
</p>
</li>
<li>
<p class="mim-text-font">
Jung, J., Zheng, M., Goldfarb, M., Zaret, K. S.
<strong>Initiation of mammalian liver development from endoderm by fibroblast growth factors.</strong>
Science 284: 1998-2003, 1999.
[PubMed: 10373120]
[Full Text: https://doi.org/10.1126/science.284.5422.1998]
</p>
</li>
<li>
<p class="mim-text-font">
Ladher, R. K., Wright, T. J., Moon, A. M., Mansour, S. L., Schoenwolf, G. C.
<strong>FGF8 initiates inner ear induction in chick and mouse.</strong>
Genes Dev. 19: 603-613, 2005.
[PubMed: 15741321]
[Full Text: https://doi.org/10.1101/gad.1273605]
</p>
</li>
<li>
<p class="mim-text-font">
Lewandoski, M., Sun, X., Martin, G. R.
<strong>Fgf8 signalling from the AER is essential for normal limb development.</strong>
Nature Genet. 26: 460-463, 2000.
[PubMed: 11101846]
[Full Text: https://doi.org/10.1038/82609]
</p>
</li>
<li>
<p class="mim-text-font">
Lorenzi, M. V., Long, J. E., Miki, T., Aaronson, S. A.
<strong>Expression cloning, developmental expression and chromosomal localization of fibroblast growth factor-8.</strong>
Oncogene 10: 2051-2055, 1995.
[PubMed: 7761105]
</p>
</li>
<li>
<p class="mim-text-font">
Mariani, F. V., Ahn, C. P., Martin, G. R.
<strong>Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning.</strong>
Nature 453: 401-405, 2008.
[PubMed: 18449196]
[Full Text: https://doi.org/10.1038/nature06876]
</p>
</li>
<li>
<p class="mim-text-font">
Martinez-Morales, J.-R., Del Bene, F., Nica, G., Hammerschmidt, M., Bovolenta, P., Wittbrodt, J.
<strong>Differentiation of the vertebrate retina is coordinated by an FGF signaling center.</strong>
Dev. Cell 8: 565-574, 2005.
[PubMed: 15809038]
[Full Text: https://doi.org/10.1016/j.devcel.2005.01.022]
</p>
</li>
<li>
<p class="mim-text-font">
Mattei, M.-G., deLapeyriere, O., Bresnick, J., Dickson, C., Birnbaum, D., Mason, I.
<strong>Mouse Fgf7 (fibroblast growth factor 7) and Fgf8 (fibroblast growth factor 8) genes map to chromosomes 2 and 19 respectively.</strong>
Mammalian Genome 6: 196-197, 1995.
[PubMed: 7749227]
[Full Text: https://doi.org/10.1007/BF00293012]
</p>
</li>
<li>
<p class="mim-text-font">
Meyers, E. N., Lewandoski, M., Martin, G. R.
<strong>An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination.</strong>
Nature Genet. 18: 136-141, 1998.
[PubMed: 9462741]
[Full Text: https://doi.org/10.1038/ng0298-136]
</p>
</li>
<li>
<p class="mim-text-font">
Meyers, E. N., Martin, G. R.
<strong>Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH.</strong>
Science 285: 403-406, 1999.
[PubMed: 10411502]
[Full Text: https://doi.org/10.1126/science.285.5426.403]
</p>
</li>
<li>
<p class="mim-text-font">
Moon, A. M., Capecchi, M. R.
<strong>Fgf8 is required for outgrowth and patterning of the limbs.</strong>
Nature Genet. 26: 455-459, 2000.
[PubMed: 11101845]
[Full Text: https://doi.org/10.1038/82601]
</p>
</li>
<li>
<p class="mim-text-font">
Nacu, E., Gromberg, E., Oliveira, C. R., Drechsel, D., Tanaka, E. M.
<strong>FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration.</strong>
Nature 533: 407-410, 2016.
[PubMed: 27120163]
[Full Text: https://doi.org/10.1038/nature17972]
</p>
</li>
<li>
<p class="mim-text-font">
Naiche, L. A., Holder, N., Lewandoski, M.
<strong>FGF4 and FGF8 comprise the wavefront activity that controls somatogenesis.</strong>
Proc. Nat. Acad. Sci. 108: 4018-4023, 2011.
[PubMed: 21368122]
[Full Text: https://doi.org/10.1073/pnas.1007417108]
</p>
</li>
<li>
<p class="mim-text-font">
Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W., Yost, H. J.
<strong>FGF signalling during embryo development regulates cilia length in diverse epithelia.</strong>
Nature 458: 651-654, 2009. Note: Erratum: Nature 463: 384 only, 2010.
