nih-gov/www.ncbi.nlm.nih.gov/omim/600211

6105 lines
607 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- *600211 - RUNT-RELATED TRANSCRIPTION FACTOR 2; RUNX2
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=600211"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">*600211</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#geneMap"><strong>Gene-Phenotype Relationships</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#description">Description</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cloning">Cloning and Expression</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneFunction">Gene Function</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneStructure">Gene Structure</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#genotypePhenotypeCorrelations">Genotype/Phenotype Correlations</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#evolution">Evolution</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#animalModel">Animal Model</a>
</li>
<li role="presentation">
<a href="#allelicVariants"><strong>Allelic Variants</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="/allelicVariants/600211">Table View</a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGenome">
<span class="panel-title">
<span class="small">
<a href="#mimGenomeLinksFold" id="mimGenomeLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimGenomeLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Genome
</a>
</span>
</span>
</div>
<div id="mimGenomeLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="genome">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000124813;t=ENST00000647337" class="mim-tip-hint" title="Genome databases for vertebrates and other eukaryotic species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/genome/gdv/browser/gene/?id=860" class="mim-tip-hint" title="Detailed views of the complete genomes of selected organisms from vertebrates to protozoa." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Genome Viewer', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Genome Viewer</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=600211" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimDna">
<span class="panel-title">
<span class="small">
<a href="#mimDnaLinksFold" id="mimDnaLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimDnaLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> DNA
</a>
</span>
</span>
</div>
<div id="mimDnaLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000124813;t=ENST00000647337" class="mim-tip-hint" title="Transcript-based views for coding and noncoding DNA." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl (MANE Select)</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_001015051,NM_001024630,NM_001278478,NM_001369405,NR_103532,NR_103533" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_001024630" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq (MANE)', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq (MANE Select)</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=600211" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimProtein">
<span class="panel-title">
<span class="small">
<a href="#mimProteinLinksFold" id="mimProteinLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimProteinLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Protein
</a>
</span>
</span>
</div>
<div id="mimProteinLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://hprd.org/summary?hprd_id=02566&isoform_id=02566_1&isoform_name=Isoform_1" class="mim-tip-hint" title="The Human Protein Reference Database; manually extracted and visually depicted information on human proteins." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HPRD', 'domain': 'hprd.org'})">HPRD</a></div>
<div><a href="https://www.proteinatlas.org/search/RUNX2" class="mim-tip-hint" title="The Human Protein Atlas contains information for a large majority of all human protein-coding genes regarding the expression and localization of the corresponding proteins based on both RNA and protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HumanProteinAtlas', 'domain': 'proteinatlas.org'})">Human Protein Atlas</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/protein/735898,2290720,3901260,5724787,17368460,80474564,80477928,119624682,119624683,119624684,119624685,119624686,119624687,226442783,226442791,330689790,444737955,511093989,546471536,1609559035" class="mim-tip-hint" title="NCBI protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Protein', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Protein</a></div>
<div><a href="https://www.uniprot.org/uniprotkb/Q13950" class="mim-tip-hint" title="Comprehensive protein sequence and functional information, including supporting data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UniProt', 'domain': 'uniprot.org'})">UniProt</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGeneInfo">
<span class="panel-title">
<span class="small">
<a href="#mimGeneInfoLinksFold" id="mimGeneInfoLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimGeneInfoLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Gene Info</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimGeneInfoLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="http://biogps.org/#goto=genereport&id=860" class="mim-tip-hint" title="The Gene Portal Hub; customizable portal of gene and protein function information." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'BioGPS', 'domain': 'biogps.org'})">BioGPS</a></div>
<div><a href="https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000124813;t=ENST00000647337" class="mim-tip-hint" title="Orthologs, paralogs, regulatory regions, and splice variants." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=RUNX2" class="mim-tip-hint" title="The Human Genome Compendium; web-based cards integrating automatically mined information on human genes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneCards', 'domain': 'genecards.org'})">GeneCards</a></div>
<div><a href="http://amigo.geneontology.org/amigo/search/annotation?q=RUNX2" class="mim-tip-hint" title="Terms, defined using controlled vocabulary, representing gene product properties (biologic process, cellular component, molecular function) across species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneOntology', 'domain': 'amigo.geneontology.org'})">Gene Ontology</a></div>
<div><a href="https://www.genome.jp/dbget-bin/www_bget?hsa+860" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<dd><a href="http://v1.marrvel.org/search/gene/RUNX2" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></dd>
<dd><a href="https://monarchinitiative.org/NCBIGene:860" class="mim-tip-hint" title="Monarch Initiative." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Monarch', 'domain': 'monarchinitiative.org'})">Monarch</a></dd>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/860" class="mim-tip-hint" title="Gene-specific map, sequence, expression, structure, function, citation, and homology data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Gene', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Gene</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_chrom=chr6&hgg_gene=ENST00000647337.2&hgg_start=45328330&hgg_end=45551082&hgg_type=knownGene" class="mim-tip-hint" title="UCSC Genome Bioinformatics; gene-specific structure and function information with links to other databases." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC', 'domain': 'genome.ucsc.edu'})">UCSC</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://medlineplus.gov/genetics/gene/runx2" class="mim-tip-hint" title="Consumer-friendly information about the effects of genetic variation on human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">MedlinePlus Genetics</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=600211[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimVariation">
<span class="panel-title">
<span class="small">
<a href="#mimVariationLinksFold" id="mimVariationLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimVariationLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9660;</span> Variation
</a>
</span>
</span>
</div>
<div id="mimVariationLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ncbi.nlm.nih.gov/clinvar?term=600211[MIM]" class="mim-tip-hint" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a></div>
<div><a href="https://www.deciphergenomics.org/gene/RUNX2/overview/clinical-info" class="mim-tip-hint" title="DECIPHER" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'DECIPHER', 'domain': 'DECIPHER'})">DECIPHER</a></div>
<div><a href="https://gnomad.broadinstitute.org/gene/ENSG00000124813" class="mim-tip-hint" title="The Genome Aggregation Database (gnomAD), Broad Institute." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'gnomAD', 'domain': 'gnomad.broadinstitute.org'})">gnomAD</a></div>
<div><a href="https://www.ebi.ac.uk/gwas/search?query=RUNX2" class="mim-tip-hint" title="GWAS Catalog; NHGRI-EBI Catalog of published genome-wide association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Catalog', 'domain': 'gwascatalog.org'})">GWAS Catalog&nbsp;</a></div>
<div><a href="https://www.gwascentral.org/search?q=RUNX2" class="mim-tip-hint" title="GWAS Central; summary level genotype-to-phenotype information from genetic association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Central', 'domain': 'gwascentral.org'})">GWAS Central&nbsp;</a></div>
<div><a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=RUNX2" class="mim-tip-hint" title="Human Gene Mutation Database; published mutations causing or associated with human inherited disease; disease-associated/functional polymorphisms." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGMD', 'domain': 'hgmd.cf.ac.uk'})">HGMD</a></div>
<div><a href="https://evs.gs.washington.edu/EVS/PopStatsServlet?searchBy=Gene+Hugo&target=RUNX2&upstreamSize=0&downstreamSize=0&x=0&y=0" class="mim-tip-hint" title="National Heart, Lung, and Blood Institute Exome Variant Server." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NHLBI EVS', 'domain': 'evs.gs.washington.edu'})">NHLBI EVS</a></div>
<div><a href="https://www.pharmgkb.org/gene/PA34885" class="mim-tip-hint" title="Pharmacogenomics Knowledge Base; curated and annotated information regarding the effects of human genetic variations on drug response." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PharmGKB', 'domain': 'pharmgkb.org'})">PharmGKB</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/gene/HGNC:10472" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="https://flybase.org/reports/FBgn0003300.html" class="mim-tip-hint" title="A Database of Drosophila Genes and Genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'FlyBase', 'domain': 'flybase.org'})">FlyBase</a></div>
<div><a href="https://www.mousephenotype.org/data/genes/MGI:99829" class="mim-tip-hint" title="International Mouse Phenotyping Consortium." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'IMPC', 'domain': 'knockoutmouse.org'})">IMPC</a></div>
<div><a href="http://v1.marrvel.org/search/gene/RUNX2#HomologGenesPanel" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></div>
<div><a href="http://www.informatics.jax.org/marker/MGI:99829" class="mim-tip-hint" title="Mouse Genome Informatics; international database resource for the laboratory mouse, including integrated genetic, genomic, and biological data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Gene', 'domain': 'informatics.jax.org'})">MGI Mouse Gene</a></div>
<div><a href="https://www.mmrrc.org/catalog/StrainCatalogSearchForm.php?search_query=" class="mim-tip-hint" title="Mutant Mouse Resource & Research Centers." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MMRRC', 'domain': 'mmrrc.org'})">MMRRC</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/860/ortholog/" class="mim-tip-hint" title="Orthologous genes at NCBI." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Orthologs', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Orthologs</a></div>
<div><a href="https://www.orthodb.org/?ncbi=860" class="mim-tip-hint" title="Hierarchical catalogue of orthologs." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrthoDB', 'domain': 'orthodb.org'})">OrthoDB</a></div>
<div><a href="https://wormbase.org/db/gene/gene?name=WBGene00004393;class=Gene" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name'{'name': 'Wormbase Gene', 'domain': 'wormbase.org'})">Wormbase Gene</a></div>
<div><a href="https://zfin.org/ZDB-GENE-040629-3" class="mim-tip-hint" title="The Zebrafish Model Organism Database." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ZFin', 'domain': 'zfin.org'})">ZFin</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellularPathways">
<span class="panel-title">
<span class="small">
<a href="#mimCellularPathwaysLinksFold" id="mimCellularPathwaysLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellularPathwaysLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cellular Pathways</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellularPathwaysLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.genome.jp/dbget-bin/get_linkdb?-t+pathway+hsa:860" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<div><a href="https://reactome.org/content/query?q=RUNX2&species=Homo+sapiens&types=Reaction&types=Pathway&cluster=true" class="definition" title="Protein-specific information in the context of relevant cellular pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {{'name': 'Reactome', 'domain': 'reactome.org'}})">Reactome</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
<a href="#" class="mim-tip-icd" qtip_title="<strong>ICD+</strong>" qtip_text="
<strong>SNOMEDCT:</strong> 65976001<br />
<strong>ICD10CM:</strong> Q74.0<br />
">ICD+</a>
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Gene description">
<span class="text-danger"><strong>*</strong></span>
600211
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
RUNT-RELATED TRANSCRIPTION FACTOR 2; RUNX2
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
CORE-BINDING FACTOR, RUNT DOMAIN, ALPHA SUBUNIT 1; CBFA1<br />
AML3 GENE; AML3<br />
PEBP2-ALPHA-A<br />
OSF2
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="approvedGeneSymbols" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: <a href="https://www.genenames.org/tools/search/#!/genes?query=RUNX2" class="mim-tip-hint" title="HUGO Gene Nomenclature Committee." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGNC', 'domain': 'genenames.org'})">RUNX2</a></em></strong>
</span>
</p>
</div>
<div>
<a id="cytogeneticLocation" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: <a href="/geneMap/6/548?start=-3&limit=10&highlight=548">6p21.1</a>
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : <a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr6:45328330-45551082&dgv=pack&knownGene=pack&omimGene=pack" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">6:45,328,330-45,551,082</a> </span>
</em>
</strong>
<a href="https://www.ncbi.nlm.nih.gov/" target="_blank" class="small"> (from NCBI) </a>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<a id="geneMap" class="mim-anchor"></a>
<div style="margin-bottom: 10px;">
<span class="h4 mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</div>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
<span class="hidden-sm hidden-xs pull-right">
<a href="/clinicalSynopsis/table?mimNumber=119600,119600,119600,156510" class="label label-warning" onclick="gtag('event', 'mim_link', {'source': 'Entry', 'destination': 'clinicalSynopsisTable'})">
View Clinical Synopses
</a>
</span>
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4">
<span class="mim-font">
<a href="/geneMap/6/548?start=-3&limit=10&highlight=548">
6p21.1
</a>
</span>
</td>
<td>
<span class="mim-font">
Cleidocranial dysplasia
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/119600"> 119600 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Cleidocranial dysplasia, forme fruste, dental anomalies only
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/119600"> 119600 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Cleidocranial dysplasia, forme fruste, with brachydactyly
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/119600"> 119600 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/156510"> 156510 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/600211" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/600211" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
<div>
<p />
</div>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div>
<a id="description" class="mim-anchor"></a>
<h4 href="#mimDescriptionFold" id="mimDescriptionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimDescriptionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<div id="mimDescriptionFold" class="collapse in ">
<span class="mim-text-font">
<p>The RUNX2 gene encodes a Runt-related transcription factor, which is part of the RUNX gene family (see RUNX1, <a href="/entry/151385">151385</a> and RUNX3, <a href="/entry/600210">600210</a>). The RUNX transcription factors are composed of an alpha subunit, encoded by the RUNX1, RUNX2, and RUNX3 genes, which binds to DNA via a Runt domain, and a beta subunit, encoded by the CBFB gene (<a href="/entry/121360">121360</a>), which increases the affinity of the alpha subunit for DNA but shows no DNA binding by itself. These proteins have a conserved 128-amino acid Runt domain, so called because of its homology to the pair-rule gene runt, which plays a role in the segmented body patterning of Drosophila. RUNX2 has a primary role in the differentiation of osteoblasts and hypertrophy of cartilage at the growth plate, cell migration, and vascular invasion of bone; is expressed in vascular endothelial cells, breast cancer cells, and prostate cancer cells; is linked to vascular calcification in atherosclerotic lesions; and is expressed in adult bone marrow, thymus, and peripheral lymphoid organs (review by <a href="#9" class="mim-tip-reference" title="Cohen, M. M., Jr. &lt;strong&gt;Perspectives on RUNX genes: an update.&lt;/strong&gt; Am. J. Med. Genet. 149A: 2629-2646, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19830829/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19830829&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.a.33021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19830829">Cohen, 2009</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19830829" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="cloning" class="mim-anchor"></a>
<h4 href="#mimCloningFold" id="mimCloningToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCloningToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<div id="mimCloningFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#24" class="mim-tip-reference" title="Levanon, D., Negreanu, V., Bernstein, Y., Bar-Am, I., Avivi, L., Groner, Y. &lt;strong&gt;AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization.&lt;/strong&gt; Genomics 23: 425-432, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7835892/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7835892&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/geno.1994.1519&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7835892">Levanon et al. (1994)</a> isolated and characterized cDNAs corresponding to 3 human 'runt domain' containing genes, AML1 (RUNX1; <a href="/entry/151385">151385</a>), CBFA3 (RUNX3; <a href="/entry/600210">600210</a>), and CBFA1. In addition to homology in the highly conserved runt domain, extensive sequence similarities were also observed in other parts of the proteins. They found that CBFA1 is the human homolog of one component of mouse PEBP2, i.e., PEBP2A (see <a href="#31" class="mim-tip-reference" title="Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., Shigesada, K., Ito, Y. &lt;strong&gt;PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene.&lt;/strong&gt; Proc. Nat. Acad. Sci. 90: 6859-6863, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8341710/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8341710&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.90.14.6859&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8341710">Ogawa et al. (1993)</a>). In the mouse, PEBP2 (also known as core-binding factor) is a heterodimer consisting of 2 polypeptides: alpha, the DNA-binding subunit, and beta (PEBP2B; <a href="/entry/121360">121360</a>), which associates with the alpha subunit and enhances its affinity for DNA. <a href="#47" class="mim-tip-reference" title="Zhang, Y.-W., Bae, S.-C., Takahashi, E., Ito, Y. &lt;strong&gt;The cDNA cloning of the transcripts of human PEBP2-alpha-A/CBFA1 mapped to 6p12.3-p21.1, the locus for cleidocranial dysplasia.&lt;/strong&gt; Oncogene 15: 367-371, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9233771/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9233771&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1201352&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9233771">Zhang et al. (1997)</a> cloned the PEBP2A gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8341710+7835892+9233771" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#12" class="mim-tip-reference" title="Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., Karsenty, G. &lt;strong&gt;Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.&lt;/strong&gt; Cell 89: 747-754, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9182762/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9182762&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80257-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9182762">Ducy et al. (1997)</a> cloned the cDNA encoding Cbfa1, which encodes a protein that binds to an osteoblast-specific cis-acting element, termed OSE2, in the promoter of osteocalcin (<a href="/entry/112260">112260</a>). They showed that Cbfa1 is an osteoblast-specific transcription factor and a regulator of osteoblast differentiation. The CBFA1 gene is also symbolized OSF2. <a href="#17" class="mim-tip-reference" title="Geoffroy, V., Corral, D. A., Zhou, L., Lee, B., Karsenty, G. &lt;strong&gt;Genomic organization, expression of the human CBFA1 gene, and evidence for an alternative splicing event affecting protein function.&lt;/strong&gt; Mammalian Genome 9: 54-57, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9434946/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9434946&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s003359900679&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9434946">Geoffroy et al. (1998)</a> found 2 OSF2/CBFA1 cDNAs due to an alternative splicing event around exon 8 that affects the transcriptional activity of the protein. Northern blot analysis demonstrated that the expression of human OSF2/CBFA1 is restricted to osteoblastic cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9434946+9182762" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#39" class="mim-tip-reference" title="Terry, A., Kilbey, A., Vaillant, F., Stewart, M., Jenkins, A., Cameron, E., Neil, J. C. &lt;strong&gt;Conservation and expression of an alternative 3-prime exon of Runx2 encoding a novel proline-rich C-terminal domain.&lt;/strong&gt; Gene 336: 115-125, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15225881/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15225881&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.gene.2004.04.015&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15225881">Terry et al. (2004)</a> identified mouse and human RUNX2 splice variants encoding up to 12 RUNX2 isoforms. They reported 2 alternate promoter regions and start codons, alternative splicing following the exons encoding the central invariant DNA-binding Runt domain, and 2 alternate 3-prime exons encoding different C-terminal domains. One C-terminal domain of 180 amino acids contains a nuclear matrix targeting signal (NMTS), a repression domain, and a C-terminal conserved motif. The alternate C-terminal domain of 200 amino acids contains a proline-rich sequence and a leucine zipper-like motif. A destabilizing PEST sequence is encoded by both alternate 3-prime terminal exons. Northern blot analysis and RT-PCR detected differential utilization of the 2 alternate promoters and both 3-prime terminal exons in mouse and human tissues and cells and in early mouse embryos. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15225881" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneFunction" class="mim-anchor"></a>
<h4 href="#mimGeneFunctionFold" id="mimGeneFunctionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneFunctionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<div id="mimGeneFunctionFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#52" class="mim-tip-reference" title="Ziros, P. G., Gil, A.-P. R., Georgakopoulos, T., Habeos, I., Kletsas, D., Basdra, E. K., Papavassiliou, A. G. &lt;strong&gt;The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells.&lt;/strong&gt; J. Biol. Chem. 277: 23934-23941, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11960980/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11960980&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M109881200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11960980">Ziros et al. (2002)</a> examined the relationship between mechanical load and osteoblast differentiation and function. They found that low-level mechanical deformation (stretching) of cultured human osteoblastic cells directly upregulated the expression and DNA binding of CBFA1 to osteoblast-specific cis-acting element-2 (OSE2), which is found in the promoter region of osteoblast-specific genes. There was a stretch-triggered activation of the mitogen-activate protein kinase (MAPK) cascade that included a rapid induction of both JNK1 (<a href="/entry/601158">601158</a>) and JNK2 (<a href="/entry/602896">602896</a>) and a more sustained induction of ERK1 (<a href="/entry/601795">601795</a>) and ERK2 (<a href="/entry/176948">176948</a>). <a href="#52" class="mim-tip-reference" title="Ziros, P. G., Gil, A.-P. R., Georgakopoulos, T., Habeos, I., Kletsas, D., Basdra, E. K., Papavassiliou, A. G. &lt;strong&gt;The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells.&lt;/strong&gt; J. Biol. Chem. 277: 23934-23941, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11960980/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11960980&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M109881200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11960980">Ziros et al. (2002)</a> found evidence that CBFA1 and ERK2 physically interact, resulting in phosphorylation of CBFA1 and potentiation of its transcriptional activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11960980" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#21" class="mim-tip-reference" title="Kim, S., Koga, T., Isobe, M., Kern, B. E., Yokochi, T., Chin, Y. E., Karsenty, G., Taniguchi, T., Takayanagi, H. &lt;strong&gt;Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation.&lt;/strong&gt; Genes Dev. 17: 1979-1991, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12923053/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12923053&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12923053[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.1119303&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12923053">Kim et al. (2003)</a> found enhanced bone formation and accelerated osteoblast differentiation in Stat1 (<a href="/entry/600555">600555</a>)-deficient mice, resulting in increased bone mass. Runx2 DNA-binding activity was upregulated in Stat1 mutant osteoblasts. <a href="#21" class="mim-tip-reference" title="Kim, S., Koga, T., Isobe, M., Kern, B. E., Yokochi, T., Chin, Y. E., Karsenty, G., Taniguchi, T., Takayanagi, H. &lt;strong&gt;Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation.&lt;/strong&gt; Genes Dev. 17: 1979-1991, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12923053/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12923053&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12923053[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.1119303&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12923053">Kim et al. (2003)</a> determined that Stat1 interacts with Runx2 in its latent form in the cytoplasm, thereby inhibiting the nuclear localization of Runx2 and its nuclear transcriptional activity. They showed that the Stat1-Runx2 interaction does not require phosphorylation of Stat1 on tyr701, which is necessary for Stat1 transcriptional activity, and it does not require interferon (see IFNG; <a href="/entry/147570">147570</a>) signaling. <a href="#21" class="mim-tip-reference" title="Kim, S., Koga, T., Isobe, M., Kern, B. E., Yokochi, T., Chin, Y. E., Karsenty, G., Taniguchi, T., Takayanagi, H. &lt;strong&gt;Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation.&lt;/strong&gt; Genes Dev. 17: 1979-1991, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12923053/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12923053&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12923053[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.1119303&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12923053">Kim et al. (2003)</a> concluded that bone remodeling by RUNX2 is attenuated by its sequestration in the cytoplasm by latent STAT1. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12923053" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#49" class="mim-tip-reference" title="Zheng, Q., Zhou, G., Chen, Y., Garcia-Rojas, X., Lee, B. &lt;strong&gt;Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo.&lt;/strong&gt; J. Cell Biol. 162: 833-842, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12952936/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12952936&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12952936[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1083/jcb.200211089&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12952936">Zheng et al. (2003)</a> identified multiple functional RUNX2-binding sites within the promoter region of the human, mouse, and chicken COL10A1 genes (<a href="/entry/120110">120110</a>). In transgenic mouse cells, Runx2 contributed to the transactivation of the Col10a1 promoter. Also, decreased Col10a1 expression and altered chondrocyte hypertrophy were observed in Runx2 heterozygous mice, whereas Col10a1 was barely detectable in Runx2 null mice. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12952936" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#38" class="mim-tip-reference" title="Stein, G. S., Lian, J. B., van Wijnen, A. J., Stein, J. L., Montecino, M., Javed, A., Zaidi, S. K., Young, D. W., Choi, J.-Y., Pockwinse, S. M. &lt;strong&gt;Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression.&lt;/strong&gt; Oncogene 23: 4315-4329, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15156188/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15156188&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1207676&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15156188">Stein et al. (2004)</a> reviewed the function of mammalian Runx proteins in osteogenesis. They stated that Runx2 is the principal osteogenic master switch, while Runx1 and Runx3 are expressed in bone cells and appear to support bone cell development and differentiation. <a href="#38" class="mim-tip-reference" title="Stein, G. S., Lian, J. B., van Wijnen, A. J., Stein, J. L., Montecino, M., Javed, A., Zaidi, S. K., Young, D. W., Choi, J.-Y., Pockwinse, S. M. &lt;strong&gt;Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression.&lt;/strong&gt; Oncogene 23: 4315-4329, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15156188/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15156188&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1207676&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15156188">Stein et al. (2004)</a> described the role of Runx2 in the structural modification of the osteocalcin gene promoter during osteoblast development. They concluded that RUNX2 acts as a scaffold that controls the integration, organization, and assembly of nucleic acids and regulatory factors for skeletal gene expression. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15156188" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#8" class="mim-tip-reference" title="Bialek, P., Kern, B., Yang, X., Schrock, M., Sosic, D., Hong, N., Wu, H., Yu, K., Ornitz, D. M., Olson, E. N., Justice, M. J., Karsenty, G. &lt;strong&gt;A Twist code determines the onset of osteoblast differentiation.&lt;/strong&gt; Dev. Cell 6: 423-435, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15030764/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15030764&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s1534-5807(04)00058-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15030764">Bialek et al. (2004)</a> determined that the Twist proteins transiently inhibit Runx2 function during skeletal development in mice. Twist1 (<a href="/entry/601622">601622</a>) and Twist2 (<a href="/entry/607556">607556</a>) were expressed in Runx2-expressing cells throughout the skeleton early during development, and osteoblast-specific gene expression occurred only after their expression decreased. Double heterozygotes for Twist1 and Runx2 deletion showed none of the skull abnormalities observed in Runx2 +/- mice, a Twist2 null background rescued the clavicle phenotype of Runx2 +/- mice, and Twist1 or Twist2 deficiency led to premature osteoblast differentiation. The antiosteogenic function of the Twist proteins was mediated by a domain <a href="#8" class="mim-tip-reference" title="Bialek, P., Kern, B., Yang, X., Schrock, M., Sosic, D., Hong, N., Wu, H., Yu, K., Ornitz, D. M., Olson, E. N., Justice, M. J., Karsenty, G. &lt;strong&gt;A Twist code determines the onset of osteoblast differentiation.&lt;/strong&gt; Dev. Cell 6: 423-435, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15030764/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15030764&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s1534-5807(04)00058-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15030764">Bialek et al. (2004)</a> called the Twist box, which interacted with the Runx2 DNA-binding domain to inhibit its function. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15030764" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#15" class="mim-tip-reference" title="Fujita, T., Azuma, Y., Fukuyama, R., Hattori, Y., Yoshida, C., Koida, M., Ogita, K., Komori, T. &lt;strong&gt;Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling.