nih-gov/www.ncbi.nlm.nih.gov/omim/310200

10779 lines
1.2 MiB

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- #310200 - MUSCULAR DYSTROPHY, DUCHENNE TYPE; DMD
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=310200"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">#310200</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#phenotypeMap"><strong>Phenotype-Gene Relationships</strong></a>
</li>
<li role="presentation">
<a href="/clinicalSynopsis/310200"><strong>Clinical Synopsis</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#description">Description</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalFeatures">Clinical Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#otherFeatures">Other Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#inheritance">Inheritance</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cytogenetics">Cytogenetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#diagnosis">Diagnosis</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalManagement">Clinical Management</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#populationGenetics">Population Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#animalModel">Animal Model</a>
</li>
<li role="presentation">
<a href="#seeAlso"><strong>See Also</strong></a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://clinicaltrials.gov/search?cond=MUSCULAR DYSTROPHY, DUCHENNE TYPE" class="mim-tip-hint" title="A registry of federally and privately supported clinical trials conducted in the United States and around the world." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Clinical Trials', 'domain': 'clinicaltrials.gov'})">Clinical Trials</a></div>
<div><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=13913&Typ=Pat" class="mim-tip-hint" title="A list of European laboratories that offer genetic testing." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">EuroGentest</a></div>
<div><a href="#mimGeneReviewsFold" id="mimGeneReviewsToggle" data-toggle="collapse" class="mim-tip-hint mimTriangleToggle" title="Expert-authored, peer-reviewed descriptions of inherited disorders including the uses of genetic testing in diagnosis, management, and genetic counseling."><span id="mimGeneReviewsToggleTriangle" class="small" style="margin-left: -0.8em;">&#9658;</span>Gene Reviews</div>
<div id="mimGeneReviewsFold" class="collapse">
<div style="margin-left: 0.5em;"><a href="https://www.ncbi.nlm.nih.gov/books/NBK1119/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Gene Reviews', 'domain': 'ncbi.nlm.nih.gov'})">Dystrophinopathies</a></div><div style="margin-left: 0.5em;"><a href="https://www.ncbi.nlm.nih.gov/books/NBK1431/" title="NR0B1-Related Adrenal Hypoplasia Congenita" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Gene Reviews', 'domain': 'ncbi.nlm.nih.gov'})">NR0B1-Related Adrenal Hypo…</a></div>
</div>
<div><a href="https://www.diseaseinfosearch.org/x/2340" class="mim-tip-hint" title="Network of disease-specific advocacy organizations, universities, private companies, government agencies, and public policy organizations." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Genetic Alliance', 'domain': 'diseaseinfosearch.org'})">Genetic Alliance</a></div>
<div><a href="https://medlineplus.gov/genetics/condition/duchenne-and-becker-muscular-dystrophy" class="mim-tip-hint" title="Consumer-friendly information about the effects of genetic variation on human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">MedlinePlus Genetics</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=310200[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
<div><a href="https://www.acmg.net/PDFLibrary/DMD_Pathogenic_Variants.pdf" class="mim-tip-hint" title="Information and resources for newborn screening and genetics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Newborn Screening', 'domain': 'www.acmg.net'})">Newborn Screening</a></div>
<div><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=98896" class="mim-tip-hint" title="European reference portal for information on rare diseases and orphan drugs." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">OrphaNet</a></div>
<div><a href="https://www.possumcore.com/nuxeo/nxdoc/default/3f1878a8-b114-4548-8765-a5dbe8f5f039/view_documents?source=omim" class="mim-tip-hint" title="A dysmorphology database of multiple malformations; metabolic, teratogenic, chromosomal, and skeletal syndromes; and their images." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'POSSUM', 'domain': 'possum.net.au'})">POSSUM</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/disease/DOID:11723" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="http://www.informatics.jax.org/disease/310200" class="mim-tip-hint" title="Phenotypes, alleles, and disease models from Mouse Genome Informatics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Phenotype', 'domain': 'informatics.jax.org'})">MGI Mouse Phenotype</a></div>
<div><a href="https://omia.org/OMIA001081/" class="mim-tip-hint" title="Online Mendelian Inheritance in Animals (OMIA) is a database of genes, inherited disorders and traits in 191 animal species (other than human and mouse.)" target="_blank">OMIA</a></div>
<div><a href="https://wormbase.org/resources/disease/DOID:11723" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Wormbase Disease Ontology', 'domain': 'wormbase.org'})">Wormbase Disease Ontology</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellLines">
<span class="panel-title">
<span class="small">
<a href="#mimCellLinesLinksFold" id="mimCellLinesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellLinesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cell Lines</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellLinesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://catalog.coriell.org/Search?q=OmimNum:310200" class="definition" title="Coriell Cell Repositories; cell cultures and DNA derived from cell cultures." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'CCR', 'domain': 'ccr.coriell.org'})">Coriell</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
<a href="#" class="mim-tip-icd" qtip_title="<strong>ICD+</strong>" qtip_text="
<strong>SNOMEDCT:</strong> 387732009, 76670001<br />
<strong>ORPHA:</strong> 98896<br />
<strong>DO:</strong> 11723<br />
">ICD+</a>
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Phenotype description, molecular basis known">
<span class="text-danger"><strong>#</strong></span>
310200
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
MUSCULAR DYSTROPHY, DUCHENNE TYPE; DMD
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
DUCHENNE MUSCULAR DYSTROPHY<br />
MUSCULAR DYSTROPHY, PSEUDOHYPERTROPHIC PROGRESSIVE, DUCHENNE TYPE
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="phenotypeMap" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/X/149?start=-3&limit=10&highlight=149">
Xp21.2-p21.1
</a>
</span>
</td>
<td>
<span class="mim-font">
Duchenne muscular dystrophy
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/310200"> 310200 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="X-linked recessive">XLR</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
DMD
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/300377"> 300377 </a>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group ">
<a href="/clinicalSynopsis/310200" class="btn btn-warning" role="button"> Clinical Synopsis </a>
<button type="button" id="mimPhenotypicSeriesToggle" class="btn btn-warning dropdown-toggle mimSingletonFoldToggle" data-toggle="collapse" href="#mimClinicalSynopsisFold" onclick="ga('send', 'event', 'Unfurl', 'ClinicalSynopsis', 'omim.org')">
<span class="caret"></span>
<span class="sr-only">Toggle Dropdown</span>
</button>
</div>
&nbsp;
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/310200" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/310200" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
<div>
<p />
</div>
<div id="mimClinicalSynopsisFold" class="well well-sm collapse mimSingletonToggleFold">