[PubMed: 19242413]
[Full Text: https://doi.org/10.1038/nature07753]
</p>
</li>
<li>
<p class="mim-text-font">
Nowak, M., Machate, A., Yu, S. R., Gupta, M., Brand, M.
<strong>Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.</strong>
Nature Cell Biol. 13: 153-158, 2011.
[PubMed: 21258372]
[Full Text: https://doi.org/10.1038/ncb2155]
</p>
</li>
<li>
<p class="mim-text-font">
Olsen, S. K., Li, J. Y. H., Bromleigh, C., Eliseenkova, A. V., Ibrahimi, O. A., Lao, Z., Zhang, F., Linhardt, R. J., Joyner, A. L., Mohammadi, M.
<strong>Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain.</strong>
Genes Dev. 20: 185-198, 2006.
[PubMed: 16384934]
[Full Text: https://doi.org/10.1101/gad.1365406]
</p>
</li>
<li>
<p class="mim-text-font">
Payson, R. A., Wu, J., Liu, Y., Chiu, I.-M.
<strong>The human FGF-8 gene localizes on chromosome 10q24 and is subjected to induction by androgen in breast cancer cells.</strong>
Oncogene 13: 47-53, 1996.
[PubMed: 8700553]
</p>
</li>
<li>
<p class="mim-text-font">
Riley, B. M., Mansilla, M. A., Ma, J., Daack-Hirsch, S., Maher, B. S., Raffensperger, L. M., Russo, E. T., Vieira, A. R., Dode, C., Mohammadi, M., Marazita, M. L., Murray, J. C.
<strong>Impaired FGF signaling contributes to cleft lip and palate.</strong>
Proc. Nat. Acad. Sci. 104: 4512-4517, 2007.
[PubMed: 17360555]
[Full Text: https://doi.org/10.1073/pnas.0607956104]
</p>
</li>
<li>
<p class="mim-text-font">
Rosello-Diez, A., Ros, M. A., Torres, M.
<strong>Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision.</strong>
Science 332: 1086-1088, 2011.
[PubMed: 21617076]
[Full Text: https://doi.org/10.1126/science.1199489]
</p>
</li>
<li>
<p class="mim-text-font">
Socha, M., Sowinska-Seidler, A., Melo, U. S., Kragesteen, B. K., Franke, M., Heinrich, V., Schopflin, R., Nagel, I., Gruchy, N., Mundlos, S., Sreenivasan, V. K. A., Lopez, C., Vingron, M., Bukowska-Olech, E., Spielmann, M., Jamsheer, A.
<strong>Position effects at the FGF8 locus are associated with femoral hypoplasia.</strong>
Am. J. Hum. Genet. 108: 1725-1734, 2021.
[PubMed: 34433009]
[Full Text: https://doi.org/10.1016/j.ajhg.2021.08.001]
</p>
</li>
<li>
<p class="mim-text-font">
Storm, E. E., Rubenstein, J. L. R., Martin, G. R.
<strong>Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain.</strong>
Proc. Nat. Acad. Sci. 100: 1757-1762, 2003.
[PubMed: 12574514]
[Full Text: https://doi.org/10.1073/pnas.0337736100]
</p>
</li>
<li>
<p class="mim-text-font">
Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A., Stern, C. D.
<strong>Initiation of neural induction by FGF signalling before gastrulation.</strong>
Nature 406: 74-78, 2000.
[PubMed: 10894544]
[Full Text: https://doi.org/10.1038/35017617]
</p>
</li>
<li>
<p class="mim-text-font">
Sun, X., Lewandoski, M., Meyers, E. N., Liu, Y.-H., Maxson, R. E., Jr., Martin, G. R.
<strong>Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development.</strong>
Nature Genet. 25: 83-86, 2000.
[PubMed: 10802662]
[Full Text: https://doi.org/10.1038/75644]
</p>
</li>
<li>
<p class="mim-text-font">
Sun, X., Mariani, F. V., Martin, G. R.
<strong>Functions of FGF signalling from the apical ectodermal ridge in limb development.</strong>
Nature 418: 501-508, 2002.
[PubMed: 12152071]
[Full Text: https://doi.org/10.1038/nature00902]
</p>
</li>
<li>
<p class="mim-text-font">
Sun, X., Meyers, E. N., Lewandoski, M., Martin, G. R.
<strong>Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo.</strong>
Genes Dev. 13: 1834-1846, 1999.
[PubMed: 10421635]
[Full Text: https://doi.org/10.1101/gad.13.14.1834]
</p>
</li>
<li>
<p class="mim-text-font">
Tanaka, A., Miyamoto, K., Matsuo, H., Matsumoto, K., Yoshida, H.
<strong>Human androgen-induced growth factor in prostate and breast cancer cells: its molecular cloning and growth properties.</strong>
FEBS Lett. 363: 226-230, 1995.