&lt;/strong&gt; J. Cell Biol. 166: 85-95, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15226309/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15226309&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15226309[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1083/jcb.200401138&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15226309">Fujita et al. (2004)</a> investigated the role of Runx2 in the differentiation of mouse osteoblasts and mesenchymal stem cells. They presented evidence suggesting that Runx2 and phosphatidylinositol 3-kinase (see PIK3CG; <a href="/entry/601232">601232</a>)-Akt (see <a href="/entry/164730">164730</a>) signaling are mutually dependent on each other in the regulation of osteoblast and chondrocyte differentiation and migration. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15226309" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#39" class="mim-tip-reference" title="Terry, A., Kilbey, A., Vaillant, F., Stewart, M., Jenkins, A., Cameron, E., Neil, J. C. &lt;strong&gt;Conservation and expression of an alternative 3-prime exon of Runx2 encoding a novel proline-rich C-terminal domain.&lt;/strong&gt; Gene 336: 115-125, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15225881/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15225881&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.gene.2004.04.015&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15225881">Terry et al. (2004)</a> determined that RUNX2 isoforms containing either the 180- or 200-amino acid C-terminal domain were able to bind canonical Runx DNA target sequences. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15225881" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The inverse relationship between proliferation and differentiation in osteoblasts has been well documented. <a href="#40" class="mim-tip-reference" title="Thomas, D. M., Johnson, S. A., Sims, N. A., Trivett, M. K., Slavin, J. L., Rubin, B. P., Waring, P., McArthur, G. A., Walkley, C. R., Holloway, A. J., Diyagama, D., Grim, J. E., Clurman, B. E., Bowtell, D. D. L., Lee, J.-S., Gutierrez, G. M., Piscopo, D. M., Carty, S. A., Hinds, P. W. &lt;strong&gt;Terminal osteoblast differentiation, mediated by runx2 and p27(KIP1) is disrupted in osteosarcoma.&lt;/strong&gt; J. Cell Biol. 167: 925-934, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15583032/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15583032&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15583032[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1083/jcb.200409187&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15583032">Thomas et al. (2004)</a> found that Runx2, a master regulator of osteoblast differentiation in mammalian cells, was disrupted in 6 of 7 mammalian osteosarcoma cell lines. Immunohistochemical analysis of human osteosarcomas indicated that expression of p27(KIP1) (CDKN1B; <a href="/entry/600778">600778</a>) was also lost as tumors lost osteogenic differentiation. <a href="#40" class="mim-tip-reference" title="Thomas, D. M., Johnson, S. A., Sims, N. A., Trivett, M. K., Slavin, J. L., Rubin, B. P., Waring, P., McArthur, G. A., Walkley, C. R., Holloway, A. J., Diyagama, D., Grim, J. E., Clurman, B. E., Bowtell, D. D. L., Lee, J.-S., Gutierrez, G. M., Piscopo, D. M., Carty, S. A., Hinds, P. W. &lt;strong&gt;Terminal osteoblast differentiation, mediated by runx2 and p27(KIP1) is disrupted in osteosarcoma.&lt;/strong&gt; J. Cell Biol. 167: 925-934, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15583032/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15583032&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15583032[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1083/jcb.200409187&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15583032">Thomas et al. (2004)</a> found that ectopic expression of Runx2 induced growth arrest through p27(KIP1)-induced inhibition of S-phase cyclin complexes, followed by dephosphorylation of the RB1 protein (<a href="/entry/614041">614041</a>) and G1 cell cycle arrest. They concluded that RUNX2 establishes a terminally differentiated state in osteoblasts through RB1- and p27(KIP1)-dependent mechanisms that are disrupted in osteosarcomas. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15583032" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#20" class="mim-tip-reference" title="Hassan, M. Q., Javed, A., Morasso, M. I., Karlin, J., Montecino, M., van Wijnen, A. J., Stein, G. S., Stein, J. L., Lian, J. B. &lt;strong&gt;Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins of chromatin of the osteocalcin gene.&lt;/strong&gt; Molec. Cell. Biol. 24: 9248-9261, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15456894/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15456894&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15456894[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1128/MCB.24.20.9248-9261.2004&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15456894">Hassan et al. (2004)</a> found that Msx2 (<a href="/entry/123101">123101</a>), Dlx3 (<a href="/entry/600525">600525</a>), Dlx5 (<a href="/entry/600028">600028</a>), and Runx2 regulated the expression of osteocalcin (OC) (BGLAP; <a href="/entry/112260">112260</a>) in mouse embryos and therefore are implicated in the control of bone formation. Msx2 associated with transcriptionally repressed OC chromatin, and Dlx3 and Dlx5 were recruited with Runx2 to initiate OC transcription. In a second regulatory switch, Dlx3 association decreased and Dlx5 recruitment increased coincident with the mineralization stage of osteoblast differentiation. The appearance of Dlx3 followed by Dlx5 in the OC promoter correlated with increased transcription represented by increased occupancy of RNA polymerase II. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15456894" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#44" class="mim-tip-reference" title="Young, D. W., Hassan, M. Q., Pratap, J., Galindo, M., Zaidi, S. K., Lee, S., Yang, X., Xie, R., Javed, A., Underwood, J. M., Furcinitti, P., Imbalzano, A. N., Penman, S., Nickerson, J. A., Montecino, M. A., Lian, J. B., Stein, J. L., van Wijnen, A. J., Stein, G. S. &lt;strong&gt;Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2.&lt;/strong&gt; Nature 445: 442-446, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17251981/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17251981&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature05473&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17251981">Young et al. (2007)</a> established that mammalian RUNX2 not only controls lineage commitment and cell proliferation by regulating genes transcribed by RNA Pol II (see <a href="/entry/180660">180660</a>) but also acts as a repressor of RNA Pol I (see <a href="/entry/602000">602000</a>)-mediated ribosomal RNA (rRNA) synthesis. Within the condensed mitotic chromosomes, <a href="#44" class="mim-tip-reference" title="Young, D. W., Hassan, M. Q., Pratap, J., Galindo, M., Zaidi, S. K., Lee, S., Yang, X., Xie, R., Javed, A., Underwood, J. M., Furcinitti, P., Imbalzano, A. N., Penman, S., Nickerson, J. A., Montecino, M. A., Lian, J. B., Stein, J. L., van Wijnen, A. J., Stein, G. S. &lt;strong&gt;Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2.&lt;/strong&gt; Nature 445: 442-446, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17251981/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17251981&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature05473&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17251981">Young et al. (2007)</a> found that RUNX2 is retained in large discrete foci at nucleolar organizing regions where rRNA genes reside. These RUNX2 chromosomal foci are associated with open chromatin, colocalize with the RNA Pol I transcription factor UBF1 (<a href="/entry/600673">600673</a>), and undergo transition into nucleoli at sites of rRNA synthesis during interphase. Ribosomal RNA transcription and protein synthesis are enhanced by RUNX2 deficiency that results from gene ablation or RNA interference, whereas induction of RUNX2 specifically and directly represses rDNA promoter activity. RUNX2 forms complexes containing the RNA Pol I transcription factors UBF1 and SL1 (see <a href="/entry/604903">604903</a>), co-occupies the rRNA gene promoter with these factors in vivo, and affects local chromatin histone modifications at rDNA regulatory regions. Thus, RUNX2 is a critical mechanistic link between cell fate, proliferation, and growth control. <a href="#44" class="mim-tip-reference" title="Young, D. W., Hassan, M. Q., Pratap, J., Galindo, M., Zaidi, S. K., Lee, S., Yang, X., Xie, R., Javed, A., Underwood, J. M., Furcinitti, P., Imbalzano, A. N., Penman, S., Nickerson, J. A., Montecino, M. A., Lian, J. B., Stein, J. L., van Wijnen, A. J., Stein, G. S. &lt;strong&gt;Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2.&lt;/strong&gt; Nature 445: 442-446, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17251981/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17251981&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature05473&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17251981">Young et al. (2007)</a> suggested that lineage-specific control of ribosomal biogenesis may be a fundamental function of transcription factors that govern cell fate. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17251981" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#45" class="mim-tip-reference" title="Young, D. W., Hassan, M. Q., Yang, X.-Q., Galindo, M., Javed, A., Zaidi, S. K., Furcinitti, P., Lapointe, D., Montecino, M., Lian, J. B., Stein, J. L., van Wijnen, A. J., Stein, G. S. &lt;strong&gt;Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 3189-3194, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17360627/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17360627&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17360627[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0611419104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17360627">Young et al. (2007)</a> showed that RUNX2 protein was stable during cell division and remained associated with chromosomes during mitosis via sequence-specific DNA binding. Using small interfering RNA, mitotic cell synchronization, and expression profiling, they identified RUNX2-regulated genes that were modulated postmitotically. During mitosis, RUNX2 interacted directly with promoters of cell fate- and cell cycle-regulated target genes that exhibited distinct RUNX2-dependent modification in histone acetylation and methylation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17360627" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#46" class="mim-tip-reference" title="Zaidi, S. K., Pande, S., Pratap, J., Gaur, T., Grigoriu, S., Ali, S. A., Stein, J. L., Lian, J. B., van Wijnen, A. J., Stein, G. S. &lt;strong&gt;Runx2 deficiency and defective subnuclear targeting bypass senescence to promote immortalization and tumorigenic potential.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 19861-19866, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18077419/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18077419&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18077419[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0709650104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18077419">Zaidi et al. (2007)</a> stated that RUNX2 may function as a tumor suppressor in some cell types and have oncogenic potential in others. They showed that Runx2 deficiency and defective subnuclear targeting in primary mouse osteoblasts promoted immortalization and tumorigenic phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18077419" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneStructure" class="mim-anchor"></a>
<h4 href="#mimGeneStructureFold" id="mimGeneStructureToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneStructureToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<div id="mimGeneStructureFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#39" class="mim-tip-reference" title="Terry, A., Kilbey, A., Vaillant, F., Stewart, M., Jenkins, A., Cameron, E., Neil, J. C. &lt;strong&gt;Conservation and expression of an alternative 3-prime exon of Runx2 encoding a novel proline-rich C-terminal domain.&lt;/strong&gt; Gene 336: 115-125, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15225881/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15225881&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.gene.2004.04.015&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15225881">Terry et al. (2004)</a> determined that the mouse and human RUNX2 genes contain 9 alternatively spliced exons. Exons 1 and 2 contain alternatively utilized promoter regions and an ATG translational start codon. There are 3 alternate exons 5 (exons 5, 5.1, and 5.2) and 2 alternate exons 6 (exons 6 and 6.1). Exon 6.1 is rich in CpG dinucleotides. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15225881" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#38" class="mim-tip-reference" title="Stein, G. S., Lian, J. B., van Wijnen, A. J., Stein, J. L., Montecino, M., Javed, A., Zaidi, S. K., Young, D. W., Choi, J.-Y., Pockwinse, S. M. &lt;strong&gt;Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression.&lt;/strong&gt; Oncogene 23: 4315-4329, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15156188/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15156188&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1207676&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15156188">Stein et al. (2004)</a> described the key regulatory elements contained within the promoter region of exon 1 of the RUNX2 gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15156188" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>By FISH, <a href="#24" class="mim-tip-reference" title="Levanon, D., Negreanu, V., Bernstein, Y., Bar-Am, I., Avivi, L., Groner, Y. &lt;strong&gt;AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization.&lt;/strong&gt; Genomics 23: 425-432, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7835892/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7835892&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/geno.1994.1519&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7835892">Levanon et al. (1994)</a> mapped the CBFA1 gene to 6p21. The AML1, CBFA1, and CBFA3 genes all map to chromosomal regions involved in translocations underlying leukemia or myelodysplastic syndrome and, in the case of AML1, a fusion gene has been demonstrated as the basis of leukemia. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7835892" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#47" class="mim-tip-reference" title="Zhang, Y.-W., Bae, S.-C., Takahashi, E., Ito, Y. &lt;strong&gt;The cDNA cloning of the transcripts of human PEBP2-alpha-A/CBFA1 mapped to 6p12.3-p21.1, the locus for cleidocranial dysplasia.&lt;/strong&gt; Oncogene 15: 367-371, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9233771/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9233771&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1201352&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9233771">Zhang et al. (1997)</a> mapped the PEBP2A gene to 6p21.1-p12.3 by FISH. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9233771" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Cleidocranial Dysplasia 1</em></strong></p><p>
That the CBFA1 gene is the site of mutations responsible for cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>) was established by <a href="#29" class="mim-tip-reference" title="Mundlos, S., Otto, F., Mundlos, C., Mulliken, J. B., Aylsworth, A. S., Albright, S., Lindhout, D., Cole, W. G., Henn, W., Knoll, J. H. M., Owen, M. J., Mertelsmann, R., Zabel, B. U., Olsen, B. R. &lt;strong&gt;Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia.&lt;/strong&gt; Cell 89: 773-779, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9182765/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9182765&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80260-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9182765">Mundlos et al. (1997)</a>, who found that heterozygous deletions of the gene are present in some families, and that in other families, insertion, deletion, or missense mutations lead to translational stop codons in the DNA-binding domain or in the C-terminal transactivating region. In-frame expansion of a polyalanine stretch segregated in an affected family with brachydactyly and minor clinical findings of CLCD. They concluded that CBFA1 mutations cause CLCD and that heterozygous loss of function is sufficient to produce the disorder. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182765" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#34" class="mim-tip-reference" title="Quack, I., Vonderstrass, B., Stock, M., Aylsworth, A. S., Becker, A., Brueton, L., Lee, P. J., Majewski, F., Mulliken, J. B., Suri, M., Zenker, M., Mundlos, S., Otto, F. &lt;strong&gt;Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 65: 1268-1278, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10521292/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10521292&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10521292[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302622&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10521292">Quack et al. (1999)</a> analyzed the CBFA1 gene in 42 unrelated patients with CLCD. In 18 patients, they detected mutations in the coding region, including 8 frameshift, 2 nonsense, and 9 missense mutations, as well as 2 novel polymorphisms. A cluster of missense mutations at arginine-225 (R225) identified this residue as crucial for CBFA1 function. In vitro green fluorescent protein fusion studies showed that R225 mutations interfere with nuclear accumulation of CBFA1 protein. There was no phenotypic difference between patients with deletions or frameshifts and those with other intragenic mutations, suggesting that CLCD is generally caused by haploinsufficiency. However, <a href="#34" class="mim-tip-reference" title="Quack, I., Vonderstrass, B., Stock, M., Aylsworth, A. S., Becker, A., Brueton, L., Lee, P. J., Majewski, F., Mulliken, J. B., Suri, M., Zenker, M., Mundlos, S., Otto, F. &lt;strong&gt;Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 65: 1268-1278, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10521292/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10521292&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10521292[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302622&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10521292">Quack et al. (1999)</a> were able to extend the CLCD phenotypic spectrum. A missense mutation (<a href="#0006">600211.0006</a>) identified in a patient with supernumerary teeth and a radiologically normal skeleton indicated that mutations in the CBFA1 gene can be associated exclusively with a dental phenotype. (In another place in their report, <a href="#34" class="mim-tip-reference" title="Quack, I., Vonderstrass, B., Stock, M., Aylsworth, A. S., Becker, A., Brueton, L., Lee, P. J., Majewski, F., Mulliken, J. B., Suri, M., Zenker, M., Mundlos, S., Otto, F. &lt;strong&gt;Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 65: 1268-1278, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10521292/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10521292&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10521292[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302622&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10521292">Quack et al. (1999)</a> stated that the mutation was a frameshift and that the patient, in fact, showed a gap in the most lateral part of the clavicle bilaterally, as well as the supernumerary teeth.) In addition, a patient with severe CLCD and a frameshift mutation at codon 402 (<a href="#0007">600211.0007</a>) had osteoporosis leading to recurrent bone fractures and scoliosis, providing the first evidence that CBFA1 may help maintain adult bone in addition to its function in bone development. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10521292" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#35" class="mim-tip-reference" title="Rodan, G. A., Harada, S. &lt;strong&gt;The missing bone.&lt;/strong&gt; Cell 89: 677-680, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9182754/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9182754&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80249-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9182754">Rodan and Harada (1997)</a> gave a comprehensive review of the role of the 3 CBFA genes and specifically the role of CBFA1 in normal and abnormal bone development. They pointed out that a difference between the heterozygous CBFA mutations in the human and in mice is the supernumerary teeth in humans, the basis of which remained to be determined. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182754" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In an extensive review of the genetics of craniofacial development and malformation, <a href="#41" class="mim-tip-reference" title="Wilkie, A. O. M., Morriss-Kay, G. M. &lt;strong&gt;Genetics of craniofacial development and malformation.&lt;/strong&gt; Nature Rev. Genet. 2: 458-468, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11389462/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11389462&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/35076601&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11389462">Wilkie and Morriss-Kay (2001)</a> provided a useful diagram of the molecular pathways in cranial suture development with a listing of all craniofacial disorders caused by mutations in the corresponding genes. Four proteins were indicated as having strong evidence for existing in the pathway, with successive downstream targets as follows: TWIST (<a href="/entry/601622">601622</a>)--FGFR2 (<a href="/entry/176943">176943</a>)--FGFR1--CBFA1. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11389462" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#7" class="mim-tip-reference" title="Bergwitz, C., Prochnau, A., Mayr, B., Kramer, F.-J., Rittierodt, M., Berten, H.-L., Hausamen, J.-E., Brabant, G. &lt;strong&gt;Identification of novel CBFA1/RUNX2 mutations causing cleidocranial dysplasia.&lt;/strong&gt; J. Inherit. Metab. Dis. 24: 648-656, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11768584/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11768584&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1023/a:1012758925617&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11768584">Bergwitz et al. (2001)</a> reported 2 new mutations in RUNX2 causing cleidocranial dysplasia. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11768584" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#32" class="mim-tip-reference" title="Otto, F., Kanegane, H., Mundlos, S. &lt;strong&gt;Mutations in the RUNX2 gene in patients with cleidocranial dysplasia.&lt;/strong&gt; Hum. Mutat. 19: 209-216, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11857736/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11857736&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.10043&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11857736">Otto et al. (2002)</a> tabulated a large number of mutations in the RUNX2 gene that cause CLCD; 20 of them were previously unreported. Missense mutations that cluster in the runt domain had been reported in 26 CLCD patients. Only 1 missense mutation was found to be located outside the runt domain. The authors stated that R225 mutations arg225 to gln (R225Q; <a href="#0008">600211.0008</a>) and arg225 to trp (R225W; <a href="#0009">600211.0009</a>) had been identified in 7 unrelated patients. R225 resides within a stretch of basic amino acids at the carboxy terminus of the runt domain. This motif acts as a nuclear localization signal and mutations affecting R225 inhibit the nuclear accumulation of RUNX2 protein. Moreover, at least the R225Q mutation seems to abolish DNA binding (<a href="#50" class="mim-tip-reference" title="Zhou, G., Chen, Y., Zhou, L., Thirunavukkarasu, K., Hecht, J., Chitayat, D., Gelb, B. D., Pirinen, S., Berry, S. A., Greenberg, C. R., Karsenty, G., Lee, B. &lt;strong&gt;CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia.&lt;/strong&gt; Hum. Molec. Genet. 8: 2311-2316, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10545612/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10545612&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/8.12.2311&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10545612">Zhou et al., 1999</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=11857736+10545612" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#48" class="mim-tip-reference" title="Zheng, Q., Sebald, E., Zhou, G., Chen, Y., Wilcox, W., Lee, B., Krakow, D. &lt;strong&gt;Dysregulation of chondrogenesis in human cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 77: 305-312, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15952089/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15952089&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15952089[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/432261&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15952089">Zheng et al. (2005)</a> observed growth plate abnormalities in a patient with a 1-bp insertion (<a href="#0017">600211.0017</a>) in the RUNX2 gene. Histologic analysis of the rib and long-bone cartilages showed a markedly diminished zone of hypertrophy; analysis of limb cartilage RNA revealed a 5- to 10-fold decrease in the hypertrophic chondrocyte molecular markers VEGF (<a href="/entry/192240">192240</a>), MMP13 (<a href="/entry/600108">600108</a>), and COL10A1. <a href="#48" class="mim-tip-reference" title="Zheng, Q., Sebald, E., Zhou, G., Chen, Y., Wilcox, W., Lee, B., Krakow, D. &lt;strong&gt;Dysregulation of chondrogenesis in human cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 77: 305-312, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15952089/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15952089&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15952089[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/432261&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15952089">Zheng et al. (2005)</a> concluded that humans with CLCD have altered endochondral ossification due to altered RUNX2 regulation of hypertrophic chondrocyte-specific genes during chondrocyte maturation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15952089" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#14" class="mim-tip-reference" title="Fernandez, B. A., Siegel-Bartelt, J., Herbrick, J.-A. S., Teshima, I., Scherer, S. W. &lt;strong&gt;Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature.&lt;/strong&gt; Clin. Genet. 68: 349-359, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16143022/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16143022&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.2005.00498.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16143022">Fernandez et al. (2005)</a> described a case of a 20-year-old woman with features of both holoprosencephaly and cleidocranial dysplasia. She showed premaxillary agenesis, which is part of the holoprosencephaly spectrum, as well as skeletal abnormalities and impacted teeth reminiscent of cleidocranial dysplasia. She was found to carry a de novo 6;7 reciprocal translocation, with breakpoints at 6p21.1 and 7q36. The 7q36 breakpoint maps 15 kb telomeric to the 5-prime end of the Sonic hedgehog gene (SHH; <a href="/entry/600725">600725</a>), which appeared to explain the patient's holoprosencephaly phenotype (<a href="#6" class="mim-tip-reference" title="Belloni, E., Muenke, M., Roessler, E., Traverso, G., Siegel-Bartelt, J., Frumkin, A., Mitchell, H. F., Donis-Keller, H., Helms, C., Hing, A. V., Heng, H. H. Q., Koop, B., Martindale, D., Rommens, J. M., Tsui, L.-C., Scherer, S. W. &lt;strong&gt;Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly.&lt;/strong&gt; Nature Genet. 14: 353-356, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8896571/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8896571&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng1196-353&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8896571">Belloni et al., 1996</a>). Using fluorescence in situ hybridization, <a href="#14" class="mim-tip-reference" title="Fernandez, B. A., Siegel-Bartelt, J., Herbrick, J.-A. S., Teshima, I., Scherer, S. W. &lt;strong&gt;Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature.&lt;/strong&gt; Clin. Genet. 68: 349-359, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16143022/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16143022&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.2005.00498.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16143022">Fernandez et al. (2005)</a> identified a P1 artificial chromosome clone 800 kb upstream of the RUNX2 gene that spans the 6p breakpoint. <a href="#14" class="mim-tip-reference" title="Fernandez, B. A., Siegel-Bartelt, J., Herbrick, J.-A. S., Teshima, I., Scherer, S. W. &lt;strong&gt;Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature.&lt;/strong&gt; Clin. Genet. 68: 349-359, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16143022/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16143022&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.2005.00498.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16143022">Fernandez et al. (2005)</a> proposed that the patient's complex phenotype was due to 2 position-effect mutations, 1 at each translocation breakpoint, which altered the expression of the SHH and RUNX2 genes. <a href="#14" class="mim-tip-reference" title="Fernandez, B. A., Siegel-Bartelt, J., Herbrick, J.-A. S., Teshima, I., Scherer, S. W. &lt;strong&gt;Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature.&lt;/strong&gt; Clin. Genet. 68: 349-359, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16143022/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16143022&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.2005.00498.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16143022">Fernandez et al. (2005)</a> gave a listing of examples of position-effect mutations in human disease. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8896571+16143022" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#13" class="mim-tip-reference" title="El-Gharbawy, A. H., Peeden, J. N., Jr., Lachman, R. S., Graham, J. M., Jr., Moore, S. R., Rimoin, D. L. &lt;strong&gt;Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the C-terminal region of RUNX2.&lt;/strong&gt; Am. J. Med. Genet. 152A: 169-174, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20014132/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20014132&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20014132[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.a.33146&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20014132">El-Gharbawy et al. (2010)</a> studied a 7-year-old boy with CLCD who also displayed features of hypophosphatasia (see <a href="/entry/241500">241500</a>) and in whom no RUNX2 mutation was found by sequencing. Using array CGH, the authors identified a 50- to 70-kb deletion that predicted a disruption of the C terminus of RUNX2, encompassing the coding sequence for amino acids 327 to 521 and involving the SMAD 1,2,3,5 binding sites and the nuclear matrix targeting signal regions. <a href="#13" class="mim-tip-reference" title="El-Gharbawy, A. H., Peeden, J. N., Jr., Lachman, R. S., Graham, J. M., Jr., Moore, S. R., Rimoin, D. L. &lt;strong&gt;Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the C-terminal region of RUNX2.&lt;/strong&gt; Am. J. Med. Genet. 152A: 169-174, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20014132/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20014132&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20014132[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.a.33146&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20014132">El-Gharbawy et al. (2010)</a> emphasized the need to search for deletions when sequencing of the target gene is normal, and noted that the C terminal region of RUNX2 appears to play an integral role in human osteogenesis and osteoblast differentiation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20014132" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Metaphyseal Dysplasia with Maxillary Hypoplasia with or without Brachydactyly</em></strong></p><p>