<div class="small" style="margin: 5px">
<div>
<div>
<span class="h5 mim-font">
<strong> INHERITANCE </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- X-linked recessive <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1845977&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1845977</a>, <a href="https://bioportal.bioontology.org/search?q=C1279481&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1279481</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001419" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001419</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001419" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001419</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> HEAD & NECK </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Eyes </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Red-green color defect in many patients with deletion downstream of exon 30 <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C2748929&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C2748929</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> CARDIOVASCULAR </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Heart </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Cardiomyopathy, dilated <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/399020009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">399020009</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/195021004" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">195021004</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/I42.0" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">I42.0</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0007193&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0007193</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001644" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001644</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001644" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001644</a>]</span><br /> -
Congestive heart failure <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/42343007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">42343007</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/I50.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">I50.9</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/428.0" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">428.0</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0018802&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0018802</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001635" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001635</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001635" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001635</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> RESPIRATORY </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Lung </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Pulmonary hypoventilation <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1839667&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1839667</a>]</span><br /> -
Respiratory failure <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/409622000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">409622000</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/J96.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">J96.9</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1145670&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1145670</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002878" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002878</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002878" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002878</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> SKELETAL </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Spine </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Increased lordosis <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1839663&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1839663</a>]</span><br /> -
Scoliosis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/298382003" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">298382003</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/20944008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">20944008</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/111266001" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">111266001</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/M41.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">M41.9</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/M41" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">M41</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/Q67.5" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">Q67.5</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0559260&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0559260</a>, <a href="https://bioportal.bioontology.org/search?q=C0036439&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0036439</a>, <a href="https://bioportal.bioontology.org/search?q=C0700208&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0700208</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002650" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002650</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002650" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002650</a>]</span><br />
</span>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<em> Limbs </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Flexion contractures <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/88565003" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">88565003</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/203598005" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">203598005</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/785817002" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">785817002</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/385522000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">385522000</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/M21.2" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">M21.2</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/M21.20" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">M21.20</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0333068&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0333068</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001371" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001371</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001371" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001371</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> MUSCLE, SOFT TISSUES </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Calf muscle pseudohypertrophy <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1839666&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1839666</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003707" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003707</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003707" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003707</a>]</span><br /> -