[PubMed: 7737407]
[Full Text: https://doi.org/10.1016/0014-5793(95)00324-3]
</p>
</li>
<li>
<p class="mim-text-font">
Tanaka, Y., Okada, Y., Hirokawa, N.
<strong>FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination.</strong>
Nature 435: 172-177, 2005.
[PubMed: 15889083]
[Full Text: https://doi.org/10.1038/nature03494]
</p>
</li>
<li>
<p class="mim-text-font">
Thomas, B. L., Liu, J. K., Rubenstein, J. L. R., Sharpe, P. T.
<strong>Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch.</strong>
Development 127: 217-224, 2000.
[PubMed: 10603340]
[Full Text: https://doi.org/10.1242/dev.127.2.217]
</p>
</li>
<li>
<p class="mim-text-font">
Trainor, P. A., Ariza-McNaughton, L., Krumlauf, R.
<strong>Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning.</strong>
Science 295: 1288-1291, 2002.
[PubMed: 11847340]
[Full Text: https://doi.org/10.1126/science.1064540]
</p>
</li>
<li>
<p class="mim-text-font">
Trarbach, E. B., Abreu, A. P., Silveira, L. F. G., Garmes, H. M., Baptista, M. T. M., Teles, M. G., Costa, E. M. F., Mohammadi, M., Pitteloud, N., Mendonca, B. B., Latronico, A. C.
<strong>Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency.</strong>
J. Clin. Endocr. Metab. 95: 3491-3496, 2010. Note: Erratum: J. Clin. Endocr. Metab. 96: 2624 only, 2011.
[PubMed: 20463092]
[Full Text: https://doi.org/10.1210/jc.2010-0176]
</p>
</li>
<li>
<p class="mim-text-font">
Verheyden, J. M., Sun, X.
<strong>An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth.</strong>
Nature 454: 638-641, 2008.
[PubMed: 18594511]
[Full Text: https://doi.org/10.1038/nature07085]
</p>
</li>
<li>
<p class="mim-text-font">
Watanabe, Y., Miyagawa-Tomita, S., Vincent, S. D., Kelly, R. G., Moon, A. M., Buckingham, M. E.
<strong>Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries.</strong>
Circ. Res. 106: 495-503, 2010.
[PubMed: 20035084]
[Full Text: https://doi.org/10.1161/CIRCRESAHA.109.201665]
</p>
</li>
<li>
<p class="mim-text-font">
White, R. A., Dowler, L. L., Angeloni, S. V., Pasztor, L. M., MacArthur, C. A.
<strong>Assignment of FGF8 to human chromosome 10q25-q26: mutations in FGF8 may be responsible for some types of acrocephalosyndactyly linked to this region.</strong>
Genomics 30: 109-111, 1995.
[PubMed: 8595889]
[Full Text: https://doi.org/10.1006/geno.1995.0020]
</p>
</li>
<li>
<p class="mim-text-font">
Yoshiura, K., Leysens, N. J., Chang, J., Ward, D., Murray, J. C., Muenke, M.
<strong>Genomic structure, sequence, and mapping of human FGF8 with no evidence for its role in craniosynostosis/limb defect syndromes.</strong>
Am. J. Med. Genet. 72: 354-362, 1997.
[PubMed: 9332670]
</p>
</li>
<li>
<p class="mim-text-font">
Yu, S. R., Burkhardt, M., Nowak, M., Ries, J., Petrasek, Z., Scholpp, S., Schwille, P., Brand, M.
<strong>Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.</strong>
Nature 461: 533-536, 2009.
[PubMed: 19741606]
[Full Text: https://doi.org/10.1038/nature08391]
</p>
</li>
<li>
<p class="mim-text-font">
Zammit, C., Coope, R., Gomm, J. J., Shousha, S., Johnston, C. L., Coombes, R. C.
<strong>Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.</strong>
Brit. J. Cancer 86: 1097-1103, 2002.