In affected members of a 4-generation French Canadian family with metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly (MDMHB; <a href="/entry/156510">156510</a>), <a href="#27" class="mim-tip-reference" title="Moffatt, P., Amor, M. B., Glorieux, F. H., Roschger, P., Klaushofer, K., Schwartzentruber, J. A., Paterson, A. D., Hu, P., Marshall, C., FORGE Canada Consortium, Fahiminiya, S., Majewski, J., Beaulieu, C. L., Boycott, K. M., Rauch, F. &lt;strong&gt;Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly is caused by a duplication in RUNX2.&lt;/strong&gt; Am. J. Hum. Genet. 92: 252-258, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23290074/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23290074&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23290074[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.12.001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23290074">Moffatt et al. (2013)</a> identified heterozygosity for a 105-kb duplication containing exons 3 to 5 of the RUNX5 gene (<a href="#0014">600211.0014</a>) that was absent in unaffected family members. <a href="#27" class="mim-tip-reference" title="Moffatt, P., Amor, M. B., Glorieux, F. H., Roschger, P., Klaushofer, K., Schwartzentruber, J. A., Paterson, A. D., Hu, P., Marshall, C., FORGE Canada Consortium, Fahiminiya, S., Majewski, J., Beaulieu, C. L., Boycott, K. M., Rauch, F. &lt;strong&gt;Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly is caused by a duplication in RUNX2.&lt;/strong&gt; Am. J. Hum. Genet. 92: 252-258, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23290074/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23290074&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23290074[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.12.001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23290074">Moffatt et al. (2013)</a> noted that the clinical findings of MDMHB and mechanistic studies were in accordance with the notion that duplication of RUNX2 exons 3 to 5 leads to a gain of function in RUNX2. This gain of function may result from increased cellular levels of mutated RUNX2 protein, as suggested by transfection experiments. The authors pointed out that MDMHB affects similar skeletal sites as CLCD but in some way represents the mirror image of CLCD. Clavicles are enlarged in MDMHB but are hypoplastic or absent in CLCD. In MDMHB the cranial vault is thickened, whereas there is lack of skull mineralization in CLCD. Persons with MDMHB present with dystrophic teeth, whereas CLCD is associated with supernumerary teeth. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23290074" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 20-year-old Finnish woman with MDMHB, <a href="#3" class="mim-tip-reference" title="Avela, K., Hirvinen, H., Ben Amor, M., Rauch, F. &lt;strong&gt;Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly in a Finnish woman: first confirmation of a duplication in RUNX2 as pathogenic variant.&lt;/strong&gt; Europ. J. Med. Genet. 57: 617-620, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25311905/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25311905&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ejmg.2014.09.010&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25311905">Avela et al. (2014)</a> identified heterozygosity for an intragenic duplication in RUNX2 encompassing exons 3 to 5. Similar to the duplication reported by <a href="#27" class="mim-tip-reference" title="Moffatt, P., Amor, M. B., Glorieux, F. H., Roschger, P., Klaushofer, K., Schwartzentruber, J. A., Paterson, A. D., Hu, P., Marshall, C., FORGE Canada Consortium, Fahiminiya, S., Majewski, J., Beaulieu, C. L., Boycott, K. M., Rauch, F. &lt;strong&gt;Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly is caused by a duplication in RUNX2.&lt;/strong&gt; Am. J. Hum. Genet. 92: 252-258, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23290074/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23290074&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23290074[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.12.001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23290074">Moffatt et al. (2013)</a>, the duplication breakpoints were in intron 2 and intron 5; the location of the breakpoints differed, but the exact breakpoints in the Finnish patient were not identified. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=23290074+25311905" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 3 affected members of a 3-generation family with MDMHB, <a href="#2" class="mim-tip-reference" title="Al-Yassin, A., Calder, A. D., Harrison, M., Lester, T., Lord, H., Oldridge, M., Watkins, S., Keen, R., Wakeling, E. L. &lt;strong&gt;A three-generation family with metaphyseal dysplasia, maxillary hypoplasia and brachydactyly (MDMHB) due to intragenic RUNX2 duplication.&lt;/strong&gt; Europ. J. Hum. Genet. 26: 1288-1293, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29891876/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29891876&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29891876[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41431-018-0166-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29891876">Al-Yassin et al. (2018)</a> identified heterozygosity for an intragenic tandem duplication of RUNX2 exons 3 to 6 (<a href="#0015">600211.0015</a>). Further analysis showed that exon 3 was spliced to exon 6, confirming a tandem duplication, which was predicted to be in-frame. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29891876" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Somatic Mutation in Osteosarcoma</em></strong></p><p>
<a href="#36" class="mim-tip-reference" title="Sadikovic, B., Yoshimoto, M., Chilton-MacNeill, S., Thorner, P., Squire, J. A., Zielenska, M. &lt;strong&gt;Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling.&lt;/strong&gt; Hum. Molec. Genet. 18: 1962-1975, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19286668/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19286668&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp117&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19286668">Sadikovic et al. (2009)</a> performed integrative whole-genome analysis of DNA copy number, promoter methylation, and gene expression using 10 pediatric osteosarcoma tissue samples. Hypomethylation, copy number gain, and overexpression were identified for the histone cluster 2 genes (see <a href="/entry/142750">142750</a>) on chromosome 1q21.1-q21.3. They also found loss of chromosome 8p21.3-p21.2 and underexpression of DOCK5 (<a href="/entry/616904">616904</a>), TNFRSF10A (<a href="/entry/603611">603611</a>), and TNFRSF10D (<a href="/entry/603614">603614</a>) genes, as well as copy number gain of chromosome 6p21.1-p12.3 and amplification-related overexpression of RUNX2. Amplification and overexpression of RUNX2 could disrupt G2/M cell cycle checkpoints, and downstream osteosarcoma-specific changes, such as failure of bone differentiation and genomic polyploidization. Failure of DOCK5 signaling, together with p53 (<a href="/entry/191170">191170</a>) and TNFRSF10A/D-related cell cycle and death pathways, may play a critical role in abrogating apoptosis. <a href="#36" class="mim-tip-reference" title="Sadikovic, B., Yoshimoto, M., Chilton-MacNeill, S., Thorner, P., Squire, J. A., Zielenska, M. &lt;strong&gt;Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling.&lt;/strong&gt; Hum. Molec. Genet. 18: 1962-1975, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19286668/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19286668&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp117&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19286668">Sadikovic et al. (2009)</a> hypothesized that the RUNX2 interactome may be constitutively activated in osteosarcoma, and that the downstream intracellular pathways may be associated with the regulation of osteoblast differentiation and control of cell cycle and apoptosis in osteosarcoma. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19286668" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="genotypePhenotypeCorrelations" class="mim-anchor"></a>
<h4 href="#mimGenotypePhenotypeCorrelationsFold" id="mimGenotypePhenotypeCorrelationsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGenotypePhenotypeCorrelationsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<div id="mimGenotypePhenotypeCorrelationsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>To correlate CBFA1 mutations in different functional domains with the CLCD clinical spectrum, <a href="#50" class="mim-tip-reference" title="Zhou, G., Chen, Y., Zhou, L., Thirunavukkarasu, K., Hecht, J., Chitayat, D., Gelb, B. D., Pirinen, S., Berry, S. A., Greenberg, C. R., Karsenty, G., Lee, B. &lt;strong&gt;CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia.&lt;/strong&gt; Hum. Molec. Genet. 8: 2311-2316, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10545612/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10545612&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/8.12.2311&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10545612">Zhou et al. (1999)</a> studied 26 independent cases of CLCD, and a total of 16 new mutations were identified in 17 families. Most mutations were de novo missense mutations that affected conserved residues in the runt domain and completely abolished both DNA binding and transactivation of a reporter gene. These, and mutations that resulted in premature termination in the runt domain, produced a classic CLCD phenotype by abolishing transactivation of the mutant protein with consequent haploinsufficiency. <a href="#50" class="mim-tip-reference" title="Zhou, G., Chen, Y., Zhou, L., Thirunavukkarasu, K., Hecht, J., Chitayat, D., Gelb, B. D., Pirinen, S., Berry, S. A., Greenberg, C. R., Karsenty, G., Lee, B. &lt;strong&gt;CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia.&lt;/strong&gt; Hum. Molec. Genet. 8: 2311-2316, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10545612/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10545612&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/8.12.2311&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10545612">Zhou et al. (1999)</a> further identified 3 putative hypomorphic mutations that resulted in a clinical spectrum including classic and mild CLCD, as well as an isolated dental phenotype characterized by delayed eruption of permanent teeth (<a href="#0010">600211.0010</a>). Functional studies showed that 2 of the 3 mutations were hypomorphic in nature and 2 were associated with significant intrafamilial variability in expressivity, including isolated dental anomalies without the skeletal features of CLCD. Together these data showed that variable loss of function due to alterations in the runt and C-terminal proline/serine/threonine-rich (PST) activation domains of CBFA1 may give rise to clinical variability, including classic CLCD, mild CLCD, and isolated primary dental anomalies. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10545612" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#43" class="mim-tip-reference" title="Yoshida, T., Kanegane, H., Osato, M., Yanagida, M., Miyawaki, T., Ito, Y., Shigesada, K. &lt;strong&gt;Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations.&lt;/strong&gt; Am. J. Hum. Genet. 71: 724-738, 2002. Note: Erratum: Am. J. Hum. Genet. 72: 780 only, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12196916/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12196916&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12196916[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/342717&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12196916">Yoshida et al. (2002)</a> performed mutation analysis of RUNX2 on 24 unrelated patients with CLCD. In 17 patients, 16 distinct mutations were detected in the coding region of RUNX2: 4 frameshift, 3 nonsense, 6 missense, and 2 splicing mutations, and 1 polymorphism. The missense mutations were all clustered around the runt domain, and their protein products were severely impaired in DNA binding and transactivation. In contrast, the runt domain was intact in 2 RUNX2 mutants, with partial competence for transactivation remaining. One criterion of CLCD, short stature, was much milder in the patients with the intact runt domain than in those without. Furthermore, there was a significant correlation between short stature and the number of supernumerary teeth. On the one hand, these genotype-phenotype correlations highlighted a general, quantitative dependency of skeletal/dental development on gene dosage of RUNX2. On the other hand, the classic CLCD phenotype, hypoplastic clavicles or open fontanels, was invariably observed in all patients, including those of normal height. Thus, cleidocranial bone formation, as mediated by intramembranous ossification, may require a higher level of RUNX2 than does skeletogenesis (mediated by endochondral ossification), as well as odontogenesis (involving still different complex processes). These results suggested that CLCD could result from much smaller losses in RUNX2 function than envisioned by the conventional haploinsufficiency model. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12196916" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 29 patients with CLCD from 19 unrelated families, <a href="#4" class="mim-tip-reference" title="Baumert, U., Golan, I., Redlich, M., Aknin, J.-J., Muessig, D. &lt;strong&gt;Cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a Middle European patient group.&lt;/strong&gt; Am. J. Med. Genet. 139A: 78-85, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16222673/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16222673&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.a.30927&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16222673">Baumert et al. (2005)</a> sequenced the RUNX2 gene and identified 12 different RUNX2 mutations. They examined phenotypic data using homogeneity analysis and observed mild to full-blown expression of the CLCD phenotype, with intrafamilial clinical variability (see also <a href="#5" class="mim-tip-reference" title="Baumert, U., Golan, I., Redlich, M., Aknin, J.-J., Muessig, D. &lt;strong&gt;Clarification of data reported in &#x27;Cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a Middle European patient group&#x27; (AJMG 139A: 78-85) (Letter)&lt;/strong&gt; Am. J. Med. Genet. 140A: 1030 only, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16575894/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16575894&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.a.31182&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16575894">Baumert et al., 2006</a>). <a href="#4" class="mim-tip-reference" title="Baumert, U., Golan, I., Redlich, M., Aknin, J.-J., Muessig, D. &lt;strong&gt;Cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a Middle European patient group.&lt;/strong&gt; Am. J. Med. Genet. 139A: 78-85, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16222673/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16222673&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.a.30927&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16222673">Baumert et al. (2005)</a> commented that homogeneity analysis simplified grouping the patients into distinct entities, but noted that the analysis separated individuals with the same mutation, emphasizing the clinical variability within the patient cohort. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=16222673+16575894" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#27" class="mim-tip-reference" title="Moffatt, P., Amor, M. B., Glorieux, F. H., Roschger, P., Klaushofer, K., Schwartzentruber, J. A., Paterson, A. D., Hu, P., Marshall, C., FORGE Canada Consortium, Fahiminiya, S., Majewski, J., Beaulieu, C. L., Boycott, K. M., Rauch, F. &lt;strong&gt;Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly is caused by a duplication in RUNX2.&lt;/strong&gt; Am. J. Hum. Genet. 92: 252-258, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23290074/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23290074&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23290074[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.12.001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23290074">Moffatt et al. (2013)</a> noted that the apparent gain-of-function duplication causing metaphyseal dysplasia with maxillary hypoplasia and brachydactyly (MDMHB) results in a phenotype that is in some ways the mirror image of cleidocranial dysplasia, which is associated with loss-of-function mutations in RUNX2: clavicles are enlarged in MDMHB, whereas they are hypoplastic or absent in CLCD; in MDMHB, the cranial vault is thickened whereas there is a lack of skull mineralization in CLCD; and individuals with MDMHB have dystrophic teeth, whereas CLCD is associated with supernumerary teeth. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23290074" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="evolution" class="mim-anchor"></a>
<h4 href="#mimEvolutionFold" id="mimEvolutionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimEvolutionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Evolution</strong>
</span>
</h4>
</div>
<div id="mimEvolutionFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#19" class="mim-tip-reference" title="Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., and 44 others. &lt;strong&gt;A draft sequence of the Neandertal genome.&lt;/strong&gt; Science 328: 710-722, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20448178/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20448178&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20448178[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1188021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20448178">Green et al. (2010)</a> published a draft sequence of the Neandertal genome. Comparisons of the Neandertal genome to the genomes of 5 present-day humans from different parts of the world identified a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. <a href="#19" class="mim-tip-reference" title="Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., and 44 others. &lt;strong&gt;A draft sequence of the Neandertal genome.&lt;/strong&gt; Science 328: 710-722, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20448178/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20448178&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20448178[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1188021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20448178">Green et al. (2010)</a> identified a total of 212 regions containing putative selective sweeps. One of the 20 widest regions contains the RUNX2 gene. Mutations in this gene cause cleidocranial dysplasia, and some of the features associated with cleidocranial dysplasia are more common among Neandertals including cranial malformations such as frontal bossing. The clavicle, which is affected in cleidocranial dysplasia, differs in morphology between modern humans and Neandertals and is associated with a different architecture of the shoulder joint. Finally, a bell-shaped rib cage is typical of Neandertals and other archaic hominins. <a href="#19" class="mim-tip-reference" title="Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., and 44 others. &lt;strong&gt;A draft sequence of the Neandertal genome.&lt;/strong&gt; Science 328: 710-722, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20448178/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20448178&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20448178[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1188021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20448178">Green et al. (2010)</a> suggested that a reasonable hypothesis is thus that an evolutionary change in RUNX2 was of importance in the origin of modern humans and that this change affected aspects of the morphology of the upper body and cranium. <a href="#19" class="mim-tip-reference" title="Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., and 44 others. &lt;strong&gt;A draft sequence of the Neandertal genome.&lt;/strong&gt; Science 328: 710-722, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20448178/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20448178&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20448178[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1188021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20448178">Green et al. (2010)</a> also showed that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20448178" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="animalModel" class="mim-anchor"></a>
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#22" class="mim-tip-reference" title="Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y.-H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S., Kishimoto, T. &lt;strong&gt;Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts.&lt;/strong&gt; Cell 89: 755-764, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9182763/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9182763&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80258-5&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9182763">Komori et al. (1997)</a> generated mice with a mutated Cbfa1 locus and found that mice homozygous for the mutation died just after birth without breathing. Examination showed complete lack of ossification of the skeleton. Although immature osteoblasts, which expressed alkaline phosphatase weakly but not osteopontin (OPN; <a href="/entry/166490">166490</a>) or osteocalcin, and a few immature osteoclasts appeared at the perichondrial region, neither vascular nor mesenchymal cell invasion was observed in cartilage. The data suggested that both intramembranous and endochondral ossification were completely blocked and demonstrated that Cbfa1 plays an essential role in osteogenesis. <a href="#33" class="mim-tip-reference" title="Otto, F., Thornell. A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., Stamp, G. W. H., Beddington, R. S. P., Mundlos, S., Olsen, B. R., Selby, P. B., Owen, M. J. &lt;strong&gt;Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development.&lt;/strong&gt; Cell 89: 765-771, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9182764/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9182764&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80259-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9182764">Otto et al. (1997)</a> likewise generated Cbfa1-deficient mice and found that homozygotes died of respiratory failure shortly after birth. Absence of osteoblasts and bone was demonstrated in homozygotes. Heterozygotes showed specific skeletal abnormalities characteristic of cleidocranial dysplasia (CLCD). The same structural defects are observed in the murine mutant (Ccd), a CLCD-like phenotype described by <a href="#37" class="mim-tip-reference" title="Selby, P. B., Selby, P. R. &lt;strong&gt;Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice: II. Description of proved mutations.&lt;/strong&gt; Mutat. Res. 51: 199-236, 1978.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/692541/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;692541&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0027-5107(78)80019-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="692541">Selby and Selby (1978)</a> as a gamma-ray-induced dominant mutation. <a href="#33" class="mim-tip-reference" title="Otto, F., Thornell. A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., Stamp, G. W. H., Beddington, R. S. P., Mundlos, S., Olsen, B. R., Selby, P. B., Owen, M. J. &lt;strong&gt;Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development.&lt;/strong&gt; Cell 89: 765-771, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9182764/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9182764&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80259-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9182764">Otto et al. (1997)</a> demonstrated that the Cbfa1 gene is deleted in the Ccd mutation. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9182763+9182764+692541" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#11" class="mim-tip-reference" title="Ducy, P., Starbuck, M., Priemel, M., Shen, J., Pinero, G., Geoffroy, V., Amling, M., Karsenty, G. &lt;strong&gt;A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development.&lt;/strong&gt; Genes Dev. 13: 1025-1036, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10215629/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10215629&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10215629[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.13.8.1025&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10215629">Ducy et al. (1999)</a> studied the postnatal expression of Cbfa1 in mice. The perinatal lethality occurring in Cbfa1-deficient mice had hitherto prevented study of its function after birth. To determine if Cbfa1 plays a role during bone formation, they generated transgenic mice overexpressing Cbfa1 DNA-binding domain in differentiated osteoblasts only postnatally. The Cbfa1 DNA-binding domain has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. Mice expressing this form of the gene product had a normal skeleton at birth but developed an osteopenic phenotype thereafter. Dynamic histomorphometric studies showed that this phenotype was caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts, thus indicating that once osteoblasts are differentiated, Cbfa1 regulates their function. The study demonstrated that beyond its differentiation function, Cbfa1 is a transcriptional activator of bone formation (the first to be identified to that time) and illustrated that developmentally important genes control physiologic processes postnatally. In light of the absence of reported juvenile or more severe osteoporosis in patients with cleidocranial dysplasia, the observations in mice were unexpected. <a href="#11" class="mim-tip-reference" title="Ducy, P., Starbuck, M., Priemel, M., Shen, J., Pinero, G., Geoffroy, V., Amling, M., Karsenty, G. &lt;strong&gt;A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development.&lt;/strong&gt; Genes Dev. 13: 1025-1036, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10215629/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10215629&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10215629[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.13.8.1025&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10215629">Ducy et al. (1999)</a> thought that this is probably because of the more severe decrease of expression of the genes encoding bone extracellular matrix proteins, notably type I collagen, in the transgenic mice compared to the heterozygous Cbfa1-deficient mice. During embryonic development, Cbfa1 controls cell differentiation along the osteoblastic pathway; postnatally Cbfa1 has an additional function, directly controlling bone matrix deposition by differentiated osteoblasts. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10215629" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#18" class="mim-tip-reference" title="Geoffroy, V., Kneissel, M., Fournier, B., Boyde, A., Matthias, P. &lt;strong&gt;High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage.&lt;/strong&gt; Molec. Cell. Biol. 22: 6222-6233, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12167715/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12167715&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12167715[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1128/MCB.22.17.6222-6233.2002&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12167715">Geoffroy et al. (2002)</a> examined bone marrow stromal cells and cocultures of primary osteoblasts and spleen cells from wildtype and transgenic Cgfa1-overexpressing mice. Primary osteoblasts and bone marrow stromal cells from transgenic mice had stronger osteoclastogenic properties than cells derived from wildtype animals. Expression of Rankl (<a href="/entry/602642">602642</a>) and collagenase-3 (MMP13; <a href="/entry/600108">600108</a>), factors involved in bone formation-resorption coupling, was markedly increased in transgenic cells. <a href="#18" class="mim-tip-reference" title="Geoffroy, V., Kneissel, M., Fournier, B., Boyde, A., Matthias, P. &lt;strong&gt;High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage.&lt;/strong&gt; Molec. Cell. Biol. 22: 6222-6233, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12167715/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12167715&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12167715[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1128/MCB.22.17.6222-6233.2002&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12167715">Geoffroy et al. (2002)</a> concluded that overexpression of Cbfa1 enhances osteoclast differentiation in vitro and bone resorption in vivo. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12167715" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#51" class="mim-tip-reference" title="Zhou, Y.-X., Xu, X., Chen, L., Li, C., Brodie, S. G., Deng, C.-X. &lt;strong&gt;A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures.&lt;/strong&gt; Hum. Molec. Genet. 9: 2001-2008, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10942429/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10942429&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/9.13.2001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10942429">Zhou et al. (2000)</a> showed that mice carrying a pro250-to-arg mutation in Fgfr1 (<a href="/entry/136350">136350</a>), which is orthologous to the Pfeiffer syndrome mutation pro252 to arg (<a href="/entry/136350#0001">136350.0001</a>) in humans, exhibit anterio-posteriorly shortened, laterally widened, and vertically heightened neurocrania. Cranial sutures of early postnatal mutant mice exhibited multiple premature fusions, accelerated osteoblast proliferation, and increased expression of genes related to osteoblast differentiation, suggesting that bone formation at the sutures is locally increased in Pfeiffer syndrome. Markedly increased expression of Cbfa1 accompanied premature fusion, suggesting that Cbfa1 may be a downstream target of Fgf/Fgfr1 signals. This was confirmed in vitro by demonstrating that transfection with wildtype or mutant Fgfr1 induced Cbfa1 expression. The induced expression was also observed using Fgf ligands Fgf2 and Fgf8 (<a href="/entry/600483">600483</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10942429" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#10" class="mim-tip-reference" title="D&#x27;Souza, R. N., Aberg, T., Gaikwad, J., Cavender, A., Owen, M., Karsenty, G., Thesleff, I. &lt;strong&gt;Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice.&lt;/strong&gt; Development 126: 2911-2920, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10357935/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10357935&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1242/dev.126.13.2911&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10357935">D'Souza et al. (1999)</a> reported a unique phenotype involving dentition in mice lacking a functional Runx2 gene. The markedly hypoplastic tooth organs as well as defects in the maturation of ameloblasts and odontoblasts pointed to an important nonredundant role for RUNX2 in both tooth morphogenesis and cytodifferentiation. To identify genes that are affected by the absence of Runx2, <a href="#16" class="mim-tip-reference" title="Gaikwad, J. S., Cavender, A., D&#x27;Souza, R. N. &lt;strong&gt;Identification of tooth-specific downstream targets of Runx2.&lt;/strong&gt; Gene 279: 91-97, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11722849/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11722849&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0378-1119(01)00759-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11722849">Gaikwad et al. (2001)</a> generated a cDNA library from Runx2 -/- and Runx2 +/+ first molar organs. They found several tooth-specific downstream target genes of Runx2 that included extracellular matrix proteins, kinases, receptors, growth factors, mitochondrial proteins, and transcription molecules. Sequence analysis of 61 differentially expressed genes showed that 96% of the clones matched previously described genes in the GenBank/EBML database. Expression analysis of one of the differentially expressed clones that encodes a zinc finger transcription factor showed that the gene is temporally regulated during tooth development. <a href="#16" class="mim-tip-reference" title="Gaikwad, J. S., Cavender, A., D&#x27;Souza, R. N. &lt;strong&gt;Identification of tooth-specific downstream targets of Runx2.&lt;/strong&gt; Gene 279: 91-97, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11722849/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11722849&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0378-1119(01)00759-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11722849">Gaikwad et al. (2001)</a> noted that the zinc finger transcription factor, which they called Zfp, shares 96% homology with Zfp64 (<a href="/entry/618111">618111</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=11722849+10357935" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In studies of Runx2 mutants, <a href="#1" class="mim-tip-reference" title="Aberg, T., Cavender, A., Gaikwad, J. S., Bronckers, A. L. J. J., Wang, X., Waltimo-Siren, J., Thesleff, I., D&#x27;Souza, R. N. &lt;strong&gt;Phenotypic changes in dentition of Runx2 homozygote-null mutant mice.&lt;/strong&gt; J. Histochem. Cytochem. 52: 131-139, 2004. Note: Erratum: J. Histochem. Cytochem. 52: 841 only, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14688224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14688224&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1177/002215540405200113&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14688224">Aberg et al. (2004)</a> found that developing teeth failed to advance beyond the bud stage and that mandibular molar organs were more severely affected than maxillary molar organs. Molecular analyses showed differential effects of the absence of Runx2 on tooth extracellular matrix gene expression. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14688224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#42" class="mim-tip-reference" title="Yoshida, C. A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K., Yamana, K., Zanma, A., Takada, K., Ito, Y., Komori, T. &lt;strong&gt;Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog.&lt;/strong&gt; Genes Dev. 18: 952-963, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15107406/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15107406&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15107406[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.1174704&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15107406">Yoshida et al. (2004)</a> found that Runx2 knockout mice expressed reduced levels of Ihh (<a href="/entry/600726">600726</a>), which regulates chondrocyte proliferation and maturation. Adenoviral introduction of Runx2 into Runx2-deficient mice restored Ihh expression. Runx2 directly bound to the promoter region of the Ihh gene and induced expression of a reporter gene driven by the Ihh promoter. Runx2/Runx3 double-knockout mice displayed a complete absence of chondrocyte differentiation and a complete lack of Ihh expression. Single- or double-heterozygous mice showed intermediate degrees of chondrocyte differentiation depending upon the dosages of Runx2 and Runx3 expressed. Limb length was also reduced depending on the dosages of Runx2 and Runx3. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15107406" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#30" class="mim-tip-reference" title="Napierala, D., Sam, K., Morello, R., Zheng, Q., Munivez, E., Shivdasani, R. A., Lee, B. &lt;strong&gt;Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome.&lt;/strong&gt; Hum. Molec. Genet. 17: 2244-2254, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18424451/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18424451&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18424451[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddn125&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18424451">Napierala et al. (2008)</a> found that mice homozygous for deletion of the Trps1 (<a href="/entry/604386">604386</a>) DNA-binding GATA domain (delta-GT mutation) showed elongation of the growth plate due to delayed chondrocyte differentiation and abnormal mineralization of perichondrium. These abnormalities were accompanied by increased Runx2 and Ihh expression and increased Ihh signaling. Cotransfection experiments showed that wildtype Trps1 bound Runx2 and repressed Runx2-mediated activation of a reporter plasmid. Double heterozygosity for Trps1 delta-GT and a Runx2-null mutation rescued the opposite growth plate phenotypes found in single mutants. <a href="#30" class="mim-tip-reference" title="Napierala, D., Sam, K., Morello, R., Zheng, Q., Munivez, E., Shivdasani, R. A., Lee, B. &lt;strong&gt;Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome.&lt;/strong&gt; Hum. Molec. Genet. 17: 2244-2254, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18424451/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18424451&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18424451[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddn125&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18424451">Napierala et al. (2008)</a> concluded that TRPS1 and RUNX2 interact to regulate chondrocyte and perichondrium development. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18424451" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#25" class="mim-tip-reference" title="Lou, Y., Javed, A., Hussain, S., Colby, J., Frederick, D., Pratap, J., Xie, R., Gaur, T., van Wijnen, A. J., Jones, S. J., Stein, G. S., Lian, J. B., Stein, J. L. &lt;strong&gt;A Runx2 threshold for the cleidocranial dysplasia phenotype.&lt;/strong&gt; Hum. Molec. Genet. 18: 556-568, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19028669/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19028669&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19028669[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddn383&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19028669">Lou et al. (2009)</a> generated a mouse model of CLCD using a hypomorphic Runx2-mutant allele (neo7), in which only part of the transcript is processed to full-length Runx2. Runx2 neo7/neo7 mice expressed a reduced level of wildtype transcript (55 to 70%) and protein and had grossly normal skeletons with no abnormalities observed in the growth plate, but exhibited developmental defects in calvaria and clavicles that persisted through postnatal growth. Clavicle defects were caused by disrupted endochondral bone formation during embryogenesis. These hypomorphic mice had altered calvarial bone volume, as observed by histology and micro-CT imaging, and decreased expression of osteoblast marker genes. Runx2 neo7/+ mice had 79 to 84% of wildtype transcript and exhibited a normal bone phenotype. <a href="#25" class="mim-tip-reference" title="Lou, Y., Javed, A., Hussain, S., Colby, J., Frederick, D., Pratap, J., Xie, R., Gaur, T., van Wijnen, A. J., Jones, S. J., Stein, G. S., Lian, J. B., Stein, J. L. &lt;strong&gt;A Runx2 threshold for the cleidocranial dysplasia phenotype.&lt;/strong&gt; Hum. Molec. Genet. 18: 556-568, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19028669/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19028669&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19028669[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddn383&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19028669">Lou et al. (2009)</a> concluded that there is a critical gene dosage requirement of Runx2 for the formation of intramembranous bone tissues during embryogenesis and that a decrease to 70% of wildtype Runx2 levels results in the CLCD phenotype, whereas levels above 79% produce a normal skeleton, suggesting that the range of bone phenotypes in CLCD patients is attributable to quantitative reduction in the functional activity of RUNX2. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19028669" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="allelicVariants" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span href="#mimAllelicVariantsFold" id="mimAllelicVariantsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAllelicVariantsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>ALLELIC VARIANTS (<a href="/help/faq#1_4"></strong>