Weakness <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/13791008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">13791008</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/R53.81" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">R53.81</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/R53.1" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">R53.1</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/799.3" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">799.3</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C3714552&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C3714552</a>, <a href="https://bioportal.bioontology.org/search?q=C0004093&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0004093</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0025406" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0025406</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0025406" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0025406</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> NEUROLOGIC </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Central Nervous System </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Mental retardation, mild (20% have more severe mental retardation) <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/86765009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">86765009</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/F70" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">F70</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/317" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">317</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0026106&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0026106</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001256" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001256</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001256" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001256</a>]</span><br />
</span>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<em> Peripheral Nervous System </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Hypotonia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/398151007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">398151007</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/398152000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">398152000</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0026827&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0026827</a>, <a href="https://bioportal.bioontology.org/search?q=C1858120&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1858120</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001290" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001290</a>, <a href="https://hpo.jax.org/app/browse/term/HP:0001252" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001252</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001252" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001252</a>]</span><br /> -
Waddling gait <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/271706000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">271706000</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0231712&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0231712</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002515" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002515</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002515" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002515</a>]</span><br /> -
Hyporeflexia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/835279003" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">835279003</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/405946002" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">405946002</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0700078&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0700078</a>, <a href="https://bioportal.bioontology.org/search?q=C0151888&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0151888</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001265" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001265</a>, <a href="https://hpo.jax.org/app/browse/term/HP:0001315" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001315</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001265" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001265</a>]</span><br /> -
Positive Gowers sign <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/298294005" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">298294005</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0575071&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0575071</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003391" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003391</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003391" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003391</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> LABORATORY ABNORMALITIES </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- High serum creatine kinase <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0241005&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0241005</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003236" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003236</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003236" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003236</a>]</span><br /> -
Abnormal electrocardiogram <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/102594003" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">102594003</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0522055&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0522055</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003115" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003115</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003115" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003115</a>]</span><br /> -
Absent dystrophin on muscle biopsy <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1839665&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1839665</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> MISCELLANEOUS </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Usual onset before age 6 years and death by age 20<br /> -
Incidence of 1 in 3,500 boys<br /> -
About 20% of female mutation carriers may show mild muscle weakness<br /> -
About 8% of female mutation carriers develop dilated cardiomyopathy<br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> MOLECULAR BASIS </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Caused by mutation in the dystrophin gene (DMD, <a href="/entry/300377#0001">300377.0001</a>)<br />
</span>
</div>
</div>
</div>
<div class="text-right">
<a href="#mimClinicalSynopsisFold" data-toggle="collapse">&#9650;&nbsp;Close</a>
</div>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4 href="#mimTextFold" id="mimTextToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimTextToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div id="mimTextFold" class="collapse in ">
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because Duchenne muscular dystrophy (DMD) is caused by mutation in the gene encoding dystrophin (DMD; <a href="/entry/300377">300377</a>) on chromosome Xp21.</p><p>Becker muscular dystrophy (BMD; <a href="/entry/300376">300376</a>) is also caused by mutation in the DMD gene.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="description" class="mim-anchor"></a>
<h4 href="#mimDescriptionFold" id="mimDescriptionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimDescriptionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<div id="mimDescriptionFold" class="collapse in ">
<span class="mim-text-font">