[PubMed: 11953856]
[Full Text: https://doi.org/10.1038/sj.bjc.6600213]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Marla J. F. O&#x27;Neill - updated : 09/28/2021<br>Sonja A. Rasmussen - updated : 12/14/2018<br>Ada Hamosh - updated : 07/07/2016<br>Paul J. Converse - updated : 10/13/2015<br>Paul J. Converse - updated : 9/11/2015<br>Paul J. Converse - updated : 9/10/2015<br>Marla J. F. O&#x27;Neill - updated : 9/27/2012<br>Cassandra L. Kniffin - updated : 3/5/2012<br>Ada Hamosh - updated : 7/19/2011<br>Ada Hamosh - updated : 2/18/2010<br>Ada Hamosh - updated : 10/19/2009<br>Ada Hamosh - updated : 4/16/2009<br>Marla J. F. O&#x27;Neill - updated : 3/23/2009<br>Patricia A. Hartz - updated : 12/1/2008<br>Ada Hamosh - updated : 10/20/2008<br>Ada Hamosh - updated : 6/12/2008<br>Marla J. F. O&#x27;Neill - updated : 4/30/2007<br>Ada Hamosh - updated : 5/25/2005<br>Patricia A. Hartz - updated : 5/12/2005<br>Patricia A. Hartz - updated : 4/19/2005<br>Patricia A. Hartz - updated : 4/12/2004<br>Ada Hamosh - updated : 3/23/2004<br>Cassandra L. Kniffin - updated : 7/28/2003<br>Cassandra L. Kniffin - updated : 6/2/2003<br>Victor A. McKusick - updated : 3/27/2003<br>Ada Hamosh - updated : 8/7/2002<br>Victor A. McKusick - updated : 7/1/2002<br>Ada Hamosh - updated : 2/20/2002<br>Ada Hamosh - updated : 11/14/2001<br>Stylianos E. Antonarakis - updated : 8/2/2001<br>Victor A. McKusick - updated : 11/22/2000<br>Ada Hamosh - updated : 7/5/2000<br>Ada Hamosh - updated : 5/1/2000<br>Victor A. McKusick - updated : 10/21/1999<br>Ada Hamosh - updated : 7/16/1999<br>Ada Hamosh - updated : 6/18/1999<br>Ada Hamosh - updated : 4/9/1998<br>Victor A. McKusick - updated : 3/27/1998<br>Victor A. McKusick - updated : 11/11/1997<br>Moyra Smith - updated : 7/4/1996<br>Alan F. Scott - updated : 11/14/1995
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 4/9/1995
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
alopez : 04/28/2023<br>carol : 09/29/2021<br>carol : 09/28/2021<br>carol : 12/18/2018<br>carol : 12/14/2018<br>carol : 09/12/2016<br>alopez : 07/07/2016<br>mgross : 10/13/2015<br>mgross : 10/13/2015<br>mgross : 9/11/2015<br>mgross : 9/10/2015<br>carol : 10/17/2012<br>carol : 9/27/2012<br>carol : 3/23/2012<br>terry : 3/23/2012<br>ckniffin : 3/5/2012<br>alopez : 7/19/2011<br>terry : 2/18/2010<br>alopez : 10/26/2009<br>terry : 10/19/2009<br>alopez : 4/21/2009<br>terry : 4/16/2009<br>wwang : 3/30/2009<br>terry : 3/23/2009<br>mgross : 12/2/2008<br>terry : 12/1/2008<br>alopez : 10/21/2008<br>terry : 10/20/2008<br>terry : 10/8/2008<br>alopez : 6/19/2008<br>terry : 6/12/2008<br>wwang : 4/30/2007<br>tkritzer : 6/2/2005<br>terry : 5/25/2005<br>wwang : 5/20/2005<br>terry : 5/12/2005<br>mgross : 4/21/2005<br>terry : 4/19/2005<br>mgross : 4/12/2004<br>alopez : 3/24/2004<br>terry : 3/23/2004<br>alopez : 8/29/2003<br>ckniffin : 7/30/2003<br>carol : 7/28/2003<br>ckniffin : 7/28/2003<br>alopez : 7/28/2003<br>carol : 6/2/2003<br>ckniffin : 6/2/2003<br>cwells : 4/1/2003<br>terry : 3/27/2003<br>alopez : 8/8/2002<br>alopez : 8/8/2002<br>terry : 8/7/2002<br>cwells : 7/24/2002<br>terry : 7/1/2002<br>terry : 2/20/2002<br>terry : 2/20/2002<br>alopez : 11/15/2001<br>terry : 11/14/2001<br>mgross : 8/2/2001<br>mgross : 8/2/2001<br>carol : 11/28/2000<br>terry : 11/22/2000<br>terry : 11/22/2000<br>mgross : 7/5/2000<br>mgross : 7/5/2000<br>terry : 7/5/2000<br>alopez : 5/1/2000<br>carol : 10/21/1999<br>alopez : 7/16/1999<br>alopez : 7/16/1999<br>terry : 7/16/1999<br>terry : 7/16/1999<br>alopez : 6/18/1999<br>alopez : 6/18/1999<br>psherman : 4/15/1998<br>alopez : 4/9/1998<br>psherman : 3/27/1998<br>dholmes : 3/6/1998<br>terry : 11/14/1997<br>terry : 11/11/1997<br>jamie : 2/18/1997<br>carol : 8/10/1996<br>mark : 7/4/1996<br>mark : 7/4/1996<br>terry : 4/17/1996<br>mark : 3/1/1996<br>terry : 3/1/1996<br>joanna : 1/26/1996<br>mark : 8/3/1995<br>mark : 4/9/1995
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 5, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>