</span>
<strong>15 Selected Examples</a>):</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimAllelicVariantsFold" class="collapse in mimTextToggleFold">
<div>
<a href="/allelicVariants/600211" class="btn btn-default" role="button"> Table View </a>
&nbsp;&nbsp;<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=600211[MIM]" class="btn btn-default mim-tip-hint" role="button" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a>
</div>
<div>
<p />
</div>
<div>
<div>
<a id="0001" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0001&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, 16-BP INS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs730880313 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs730880313;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs730880313" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs730880313" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009878" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009878" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009878</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an isolated case of cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>), <a href="#29" class="mim-tip-reference" title="Mundlos, S., Otto, F., Mundlos, C., Mulliken, J. B., Aylsworth, A. S., Albright, S., Lindhout, D., Cole, W. G., Henn, W., Knoll, J. H. M., Owen, M. J., Mertelsmann, R., Zabel, B. U., Olsen, B. R. &lt;strong&gt;Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia.&lt;/strong&gt; Cell 89: 773-779, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9182765/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9182765&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80260-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9182765">Mundlos et al. (1997)</a> found heterozygosity for insertion of 16 bp within the polyglutamine-encoding CAG repeat region of the CBFA1 gene. The shift in reading frame produced a stop codon at nucleotide 435-437, in the middle of the 'runt' domain. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182765" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0002" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0002&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, TRP283TER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs104893988 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104893988;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104893988" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104893988" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009879" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009879" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009879</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>A sporadic case of cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>) was found to be caused by heterozygosity for a G-to-A transition at codon 283 in exon 5 of CBFA1 (<a href="#29" class="mim-tip-reference" title="Mundlos, S., Otto, F., Mundlos, C., Mulliken, J. B., Aylsworth, A. S., Albright, S., Lindhout, D., Cole, W. G., Henn, W., Knoll, J. H. M., Owen, M. J., Mertelsmann, R., Zabel, B. U., Olsen, B. R. &lt;strong&gt;Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia.&lt;/strong&gt; Cell 89: 773-779, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9182765/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9182765&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80260-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9182765">Mundlos et al., 1997</a>). This nucleotide change converted a TGG (trp) codon to a TGA (stop) codon. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182765" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0003" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0003&nbsp;CLEIDOCRANIAL DYSPLASIA 1, FORME FRUSTE, WITH BRACHYDACTYLY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, 30-BP DUP, ALANINE TRACT EXPANSION
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs606231174 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs606231174;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs606231174" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs606231174" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV002293411" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV002293411" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV002293411</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p><a href="#29" class="mim-tip-reference" title="Mundlos, S., Otto, F., Mundlos, C., Mulliken, J. B., Aylsworth, A. S., Albright, S., Lindhout, D., Cole, W. G., Henn, W., Knoll, J. H. M., Owen, M. J., Mertelsmann, R., Zabel, B. U., Olsen, B. R. &lt;strong&gt;Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia.&lt;/strong&gt; Cell 89: 773-779, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9182765/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9182765&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80260-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9182765">Mundlos et al. (1997)</a> found an unusual CBFA1 mutation in a family in which multiple members in 3 generations had a phenotype distinct from classic cleidocranial dysplasia (CLCD1; see <a href="/entry/119600">119600</a>): minor craniofacial features of CLCD were associated with brachydactyly of hands and feet. As illustrated by radiographs, the clavicles showed a distal gap in the continuity of the bone. Distal phalanges were hypoplastic and middle phalanges had cone-shaped epiphyses. Metacarpals exhibited pseudoepiphyses and shortening of metacarpals IV and V. The affected individuals in this family were found to have an in-frame duplication within the polyalanine stretch, leading to a total of 27 alanine residues instead of 17 residues as found in the wildtype sequence. Some unaffected members of the family had an allele with 11 alanine residues rather than 17; this appeared to be an uncommon but normal variant of CBFA1. (CBFA1 contains a region of 23 uninterrupted glutamine residues followed by 17 uninterrupted alanine residues on the N-terminal side of the 'runt' domain.) <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182765" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0004" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0004&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, MET175ARG
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs104893989 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104893989;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs104893989?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104893989" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104893989" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009881" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009881" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009881</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p><a href="#23" class="mim-tip-reference" title="Lee, B., Thirunavukkarasu, K., Zhou, L., Pastore, L., Baldini, A., Hecht, J., Geoffroy, V., Ducy, P., Karsenty, G. &lt;strong&gt;Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia.&lt;/strong&gt; Nature Genet. 16: 307-310, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9207800/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9207800&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0797-307&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9207800">Lee et al. (1997)</a> described the first missense mutations in the CBFA1 gene in cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>): met175 to arg and ser191 to asn (<a href="#0005">600211.0005</a>). These 2 mutations result in substitution of highly conserved amino acids in the DNA-binding domain. In DNA-binding studies with the mutant polypeptides they showed that these amino acid substitutions abolish the DNA-binding ability of CBFA1 to its known target sequence. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9207800" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0005" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0005&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, SER191ASN
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs104893990 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104893990;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104893990" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104893990" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009882 OR RCV005089222" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009882, RCV005089222" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009882...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p><a href="#23" class="mim-tip-reference" title="Lee, B., Thirunavukkarasu, K., Zhou, L., Pastore, L., Baldini, A., Hecht, J., Geoffroy, V., Ducy, P., Karsenty, G. &lt;strong&gt;Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia.&lt;/strong&gt; Nature Genet. 16: 307-310, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9207800/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9207800&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0797-307&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9207800">Lee et al. (1997)</a> described the first missense mutations in the CBFA1 gene in cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>): met175 to arg (<a href="#0004">600211.0004</a>) and ser191 to asn. These 2 mutations result in substitution of highly conserved amino acids in the DNA-binding domain. In DNA-binding studies with the mutant polypeptides they showed that these amino acid substitutions abolish the DNA-binding ability of CBFA1 to its known target sequence. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9207800" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0006" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0006&nbsp;CLEIDOCRANIAL DYSPLASIA 1, FORME FRUSTE</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, 1-BP INS, 1380C
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1582232661 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1582232661;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1582232661" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1582232661" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001851777 OR RCV002293412 OR RCV002512952" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001851777, RCV002293412, RCV002512952" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001851777...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient with a very mild form of cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>), <a href="#34" class="mim-tip-reference" title="Quack, I., Vonderstrass, B., Stock, M., Aylsworth, A. S., Becker, A., Brueton, L., Lee, P. J., Majewski, F., Mulliken, J. B., Suri, M., Zenker, M., Mundlos, S., Otto, F. &lt;strong&gt;Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 65: 1268-1278, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10521292/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10521292&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10521292[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302622&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10521292">Quack et al. (1999)</a> identified a 1-bp insertion (1380C) at the very 3-prime end of the coding region of the RUNX2 gene, resulting in a frameshift. The patient came to medical attention only because of supernumerary teeth. He was of normal height and excellent physical health. The clinical signs of CLCD were restricted to supernumerary teeth and a gap in the most lateral part of the clavicle bilaterally. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10521292" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0007" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0007&nbsp;CLEIDOCRANIAL DYSPLASIA 1, SEVERE, WITH OSTEOPOROSIS AND SCOLIOSIS</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, 1-BP INS, 1206C
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs730880314 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs730880314;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs730880314" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs730880314" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001823712" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001823712" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001823712</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p><a href="#34" class="mim-tip-reference" title="Quack, I., Vonderstrass, B., Stock, M., Aylsworth, A. S., Becker, A., Brueton, L., Lee, P. J., Majewski, F., Mulliken, J. B., Suri, M., Zenker, M., Mundlos, S., Otto, F. &lt;strong&gt;Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 65: 1268-1278, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10521292/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10521292&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10521292[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302622&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10521292">Quack et al. (1999)</a> identified a 1-bp insertion (1206C) at codon 402 of the RUNX2 gene, resulting in a frameshift, in a patient who, in addition to very severe manifestations of cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>), had severe osteoporosis with both prenatal and antenatal fractures and severe scoliosis. At birth, the skull was almost unossified, both clavicles were absent, and distal hypoplasia of phalanges with partial absence of the nails was noted. The patient suffered from partial deafness due to conduction hearing impairment. A number of supernumerary teeth were extracted. At the age of 23 years, the patient had a body height of 129 cm. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10521292" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0008" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0008&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, ARG225GLN
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs104893991 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104893991;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104893991" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104893991" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009885 OR RCV000731332 OR RCV002482851 OR RCV003934819" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009885, RCV000731332, RCV002482851, RCV003934819" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009885...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p><a href="#34" class="mim-tip-reference" title="Quack, I., Vonderstrass, B., Stock, M., Aylsworth, A. S., Becker, A., Brueton, L., Lee, P. J., Majewski, F., Mulliken, J. B., Suri, M., Zenker, M., Mundlos, S., Otto, F. &lt;strong&gt;Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 65: 1268-1278, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10521292/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10521292&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10521292[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302622&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10521292">Quack et al. (1999)</a> identified missense mutations in the RUNX2 gene in 8 patients with cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>). In 4 of these patients, arg225 (R225), which is located at the C-terminal end of the runt domain, was mutated. The exchange of glutamine for arginine, due to a G-to-A transition at nucleotide 674, occurred in 3 unrelated patients. A replacement of arginine by tryptophan (<a href="#0009">600211.0009</a>), caused by a C-to-T transition at nucleotide 673, occurred in 1 patient. Both amino acid exchanges abolished the positive charge of the residue at this position. The high frequency of mutations affecting R225 identified this codon as either especially prone to mutagenic events or of unusual relevance for the normal function of RUNX2. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10521292" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0009" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0009&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, ARG225TRP
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs104893992 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104893992;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104893992" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104893992" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009886 OR RCV001090594" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009886, RCV001090594" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009886...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient with cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>), <a href="#34" class="mim-tip-reference" title="Quack, I., Vonderstrass, B., Stock, M., Aylsworth, A. S., Becker, A., Brueton, L., Lee, P. J., Majewski, F., Mulliken, J. B., Suri, M., Zenker, M., Mundlos, S., Otto, F. &lt;strong&gt;Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 65: 1268-1278, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10521292/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10521292&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10521292[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302622&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10521292">Quack et al. (1999)</a> identified a 673C-T transition in the RUNX2 gene, resulting in an arg225-to-trp (R225W) substitution. See <a href="#0008">600211.0008</a> for another mutation at the same codon in patients with CLCD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10521292" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0010" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0010&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CLEIDOCRANIAL DYSPLASIA 1, FORME FRUSTE, DENTAL ANOMALIES ONLY, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, THR200ALA
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs104893993 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104893993;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104893993" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104893993" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009887 OR RCV002293413 OR RCV005089223" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009887, RCV002293413, RCV005089223" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009887...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a Mennonite family, <a href="#50" class="mim-tip-reference" title="Zhou, G., Chen, Y., Zhou, L., Thirunavukkarasu, K., Hecht, J., Chitayat, D., Gelb, B. D., Pirinen, S., Berry, S. A., Greenberg, C. R., Karsenty, G., Lee, B. &lt;strong&gt;CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia.&lt;/strong&gt; Hum. Molec. Genet. 8: 2311-2316, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10545612/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10545612&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/8.12.2311&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10545612">Zhou et al. (1999)</a> found classic cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>) in 2 of 4 children, while the father, who also harbored the mutation, had only dental anomalies, including delayed eruption of permanent teeth, misalignment, and multiple dentures. He did not have evidence of CLCD on skeletal radiographs. All affected members shared the same mutation in the RUNX2 gene, resulting in a thr200-to-ala change in the runt domain. Even though the mutation affected a highly conserved amino acid immediately adjacent to a previously described mutation, the T200A mutation was not found in 100 unrelated control chromosomes and 50 Mennonite control chromosomes. The 2 affected brothers had dental anomalies, delayed closure of fontanel, and hypoplastic clavicles; the father, a brother, and 2 of the brother's children had only dental anomalies. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10545612" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0011" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0011&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, TER522SER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs104893994 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104893994;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104893994" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104893994" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009889" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009889" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009889</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a classic case of cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>), <a href="#26" class="mim-tip-reference" title="Machuca-Tzili, L., Monroy-Jaramillo, N., Gonzalez-del Angel, A., Kofman-Alfaro, S. &lt;strong&gt;New mutations in the CBFA1 gene in two Mexican patients with cleidocranial dysplasia.&lt;/strong&gt; Clin. Genet. 61: 349-353, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12081718/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12081718&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1034/j.1399-0004.2002.610505.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12081718">Machuca-Tzili et al. (2002)</a> found heterozygosity for a stop codon mutation, 1565G-C (ter522 to ser; X522S), which theoretically resulted in a longer protein with 23 additional amino acids. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12081718" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0012" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0012&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, ARG169PRO
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs104893995 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104893995;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs104893995?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104893995" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104893995" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009890" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009890" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009890</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a mother and daughter with cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>), <a href="#28" class="mim-tip-reference" title="Morava, E., Karteszi, J., Weisenbach, J., Caliebe, A., Mundlos, S., Mehes, K. &lt;strong&gt;Cleidocranial dysplasia with decreased bone density and biochemical findings of hypophosphatasia.&lt;/strong&gt; Europ. J. Pediat. 161: 619-622, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12424590/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12424590&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00431-002-0977-x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12424590">Morava et al. (2002)</a> identified a heterozygous 506G-C transversion in the RUNX2 gene, resulting in an arg169-to-pro (R169P) substitution within the highly conserved DNA-binding domain of the protein. In addition to the characteristic CLCD phenotype, both patients had biochemical signs of hypophosphatasia (see <a href="/entry/241500">241500</a>; <a href="/entry/146300">146300</a>), including decreased levels of alkaline phosphatase (<a href="/entry/171760">171760</a>). <a href="#28" class="mim-tip-reference" title="Morava, E., Karteszi, J., Weisenbach, J., Caliebe, A., Mundlos, S., Mehes, K. &lt;strong&gt;Cleidocranial dysplasia with decreased bone density and biochemical findings of hypophosphatasia.&lt;/strong&gt; Europ. J. Pediat. 161: 619-622, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12424590/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12424590&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00431-002-0977-x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12424590">Morava et al. (2002)</a> noted that RUNX2-knockout mice show decreased alkaline phosphatase, and suggested that the clinical findings of hypophosphatasia in these patients was secondary to the RUNX2 mutation affecting early bone maturation and turnover. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12424590" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0013" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0013&nbsp;CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, 1-BP INS, 1228C
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs730880315 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs730880315;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs730880315" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs730880315" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000009891" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000009891" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000009891</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 20-week fetus with cleidocranial dysplasia (CLCD1; <a href="/entry/119600">119600</a>), <a href="#48" class="mim-tip-reference" title="Zheng, Q., Sebald, E., Zhou, G., Chen, Y., Wilcox, W., Lee, B., Krakow, D. &lt;strong&gt;Dysregulation of chondrogenesis in human cleidocranial dysplasia.&lt;/strong&gt; Am. J. Hum. Genet. 77: 305-312, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15952089/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15952089&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15952089[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/432261&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15952089">Zheng et al. (2005)</a> identified a 1-bp insertion (1228insC) in exon 9 of the RUNX2 gene, resulting in a frameshift at codon 410 and premature termination. RUNX2 mRNA was downregulated by approximately 50% in the patient's cartilage, suggesting that the mutation causes haploinsufficiency. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15952089" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0014" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0014&nbsp;METAPHYSEAL DYSPLASIA AND MAXILLARY HYPOPLASIA WITH OR WITHOUT BRACHYDACTYLY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, 105-KB DUP, EX3-5
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000033220" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000033220" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000033220</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected members from a 4-generation French Canadian family with metaphyseal dysplasia with maxillary hypoplasia without brachydactyly (MDMHB; <a href="/entry/156510">156510</a>), <a href="#27" class="mim-tip-reference" title="Moffatt, P., Amor, M. B., Glorieux, F. H., Roschger, P., Klaushofer, K., Schwartzentruber, J. A., Paterson, A. D., Hu, P., Marshall, C., FORGE Canada Consortium, Fahiminiya, S., Majewski, J., Beaulieu, C. L., Boycott, K. M., Rauch, F. &lt;strong&gt;Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly is caused by a duplication in RUNX2.&lt;/strong&gt; Am. J. Hum. Genet. 92: 252-258, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23290074/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23290074&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23290074[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.12.001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23290074">Moffatt et al. (2013)</a> identified heterozygosity for a 105-kb duplication (chr6:45,308,920-45,413,885, GRCh37) containing exons 3 to 5 of the RUNX2 gene. The duplication of exons 3 to 5 was confirmed with cDNA derived from a patient fibroblast line, and was not found in unaffected family members. Functional analysis of the corresponding duplication in mouse Runx2 in HEK293 cells demonstrated markedly increased protein levels for the mutant compared to wildtype, as well as increased transactivation activity for mutant Runx2. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23290074" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0015" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0015&nbsp;METAPHYSEAL DYSPLASIA AND MAXILLARY HYPOPLASIA WITH OR WITHOUT BRACHYDACTYLY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
RUNX2, EX3-6DUP
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000853079" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000853079" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000853079</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In all 3 affected members of a 3-generation family with metaphyseal dysplasia with maxillary hypoplasia with brachydactyly (MDMHB; <a href="/entry/156510">156510</a>), <a href="#2" class="mim-tip-reference" title="Al-Yassin, A., Calder, A. D., Harrison, M., Lester, T., Lord, H., Oldridge, M., Watkins, S., Keen, R., Wakeling, E. L. &lt;strong&gt;A three-generation family with metaphyseal dysplasia, maxillary hypoplasia and brachydactyly (MDMHB) due to intragenic RUNX2 duplication.&lt;/strong&gt; Europ. J. Hum. Genet. 26: 1288-1293, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29891876/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29891876&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29891876[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41431-018-0166-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29891876">Al-Yassin et al. (2018)</a> identified heterozygosity for an intragenic tandem duplication of exons 3 to 6 (c.58+1_59-269_859+1_860-1dup, NM_001024630.3). Further analysis showed that exon 3 was spliced to exon 6, confirming a tandem duplication, which was predicted to be in-frame. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29891876" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Aberg2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aberg, T., Cavender, A., Gaikwad, J. S., Bronckers, A. L. J. J., Wang, X., Waltimo-Siren, J., Thesleff, I., D'Souza, R. N.