<p>Dystrophin-associated muscular dystrophies range from the severe Duchenne muscular dystrophy (DMD) to the milder Becker muscular dystrophy (BMD; <a href="/entry/300376">300376</a>). Mapping and molecular genetic studies showed that both are the result of mutations in the huge gene that encodes dystrophin, also symbolized DMD. Approximately two-thirds of the mutations in both forms are deletions of one or many exons in the dystrophin gene. Although there is no clear correlation found between the extent of the deletion and the severity of the disorder, DMD deletions usually result in frameshift. <a href="#21" class="mim-tip-reference" title="Boland, B. J., Silbert, P. L., Groover, R. V., Wollan, P. C., Silverstein, M. D. &lt;strong&gt;Skeletal, cardiac, and smooth muscle failure in Duchenne muscular dystrophy.&lt;/strong&gt; Pediat. Neurol. 14: 7-12, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8652023/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8652023&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0887-8994(95)00251-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8652023">Boland et al. (1996)</a> studied a retrospective cohort of 33 male patients born between 1953 and 1983. The mean age at DMD diagnosis was 4.6 years; wheelchair dependency had a median age of 10 years; cardiac muscle failure developed in 15% of patients with a median age of 21.5 years; smooth muscle dysfunction in the digestive or urinary tract occurred in 21% and 6% of the patients, respectively, at a median age of 15 years. In this cohort, death occurred at a median age of 17 years. The authors commented that the diagnosis of DMD is being made at an earlier age but survival has not changed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8652023" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalFeatures" class="mim-anchor"></a>
<h4 href="#mimClinicalFeaturesFold" id="mimClinicalFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<div id="mimClinicalFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Skeletal Muscle</em></strong></p><p>
The most distinctive feature of Duchenne muscular dystrophy is a progressive proximal muscular dystrophy with characteristic pseudohypertrophy of the calves. The bulbar (extraocular) muscles are spared but the myocardium is affected. There is massive elevation of creatine kinase levels in the blood, myopathic changes by electromyography, and myofiber degeneration with fibrosis and fatty infiltration on muscle biopsy.The onset of Duchenne muscular dystrophy usually occurs before age 3 years, and the victim is chairridden by age 12 and dead by age 20. The onset of Becker muscular dystrophy is often in the 20s and 30s and survival to a relatively advanced age is frequent.</p><p><a href="#128" class="mim-tip-reference" title="Moser, H., Emery, A. E. H. &lt;strong&gt;The manifesting carrier in Duchenne muscular dystrophy.&lt;/strong&gt; Clin. Genet. 5: 271-284, 1974.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4854942/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4854942&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1974.tb01694.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="4854942">Moser and Emery (1974)</a> found that some female heterozygotes had myopathy resembling autosomal recessive limb-girdle muscular dystrophy (<a href="/entry/253600">253600</a>). Serum creatine kinase was particularly elevated in these patients. In most populations, the frequency of manifesting heterozygotes is about the same as that of females with limb-girdle muscular dystrophy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4854942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#179" class="mim-tip-reference" title="Soloway, S. S., Mudge, G. H. &lt;strong&gt;Acute hypokalemia as a possible cause of death in a patient with advanced muscular dystrophy.&lt;/strong&gt; Johns Hopkins Med. J. 144: 166-167, 1979.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/449173/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;449173&lt;/a&gt;]" pmid="449173">Soloway and Mudge (1979)</a> remarked that patients with advanced muscular dystrophy may develop hypokalemia from insults (vomiting, diarrhea, diuretics) that would have little effect on normal persons. Reduced intracellular potassium stores are responsible for this perilous situation, which may be the mechanism of death. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=449173" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In an Italian boy with congenital myopathy, born to nonconsanguineous parents, <a href="#152" class="mim-tip-reference" title="Prelle, A., Medori, R., Moggio, M., Chan, H. W., Gallanti, A., Scarlato, G., Bonilla, E. &lt;strong&gt;Dystrophin deficiency in a case of congenital myopathy.&lt;/strong&gt; J. Neurol. 239: 76-78, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1552307/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1552307&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00862976&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1552307">Prelle et al. (1992)</a> found absence of dystrophin in the patient's muscle by immunohistochemical methods and a deletion of the 5-prime end of the dystrophin gene. Although the patient showed severe mental retardation, there was no cerebral atrophy. Cardiomyopathy was also present. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1552307" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#61" class="mim-tip-reference" title="Frigeri, A., Nicchia, G. P., Verbavatz, J. M., Valenti, G., Svelto, M. &lt;strong&gt;Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle.&lt;/strong&gt; J. Clin. Invest. 102: 695-703, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9710437/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9710437&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI2545&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9710437">Frigeri et al. (1998)</a> analyzed AQP4 expression in the skeletal muscle of mdx mice; immunofluorescence experiments showed a marked reduction of aquaporin-4 (AQP4; <a href="/entry/600308">600308</a>) expression, suggesting a critical role in the membrane alteration of DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9710437" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#202" class="mim-tip-reference" title="Wakayama, Y., Jimi, T., Inoue, M., Kojima, H., Murahashi, M., Kumagai, T., Yamashita, S., Hara, H., Shibuya, S. &lt;strong&gt;Reduced aquaporin 4 expression in the muscle plasma membrane of patients with Duchenne muscular dystrophy.&lt;/strong&gt; Arch. Neurol. 59: 431-437, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11890849/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11890849&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1001/archneur.59.3.431&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11890849">Wakayama et al. (2002)</a> analyzed skeletal muscle samples from 6 patients with DMD and found markedly reduced AQP4 expression by immunohistochemical staining and markedly decreased levels of AQP4 mRNA as measured by RT-PCR, compared to controls. Genomic analysis of the AQP4 gene revealed no abnormalities. The authors concluded that the reduced mRNA was due to either decreased transcription or increased degradation of the message. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11890849" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#136" class="mim-tip-reference" title="Noguchi, S., Tsukahara, T., Fujita, M., Kurokawa, R., Tachikawa, M., Toda, T., Tsujimoto, A., Arahata, K., Nishino, I. &lt;strong&gt;cDNA microarray analysis of individual Duchenne muscular dystrophy patients.&lt;/strong&gt; Hum. Molec. Genet. 12: 595-600, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12620965/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12620965&lt;/a&gt;]" pmid="12620965">Noguchi et al. (2003)</a> performed cDNA microarray analysis on skeletal muscle biopsy specimens from 6 patients with DMD. There was increased expression of genes related to immune response, sarcomere, extracellular matrix proteins, and signaling or cell growth. Upregulation of these genes reflected dystrophic changes, myofiber necrosis, inflammation, and muscle regeneration. Genes related to muscle homeostasis and energy metabolism were downregulated. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12620965" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Cardiac Muscle</em></strong></p><p>
Myocardial involvement appeared in a high percentage of DMD patients by about 6 years of age; it was present in 95% of cases by the last years of life. Severe cardiomyopathy did not develop before age 21 in BMD and few patients showed any cardiac signs before age 13 (<a href="#135" class="mim-tip-reference" title="Nigro, G., Comi, L. I., Limongelli, F. M., Giugliano, M. A. M., Politano, L., Petretta, V., Passamano, L., Stefanelli, S. &lt;strong&gt;Prospective study of X-linked progressive muscular dystrophy in Campania.&lt;/strong&gt; Muscle Nerve 6: 253-262, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6683357/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6683357&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/mus.880060403&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6683357">Nigro et al., 1983</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6683357" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#124" class="mim-tip-reference" title="Mirabella, M., Servidei, S., Manfredi, G., Ricci, E., Frustaci, A., Bertini, E., Rana, M., Tonali, P. &lt;strong&gt;Cardiomyopathy may be the only clinical manifestation in female carriers of Duchenne muscular dystrophy.&lt;/strong&gt; Neurology 43: 2342-2345, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8232953/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8232953&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/wnl.43.11.2342&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8232953">Mirabella et al. (1993)</a> noted that electrocardiographic abnormalities had been reported in 6.6 to 16.4% of DMD heterozygous females and that in one carrier female severe cardiomyopathy had been described in association with muscle weakness. They reported 2 carriers with dilated cardiomyopathy and increased serum CK but no symptoms of muscle weakness. Heart biopsies in both patients showed absence of dystrophin in many muscle fibers. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8232953" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Smooth Muscle</em></strong></p><p>
Noting that in DMD functional impairment of smooth muscle in the gastrointestinal tract can cause acute gastric dilatation and intestinal pseudoobstruction that may be fatal, <a href="#11" class="mim-tip-reference" title="Barohn, R. J., Levine, E. J., Olson, J. O., Mendell, J. R. &lt;strong&gt;Gastric hypomotility in Duchenne&#x27;s muscular dystrophy.&lt;/strong&gt; New Eng. J. Med. 319: 15-18, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3380114/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3380114&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198807073190103&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3380114">Barohn et al. (1988)</a> studied gastric emptying in 11 patients with DMD. Strikingly delayed gastric emptying times were observed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3380114" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Enigmatically, the extraocular muscles (EOMs) remain clinically unaffected during the course of Duchenne muscular dystrophy (<a href="#92" class="mim-tip-reference" title="Kaminski, H. J., Al-Hakim, M., Leigh, R. J., Katirji, M. B., Ruff, R. L. &lt;strong&gt;Extraocular muscles are spared in advanced Duchenne dystrophy.&lt;/strong&gt; Ann. Neurol. 32: 586-588, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1456746/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1456746&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ana.410320418&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1456746">Kaminski et al., 1992</a>). <a href="#95" class="mim-tip-reference" title="Khurana, T. S., Prendergast, R. A., Alameddine, H. S., Tome, F. M. S., Fardeau, M., Arahata, K., Sugita, H., Kunkel, L. M. &lt;strong&gt;Absence of extraocular muscle pathology in Duchenne&#x27;s muscular dystrophy: role for calcium homeostasis in extraocular muscle sparing.&lt;/strong&gt; J. Exp. Med. 182: 467-475, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7629506/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7629506&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.182.2.467&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7629506">Khurana et al. (1995)</a> showed that dystrophin deficiency does not result in myonecrosis or pathologically elevated levels of intracellular calcium in the EOMs. They reported in vitro experiments demonstrating that extraocular muscles are inherently more resistant to necrosis caused by pharmacologically elevated intracellular calcium levels when compared with pectoral musculature. They suggested that the EOMs are spared in DMD because of their intrinsic ability to maintain calcium homeostasis better than other striated muscle groups. This suggested further that modulating levels of intracellular calcium in muscle may be of potential therapeutic use in DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7629506+1456746" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Nervous System</em></strong></p><p>
Mental retardation of mild degree is a pleiotropic effect of the Duchenne gene (<a href="#226" class="mim-tip-reference" title="Zellweger, H., Niedermeyer, E. &lt;strong&gt;Central nervous system manifestations in childhood muscular dystrophy (CMD) I.&lt;/strong&gt; Ann. Paediat. 205: 25-42, 1965.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/5897669/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;5897669&lt;/a&gt;]" pmid="5897669">Zellweger and Niedermeyer, 1965</a>). As indicated later, the finding of dystrophin mRNA in brain may bear a relationship to the mental retardation in DMD patients. <a href="#54" class="mim-tip-reference" title="Emery, A. E. H., Skinner, R., Holloway, S. &lt;strong&gt;A study of possible heterogeneity in Duchenne muscular dystrophy.&lt;/strong&gt; Clin. Genet. 15: 444-449, 1979.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/571778/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;571778&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1979.tb01777.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="571778">Emery et al. (1979)</a> sought heterogeneity in DMD as one explanation for the high birth incidence. Affected boys were categorized according to whether they had severe mental handicap or not. Those with severe mental defect had later age of onset and confinement to wheelchair, less marked fall in creatine kinase with age, and a greater urinary excretion of certain amino acids. In 50 DMD patients with a mean age of 11.1 years (range 3.5 to 20.3), <a href="#24" class="mim-tip-reference" title="Bresolin, N., Castelli, E., Comi, P., Felisari, G., Bardoni, A., Perani, D., Grassi, F., Turconi, A., Mazzucchelli, F., Gallotti, D., Moggio, M., Prelle, A., Ausenda, C., Fazio, G., Scarlato, G. &lt;strong&gt;Cognitive impairment in Duchenne muscular dystrophy.&lt;/strong&gt; Neuromusc. Disord. 4: 359-369, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7981593/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7981593&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0960-8966(94)90072-8&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7981593">Bresolin et al. (1994)</a> found that 31% had a Wechsler full intelligence quotient (FIQ) lower than 75 and that only 24% had appropriate IQ levels by this index. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7981593+571778+5897669" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#31" class="mim-tip-reference" title="Bushby, K. M. D., Appleton, R., Anderson, L. V. B., Welch, J. L., Kelly, P., Gardner-Medwin, D. &lt;strong&gt;Deletion status and intellectual impairment in Duchenne muscular dystrophy.&lt;/strong&gt; Dev. Med. Child Neurol. 37: 260-269, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7890131/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7890131&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1469-8749.1995.tb12000.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7890131">Bushby et al. (1995)</a> examined the hypothesis that the nature of the dystrophin mutation may influence the development of mental retardation. Previously, it had been shown that deletions removing the brain-specific promoter were compatible with normal intelligence. <a href="#31" class="mim-tip-reference" title="Bushby, K. M. D., Appleton, R., Anderson, L. V. B., Welch, J. L., Kelly, P., Gardner-Medwin, D. &lt;strong&gt;Deletion status and intellectual impairment in Duchenne muscular dystrophy.&lt;/strong&gt; Dev. Med. Child Neurol. 37: 260-269, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7890131/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7890131&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1469-8749.1995.tb12000.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7890131">Bushby et al. (1995)</a> studied 74 boys with DMD, 18% of which had a full scale IQ of below 70. The authors found no significant IQ difference between the patients with promoter deletions and those without, nor did they find a relationship between the length of the deletion and full scale IQ. They found, however, that boys with distal deletions were more likely to be mentally retarded than were those with proximal deletions. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7890131" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Retinal Function</em></strong></p><p>