<strong>Phenotypic changes in dentition of Runx2 homozygote-null mutant mice.</strong>
J. Histochem. Cytochem. 52: 131-139, 2004. Note: Erratum: J. Histochem. Cytochem. 52: 841 only, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14688224/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14688224</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14688224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1177/002215540405200113" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Al-Yassin2018" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Al-Yassin, A., Calder, A. D., Harrison, M., Lester, T., Lord, H., Oldridge, M., Watkins, S., Keen, R., Wakeling, E. L.
<strong>A three-generation family with metaphyseal dysplasia, maxillary hypoplasia and brachydactyly (MDMHB) due to intragenic RUNX2 duplication.</strong>
Europ. J. Hum. Genet. 26: 1288-1293, 2018.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/29891876/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">29891876</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=29891876[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29891876" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/s41431-018-0166-7" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Avela2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Avela, K., Hirvinen, H., Ben Amor, M., Rauch, F.
<strong>Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly in a Finnish woman: first confirmation of a duplication in RUNX2 as pathogenic variant.</strong>
Europ. J. Med. Genet. 57: 617-620, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25311905/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25311905</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25311905" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ejmg.2014.09.010" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Baumert2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Baumert, U., Golan, I., Redlich, M., Aknin, J.-J., Muessig, D.
<strong>Cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a Middle European patient group.</strong>
Am. J. Med. Genet. 139A: 78-85, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16222673/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16222673</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16222673" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.a.30927" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Baumert2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Baumert, U., Golan, I., Redlich, M., Aknin, J.-J., Muessig, D.
<strong>Clarification of data reported in 'Cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a Middle European patient group' (AJMG 139A: 78-85) (Letter)</strong>
Am. J. Med. Genet. 140A: 1030 only, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16575894/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16575894</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16575894" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.a.31182" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Belloni1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Belloni, E., Muenke, M., Roessler, E., Traverso, G., Siegel-Bartelt, J., Frumkin, A., Mitchell, H. F., Donis-Keller, H., Helms, C., Hing, A. V., Heng, H. H. Q., Koop, B., Martindale, D., Rommens, J. M., Tsui, L.-C., Scherer, S. W.
<strong>Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly.</strong>
Nature Genet. 14: 353-356, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8896571/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8896571</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8896571" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng1196-353" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Bergwitz2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bergwitz, C., Prochnau, A., Mayr, B., Kramer, F.-J., Rittierodt, M., Berten, H.-L., Hausamen, J.-E., Brabant, G.
<strong>Identification of novel CBFA1/RUNX2 mutations causing cleidocranial dysplasia.</strong>
J. Inherit. Metab. Dis. 24: 648-656, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11768584/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11768584</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11768584" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1023/a:1012758925617" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Bialek2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bialek, P., Kern, B., Yang, X., Schrock, M., Sosic, D., Hong, N., Wu, H., Yu, K., Ornitz, D. M., Olson, E. N., Justice, M. J., Karsenty, G.
<strong>A Twist code determines the onset of osteoblast differentiation.</strong>
Dev. Cell 6: 423-435, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15030764/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15030764</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15030764" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s1534-5807(04)00058-9" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Cohen2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cohen, M. M., Jr.
<strong>Perspectives on RUNX genes: an update.</strong>
Am. J. Med. Genet. 149A: 2629-2646, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19830829/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19830829</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19830829" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.a.33021" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="D&#x27;Souza1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
D'Souza, R. N., Aberg, T., Gaikwad, J., Cavender, A., Owen, M., Karsenty, G., Thesleff, I.
<strong>Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice.</strong>
Development 126: 2911-2920, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10357935/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10357935</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10357935" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1242/dev.126.13.2911" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Ducy1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ducy, P., Starbuck, M., Priemel, M., Shen, J., Pinero, G., Geoffroy, V., Amling, M., Karsenty, G.
<strong>A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development.</strong>
Genes Dev. 13: 1025-1036, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10215629/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10215629</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=10215629[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10215629" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.13.8.1025" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Ducy1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., Karsenty, G.
<strong>Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.</strong>
Cell 89: 747-754, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9182762/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9182762</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182762" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)80257-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="El-Gharbawy2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
El-Gharbawy, A. H., Peeden, J. N., Jr., Lachman, R. S., Graham, J. M., Jr., Moore, S. R., Rimoin, D. L.
<strong>Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the C-terminal region of RUNX2.</strong>
Am. J. Med. Genet. 152A: 169-174, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20014132/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20014132</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20014132[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20014132" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.a.33146" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Fernandez2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fernandez, B. A., Siegel-Bartelt, J., Herbrick, J.-A. S., Teshima, I., Scherer, S. W.
<strong>Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature.</strong>
Clin. Genet. 68: 349-359, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16143022/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16143022</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16143022" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.2005.00498.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Fujita2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fujita, T., Azuma, Y., Fukuyama, R., Hattori, Y., Yoshida, C., Koida, M., Ogita, K., Komori, T.
<strong>Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling.</strong>
J. Cell Biol. 166: 85-95, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15226309/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15226309</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15226309[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15226309" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1083/jcb.200401138" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Gaikwad2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gaikwad, J. S., Cavender, A., D'Souza, R. N.
<strong>Identification of tooth-specific downstream targets of Runx2.</strong>
Gene 279: 91-97, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11722849/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11722849</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11722849" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0378-1119(01)00759-4" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Geoffroy1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Geoffroy, V., Corral, D. A., Zhou, L., Lee, B., Karsenty, G.
<strong>Genomic organization, expression of the human CBFA1 gene, and evidence for an alternative splicing event affecting protein function.</strong>
Mammalian Genome 9: 54-57, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9434946/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9434946</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9434946" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s003359900679" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Geoffroy2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Geoffroy, V., Kneissel, M., Fournier, B., Boyde, A., Matthias, P.
<strong>High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage.</strong>
Molec. Cell. Biol. 22: 6222-6233, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12167715/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12167715</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12167715[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12167715" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1128/MCB.22.17.6222-6233.2002" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Green2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., and 44 others.
<strong>A draft sequence of the Neandertal genome.</strong>
Science 328: 710-722, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20448178/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20448178</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20448178[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20448178" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1188021" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Hassan2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hassan, M. Q., Javed, A., Morasso, M. I., Karlin, J., Montecino, M., van Wijnen, A. J., Stein, G. S., Stein, J. L., Lian, J. B.
<strong>Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins of chromatin of the osteocalcin gene.</strong>
Molec. Cell. Biol. 24: 9248-9261, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15456894/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15456894</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15456894[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15456894" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1128/MCB.24.20.9248-9261.2004" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Kim2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kim, S., Koga, T., Isobe, M., Kern, B. E., Yokochi, T., Chin, Y. E., Karsenty, G., Taniguchi, T., Takayanagi, H.
<strong>Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation.</strong>
Genes Dev. 17: 1979-1991, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12923053/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12923053</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12923053[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12923053" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.1119303" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Komori1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y.-H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S., Kishimoto, T.
<strong>Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts.</strong>
Cell 89: 755-764, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9182763/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9182763</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182763" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)80258-5" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Lee1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lee, B., Thirunavukkarasu, K., Zhou, L., Pastore, L., Baldini, A., Hecht, J., Geoffroy, V., Ducy, P., Karsenty, G.
<strong>Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia.</strong>
Nature Genet. 16: 307-310, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9207800/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9207800</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9207800" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng0797-307" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Levanon1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Levanon, D., Negreanu, V., Bernstein, Y., Bar-Am, I., Avivi, L., Groner, Y.
<strong>AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization.</strong>
Genomics 23: 425-432, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7835892/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7835892</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7835892" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1006/geno.1994.1519" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Lou2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lou, Y., Javed, A., Hussain, S., Colby, J., Frederick, D., Pratap, J., Xie, R., Gaur, T., van Wijnen, A. J., Jones, S. J., Stein, G. S., Lian, J. B., Stein, J. L.
<strong>A Runx2 threshold for the cleidocranial dysplasia phenotype.</strong>
Hum. Molec. Genet. 18: 556-568, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19028669/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19028669</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19028669[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19028669" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddn383" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="26" class="mim-anchor"></a>
<a id="Machuca-Tzili2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Machuca-Tzili, L., Monroy-Jaramillo, N., Gonzalez-del Angel, A., Kofman-Alfaro, S.
<strong>New mutations in the CBFA1 gene in two Mexican patients with cleidocranial dysplasia.</strong>
Clin. Genet. 61: 349-353, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12081718/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12081718</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12081718" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1034/j.1399-0004.2002.610505.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="27" class="mim-anchor"></a>
<a id="Moffatt2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Moffatt, P., Amor, M. B., Glorieux, F. H., Roschger, P., Klaushofer, K., Schwartzentruber, J. A., Paterson, A. D., Hu, P., Marshall, C., FORGE Canada Consortium, Fahiminiya, S., Majewski, J., Beaulieu, C. L., Boycott, K. M., Rauch, F.
<strong>Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly is caused by a duplication in RUNX2.</strong>
Am. J. Hum. Genet. 92: 252-258, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23290074/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23290074</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=23290074[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23290074" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2012.12.001" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="28" class="mim-anchor"></a>
<a id="Morava2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Morava, E., Karteszi, J., Weisenbach, J., Caliebe, A., Mundlos, S., Mehes, K.
<strong>Cleidocranial dysplasia with decreased bone density and biochemical findings of hypophosphatasia.</strong>
Europ. J. Pediat. 161: 619-622, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12424590/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12424590</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12424590" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00431-002-0977-x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="29" class="mim-anchor"></a>
<a id="Mundlos1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mundlos, S., Otto, F., Mundlos, C., Mulliken, J. B., Aylsworth, A. S., Albright, S., Lindhout, D., Cole, W. G., Henn, W., Knoll, J. H. M., Owen, M. J., Mertelsmann, R., Zabel, B. U., Olsen, B. R.
<strong>Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia.</strong>
Cell 89: 773-779, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9182765/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9182765</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182765" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)80260-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="30" class="mim-anchor"></a>
<a id="Napierala2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Napierala, D., Sam, K., Morello, R., Zheng, Q., Munivez, E., Shivdasani, R. A., Lee, B.
<strong>Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome.</strong>
Hum. Molec. Genet. 17: 2244-2254, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18424451/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18424451</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18424451[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18424451" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddn125" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="31" class="mim-anchor"></a>
<a id="Ogawa1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., Shigesada, K., Ito, Y.
<strong>PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene.</strong>
Proc. Nat. Acad. Sci. 90: 6859-6863, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8341710/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8341710</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8341710" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.90.14.6859" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="32" class="mim-anchor"></a>
<a id="Otto2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Otto, F., Kanegane, H., Mundlos, S.
<strong>Mutations in the RUNX2 gene in patients with cleidocranial dysplasia.</strong>
Hum. Mutat. 19: 209-216, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11857736/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11857736</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11857736" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/humu.10043" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="33" class="mim-anchor"></a>
<a id="Otto1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Otto, F., Thornell. A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., Stamp, G. W. H., Beddington, R. S. P., Mundlos, S., Olsen, B. R., Selby, P. B., Owen, M. J.
<strong>Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development.</strong>
Cell 89: 765-771, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9182764/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9182764</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182764" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)80259-7" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="34" class="mim-anchor"></a>
<a id="Quack1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Quack, I., Vonderstrass, B., Stock, M., Aylsworth, A. S., Becker, A., Brueton, L., Lee, P. J., Majewski, F., Mulliken, J. B., Suri, M., Zenker, M., Mundlos, S., Otto, F.
<strong>Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.</strong>
Am. J. Hum. Genet. 65: 1268-1278, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10521292/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10521292</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=10521292[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10521292" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/302622" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="35" class="mim-anchor"></a>
<a id="Rodan1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rodan, G. A., Harada, S.
<strong>The missing bone.</strong>
Cell 89: 677-680, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9182754/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9182754</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9182754" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)80249-4" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="36" class="mim-anchor"></a>
<a id="Sadikovic2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sadikovic, B., Yoshimoto, M., Chilton-MacNeill, S., Thorner, P., Squire, J. A., Zielenska, M.
<strong>Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling.</strong>
Hum. Molec. Genet. 18: 1962-1975, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19286668/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19286668</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19286668" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddp117" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="37" class="mim-anchor"></a>
<a id="Selby1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Selby, P. B., Selby, P. R.
<strong>Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice: II. Description of proved mutations.</strong>
Mutat. Res. 51: 199-236, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/692541/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">692541</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=692541" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0027-5107(78)80019-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="38" class="mim-anchor"></a>
<a id="Stein2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Stein, G. S., Lian, J. B., van Wijnen, A. J., Stein, J. L., Montecino, M., Javed, A., Zaidi, S. K., Young, D. W., Choi, J.-Y., Pockwinse, S. M.
<strong>Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression.</strong>
Oncogene 23: 4315-4329, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15156188/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15156188</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15156188" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.onc.1207676" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="39" class="mim-anchor"></a>
<a id="Terry2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Terry, A., Kilbey, A., Vaillant, F., Stewart, M., Jenkins, A., Cameron, E., Neil, J. C.
<strong>Conservation and expression of an alternative 3-prime exon of Runx2 encoding a novel proline-rich C-terminal domain.</strong>
Gene 336: 115-125, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15225881/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15225881</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15225881" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.gene.2004.04.015" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="40" class="mim-anchor"></a>
<a id="Thomas2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Thomas, D. M., Johnson, S. A., Sims, N. A., Trivett, M. K., Slavin, J. L., Rubin, B. P., Waring, P., McArthur, G. A., Walkley, C. R., Holloway, A. J., Diyagama, D., Grim, J. E., Clurman, B. E., Bowtell, D. D. L., Lee, J.-S., Gutierrez, G. M., Piscopo, D. M., Carty, S. A., Hinds, P. W.
<strong>Terminal osteoblast differentiation, mediated by runx2 and p27(KIP1) is disrupted in osteosarcoma.</strong>
J. Cell Biol. 167: 925-934, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15583032/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15583032</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15583032[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15583032" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1083/jcb.200409187" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="41" class="mim-anchor"></a>
<a id="Wilkie2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wilkie, A. O. M., Morriss-Kay, G. M.
<strong>Genetics of craniofacial development and malformation.</strong>
Nature Rev. Genet. 2: 458-468, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11389462/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11389462</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11389462" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/35076601" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="42" class="mim-anchor"></a>
<a id="Yoshida2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yoshida, C. A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K., Yamana, K., Zanma, A., Takada, K., Ito, Y., Komori, T.
<strong>Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog.</strong>
Genes Dev. 18: 952-963, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15107406/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15107406</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15107406[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15107406" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.1174704" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="43" class="mim-anchor"></a>
<a id="Yoshida2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yoshida, T., Kanegane, H., Osato, M., Yanagida, M., Miyawaki, T., Ito, Y., Shigesada, K.
<strong>Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations.</strong>
Am. J. Hum. Genet. 71: 724-738, 2002. Note: Erratum: Am. J. Hum. Genet. 72: 780 only, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12196916/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12196916</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12196916[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12196916" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/342717" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="44" class="mim-anchor"></a>
<a id="Young2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Young, D. W., Hassan, M. Q., Pratap, J., Galindo, M., Zaidi, S. K., Lee, S., Yang, X., Xie, R., Javed, A., Underwood, J. M., Furcinitti, P., Imbalzano, A. N., Penman, S., Nickerson, J. A., Montecino, M. A., Lian, J. B., Stein, J. L., van Wijnen, A. J., Stein, G. S.
<strong>Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2.</strong>
Nature 445: 442-446, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17251981/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17251981</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17251981" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature05473" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="45" class="mim-anchor"></a>
<a id="Young2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Young, D. W., Hassan, M. Q., Yang, X.-Q., Galindo, M., Javed, A., Zaidi, S. K., Furcinitti, P., Lapointe, D., Montecino, M., Lian, J. B., Stein, J. L., van Wijnen, A. J., Stein, G. S.
<strong>Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2.</strong>
Proc. Nat. Acad. Sci. 104: 3189-3194, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17360627/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17360627</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17360627[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17360627" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0611419104" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="46" class="mim-anchor"></a>
<a id="Zaidi2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zaidi, S. K., Pande, S., Pratap, J., Gaur, T., Grigoriu, S., Ali, S. A., Stein, J. L., Lian, J. B., van Wijnen, A. J., Stein, G. S.
<strong>Runx2 deficiency and defective subnuclear targeting bypass senescence to promote immortalization and tumorigenic potential.</strong>
Proc. Nat. Acad. Sci. 104: 19861-19866, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18077419/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18077419</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18077419[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18077419" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0709650104" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="47" class="mim-anchor"></a>
<a id="Zhang1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zhang, Y.-W., Bae, S.-C., Takahashi, E., Ito, Y.
<strong>The cDNA cloning of the transcripts of human PEBP2-alpha-A/CBFA1 mapped to 6p12.3-p21.1, the locus for cleidocranial dysplasia.</strong>
Oncogene 15: 367-371, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9233771/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9233771</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9233771" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.onc.1201352" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="48" class="mim-anchor"></a>
<a id="Zheng2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zheng, Q., Sebald, E., Zhou, G., Chen, Y., Wilcox, W., Lee, B., Krakow, D.
<strong>Dysregulation of chondrogenesis in human cleidocranial dysplasia.</strong>
Am. J. Hum. Genet. 77: 305-312, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15952089/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15952089</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15952089[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15952089" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/432261" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="49" class="mim-anchor"></a>
<a id="Zheng2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zheng, Q., Zhou, G., Chen, Y., Garcia-Rojas, X., Lee, B.
<strong>Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo.</strong>
J. Cell Biol. 162: 833-842, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12952936/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12952936</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12952936[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12952936" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1083/jcb.200211089" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="50" class="mim-anchor"></a>
<a id="Zhou1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zhou, G., Chen, Y., Zhou, L., Thirunavukkarasu, K., Hecht, J., Chitayat, D., Gelb, B. D., Pirinen, S., Berry, S. A., Greenberg, C. R., Karsenty, G., Lee, B.
<strong>CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia.</strong>
Hum. Molec. Genet. 8: 2311-2316, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10545612/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10545612</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10545612" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/8.12.2311" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="51" class="mim-anchor"></a>
<a id="Zhou2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zhou, Y.-X., Xu, X., Chen, L., Li, C., Brodie, S. G., Deng, C.-X.
<strong>A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures.</strong>
Hum. Molec. Genet. 9: 2001-2008, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10942429/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10942429</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10942429" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/9.13.2001" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="52" class="mim-anchor"></a>
<a id="Ziros2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ziros, P. G., Gil, A.-P. R., Georgakopoulos, T., Habeos, I., Kletsas, D., Basdra, E. K., Papavassiliou, A. G.