Abnormal retinal neurotransmission as measured by electroretinography (ERG) was observed in boys with DMD by <a href="#40" class="mim-tip-reference" title="Cibis, G. W., Fitzgerald, K. M., Harris, D. J., Rothberg, P. G., Rupani, M. &lt;strong&gt;The effects of dystrophin gene mutations on the ERG in mice and humans.&lt;/strong&gt; Invest. Ophthal. Vis. Sci. 34: 3646-3652, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8258524/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8258524&lt;/a&gt;]" pmid="8258524">Cibis et al. (1993)</a> and <a href="#151" class="mim-tip-reference" title="Pillers, D.-A. M., Bulman, D. E., Weleber, R. G., Sigesmund, D. A., Musarella, M. A., Powell, B. R., Murphey, W. H., Westall, C., Panton, C., Becker, L. E., Worton, R. G., Ray, P. N. &lt;strong&gt;Dystrophin expression in the human retina is required for normal function as defined by electroretinography.&lt;/strong&gt; Nature Genet. 4: 82-86, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8513332/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8513332&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0593-82&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8513332">Pillers et al. (1993)</a>. Electroretinography is a recording of summed electrical signal produced by the retina when stimulated with a flash of light. The dark-adapted ERGs, recorded under scotopic testing conditions, have shown normal a-waves (a response of negative polarity generated by the photoreceptors) but reduced amplitude rod-isolated b-waves (a response of positive polarity originating primarily from the ON-bipolar cells) in DMD patients. This type of ERG abnormality with profound b-wave suppression is commonly associated with night blindness; however, there have been no reports of night blindness or any other visual abnormality in boys with DMD, and dark-adaptometry studies have been normal. <a href="#59" class="mim-tip-reference" title="Fitzgerald, K. M., Cibis, G. W., Giambrone, S. A., Harris, D. J. &lt;strong&gt;Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway.&lt;/strong&gt; J. Clin. Invest. 93: 2425-2430, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8200977/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8200977&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI117250&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8200977">Fitzgerald et al. (1994)</a> used long-duration stimuli to separate ON (depolarizing bipolar cell) and OFF (hyperpolarizing bipolar cell) contributions to the cone-dominated ERG to understand better how the retina functions in boys with DMD. In the ERGs of 11 DMD boys, they found abnormal signal transmission at the level of the photoreceptor and ON-bipolar cell in both the rod and cone generated responses. <a href="#91" class="mim-tip-reference" title="Jensen, H., Warburg, M., Sjo, O., Schwartz, M. &lt;strong&gt;Duchenne muscular dystrophy: negative electroretinograms and normal dark adaptation: reappraisal of assignment of X linked incomplete congenital stationary night blindness.&lt;/strong&gt; J. Med. Genet. 32: 348-351, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7616540/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7616540&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.32.5.348&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7616540">Jensen et al. (1995)</a> examined 16 boys with DMD/BMD of whom 10 had negative ERGs. Eight of the boys had DMD gene deletions downstream from exon 44. Normal dark adaptation thresholds were observed in all patients and there were no anomalous visual functions. Hence, negative ERG in DMD/BMD is not associated with eye disease. Normal ERGs were found in 6 boys with DMD/BMD. <a href="#91" class="mim-tip-reference" title="Jensen, H., Warburg, M., Sjo, O., Schwartz, M. &lt;strong&gt;Duchenne muscular dystrophy: negative electroretinograms and normal dark adaptation: reappraisal of assignment of X linked incomplete congenital stationary night blindness.&lt;/strong&gt; J. Med. Genet. 32: 348-351, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7616540/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7616540&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.32.5.348&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7616540">Jensen et al. (1995)</a> speculated that a retinal or glial dystrophin may be truncated or absent in the boys with negative ERGs. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8200977+8258524+8513332+7616540" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The ophthalmic features of DMD include normal ERG a-wave with reduced b-wave, normal visual acuity, and normal retinal morphology. Immunocytochemistry revealed strong AQP4 water channel expression in Muller cells in mouse retina and in fibrous astrocytes in optic nerve. <a href="#109" class="mim-tip-reference" title="Li, J., Patil, R. V., Verkman, A. S. &lt;strong&gt;Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels.&lt;/strong&gt; Invest. Ophthal. Vis. Sci. 43: 573-579, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11818406/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11818406&lt;/a&gt;]" pmid="11818406">Li et al. (2002)</a> compared ERGs and retinal morphology in wildtype mice and transgenic knockout mice with no Aqp4. Significantly reduced ERG b-wave potentials were recorded in 10-month-old null mice with smaller changes in 1-month-old mice. Morphologic analysis of retina by light and electron microscopy showed no differences in retinal ultrastructure. That retinal function was mildly impaired in Aqp4-null mice suggested a role for Aqp4 in Muller cell fluid balance. The authors suggested that AQP4 expression in supportive cells in the nervous system facilitated neural signal transduction in nearby electrically excitable cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11818406" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#43" class="mim-tip-reference" title="Costa, M. F., Oliveira, A. G. F., Feitosa-Santana, C., Zatz, M., Ventura, D. F. &lt;strong&gt;Red-green color vision impairment in Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Hum. Genet. 80: 1064-1075, 2007. Note: Erratum: Am. J. Hum. Genet. 83: 148-149, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17503325/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17503325&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17503325[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/518127&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17503325">Costa et al. (2007)</a> evaluated color vision in 44 patients with Duchenne muscular dystrophy using 4 different color tests. Patients were divided into 2 groups according to the region of deletion in the dystrophin gene: 12 patients had deletion upstream of exon 30, and 32 downstream of exon 30. Of the patients with DMD, 47% (21/44) had a red-green color vision defect. Of the patients with deletion downstream of exon 30, 66% had a red-green color defect. No color defect was found in the patients with a deletion upstream of exon 30. A negative correlation between the color thresholds and age was found for the controls and patients with DMD, suggesting a nonprogressive color defect. The percentage (66%) of patients with red-green defect was significantly higher than the expected value (less than 10%) for the normal male population (P less than 0.001). <a href="#43" class="mim-tip-reference" title="Costa, M. F., Oliveira, A. G. F., Feitosa-Santana, C., Zatz, M., Ventura, D. F. &lt;strong&gt;Red-green color vision impairment in Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Hum. Genet. 