<strong>The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells.</strong>
J. Biol. Chem. 277: 23934-23941, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11960980/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11960980</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11960980" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1074/jbc.M109881200" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Marla J. F. O'Neill - updated : 10/24/2022
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Sonja A. Rasmussen - updated : 10/11/2019<br>Marla J. F. O'Neill - updated : 3/13/2013<br>Marla J. F. O'Neill - updated : 3/5/2013<br>Cassandra L. Kniffin - updated : 3/6/2012<br>Ada Hamosh - updated : 6/9/2010<br>George E. Tiller - updated : 3/1/2010<br>Matthew B. Gross - updated : 10/5/2009<br>Patricia A. Hartz - updated : 10/5/2009<br>George E. Tiller - updated : 7/31/2009<br>Patricia A. Hartz - updated : 6/4/2008<br>Patricia A. Hartz - updated : 1/29/2008<br>Patricia A. Hartz - updated : 4/13/2007<br>Ada Hamosh - updated : 2/23/2007<br>Victor A. McKusick - updated : 2/15/2006<br>Marla J. F. O'Neill - updated : 1/12/2006<br>Marla J. F. O'Neill - updated : 8/31/2005<br>Gregory S. Antonarakis - updated : 8/16/2005<br>Patricia A. Hartz - updated : 7/19/2005<br>Patricia A. Hartz - updated : 1/18/2005<br>Cassandra L. Kniffin - updated : 8/11/2004<br>Patricia A. Hartz - updated : 6/18/2004<br>Patricia A. Hartz - updated : 4/20/2004<br>Patricia A. Hartz - updated : 10/29/2002<br>Victor A. McKusick - updated : 10/29/2002<br>Victor A. McKusick - updated : 8/27/2002<br>Victor A. McKusick - updated : 4/4/2002<br>Ada Hamosh - updated : 1/23/2002<br>Victor A. McKusick - updated : 1/14/2002<br>Paul J. Converse - updated : 12/6/2001<br>Victor A. McKusick - updated : 9/19/2001<br>George E. Tiller - updated : 10/26/2000<br>Victor A. McKusick - updated : 12/2/1999<br>Victor A. McKusick - updated : 11/16/1999<br>Victor A. McKusick - updated : 10/21/1999<br>Victor A. McKusick - updated : 2/19/1998<br>Victor A. McKusick - updated : 9/19/1997<br>Victor A. McKusick - updated : 7/3/1997<br>Victor A. McKusick - updated : 6/20/1997
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 12/1/1994
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
alopez : 04/09/2024
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 10/24/2022<br>carol : 11/08/2019<br>carol : 11/08/2019<br>carol : 10/11/2019<br>mgross : 09/06/2018<br>carol : 12/20/2017<br>alopez : 09/29/2016<br>carol : 04/14/2016<br>mgross : 4/13/2016<br>alopez : 2/19/2015<br>carol : 3/13/2013<br>carol : 3/13/2013<br>terry : 3/13/2013<br>terry : 3/13/2013<br>alopez : 3/7/2013<br>terry : 3/5/2013<br>terry : 8/31/2012<br>carol : 3/8/2012<br>ckniffin : 3/6/2012<br>carol : 6/17/2011<br>alopez : 6/9/2010<br>wwang : 3/1/2010<br>mgross : 10/5/2009<br>terry : 10/5/2009<br>wwang : 8/17/2009<br>terry : 7/31/2009<br>terry : 10/8/2008<br>wwang : 6/6/2008<br>terry : 6/4/2008<br>mgross : 2/7/2008<br>terry : 1/29/2008<br>mgross : 4/16/2007<br>terry : 4/13/2007<br>mgross : 3/9/2007<br>alopez : 3/2/2007<br>terry : 2/23/2007<br>wwang : 6/1/2006<br>terry : 5/25/2006<br>alopez : 2/16/2006<br>terry : 2/15/2006<br>wwang : 1/19/2006<br>terry : 1/12/2006<br>wwang : 8/31/2005<br>carol : 8/16/2005<br>mgross : 7/25/2005<br>mgross : 7/25/2005<br>terry : 7/19/2005<br>tkritzer : 1/20/2005<br>mgross : 1/18/2005<br>carol : 8/11/2004<br>ckniffin : 8/11/2004<br>mgross : 6/28/2004<br>terry : 6/18/2004<br>mgross : 4/20/2004<br>carol : 7/10/2003<br>mgross : 10/29/2002<br>mgross : 10/29/2002<br>carol : 10/29/2002<br>tkritzer : 10/29/2002<br>terry : 10/29/2002<br>tkritzer : 9/10/2002<br>tkritzer : 8/29/2002<br>terry : 8/27/2002<br>cwells : 4/15/2002<br>cwells : 4/9/2002<br>terry : 4/4/2002<br>alopez : 1/25/2002<br>terry : 1/23/2002<br>carol : 1/17/2002<br>mcapotos : 1/14/2002<br>mgross : 12/6/2001<br>mcapotos : 9/19/2001<br>joanna : 4/25/2001<br>carol : 11/2/2000<br>mcapotos : 10/26/2000<br>alopez : 2/23/2000<br>alopez : 12/8/1999<br>alopez : 12/2/1999<br>alopez : 12/2/1999<br>mgross : 11/23/1999<br>terry : 11/16/1999<br>carol : 11/15/1999<br>carol : 11/10/1999<br>carol : 10/21/1999<br>carol : 10/21/1999<br>carol : 10/21/1999<br>terry : 6/4/1998<br>dholmes : 3/10/1998<br>mark : 2/25/1998<br>terry : 2/19/1998<br>terry : 9/19/1997<br>mark : 7/8/1997<br>terry : 7/3/1997<br>alopez : 6/20/1997<br>alopez : 6/17/1997<br>carol : 3/19/1995<br>carol : 12/1/1994
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>*</strong> 600211
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
RUNT-RELATED TRANSCRIPTION FACTOR 2; RUNX2
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
CORE-BINDING FACTOR, RUNT DOMAIN, ALPHA SUBUNIT 1; CBFA1<br />
AML3 GENE; AML3<br />
PEBP2-ALPHA-A<br />
OSF2
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: RUNX2</em></strong>
</span>
</p>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>SNOMEDCT:</strong> 65976001; &nbsp;
<strong>ICD10CM:</strong> Q74.0; &nbsp;
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: 6p21.1
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : 6:45,328,330-45,551,082 </span>
</em>
</strong>
<span class="small">(from NCBI)</span>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4">
<span class="mim-font">
6p21.1
</span>
</td>
<td>
<span class="mim-font">
Cleidocranial dysplasia
</span>
</td>
<td>
<span class="mim-font">
119600
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Cleidocranial dysplasia, forme fruste, dental anomalies only
</span>
</td>
<td>
<span class="mim-font">
119600
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Cleidocranial dysplasia, forme fruste, with brachydactyly
</span>
</td>
<td>
<span class="mim-font">
119600
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly
</span>
</td>
<td>
<span class="mim-font">
156510
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<div>
<h4>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>The RUNX2 gene encodes a Runt-related transcription factor, which is part of the RUNX gene family (see RUNX1, 151385 and RUNX3, 600210). The RUNX transcription factors are composed of an alpha subunit, encoded by the RUNX1, RUNX2, and RUNX3 genes, which binds to DNA via a Runt domain, and a beta subunit, encoded by the CBFB gene (121360), which increases the affinity of the alpha subunit for DNA but shows no DNA binding by itself. These proteins have a conserved 128-amino acid Runt domain, so called because of its homology to the pair-rule gene runt, which plays a role in the segmented body patterning of Drosophila. RUNX2 has a primary role in the differentiation of osteoblasts and hypertrophy of cartilage at the growth plate, cell migration, and vascular invasion of bone; is expressed in vascular endothelial cells, breast cancer cells, and prostate cancer cells; is linked to vascular calcification in atherosclerotic lesions; and is expressed in adult bone marrow, thymus, and peripheral lymphoid organs (review by Cohen, 2009). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Levanon et al. (1994) isolated and characterized cDNAs corresponding to 3 human 'runt domain' containing genes, AML1 (RUNX1; 151385), CBFA3 (RUNX3; 600210), and CBFA1. In addition to homology in the highly conserved runt domain, extensive sequence similarities were also observed in other parts of the proteins. They found that CBFA1 is the human homolog of one component of mouse PEBP2, i.e., PEBP2A (see Ogawa et al. (1993)). In the mouse, PEBP2 (also known as core-binding factor) is a heterodimer consisting of 2 polypeptides: alpha, the DNA-binding subunit, and beta (PEBP2B; 121360), which associates with the alpha subunit and enhances its affinity for DNA. Zhang et al. (1997) cloned the PEBP2A gene. </p><p>Ducy et al. (1997) cloned the cDNA encoding Cbfa1, which encodes a protein that binds to an osteoblast-specific cis-acting element, termed OSE2, in the promoter of osteocalcin (112260). They showed that Cbfa1 is an osteoblast-specific transcription factor and a regulator of osteoblast differentiation. The CBFA1 gene is also symbolized OSF2. Geoffroy et al. (1998) found 2 OSF2/CBFA1 cDNAs due to an alternative splicing event around exon 8 that affects the transcriptional activity of the protein. Northern blot analysis demonstrated that the expression of human OSF2/CBFA1 is restricted to osteoblastic cells. </p><p>Terry et al. (2004) identified mouse and human RUNX2 splice variants encoding up to 12 RUNX2 isoforms. They reported 2 alternate promoter regions and start codons, alternative splicing following the exons encoding the central invariant DNA-binding Runt domain, and 2 alternate 3-prime exons encoding different C-terminal domains. One C-terminal domain of 180 amino acids contains a nuclear matrix targeting signal (NMTS), a repression domain, and a C-terminal conserved motif. The alternate C-terminal domain of 200 amino acids contains a proline-rich sequence and a leucine zipper-like motif. A destabilizing PEST sequence is encoded by both alternate 3-prime terminal exons. Northern blot analysis and RT-PCR detected differential utilization of the 2 alternate promoters and both 3-prime terminal exons in mouse and human tissues and cells and in early mouse embryos. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Ziros et al. (2002) examined the relationship between mechanical load and osteoblast differentiation and function. They found that low-level mechanical deformation (stretching) of cultured human osteoblastic cells directly upregulated the expression and DNA binding of CBFA1 to osteoblast-specific cis-acting element-2 (OSE2), which is found in the promoter region of osteoblast-specific genes. There was a stretch-triggered activation of the mitogen-activate protein kinase (MAPK) cascade that included a rapid induction of both JNK1 (601158) and JNK2 (602896) and a more sustained induction of ERK1 (601795) and ERK2 (176948). Ziros et al. (2002) found evidence that CBFA1 and ERK2 physically interact, resulting in phosphorylation of CBFA1 and potentiation of its transcriptional activity. </p><p>Kim et al. (2003) found enhanced bone formation and accelerated osteoblast differentiation in Stat1 (600555)-deficient mice, resulting in increased bone mass. Runx2 DNA-binding activity was upregulated in Stat1 mutant osteoblasts. Kim et al. (2003) determined that Stat1 interacts with Runx2 in its latent form in the cytoplasm, thereby inhibiting the nuclear localization of Runx2 and its nuclear transcriptional activity. They showed that the Stat1-Runx2 interaction does not require phosphorylation of Stat1 on tyr701, which is necessary for Stat1 transcriptional activity, and it does not require interferon (see IFNG; 147570) signaling. Kim et al. (2003) concluded that bone remodeling by RUNX2 is attenuated by its sequestration in the cytoplasm by latent STAT1. </p><p>Zheng et al. (2003) identified multiple functional RUNX2-binding sites within the promoter region of the human, mouse, and chicken COL10A1 genes (120110). In transgenic mouse cells, Runx2 contributed to the transactivation of the Col10a1 promoter. Also, decreased Col10a1 expression and altered chondrocyte hypertrophy were observed in Runx2 heterozygous mice, whereas Col10a1 was barely detectable in Runx2 null mice. </p><p>Stein et al. (2004) reviewed the function of mammalian Runx proteins in osteogenesis. They stated that Runx2 is the principal osteogenic master switch, while Runx1 and Runx3 are expressed in bone cells and appear to support bone cell development and differentiation. Stein et al. (2004) described the role of Runx2 in the structural modification of the osteocalcin gene promoter during osteoblast development. They concluded that RUNX2 acts as a scaffold that controls the integration, organization, and assembly of nucleic acids and regulatory factors for skeletal gene expression. </p><p>Bialek et al. (2004) determined that the Twist proteins transiently inhibit Runx2 function during skeletal development in mice. Twist1 (601622) and Twist2 (607556) were expressed in Runx2-expressing cells throughout the skeleton early during development, and osteoblast-specific gene expression occurred only after their expression decreased. Double heterozygotes for Twist1 and Runx2 deletion showed none of the skull abnormalities observed in Runx2 +/- mice, a Twist2 null background rescued the clavicle phenotype of Runx2 +/- mice, and Twist1 or Twist2 deficiency led to premature osteoblast differentiation. The antiosteogenic function of the Twist proteins was mediated by a domain Bialek et al. (2004) called the Twist box, which interacted with the Runx2 DNA-binding domain to inhibit its function. </p><p>Fujita et al. (2004) investigated the role of Runx2 in the differentiation of mouse osteoblasts and mesenchymal stem cells. They presented evidence suggesting that Runx2 and phosphatidylinositol 3-kinase (see PIK3CG; 601232)-Akt (see 164730) signaling are mutually dependent on each other in the regulation of osteoblast and chondrocyte differentiation and migration. </p><p>Terry et al. (2004) determined that RUNX2 isoforms containing either the 180- or 200-amino acid C-terminal domain were able to bind canonical Runx DNA target sequences. </p><p>The inverse relationship between proliferation and differentiation in osteoblasts has been well documented. Thomas et al. (2004) found that Runx2, a master regulator of osteoblast differentiation in mammalian cells, was disrupted in 6 of 7 mammalian osteosarcoma cell lines. Immunohistochemical analysis of human osteosarcomas indicated that expression of p27(KIP1) (CDKN1B; 600778) was also lost as tumors lost osteogenic differentiation. Thomas et al. (2004) found that ectopic expression of Runx2 induced growth arrest through p27(KIP1)-induced inhibition of S-phase cyclin complexes, followed by dephosphorylation of the RB1 protein (614041) and G1 cell cycle arrest. They concluded that RUNX2 establishes a terminally differentiated state in osteoblasts through RB1- and p27(KIP1)-dependent mechanisms that are disrupted in osteosarcomas. </p><p>Hassan et al. (2004) found that Msx2 (123101), Dlx3 (600525), Dlx5 (600028), and Runx2 regulated the expression of osteocalcin (OC) (BGLAP; 112260) in mouse embryos and therefore are implicated in the control of bone formation. Msx2 associated with transcriptionally repressed OC chromatin, and Dlx3 and Dlx5 were recruited with Runx2 to initiate OC transcription. In a second regulatory switch, Dlx3 association decreased and Dlx5 recruitment increased coincident with the mineralization stage of osteoblast differentiation. The appearance of Dlx3 followed by Dlx5 in the OC promoter correlated with increased transcription represented by increased occupancy of RNA polymerase II. </p><p>Young et al. (2007) established that mammalian RUNX2 not only controls lineage commitment and cell proliferation by regulating genes transcribed by RNA Pol II (see 180660) but also acts as a repressor of RNA Pol I (see 602000)-mediated ribosomal RNA (rRNA) synthesis. Within the condensed mitotic chromosomes, Young et al. (2007) found that RUNX2 is retained in large discrete foci at nucleolar organizing regions where rRNA genes reside. These RUNX2 chromosomal foci are associated with open chromatin, colocalize with the RNA Pol I transcription factor UBF1 (600673), and undergo transition into nucleoli at sites of rRNA synthesis during interphase. Ribosomal RNA transcription and protein synthesis are enhanced by RUNX2 deficiency that results from gene ablation or RNA interference, whereas induction of RUNX2 specifically and directly represses rDNA promoter activity. RUNX2 forms complexes containing the RNA Pol I transcription factors UBF1 and SL1 (see 604903), co-occupies the rRNA gene promoter with these factors in vivo, and affects local chromatin histone modifications at rDNA regulatory regions. Thus, RUNX2 is a critical mechanistic link between cell fate, proliferation, and growth control. Young et al. (2007) suggested that lineage-specific control of ribosomal biogenesis may be a fundamental function of transcription factors that govern cell fate. </p><p>Young et al. (2007) showed that RUNX2 protein was stable during cell division and remained associated with chromosomes during mitosis via sequence-specific DNA binding. Using small interfering RNA, mitotic cell synchronization, and expression profiling, they identified RUNX2-regulated genes that were modulated postmitotically. During mitosis, RUNX2 interacted directly with promoters of cell fate- and cell cycle-regulated target genes that exhibited distinct RUNX2-dependent modification in histone acetylation and methylation. </p><p>Zaidi et al. (2007) stated that RUNX2 may function as a tumor suppressor in some cell types and have oncogenic potential in others. They showed that Runx2 deficiency and defective subnuclear targeting in primary mouse osteoblasts promoted immortalization and tumorigenic phenotype. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Terry et al. (2004) determined that the mouse and human RUNX2 genes contain 9 alternatively spliced exons. Exons 1 and 2 contain alternatively utilized promoter regions and an ATG translational start codon. There are 3 alternate exons 5 (exons 5, 5.1, and 5.2) and 2 alternate exons 6 (exons 6 and 6.1). Exon 6.1 is rich in CpG dinucleotides. </p><p>Stein et al. (2004) described the key regulatory elements contained within the promoter region of exon 1 of the RUNX2 gene. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>By FISH, Levanon et al. (1994) mapped the CBFA1 gene to 6p21. The AML1, CBFA1, and CBFA3 genes all map to chromosomal regions involved in translocations underlying leukemia or myelodysplastic syndrome and, in the case of AML1, a fusion gene has been demonstrated as the basis of leukemia. </p><p>Zhang et al. (1997) mapped the PEBP2A gene to 6p21.1-p12.3 by FISH. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Cleidocranial Dysplasia 1</em></strong></p><p>
That the CBFA1 gene is the site of mutations responsible for cleidocranial dysplasia (CLCD1; 119600) was established by Mundlos et al. (1997), who found that heterozygous deletions of the gene are present in some families, and that in other families, insertion, deletion, or missense mutations lead to translational stop codons in the DNA-binding domain or in the C-terminal transactivating region. In-frame expansion of a polyalanine stretch segregated in an affected family with brachydactyly and minor clinical findings of CLCD. They concluded that CBFA1 mutations cause CLCD and that heterozygous loss of function is sufficient to produce the disorder. </p><p>Quack et al. (1999) analyzed the CBFA1 gene in 42 unrelated patients with CLCD. In 18 patients, they detected mutations in the coding region, including 8 frameshift, 2 nonsense, and 9 missense mutations, as well as 2 novel polymorphisms. A cluster of missense mutations at arginine-225 (R225) identified this residue as crucial for CBFA1 function. In vitro green fluorescent protein fusion studies showed that R225 mutations interfere with nuclear accumulation of CBFA1 protein. There was no phenotypic difference between patients with deletions or frameshifts and those with other intragenic mutations, suggesting that CLCD is generally caused by haploinsufficiency. However, Quack et al. (1999) were able to extend the CLCD phenotypic spectrum. A missense mutation (600211.0006) identified in a patient with supernumerary teeth and a radiologically normal skeleton indicated that mutations in the CBFA1 gene can be associated exclusively with a dental phenotype. (In another place in their report, Quack et al. (1999) stated that the mutation was a frameshift and that the patient, in fact, showed a gap in the most lateral part of the clavicle bilaterally, as well as the supernumerary teeth.) In addition, a patient with severe CLCD and a frameshift mutation at codon 402 (600211.0007) had osteoporosis leading to recurrent bone fractures and scoliosis, providing the first evidence that CBFA1 may help maintain adult bone in addition to its function in bone development. </p><p>Rodan and Harada (1997) gave a comprehensive review of the role of the 3 CBFA genes and specifically the role of CBFA1 in normal and abnormal bone development. They pointed out that a difference between the heterozygous CBFA mutations in the human and in mice is the supernumerary teeth in humans, the basis of which remained to be determined. </p><p>In an extensive review of the genetics of craniofacial development and malformation, Wilkie and Morriss-Kay (2001) provided a useful diagram of the molecular pathways in cranial suture development with a listing of all craniofacial disorders caused by mutations in the corresponding genes. Four proteins were indicated as having strong evidence for existing in the pathway, with successive downstream targets as follows: TWIST (601622)--FGFR2 (176943)--FGFR1--CBFA1. </p><p>Bergwitz et al. (2001) reported 2 new mutations in RUNX2 causing cleidocranial dysplasia. </p><p>Otto et al. (2002) tabulated a large number of mutations in the RUNX2 gene that cause CLCD; 20 of them were previously unreported. Missense mutations that cluster in the runt domain had been reported in 26 CLCD patients. Only 1 missense mutation was found to be located outside the runt domain. The authors stated that R225 mutations arg225 to gln (R225Q; 600211.0008) and arg225 to trp (R225W; 600211.0009) had been identified in 7 unrelated patients. R225 resides within a stretch of basic amino acids at the carboxy terminus of the runt domain. This motif acts as a nuclear localization signal and mutations affecting R225 inhibit the nuclear accumulation of RUNX2 protein. Moreover, at least the R225Q mutation seems to abolish DNA binding (Zhou et al., 1999). </p><p>Zheng et al. (2005) observed growth plate abnormalities in a patient with a 1-bp insertion (600211.0017) in the RUNX2 gene. Histologic analysis of the rib and long-bone cartilages showed a markedly diminished zone of hypertrophy; analysis of limb cartilage RNA revealed a 5- to 10-fold decrease in the hypertrophic chondrocyte molecular markers VEGF (192240), MMP13 (600108), and COL10A1. Zheng et al. (2005) concluded that humans with CLCD have altered endochondral ossification due to altered RUNX2 regulation of hypertrophic chondrocyte-specific genes during chondrocyte maturation. </p><p>Fernandez et al. (2005) described a case of a 20-year-old woman with features of both holoprosencephaly and cleidocranial dysplasia. She showed premaxillary agenesis, which is part of the holoprosencephaly spectrum, as well as skeletal abnormalities and impacted teeth reminiscent of cleidocranial dysplasia. She was found to carry a de novo 6;7 reciprocal translocation, with breakpoints at 6p21.1 and 7q36. The 7q36 breakpoint maps 15 kb telomeric to the 5-prime end of the Sonic hedgehog gene (SHH; 600725), which appeared to explain the patient's holoprosencephaly phenotype (Belloni et al., 1996). Using fluorescence in situ hybridization, Fernandez et al. (2005) identified a P1 artificial chromosome clone 800 kb upstream of the RUNX2 gene that spans the 6p breakpoint. Fernandez et al. (2005) proposed that the patient's complex phenotype was due to 2 position-effect mutations, 1 at each translocation breakpoint, which altered the expression of the SHH and RUNX2 genes. Fernandez et al. (2005) gave a listing of examples of position-effect mutations in human disease. </p><p>El-Gharbawy et al. (2010) studied a 7-year-old boy with CLCD who also displayed features of hypophosphatasia (see 241500) and in whom no RUNX2 mutation was found by sequencing. Using array CGH, the authors identified a 50- to 70-kb deletion that predicted a disruption of the C terminus of RUNX2, encompassing the coding sequence for amino acids 327 to 521 and involving the SMAD 1,2,3,5 binding sites and the nuclear matrix targeting signal regions. El-Gharbawy et al. (2010) emphasized the need to search for deletions when sequencing of the target gene is normal, and noted that the C terminal region of RUNX2 appears to play an integral role in human osteogenesis and osteoblast differentiation. </p><p><strong><em>Metaphyseal Dysplasia with Maxillary Hypoplasia with or without Brachydactyly</em></strong></p><p>
In affected members of a 4-generation French Canadian family with metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly (MDMHB; 156510), Moffatt et al. (2013) identified heterozygosity for a 105-kb duplication containing exons 3 to 5 of the RUNX5 gene (600211.0014) that was absent in unaffected family members. Moffatt et al. (2013) noted that the clinical findings of MDMHB and mechanistic studies were in accordance with the notion that duplication of RUNX2 exons 3 to 5 leads to a gain of function in RUNX2. This gain of function may result from increased cellular levels of mutated RUNX2 protein, as suggested by transfection experiments. The authors pointed out that MDMHB affects similar skeletal sites as CLCD but in some way represents the mirror image of CLCD. Clavicles are enlarged in MDMHB but are hypoplastic or absent in CLCD. In MDMHB the cranial vault is thickened, whereas there is lack of skull mineralization in CLCD. Persons with MDMHB present with dystrophic teeth, whereas CLCD is associated with supernumerary teeth. </p><p>In a 20-year-old Finnish woman with MDMHB, Avela et al. (2014) identified heterozygosity for an intragenic duplication in RUNX2 encompassing exons 3 to 5. Similar to the duplication reported by Moffatt et al. (2013), the duplication breakpoints were in intron 2 and intron 5; the location of the breakpoints differed, but the exact breakpoints in the Finnish patient were not identified. </p><p>In 3 affected members of a 3-generation family with MDMHB, Al-Yassin et al. (2018) identified heterozygosity for an intragenic tandem duplication of RUNX2 exons 3 to 6 (600211.0015). Further analysis showed that exon 3 was spliced to exon 6, confirming a tandem duplication, which was predicted to be in-frame. </p><p><strong><em>Somatic Mutation in Osteosarcoma</em></strong></p><p>
Sadikovic et al. (2009) performed integrative whole-genome analysis of DNA copy number, promoter methylation, and gene expression using 10 pediatric osteosarcoma tissue samples. Hypomethylation, copy number gain, and overexpression were identified for the histone cluster 2 genes (see 142750) on chromosome 1q21.1-q21.3. They also found loss of chromosome 8p21.3-p21.2 and underexpression of DOCK5 (616904), TNFRSF10A (603611), and TNFRSF10D (603614) genes, as well as copy number gain of chromosome 6p21.1-p12.3 and amplification-related overexpression of RUNX2. Amplification and overexpression of RUNX2 could disrupt G2/M cell cycle checkpoints, and downstream osteosarcoma-specific changes, such as failure of bone differentiation and genomic polyploidization. Failure of DOCK5 signaling, together with p53 (191170) and TNFRSF10A/D-related cell cycle and death pathways, may play a critical role in abrogating apoptosis. Sadikovic et al. (2009) hypothesized that the RUNX2 interactome may be constitutively activated in osteosarcoma, and that the downstream intracellular pathways may be associated with the regulation of osteoblast differentiation and control of cell cycle and apoptosis in osteosarcoma. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>To correlate CBFA1 mutations in different functional domains with the CLCD clinical spectrum, Zhou et al. (1999) studied 26 independent cases of CLCD, and a total of 16 new mutations were identified in 17 families. Most mutations were de novo missense mutations that affected conserved residues in the runt domain and completely abolished both DNA binding and transactivation of a reporter gene. These, and mutations that resulted in premature termination in the runt domain, produced a classic CLCD phenotype by abolishing transactivation of the mutant protein with consequent haploinsufficiency. Zhou et al. (1999) further identified 3 putative hypomorphic mutations that resulted in a clinical spectrum including classic and mild CLCD, as well as an isolated dental phenotype characterized by delayed eruption of permanent teeth (600211.0010). Functional studies showed that 2 of the 3 mutations were hypomorphic in nature and 2 were associated with significant intrafamilial variability in expressivity, including isolated dental anomalies without the skeletal features of CLCD. Together these data showed that variable loss of function due to alterations in the runt and C-terminal proline/serine/threonine-rich (PST) activation domains of CBFA1 may give rise to clinical variability, including classic CLCD, mild CLCD, and isolated primary dental anomalies. </p><p>Yoshida et al. (2002) performed mutation analysis of RUNX2 on 24 unrelated patients with CLCD. In 17 patients, 16 distinct mutations were detected in the coding region of RUNX2: 4 frameshift, 3 nonsense, 6 missense, and 2 splicing mutations, and 1 polymorphism. The missense mutations were all clustered around the runt domain, and their protein products were severely impaired in DNA binding and transactivation. In contrast, the runt domain was intact in 2 RUNX2 mutants, with partial competence for transactivation remaining. One criterion of CLCD, short stature, was much milder in the patients with the intact runt domain than in those without. Furthermore, there was a significant correlation between short stature and the number of supernumerary teeth. On the one hand, these genotype-phenotype correlations highlighted a general, quantitative dependency of skeletal/dental development on gene dosage of RUNX2. On the other hand, the classic CLCD phenotype, hypoplastic clavicles or open fontanels, was invariably observed in all patients, including those of normal height. Thus, cleidocranial bone formation, as mediated by intramembranous ossification, may require a higher level of RUNX2 than does skeletogenesis (mediated by endochondral ossification), as well as odontogenesis (involving still different complex processes). These results suggested that CLCD could result from much smaller losses in RUNX2 function than envisioned by the conventional haploinsufficiency model. </p><p>In 29 patients with CLCD from 19 unrelated families, Baumert et al. (2005) sequenced the RUNX2 gene and identified 12 different RUNX2 mutations. They examined phenotypic data using homogeneity analysis and observed mild to full-blown expression of the CLCD phenotype, with intrafamilial clinical variability (see also Baumert et al., 2006). Baumert et al. (2005) commented that homogeneity analysis simplified grouping the patients into distinct entities, but noted that the analysis separated individuals with the same mutation, emphasizing the clinical variability within the patient cohort. </p><p>Moffatt et al. (2013) noted that the apparent gain-of-function duplication causing metaphyseal dysplasia with maxillary hypoplasia and brachydactyly (MDMHB) results in a phenotype that is in some ways the mirror image of cleidocranial dysplasia, which is associated with loss-of-function mutations in RUNX2: clavicles are enlarged in MDMHB, whereas they are hypoplastic or absent in CLCD; in MDMHB, the cranial vault is thickened whereas there is a lack of skull mineralization in CLCD; and individuals with MDMHB have dystrophic teeth, whereas CLCD is associated with supernumerary teeth. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Evolution</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Green et al. (2010) published a draft sequence of the Neandertal genome. Comparisons of the Neandertal genome to the genomes of 5 present-day humans from different parts of the world identified a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. Green et al. (2010) identified a total of 212 regions containing putative selective sweeps. One of the 20 widest regions contains the RUNX2 gene. Mutations in this gene cause cleidocranial dysplasia, and some of the features associated with cleidocranial dysplasia are more common among Neandertals including cranial malformations such as frontal bossing. The clavicle, which is affected in cleidocranial dysplasia, differs in morphology between modern humans and Neandertals and is associated with a different architecture of the shoulder joint. Finally, a bell-shaped rib cage is typical of Neandertals and other archaic hominins. Green et al. (2010) suggested that a reasonable hypothesis is thus that an evolutionary change in RUNX2 was of importance in the origin of modern humans and that this change affected aspects of the morphology of the upper body and cranium. Green et al. (2010) also showed that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Komori et al. (1997) generated mice with a mutated Cbfa1 locus and found that mice homozygous for the mutation died just after birth without breathing. Examination showed complete lack of ossification of the skeleton. Although immature osteoblasts, which expressed alkaline phosphatase weakly but not osteopontin (OPN; 166490) or osteocalcin, and a few immature osteoclasts appeared at the perichondrial region, neither vascular nor mesenchymal cell invasion was observed in cartilage. The data suggested that both intramembranous and endochondral ossification were completely blocked and demonstrated that Cbfa1 plays an essential role in osteogenesis. Otto et al. (1997) likewise generated Cbfa1-deficient mice and found that homozygotes died of respiratory failure shortly after birth. Absence of osteoblasts and bone was demonstrated in homozygotes. Heterozygotes showed specific skeletal abnormalities characteristic of cleidocranial dysplasia (CLCD). The same structural defects are observed in the murine mutant (Ccd), a CLCD-like phenotype described by Selby and Selby (1978) as a gamma-ray-induced dominant mutation. Otto et al. (1997) demonstrated that the Cbfa1 gene is deleted in the Ccd mutation. </p><p>Ducy et al. (1999) studied the postnatal expression of Cbfa1 in mice. The perinatal lethality occurring in Cbfa1-deficient mice had hitherto prevented study of its function after birth. To determine if Cbfa1 plays a role during bone formation, they generated transgenic mice overexpressing Cbfa1 DNA-binding domain in differentiated osteoblasts only postnatally. The Cbfa1 DNA-binding domain has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. Mice expressing this form of the gene product had a normal skeleton at birth but developed an osteopenic phenotype thereafter. Dynamic histomorphometric studies showed that this phenotype was caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts, thus indicating that once osteoblasts are differentiated, Cbfa1 regulates their function. The study demonstrated that beyond its differentiation function, Cbfa1 is a transcriptional activator of bone formation (the first to be identified to that time) and illustrated that developmentally important genes control physiologic processes postnatally. In light of the absence of reported juvenile or more severe osteoporosis in patients with cleidocranial dysplasia, the observations in mice were unexpected. Ducy et al. (1999) thought that this is probably because of the more severe decrease of expression of the genes encoding bone extracellular matrix proteins, notably type I collagen, in the transgenic mice compared to the heterozygous Cbfa1-deficient mice. During embryonic development, Cbfa1 controls cell differentiation along the osteoblastic pathway; postnatally Cbfa1 has an additional function, directly controlling bone matrix deposition by differentiated osteoblasts. </p><p>Geoffroy et al. (2002) examined bone marrow stromal cells and cocultures of primary osteoblasts and spleen cells from wildtype and transgenic Cgfa1-overexpressing mice. Primary osteoblasts and bone marrow stromal cells from transgenic mice had stronger osteoclastogenic properties than cells derived from wildtype animals. Expression of Rankl (602642) and collagenase-3 (MMP13; 600108), factors involved in bone formation-resorption coupling, was markedly increased in transgenic cells. Geoffroy et al. (2002) concluded that overexpression of Cbfa1 enhances osteoclast differentiation in vitro and bone resorption in vivo. </p><p>Zhou et al. (2000) showed that mice carrying a pro250-to-arg mutation in Fgfr1 (136350), which is orthologous to the Pfeiffer syndrome mutation pro252 to arg (136350.0001) in humans, exhibit anterio-posteriorly shortened, laterally widened, and vertically heightened neurocrania. Cranial sutures of early postnatal mutant mice exhibited multiple premature fusions, accelerated osteoblast proliferation, and increased expression of genes related to osteoblast differentiation, suggesting that bone formation at the sutures is locally increased in Pfeiffer syndrome. Markedly increased expression of Cbfa1 accompanied premature fusion, suggesting that Cbfa1 may be a downstream target of Fgf/Fgfr1 signals. This was confirmed in vitro by demonstrating that transfection with wildtype or mutant Fgfr1 induced Cbfa1 expression. The induced expression was also observed using Fgf ligands Fgf2 and Fgf8 (600483). </p><p>D'Souza et al. (1999) reported a unique phenotype involving dentition in mice lacking a functional Runx2 gene. The markedly hypoplastic tooth organs as well as defects in the maturation of ameloblasts and odontoblasts pointed to an important nonredundant role for RUNX2 in both tooth morphogenesis and cytodifferentiation. To identify genes that are affected by the absence of Runx2, Gaikwad et al. (2001) generated a cDNA library from Runx2 -/- and Runx2 +/+ first molar organs. They found several tooth-specific downstream target genes of Runx2 that included extracellular matrix proteins, kinases, receptors, growth factors, mitochondrial proteins, and transcription molecules. Sequence analysis of 61 differentially expressed genes showed that 96% of the clones matched previously described genes in the GenBank/EBML database. Expression analysis of one of the differentially expressed clones that encodes a zinc finger transcription factor showed that the gene is temporally regulated during tooth development. Gaikwad et al. (2001) noted that the zinc finger transcription factor, which they called Zfp, shares 96% homology with Zfp64 (618111). </p><p>In studies of Runx2 mutants, Aberg et al. (2004) found that developing teeth failed to advance beyond the bud stage and that mandibular molar organs were more severely affected than maxillary molar organs. Molecular analyses showed differential effects of the absence of Runx2 on tooth extracellular matrix gene expression. </p><p>Yoshida et al. (2004) found that Runx2 knockout mice expressed reduced levels of Ihh (600726), which regulates chondrocyte proliferation and maturation. Adenoviral introduction of Runx2 into Runx2-deficient mice restored Ihh expression. Runx2 directly bound to the promoter region of the Ihh gene and induced expression of a reporter gene driven by the Ihh promoter. Runx2/Runx3 double-knockout mice displayed a complete absence of chondrocyte differentiation and a complete lack of Ihh expression. Single- or double-heterozygous mice showed intermediate degrees of chondrocyte differentiation depending upon the dosages of Runx2 and Runx3 expressed. Limb length was also reduced depending on the dosages of Runx2 and Runx3. </p><p>Napierala et al. (2008) found that mice homozygous for deletion of the Trps1 (604386) DNA-binding GATA domain (delta-GT mutation) showed elongation of the growth plate due to delayed chondrocyte differentiation and abnormal mineralization of perichondrium. These abnormalities were accompanied by increased Runx2 and Ihh expression and increased Ihh signaling. Cotransfection experiments showed that wildtype Trps1 bound Runx2 and repressed Runx2-mediated activation of a reporter plasmid. Double heterozygosity for Trps1 delta-GT and a Runx2-null mutation rescued the opposite growth plate phenotypes found in single mutants. Napierala et al. (2008) concluded that TRPS1 and RUNX2 interact to regulate chondrocyte and perichondrium development. </p><p>Lou et al. (2009) generated a mouse model of CLCD using a hypomorphic Runx2-mutant allele (neo7), in which only part of the transcript is processed to full-length Runx2. Runx2 neo7/neo7 mice expressed a reduced level of wildtype transcript (55 to 70%) and protein and had grossly normal skeletons with no abnormalities observed in the growth plate, but exhibited developmental defects in calvaria and clavicles that persisted through postnatal growth. Clavicle defects were caused by disrupted endochondral bone formation during embryogenesis. These hypomorphic mice had altered calvarial bone volume, as observed by histology and micro-CT imaging, and decreased expression of osteoblast marker genes. Runx2 neo7/+ mice had 79 to 84% of wildtype transcript and exhibited a normal bone phenotype. Lou et al. (2009) concluded that there is a critical gene dosage requirement of Runx2 for the formation of intramembranous bone tissues during embryogenesis and that a decrease to 70% of wildtype Runx2 levels results in the CLCD phenotype, whereas levels above 79% produce a normal skeleton, suggesting that the range of bone phenotypes in CLCD patients is attributable to quantitative reduction in the functional activity of RUNX2. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>ALLELIC VARIANTS</strong>
</span>
<strong>15 Selected Examples):</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0001 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, 16-BP INS
<br />
SNP: rs730880313,
ClinVar: RCV000009878
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an isolated case of cleidocranial dysplasia (CLCD1; 119600), Mundlos et al. (1997) found heterozygosity for insertion of 16 bp within the polyglutamine-encoding CAG repeat region of the CBFA1 gene. The shift in reading frame produced a stop codon at nucleotide 435-437, in the middle of the 'runt' domain. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0002 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, TRP283TER
<br />
SNP: rs104893988,
ClinVar: RCV000009879
</span>
</div>
<div>
<span class="mim-text-font">
<p>A sporadic case of cleidocranial dysplasia (CLCD1; 119600) was found to be caused by heterozygosity for a G-to-A transition at codon 283 in exon 5 of CBFA1 (Mundlos et al., 1997). This nucleotide change converted a TGG (trp) codon to a TGA (stop) codon. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0003 &nbsp; CLEIDOCRANIAL DYSPLASIA 1, FORME FRUSTE, WITH BRACHYDACTYLY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, 30-BP DUP, ALANINE TRACT EXPANSION
<br />
SNP: rs606231174,
ClinVar: RCV002293411
</span>
</div>
<div>
<span class="mim-text-font">
<p>Mundlos et al. (1997) found an unusual CBFA1 mutation in a family in which multiple members in 3 generations had a phenotype distinct from classic cleidocranial dysplasia (CLCD1; see 119600): minor craniofacial features of CLCD were associated with brachydactyly of hands and feet. As illustrated by radiographs, the clavicles showed a distal gap in the continuity of the bone. Distal phalanges were hypoplastic and middle phalanges had cone-shaped epiphyses. Metacarpals exhibited pseudoepiphyses and shortening of metacarpals IV and V. The affected individuals in this family were found to have an in-frame duplication within the polyalanine stretch, leading to a total of 27 alanine residues instead of 17 residues as found in the wildtype sequence. Some unaffected members of the family had an allele with 11 alanine residues rather than 17; this appeared to be an uncommon but normal variant of CBFA1. (CBFA1 contains a region of 23 uninterrupted glutamine residues followed by 17 uninterrupted alanine residues on the N-terminal side of the 'runt' domain.) </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0004 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, MET175ARG
<br />
SNP: rs104893989,
gnomAD: rs104893989,
ClinVar: RCV000009881
</span>
</div>
<div>
<span class="mim-text-font">
<p>Lee et al. (1997) described the first missense mutations in the CBFA1 gene in cleidocranial dysplasia (CLCD1; 119600): met175 to arg and ser191 to asn (600211.0005). These 2 mutations result in substitution of highly conserved amino acids in the DNA-binding domain. In DNA-binding studies with the mutant polypeptides they showed that these amino acid substitutions abolish the DNA-binding ability of CBFA1 to its known target sequence. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0005 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, SER191ASN
<br />
SNP: rs104893990,
ClinVar: RCV000009882, RCV005089222
</span>
</div>
<div>
<span class="mim-text-font">
<p>Lee et al. (1997) described the first missense mutations in the CBFA1 gene in cleidocranial dysplasia (CLCD1; 119600): met175 to arg (600211.0004) and ser191 to asn. These 2 mutations result in substitution of highly conserved amino acids in the DNA-binding domain. In DNA-binding studies with the mutant polypeptides they showed that these amino acid substitutions abolish the DNA-binding ability of CBFA1 to its known target sequence. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0006 &nbsp; CLEIDOCRANIAL DYSPLASIA 1, FORME FRUSTE</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, 1-BP INS, 1380C
<br />
SNP: rs1582232661,
ClinVar: RCV001851777, RCV002293412, RCV002512952
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient with a very mild form of cleidocranial dysplasia (CLCD1; 119600), Quack et al. (1999) identified a 1-bp insertion (1380C) at the very 3-prime end of the coding region of the RUNX2 gene, resulting in a frameshift. The patient came to medical attention only because of supernumerary teeth. He was of normal height and excellent physical health. The clinical signs of CLCD were restricted to supernumerary teeth and a gap in the most lateral part of the clavicle bilaterally. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0007 &nbsp; CLEIDOCRANIAL DYSPLASIA 1, SEVERE, WITH OSTEOPOROSIS AND SCOLIOSIS</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, 1-BP INS, 1206C
<br />
SNP: rs730880314,
ClinVar: RCV001823712
</span>
</div>
<div>
<span class="mim-text-font">
<p>Quack et al. (1999) identified a 1-bp insertion (1206C) at codon 402 of the RUNX2 gene, resulting in a frameshift, in a patient who, in addition to very severe manifestations of cleidocranial dysplasia (CLCD1; 119600), had severe osteoporosis with both prenatal and antenatal fractures and severe scoliosis. At birth, the skull was almost unossified, both clavicles were absent, and distal hypoplasia of phalanges with partial absence of the nails was noted. The patient suffered from partial deafness due to conduction hearing impairment. A number of supernumerary teeth were extracted. At the age of 23 years, the patient had a body height of 129 cm. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0008 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, ARG225GLN
<br />
SNP: rs104893991,
ClinVar: RCV000009885, RCV000731332, RCV002482851, RCV003934819
</span>
</div>
<div>
<span class="mim-text-font">
<p>Quack et al. (1999) identified missense mutations in the RUNX2 gene in 8 patients with cleidocranial dysplasia (CLCD1; 119600). In 4 of these patients, arg225 (R225), which is located at the C-terminal end of the runt domain, was mutated. The exchange of glutamine for arginine, due to a G-to-A transition at nucleotide 674, occurred in 3 unrelated patients. A replacement of arginine by tryptophan (600211.0009), caused by a C-to-T transition at nucleotide 673, occurred in 1 patient. Both amino acid exchanges abolished the positive charge of the residue at this position. The high frequency of mutations affecting R225 identified this codon as either especially prone to mutagenic events or of unusual relevance for the normal function of RUNX2. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0009 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, ARG225TRP
<br />
SNP: rs104893992,
ClinVar: RCV000009886, RCV001090594
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient with cleidocranial dysplasia (CLCD1; 119600), Quack et al. (1999) identified a 673C-T transition in the RUNX2 gene, resulting in an arg225-to-trp (R225W) substitution. See 600211.0008 for another mutation at the same codon in patients with CLCD. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0010 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CLEIDOCRANIAL DYSPLASIA 1, FORME FRUSTE, DENTAL ANOMALIES ONLY, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
RUNX2, THR200ALA
<br />
SNP: rs104893993,
ClinVar: RCV000009887, RCV002293413, RCV005089223
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a Mennonite family, Zhou et al. (1999) found classic cleidocranial dysplasia (CLCD1; 119600) in 2 of 4 children, while the father, who also harbored the mutation, had only dental anomalies, including delayed eruption of permanent teeth, misalignment, and multiple dentures. He did not have evidence of CLCD on skeletal radiographs. All affected members shared the same mutation in the RUNX2 gene, resulting in a thr200-to-ala change in the runt domain. Even though the mutation affected a highly conserved amino acid immediately adjacent to a previously described mutation, the T200A mutation was not found in 100 unrelated control chromosomes and 50 Mennonite control chromosomes. The 2 affected brothers had dental anomalies, delayed closure of fontanel, and hypoplastic clavicles; the father, a brother, and 2 of the brother's children had only dental anomalies. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0011 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, TER522SER
<br />
SNP: rs104893994,
ClinVar: RCV000009889
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a classic case of cleidocranial dysplasia (CLCD1; 119600), Machuca-Tzili et al. (2002) found heterozygosity for a stop codon mutation, 1565G-C (ter522 to ser; X522S), which theoretically resulted in a longer protein with 23 additional amino acids. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0012 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, ARG169PRO
<br />
SNP: rs104893995,
gnomAD: rs104893995,
ClinVar: RCV000009890
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a mother and daughter with cleidocranial dysplasia (CLCD1; 119600), Morava et al. (2002) identified a heterozygous 506G-C transversion in the RUNX2 gene, resulting in an arg169-to-pro (R169P) substitution within the highly conserved DNA-binding domain of the protein. In addition to the characteristic CLCD phenotype, both patients had biochemical signs of hypophosphatasia (see 241500; 146300), including decreased levels of alkaline phosphatase (171760). Morava et al. (2002) noted that RUNX2-knockout mice show decreased alkaline phosphatase, and suggested that the clinical findings of hypophosphatasia in these patients was secondary to the RUNX2 mutation affecting early bone maturation and turnover. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0013 &nbsp; CLEIDOCRANIAL DYSPLASIA 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, 1-BP INS, 1228C
<br />
SNP: rs730880315,
ClinVar: RCV000009891
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 20-week fetus with cleidocranial dysplasia (CLCD1; 119600), Zheng et al. (2005) identified a 1-bp insertion (1228insC) in exon 9 of the RUNX2 gene, resulting in a frameshift at codon 410 and premature termination. RUNX2 mRNA was downregulated by approximately 50% in the patient's cartilage, suggesting that the mutation causes haploinsufficiency. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0014 &nbsp; METAPHYSEAL DYSPLASIA AND MAXILLARY HYPOPLASIA WITH OR WITHOUT BRACHYDACTYLY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, 105-KB DUP, EX3-5
<br />
ClinVar: RCV000033220
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected members from a 4-generation French Canadian family with metaphyseal dysplasia with maxillary hypoplasia without brachydactyly (MDMHB; 156510), Moffatt et al. (2013) identified heterozygosity for a 105-kb duplication (chr6:45,308,920-45,413,885, GRCh37) containing exons 3 to 5 of the RUNX2 gene. The duplication of exons 3 to 5 was confirmed with cDNA derived from a patient fibroblast line, and was not found in unaffected family members. Functional analysis of the corresponding duplication in mouse Runx2 in HEK293 cells demonstrated markedly increased protein levels for the mutant compared to wildtype, as well as increased transactivation activity for mutant Runx2. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0015 &nbsp; METAPHYSEAL DYSPLASIA AND MAXILLARY HYPOPLASIA WITH OR WITHOUT BRACHYDACTYLY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
RUNX2, EX3-6DUP
<br />
ClinVar: RCV000853079
</span>
</div>
<div>
<span class="mim-text-font">
<p>In all 3 affected members of a 3-generation family with metaphyseal dysplasia with maxillary hypoplasia with brachydactyly (MDMHB; 156510), Al-Yassin et al. (2018) identified heterozygosity for an intragenic tandem duplication of exons 3 to 6 (c.58+1_59-269_859+1_860-1dup, NM_001024630.3). Further analysis showed that exon 3 was spliced to exon 6, confirming a tandem duplication, which was predicted to be in-frame. </p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Aberg, T., Cavender, A., Gaikwad, J. S., Bronckers, A. L. J. J., Wang, X., Waltimo-Siren, J., Thesleff, I., D'Souza, R. N.
<strong>Phenotypic changes in dentition of Runx2 homozygote-null mutant mice.</strong>
J. Histochem. Cytochem. 52: 131-139, 2004. Note: Erratum: J. Histochem. Cytochem. 52: 841 only, 2004.
[PubMed: 14688224]
[Full Text: https://doi.org/10.1177/002215540405200113]
</p>
</li>
<li>
<p class="mim-text-font">
Al-Yassin, A., Calder, A. D., Harrison, M., Lester, T., Lord, H., Oldridge, M., Watkins, S., Keen, R., Wakeling, E. L.
<strong>A three-generation family with metaphyseal dysplasia, maxillary hypoplasia and brachydactyly (MDMHB) due to intragenic RUNX2 duplication.</strong>
Europ. J. Hum. Genet. 26: 1288-1293, 2018.
[PubMed: 29891876]
[Full Text: https://doi.org/10.1038/s41431-018-0166-7]
</p>
</li>
<li>
<p class="mim-text-font">
Avela, K., Hirvinen, H., Ben Amor, M., Rauch, F.
<strong>Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly in a Finnish woman: first confirmation of a duplication in RUNX2 as pathogenic variant.</strong>
Europ. J. Med. Genet. 57: 617-620, 2014.
[PubMed: 25311905]
[Full Text: https://doi.org/10.1016/j.ejmg.2014.09.010]
</p>
</li>
<li>
<p class="mim-text-font">
Baumert, U., Golan, I., Redlich, M., Aknin, J.-J., Muessig, D.
<strong>Cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a Middle European patient group.</strong>
Am. J. Med. Genet. 139A: 78-85, 2005.
[PubMed: 16222673]
[Full Text: https://doi.org/10.1002/ajmg.a.30927]
</p>
</li>
<li>
<p class="mim-text-font">
Baumert, U., Golan, I., Redlich, M., Aknin, J.-J., Muessig, D.
<strong>Clarification of data reported in &#x27;Cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a Middle European patient group&#x27; (AJMG 139A: 78-85) (Letter)</strong>
Am. J. Med. Genet. 140A: 1030 only, 2006.
[PubMed: 16575894]
[Full Text: https://doi.org/10.1002/ajmg.a.31182]
</p>
</li>
<li>
<p class="mim-text-font">
Belloni, E., Muenke, M., Roessler, E., Traverso, G., Siegel-Bartelt, J., Frumkin, A., Mitchell, H. F., Donis-Keller, H., Helms, C., Hing, A. V., Heng, H. H. Q., Koop, B., Martindale, D., Rommens, J. M., Tsui, L.-C., Scherer, S. W.
<strong>Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly.</strong>
Nature Genet. 14: 353-356, 1996.
[PubMed: 8896571]
[Full Text: https://doi.org/10.1038/ng1196-353]
</p>
</li>
<li>
<p class="mim-text-font">
Bergwitz, C., Prochnau, A., Mayr, B., Kramer, F.-J., Rittierodt, M., Berten, H.-L., Hausamen, J.-E., Brabant, G.
<strong>Identification of novel CBFA1/RUNX2 mutations causing cleidocranial dysplasia.</strong>
J. Inherit. Metab. Dis. 24: 648-656, 2001.
[PubMed: 11768584]
[Full Text: https://doi.org/10.1023/a:1012758925617]
</p>
</li>
<li>
<p class="mim-text-font">
Bialek, P., Kern, B., Yang, X., Schrock, M., Sosic, D., Hong, N., Wu, H., Yu, K., Ornitz, D. M., Olson, E. N., Justice, M. J., Karsenty, G.