80: 1064-1075, 2007. Note: Erratum: Am. J. Hum. Genet. 83: 148-149, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17503325/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17503325&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17503325[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/518127&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17503325">Costa et al. (2007)</a> suggested that the findings might be partially explained by a retinal impairment related to dystrophin isoform Dp260. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17503325" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Carrier Females</em></strong></p><p>
In a 9-year follow-up of study of 99 Dutch female carriers of DMD or BMD mutations, <a href="#172" class="mim-tip-reference" title="Schade van Westrum, S. M., Hoogerwaard, E. M., Dekker, L., Standaar, T. S., Bakker, E., Ippel, P. F., Oosterwijk, J. C., Majoor-Krakauer, D. F., van Essen, A. J., Leschot, N. J., Wilde, A. A. M., de Haan, R. J., de Visser, M., van der Kooi, A. J. &lt;strong&gt;Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy.&lt;/strong&gt; Neurology 77: 62-66, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21700587/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21700587&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/WNL.0b013e318221ad14&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21700587">Schade van Westrum et al. (2011)</a> found that 11 carriers (10%) (10 DMD and 1 BMD) fulfilled the criteria for dilated cardiomyopathy (DCM). Nine of the patients had developed DCM during the follow-up period. These carriers were on average older, were more symptomatic, and more often had hypertension, exertional dyspnea, and chest pain compared to mutation carriers without DCM. The findings suggested that female carriers of a mutation can develop progressive cardiac abnormalities and should undergo routine cardiac evaluation, preferably by echocardiology. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21700587" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#120" class="mim-tip-reference" title="Mercier, S., Toutain, A., Toussaint, A., Raynaud, M., de Barace, C., Marcorelles, P., Pasquier, L., Blayau, M., Penisson-Besnier, I., Romero, N., Espil, C., Parent, P., and 13 others. &lt;strong&gt;Genetic and clinical specificity of 26 symptomatic carriers for dystrophinopathies at pediatric age.&lt;/strong&gt; Europ. J. Hum. Genet. 21: 855-863, 2013. Note: Erratum: Europ. J. Hum. Genet. 21: 892 only, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23299919/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23299919&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23299919[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2012.269&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23299919">Mercier et al. (2013)</a> reviewed the features of 26 female carriers of pathogenic mutations in the DMD gene who were referred for symptoms related to the disorder before 17 years of age. Five had a Duchenne-like phenotype with loss of ambulation before age 15 years, 13 had a Becker-like phenotype with muscle weakness but persistence of ambulation after age 15 years, and 8 had exercise intolerance. Initial symptoms included significant muscle weakness (88%), mostly affecting the lower limbs, or exercise intolerance (27%). Cardiac dysfunction was present in 19%, and cognitive impairment in 27%. Cognitive impairment was associated with mutations in the distal part of the gene. Muscle biopsy showed dystrophic changes in 83% and mosaic immunostaining for dystrophin in 81%. The X-chromosome inactivation pattern was biased in 62% of cases. <a href="#120" class="mim-tip-reference" title="Mercier, S., Toutain, A., Toussaint, A., Raynaud, M., de Barace, C., Marcorelles, P., Pasquier, L., Blayau, M., Penisson-Besnier, I., Romero, N., Espil, C., Parent, P., and 13 others. &lt;strong&gt;Genetic and clinical specificity of 26 symptomatic carriers for dystrophinopathies at pediatric age.&lt;/strong&gt; Europ. J. Hum. Genet. 21: 855-863, 2013. Note: Erratum: Europ. J. Hum. Genet. 21: 892 only, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23299919/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23299919&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23299919[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2012.269&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23299919">Mercier et al. (2013)</a> concluded that carrier females may have significant symptoms of the disorder. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23299919" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="otherFeatures" class="mim-anchor"></a>
<h4 href="#mimOtherFeaturesFold" id="mimOtherFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimOtherFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Other Features</strong>
</span>
</h4>
</div>
<div id="mimOtherFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#19" class="mim-tip-reference" title="Blau, H. M., Webster, C., Pavlath, G. K. &lt;strong&gt;Defective myoblasts identified in Duchenne muscular dystrophy.&lt;/strong&gt; Proc. Nat. Acad. Sci. 80: 4856-4860, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6576361/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6576361&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.80.15.4856&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6576361">Blau et al. (1983)</a> suggested that the defect in DMD is intrinsic to the undifferentiated myoblast. This was based on the observation that the number of viable myoblasts obtained per gram DMD muscle tissue was greatly reduced and those that grew in culture had a decreased proliferative capacity and aberrant morphology. The hypothesis was tested by determining whether the myoblast defect was X-linked. <a href="#203" class="mim-tip-reference" title="Webster, C., Filippi, G., Rinaldi, A., Mastropaolo, C., Tondi, M., Siniscalco, M., Blau, H. M. &lt;strong&gt;The myoblast defect identified in Duchenne muscular dystrophy is not a primary expression of the DMD mutation: clonal analysis of myoblasts from five double heterozygotes for two X-linked loci: DMD and G6PD.&lt;/strong&gt; Hum. Genet. 74: 74-80, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3463532/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3463532&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00278789&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3463532">Webster et al. (1986)</a> obtained muscle cells from 5 females heterozygous for both DMD and G6PD (<a href="/entry/305900">305900</a>). In a total of 1,355 muscle clones, although the proportion of defective clones was increased, the cellular defect did not consistently segregate with a single G6PD phenotype in the myoblast clones from any individual. The hypothesis that the DMD gene is expressed in skeletal myoblasts and limits proliferation, was further tested by <a href="#86" class="mim-tip-reference" title="Hurko, O., McKee, L., Zuurveld, J., Swick, H. M. &lt;strong&gt;Comparison of Duchenne and normal myoblasts from a heterozygote.