<strong>A Twist code determines the onset of osteoblast differentiation.</strong>
Dev. Cell 6: 423-435, 2004.
[PubMed: 15030764]
[Full Text: https://doi.org/10.1016/s1534-5807(04)00058-9]
</p>
</li>
<li>
<p class="mim-text-font">
Cohen, M. M., Jr.
<strong>Perspectives on RUNX genes: an update.</strong>
Am. J. Med. Genet. 149A: 2629-2646, 2009.
[PubMed: 19830829]
[Full Text: https://doi.org/10.1002/ajmg.a.33021]
</p>
</li>
<li>
<p class="mim-text-font">
D'Souza, R. N., Aberg, T., Gaikwad, J., Cavender, A., Owen, M., Karsenty, G., Thesleff, I.
<strong>Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice.</strong>
Development 126: 2911-2920, 1999.
[PubMed: 10357935]
[Full Text: https://doi.org/10.1242/dev.126.13.2911]
</p>
</li>
<li>
<p class="mim-text-font">
Ducy, P., Starbuck, M., Priemel, M., Shen, J., Pinero, G., Geoffroy, V., Amling, M., Karsenty, G.
<strong>A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development.</strong>
Genes Dev. 13: 1025-1036, 1999.
[PubMed: 10215629]
[Full Text: https://doi.org/10.1101/gad.13.8.1025]
</p>
</li>
<li>
<p class="mim-text-font">
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., Karsenty, G.
<strong>Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.</strong>
Cell 89: 747-754, 1997.
[PubMed: 9182762]
[Full Text: https://doi.org/10.1016/s0092-8674(00)80257-3]
</p>
</li>
<li>
<p class="mim-text-font">
El-Gharbawy, A. H., Peeden, J. N., Jr., Lachman, R. S., Graham, J. M., Jr., Moore, S. R., Rimoin, D. L.
<strong>Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the C-terminal region of RUNX2.</strong>
Am. J. Med. Genet. 152A: 169-174, 2010.
[PubMed: 20014132]
[Full Text: https://doi.org/10.1002/ajmg.a.33146]
</p>
</li>
<li>
<p class="mim-text-font">
Fernandez, B. A., Siegel-Bartelt, J., Herbrick, J.-A. S., Teshima, I., Scherer, S. W.
<strong>Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature.</strong>
Clin. Genet. 68: 349-359, 2005.
[PubMed: 16143022]
[Full Text: https://doi.org/10.1111/j.1399-0004.2005.00498.x]
</p>
</li>
<li>
<p class="mim-text-font">
Fujita, T., Azuma, Y., Fukuyama, R., Hattori, Y., Yoshida, C., Koida, M., Ogita, K., Komori, T.
<strong>Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling.</strong>
J. Cell Biol. 166: 85-95, 2004.
[PubMed: 15226309]
[Full Text: https://doi.org/10.1083/jcb.200401138]
</p>
</li>
<li>
<p class="mim-text-font">
Gaikwad, J. S., Cavender, A., D'Souza, R. N.
<strong>Identification of tooth-specific downstream targets of Runx2.</strong>
Gene 279: 91-97, 2001.
[PubMed: 11722849]
[Full Text: https://doi.org/10.1016/s0378-1119(01)00759-4]
</p>
</li>
<li>
<p class="mim-text-font">
Geoffroy, V., Corral, D. A., Zhou, L., Lee, B., Karsenty, G.
<strong>Genomic organization, expression of the human CBFA1 gene, and evidence for an alternative splicing event affecting protein function.</strong>
Mammalian Genome 9: 54-57, 1998.
[PubMed: 9434946]
[Full Text: https://doi.org/10.1007/s003359900679]
</p>
</li>
<li>
<p class="mim-text-font">
Geoffroy, V., Kneissel, M., Fournier, B., Boyde, A., Matthias, P.
<strong>High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage.</strong>
Molec. Cell. Biol. 22: 6222-6233, 2002.
[PubMed: 12167715]
[Full Text: https://doi.org/10.1128/MCB.22.17.6222-6233.2002]
</p>
</li>
<li>
<p class="mim-text-font">
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., and 44 others.
<strong>A draft sequence of the Neandertal genome.</strong>
Science 328: 710-722, 2010.
[PubMed: 20448178]
[Full Text: https://doi.org/10.1126/science.1188021]
</p>
</li>
<li>
<p class="mim-text-font">
Hassan, M. Q., Javed, A., Morasso, M. I., Karlin, J., Montecino, M., van Wijnen, A. J., Stein, G. S., Stein, J. L., Lian, J. B.
<strong>Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins of chromatin of the osteocalcin gene.</strong>
Molec. Cell. Biol. 24: 9248-9261, 2004.
[PubMed: 15456894]
[Full Text: https://doi.org/10.1128/MCB.24.20.9248-9261.2004]
</p>
</li>
<li>
<p class="mim-text-font">
Kim, S., Koga, T., Isobe, M., Kern, B. E., Yokochi, T., Chin, Y. E., Karsenty, G., Taniguchi, T., Takayanagi, H.
<strong>Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation.</strong>
Genes Dev. 17: 1979-1991, 2003.
[PubMed: 12923053]
[Full Text: https://doi.org/10.1101/gad.1119303]
</p>
</li>
<li>
<p class="mim-text-font">
Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y.-H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S., Kishimoto, T.
<strong>Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts.</strong>
Cell 89: 755-764, 1997.
[PubMed: 9182763]
[Full Text: https://doi.org/10.1016/s0092-8674(00)80258-5]
</p>
</li>
<li>
<p class="mim-text-font">
Lee, B., Thirunavukkarasu, K., Zhou, L., Pastore, L., Baldini, A., Hecht, J., Geoffroy, V., Ducy, P., Karsenty, G.
<strong>Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia.</strong>
Nature Genet. 16: 307-310, 1997.
[PubMed: 9207800]
[Full Text: https://doi.org/10.1038/ng0797-307]
</p>
</li>
<li>
<p class="mim-text-font">
Levanon, D., Negreanu, V., Bernstein, Y., Bar-Am, I., Avivi, L., Groner, Y.
<strong>AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization.</strong>
Genomics 23: 425-432, 1994.
[PubMed: 7835892]
[Full Text: https://doi.org/10.1006/geno.1994.1519]
</p>
</li>
<li>
<p class="mim-text-font">
Lou, Y., Javed, A., Hussain, S., Colby, J., Frederick, D., Pratap, J., Xie, R., Gaur, T., van Wijnen, A. J., Jones, S. J., Stein, G. S., Lian, J. B., Stein, J. L.
<strong>A Runx2 threshold for the cleidocranial dysplasia phenotype.</strong>
Hum. Molec. Genet. 18: 556-568, 2009.
[PubMed: 19028669]
[Full Text: https://doi.org/10.1093/hmg/ddn383]
</p>
</li>
<li>
<p class="mim-text-font">
Machuca-Tzili, L., Monroy-Jaramillo, N., Gonzalez-del Angel, A., Kofman-Alfaro, S.
<strong>New mutations in the CBFA1 gene in two Mexican patients with cleidocranial dysplasia.</strong>
Clin. Genet. 61: 349-353, 2002.
[PubMed: 12081718]
[Full Text: https://doi.org/10.1034/j.1399-0004.2002.610505.x]
</p>
</li>
<li>
<p class="mim-text-font">
Moffatt, P., Amor, M. B., Glorieux, F. H., Roschger, P., Klaushofer, K., Schwartzentruber, J. A., Paterson, A. D., Hu, P., Marshall, C., FORGE Canada Consortium, Fahiminiya, S., Majewski, J., Beaulieu, C. L., Boycott, K. M., Rauch, F.
<strong>Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly is caused by a duplication in RUNX2.</strong>
Am. J. Hum. Genet. 92: 252-258, 2013.
[PubMed: 23290074]
[Full Text: https://doi.org/10.1016/j.ajhg.2012.12.001]
</p>
</li>
<li>
<p class="mim-text-font">
Morava, E., Karteszi, J., Weisenbach, J., Caliebe, A., Mundlos, S., Mehes, K.
<strong>Cleidocranial dysplasia with decreased bone density and biochemical findings of hypophosphatasia.</strong>
Europ. J. Pediat. 161: 619-622, 2002.
[PubMed: 12424590]
[Full Text: https://doi.org/10.1007/s00431-002-0977-x]
</p>
</li>
<li>
<p class="mim-text-font">
Mundlos, S., Otto, F., Mundlos, C., Mulliken, J. B., Aylsworth, A. S., Albright, S., Lindhout, D., Cole, W. G., Henn, W., Knoll, J. H. M., Owen, M. J., Mertelsmann, R., Zabel, B. U., Olsen, B. R.
<strong>Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia.</strong>
Cell 89: 773-779, 1997.
[PubMed: 9182765]
[Full Text: https://doi.org/10.1016/s0092-8674(00)80260-3]
</p>
</li>
<li>
<p class="mim-text-font">
Napierala, D., Sam, K., Morello, R., Zheng, Q., Munivez, E., Shivdasani, R. A., Lee, B.
<strong>Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome.</strong>
Hum. Molec. Genet. 17: 2244-2254, 2008.
[PubMed: 18424451]
[Full Text: https://doi.org/10.1093/hmg/ddn125]
</p>
</li>
<li>
<p class="mim-text-font">
Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., Shigesada, K., Ito, Y.
<strong>PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene.</strong>
Proc. Nat. Acad. Sci. 90: 6859-6863, 1993.
[PubMed: 8341710]
[Full Text: https://doi.org/10.1073/pnas.90.14.6859]
</p>
</li>
<li>
<p class="mim-text-font">
Otto, F., Kanegane, H., Mundlos, S.
<strong>Mutations in the RUNX2 gene in patients with cleidocranial dysplasia.</strong>
Hum. Mutat. 19: 209-216, 2002.
[PubMed: 11857736]
[Full Text: https://doi.org/10.1002/humu.10043]
</p>
</li>
<li>
<p class="mim-text-font">
Otto, F., Thornell. A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., Stamp, G. W. H., Beddington, R. S. P., Mundlos, S., Olsen, B. R., Selby, P. B., Owen, M. J.
<strong>Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development.</strong>
Cell 89: 765-771, 1997.
[PubMed: 9182764]
[Full Text: https://doi.org/10.1016/s0092-8674(00)80259-7]
</p>
</li>
<li>
<p class="mim-text-font">
Quack, I., Vonderstrass, B., Stock, M., Aylsworth, A. S., Becker, A., Brueton, L., Lee, P. J., Majewski, F., Mulliken, J. B., Suri, M., Zenker, M., Mundlos, S., Otto, F.
<strong>Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia.</strong>
Am. J. Hum. Genet. 65: 1268-1278, 1999.
[PubMed: 10521292]
[Full Text: https://doi.org/10.1086/302622]
</p>
</li>
<li>
<p class="mim-text-font">
Rodan, G. A., Harada, S.
<strong>The missing bone.</strong>
Cell 89: 677-680, 1997.
[PubMed: 9182754]
[Full Text: https://doi.org/10.1016/s0092-8674(00)80249-4]
</p>
</li>
<li>
<p class="mim-text-font">
Sadikovic, B., Yoshimoto, M., Chilton-MacNeill, S., Thorner, P., Squire, J. A., Zielenska, M.
<strong>Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling.</strong>
Hum. Molec. Genet. 18: 1962-1975, 2009.
[PubMed: 19286668]
[Full Text: https://doi.org/10.1093/hmg/ddp117]
</p>
</li>
<li>
<p class="mim-text-font">
Selby, P. B., Selby, P. R.
<strong>Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice: II. Description of proved mutations.</strong>
Mutat. Res. 51: 199-236, 1978.
[PubMed: 692541]
[Full Text: https://doi.org/10.1016/s0027-5107(78)80019-0]
</p>
</li>
<li>
<p class="mim-text-font">
Stein, G. S., Lian, J. B., van Wijnen, A. J., Stein, J. L., Montecino, M., Javed, A., Zaidi, S. K., Young, D. W., Choi, J.-Y., Pockwinse, S. M.
<strong>Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression.</strong>
Oncogene 23: 4315-4329, 2004.
[PubMed: 15156188]
[Full Text: https://doi.org/10.1038/sj.onc.1207676]
</p>
</li>
<li>
<p class="mim-text-font">
Terry, A., Kilbey, A., Vaillant, F., Stewart, M., Jenkins, A., Cameron, E., Neil, J. C.
<strong>Conservation and expression of an alternative 3-prime exon of Runx2 encoding a novel proline-rich C-terminal domain.</strong>
Gene 336: 115-125, 2004.
[PubMed: 15225881]
[Full Text: https://doi.org/10.1016/j.gene.2004.04.015]
</p>
</li>
<li>
<p class="mim-text-font">
Thomas, D. M., Johnson, S. A., Sims, N. A., Trivett, M. K., Slavin, J. L., Rubin, B. P., Waring, P., McArthur, G. A., Walkley, C. R., Holloway, A. J., Diyagama, D., Grim, J. E., Clurman, B. E., Bowtell, D. D. L., Lee, J.-S., Gutierrez, G. M., Piscopo, D. M., Carty, S. A., Hinds, P. W.
<strong>Terminal osteoblast differentiation, mediated by runx2 and p27(KIP1) is disrupted in osteosarcoma.</strong>
J. Cell Biol. 167: 925-934, 2004.
[PubMed: 15583032]
[Full Text: https://doi.org/10.1083/jcb.200409187]
</p>
</li>
<li>
<p class="mim-text-font">
Wilkie, A. O. M., Morriss-Kay, G. M.
<strong>Genetics of craniofacial development and malformation.</strong>
Nature Rev. Genet. 2: 458-468, 2001.
[PubMed: 11389462]
[Full Text: https://doi.org/10.1038/35076601]
</p>
</li>
<li>
<p class="mim-text-font">
Yoshida, C. A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K., Yamana, K., Zanma, A., Takada, K., Ito, Y., Komori, T.
<strong>Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog.</strong>
Genes Dev. 18: 952-963, 2004.
[PubMed: 15107406]
[Full Text: https://doi.org/10.1101/gad.1174704]
</p>
</li>
<li>
<p class="mim-text-font">
Yoshida, T., Kanegane, H., Osato, M., Yanagida, M., Miyawaki, T., Ito, Y., Shigesada, K.
<strong>Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations.</strong>
Am. J. Hum. Genet. 71: 724-738, 2002. Note: Erratum: Am. J. Hum. Genet. 72: 780 only, 2003.
[PubMed: 12196916]
[Full Text: https://doi.org/10.1086/342717]
</p>
</li>
<li>
<p class="mim-text-font">
Young, D. W., Hassan, M. Q., Pratap, J., Galindo, M., Zaidi, S. K., Lee, S., Yang, X., Xie, R., Javed, A., Underwood, J. M., Furcinitti, P., Imbalzano, A. N., Penman, S., Nickerson, J. A., Montecino, M. A., Lian, J. B., Stein, J. L., van Wijnen, A. J., Stein, G. S.
<strong>Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2.</strong>
Nature 445: 442-446, 2007.
[PubMed: 17251981]
[Full Text: https://doi.org/10.1038/nature05473]
</p>
</li>
<li>
<p class="mim-text-font">
Young, D. W., Hassan, M. Q., Yang, X.-Q., Galindo, M., Javed, A., Zaidi, S. K., Furcinitti, P., Lapointe, D., Montecino, M., Lian, J. B., Stein, J. L., van Wijnen, A. J., Stein, G. S.
<strong>Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2.</strong>
Proc. Nat. Acad. Sci. 104: 3189-3194, 2007.
[PubMed: 17360627]
[Full Text: https://doi.org/10.1073/pnas.0611419104]
</p>
</li>
<li>
<p class="mim-text-font">
Zaidi, S. K., Pande, S., Pratap, J., Gaur, T., Grigoriu, S., Ali, S. A., Stein, J. L., Lian, J. B., van Wijnen, A. J., Stein, G. S.
<strong>Runx2 deficiency and defective subnuclear targeting bypass senescence to promote immortalization and tumorigenic potential.</strong>
Proc. Nat. Acad. Sci. 104: 19861-19866, 2007.
[PubMed: 18077419]
[Full Text: https://doi.org/10.1073/pnas.0709650104]
</p>
</li>
<li>
<p class="mim-text-font">
Zhang, Y.-W., Bae, S.-C., Takahashi, E., Ito, Y.
<strong>The cDNA cloning of the transcripts of human PEBP2-alpha-A/CBFA1 mapped to 6p12.3-p21.1, the locus for cleidocranial dysplasia.</strong>
Oncogene 15: 367-371, 1997.
[PubMed: 9233771]
[Full Text: https://doi.org/10.1038/sj.onc.1201352]
</p>
</li>
<li>
<p class="mim-text-font">
Zheng, Q., Sebald, E., Zhou, G., Chen, Y., Wilcox, W., Lee, B., Krakow, D.
<strong>Dysregulation of chondrogenesis in human cleidocranial dysplasia.</strong>
Am. J. Hum. Genet. 77: 305-312, 2005.
[PubMed: 15952089]
[Full Text: https://doi.org/10.1086/432261]
</p>
</li>
<li>
<p class="mim-text-font">
Zheng, Q., Zhou, G., Chen, Y., Garcia-Rojas, X., Lee, B.
<strong>Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo.</strong>
J. Cell Biol. 162: 833-842, 2003.
[PubMed: 12952936]
[Full Text: https://doi.org/10.1083/jcb.200211089]
</p>
</li>
<li>
<p class="mim-text-font">
Zhou, G., Chen, Y., Zhou, L., Thirunavukkarasu, K., Hecht, J., Chitayat, D., Gelb, B. D., Pirinen, S., Berry, S. A., Greenberg, C. R., Karsenty, G., Lee, B.
<strong>CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia.</strong>
Hum. Molec. Genet. 8: 2311-2316, 1999.
[PubMed: 10545612]
[Full Text: https://doi.org/10.1093/hmg/8.12.2311]
</p>
</li>
<li>
<p class="mim-text-font">
Zhou, Y.-X., Xu, X., Chen, L., Li, C., Brodie, S. G., Deng, C.-X.
<strong>A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures.</strong>
Hum. Molec. Genet. 9: 2001-2008, 2000.
[PubMed: 10942429]
[Full Text: https://doi.org/10.1093/hmg/9.13.2001]
</p>
</li>
<li>
<p class="mim-text-font">
Ziros, P. G., Gil, A.-P. R., Georgakopoulos, T., Habeos, I., Kletsas, D., Basdra, E. K., Papavassiliou, A. G.
<strong>The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells.</strong>
J. Biol. Chem. 277: 23934-23941, 2002.
[PubMed: 11960980]
[Full Text: https://doi.org/10.1074/jbc.M109881200]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Marla J. F. O&#x27;Neill - updated : 10/24/2022<br>Sonja A. Rasmussen - updated : 10/11/2019<br>Marla J. F. O&#x27;Neill - updated : 3/13/2013<br>Marla J. F. O&#x27;Neill - updated : 3/5/2013<br>Cassandra L. Kniffin - updated : 3/6/2012<br>Ada Hamosh - updated : 6/9/2010<br>George E. Tiller - updated : 3/1/2010<br>Matthew B. Gross - updated : 10/5/2009<br>Patricia A. Hartz - updated : 10/5/2009<br>George E. Tiller - updated : 7/31/2009<br>Patricia A. Hartz - updated : 6/4/2008<br>Patricia A. Hartz - updated : 1/29/2008<br>Patricia A. Hartz - updated : 4/13/2007<br>Ada Hamosh - updated : 2/23/2007<br>Victor A. McKusick - updated : 2/15/2006<br>Marla J. F. O&#x27;Neill - updated : 1/12/2006<br>Marla J. F. O&#x27;Neill - updated : 8/31/2005<br>Gregory S. Antonarakis - updated : 8/16/2005<br>Patricia A. Hartz - updated : 7/19/2005<br>Patricia A. Hartz - updated : 1/18/2005<br>Cassandra L. Kniffin - updated : 8/11/2004<br>Patricia A. Hartz - updated : 6/18/2004<br>Patricia A. Hartz - updated : 4/20/2004<br>Patricia A. Hartz - updated : 10/29/2002<br>Victor A. McKusick - updated : 10/29/2002<br>Victor A. McKusick - updated : 8/27/2002<br>Victor A. McKusick - updated : 4/4/2002<br>Ada Hamosh - updated : 1/23/2002<br>Victor A. McKusick - updated : 1/14/2002<br>Paul J. Converse - updated : 12/6/2001<br>Victor A. McKusick - updated : 9/19/2001<br>George E. Tiller - updated : 10/26/2000<br>Victor A. McKusick - updated : 12/2/1999<br>Victor A. McKusick - updated : 11/16/1999<br>Victor A. McKusick - updated : 10/21/1999<br>Victor A. McKusick - updated : 2/19/1998<br>Victor A. McKusick - updated : 9/19/1997<br>Victor A. McKusick - updated : 7/3/1997<br>Victor A. McKusick - updated : 6/20/1997
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 12/1/1994
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
alopez : 04/09/2024<br>carol : 10/24/2022<br>carol : 11/08/2019<br>carol : 11/08/2019<br>carol : 10/11/2019<br>mgross : 09/06/2018<br>carol : 12/20/2017<br>alopez : 09/29/2016<br>carol : 04/14/2016<br>mgross : 4/13/2016<br>alopez : 2/19/2015<br>carol : 3/13/2013<br>carol : 3/13/2013<br>terry : 3/13/2013<br>terry : 3/13/2013<br>alopez : 3/7/2013<br>terry : 3/5/2013<br>terry : 8/31/2012<br>carol : 3/8/2012<br>ckniffin : 3/6/2012<br>carol : 6/17/2011<br>alopez : 6/9/2010<br>wwang : 3/1/2010<br>mgross : 10/5/2009<br>terry : 10/5/2009<br>wwang : 8/17/2009<br>terry : 7/31/2009<br>terry : 10/8/2008<br>wwang : 6/6/2008<br>terry : 6/4/2008<br>mgross : 2/7/2008<br>terry : 1/29/2008<br>mgross : 4/16/2007<br>terry : 4/13/2007<br>mgross : 3/9/2007<br>alopez : 3/2/2007<br>terry : 2/23/2007<br>wwang : 6/1/2006<br>terry : 5/25/2006<br>alopez : 2/16/2006<br>terry : 2/15/2006<br>wwang : 1/19/2006<br>terry : 1/12/2006<br>wwang : 8/31/2005<br>carol : 8/16/2005<br>mgross : 7/25/2005<br>mgross : 7/25/2005<br>terry : 7/19/2005<br>tkritzer : 1/20/2005<br>mgross : 1/18/2005<br>carol : 8/11/2004<br>ckniffin : 8/11/2004<br>mgross : 6/28/2004<br>terry : 6/18/2004<br>mgross : 4/20/2004<br>carol : 7/10/2003<br>mgross : 10/29/2002<br>mgross : 10/29/2002<br>carol : 10/29/2002<br>tkritzer : 10/29/2002<br>terry : 10/29/2002<br>tkritzer : 9/10/2002<br>tkritzer : 8/29/2002<br>terry : 8/27/2002<br>cwells : 4/15/2002<br>cwells : 4/9/2002<br>terry : 4/4/2002<br>alopez : 1/25/2002<br>terry : 1/23/2002<br>carol : 1/17/2002<br>mcapotos : 1/14/2002<br>mgross : 12/6/2001<br>mcapotos : 9/19/2001<br>joanna : 4/25/2001<br>carol : 11/2/2000<br>mcapotos : 10/26/2000<br>alopez : 2/23/2000<br>alopez : 12/8/1999<br>alopez : 12/2/1999<br>alopez : 12/2/1999<br>mgross : 11/23/1999<br>terry : 11/16/1999<br>carol : 11/15/1999<br>carol : 11/10/1999<br>carol : 10/21/1999<br>carol : 10/21/1999<br>carol : 10/21/1999<br>terry : 6/4/1998<br>dholmes : 3/10/1998<br>mark : 2/25/1998<br>terry : 2/19/1998<br>terry : 9/19/1997<br>mark : 7/8/1997<br>terry : 7/3/1997<br>alopez : 6/20/1997<br>alopez : 6/17/1997<br>carol : 3/19/1995<br>carol : 12/1/1994
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 5, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>