&lt;/strong&gt; Neurology 37: 675-681, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3561779/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3561779&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/wnl.37.4.675&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3561779">Hurko et al. (1987)</a> established primary muscle culture from a female who was heterozygous for both DMD and G6PD. Both cloned and mass cultures were grown until senescence and the G6PD phenotype was scored. Myoblasts expressing the 2 different alleles at the G6PD locus did not differ in proliferative capacity, suggesting that expression of the Duchenne gene does not result in a decrease in proliferative capacity of the myoblasts. Thus, the hypothesis of <a href="#19" class="mim-tip-reference" title="Blau, H. M., Webster, C., Pavlath, G. K. &lt;strong&gt;Defective myoblasts identified in Duchenne muscular dystrophy.&lt;/strong&gt; Proc. Nat. Acad. Sci. 80: 4856-4860, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6576361/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6576361&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.80.15.4856&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6576361">Blau et al. (1983)</a> was disproved. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3463532+3561779+6576361" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#10" class="mim-tip-reference" title="Baricordi, O. R., Sensi, A., Balboni, A., Romeo, G., Rocchi, M., Melchiorri, L., Gandini, E. &lt;strong&gt;Impairment of capping in lymphoblastoid cell lines of Duchenne patients indicates an intrinsic cellular defect.&lt;/strong&gt; Hum. Genet. 83: 217-219, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2793164/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2793164&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00285158&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2793164">Baricordi et al. (1989)</a> studied the capping phenomenon in lymphoblastoid cell lines and found that they retain an impairment of capping of the type seen in nontransformed lymphocytes (<a href="#199" class="mim-tip-reference" title="Verrill, H. L., Pickard, N. A., Greumer, H. D. &lt;strong&gt;Diminished cap formation in lymphocytes from patients and carriers of Duchenne muscular dystrophy.&lt;/strong&gt; Clin. Chem. 23: 2341-2343, 1977.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/923085/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;923085&lt;/a&gt;]" pmid="923085">Verrill et al., 1977</a>). This was taken to mean that the capping impairment is an intrinsic cellular defect in DMD and not a phenomenon secondary to progression or activity of the disease. Further, it may indicate that there is a generalized membrane disorder in this condition. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=923085+2793164" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#78" class="mim-tip-reference" title="Haslett, J. N., Sanoudou, D., Kho, A. T., Bennett, R. R., Greenberg, S. A., Kohane, I. S., Beggs, A. H., Kunkel, L. M. &lt;strong&gt;Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle.&lt;/strong&gt; Proc. Nat. Acad. Sci. 99: 15000-15005, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12415109/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12415109&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12415109[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.192571199&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12415109">Haslett et al. (2002)</a> used expression microarrays to compare individual gene expression profiles of skeletal muscle biopsies from 12 DMD patients with those of 12 unaffected control patients. They identified 105 genes that differed significantly in expression levels between unaffected and DMD muscle. Many of the differentially expressed genes reflected changes in histologic pathology; e.g., immune response signals and extracellular matrix genes were overexpressed in DMD muscle, indicating the infiltration of inflammatory cells and connective tissue. Significantly more genes were overexpressed than were underexpressed in dystrophic muscle, with dystrophin underexpressed, whereas other genes encoding muscle structure and regeneration processes were overexpressed, reflecting the regenerative nature of the disease. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12415109" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#184" class="mim-tip-reference" title="Straub, V., Ratjen, F., Amthor, H., Voit, T., Grasemann, H. &lt;strong&gt;Airway nitric oxide in Duchenne muscular dystrophy.&lt;/strong&gt; J. Pediat. 141: 132-134, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12091865/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12091865&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1067/mpd.2002.125226&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12091865">Straub et al. (2002)</a> found impaired expression of muscle membrane-associated neuronal nitric oxide synthase (NOS1; <a href="/entry/163731">163731</a>) in Duchenne patients; mean exhaled nitric oxide was significantly reduced in 13 males with DMD compared to 11 age-matched and 17 adult controls. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12091865" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In muscle biopsy samples from 13 of 16 DMD patients, <a href="#100" class="mim-tip-reference" title="Kleopa, K. A., Drousiotou, A., Mavrikiou, E., Ormiston, A., Kyriakides, T. &lt;strong&gt;Naturally occurring utrophin correlates with disease severity in Duchenne muscular dystrophy.&lt;/strong&gt; Hum. Molec. Genet. 15: 1623-1628, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16595608/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16595608&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddl083&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16595608">Kleopa et al. (2006)</a> observed an age-dependent increase in utrophin (UTRN; <a href="/entry/128240">128240</a>) staining, resulting in a mean increase of 11-fold compared to that found in normal adult tissue. In disease tissue, utrophin was present along the whole circumference of the sarcolemma, whereas it was present only along vessels and nerve endings in controls. Expression of utrophin in disease tissue showed a positive correlation with age at wheelchair-dependency in DMD, suggesting that utrophin expression has an ameliorating effect on the severity of DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16595608" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Patients with DMD have increased blood loss during spinal surgery compared to non-DMD patients. In Duchenne patients, <a href="#105" class="mim-tip-reference" title="Labarque, V., Freson, K., Thys, C., Wittevrongel, C., Hoylaerts, M. F., De Vos, R., Goemans, N., Van Geet, C. &lt;strong&gt;Increased Gs signalling in platelets and impaired collagen activation, due to a defect in the dystrophin gene, result in increased blood loss during spinal surgery.&lt;/strong&gt; Hum. Molec. Genet. 17: 357-366, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17981813/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17981813&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddm312&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17981813">Labarque et al. (2008)</a> found decreased expression of the dystrophin isoforms Dp71 and Dp116 in platelets and skin fibroblasts, respectively, compared to controls. Decreased expression of these isoforms was associated with increased Gs (see, e.g., GNAS; <a href="/entry/139320">139320</a>) signaling and activity upon stimulation. Functional studies showed that DMD platelets had slower aggregation in response to collagen with extensive shape changes and reduced platelet adhesion under flow conditions. Platelet membrane receptors were normal. The decreased collagen activation was shown to result from both Gs activation and cytoskeletal disruption. Overall, the findings suggested that DMD platelets have a disorganized cytoskeleton due to dysfunctional dystrophin Dp71, and also manifest Gs hyperactivity with reduced platelet collagen reactivity, which may result in increased bleeding during surgery. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17981813" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="inheritance" class="mim-anchor"></a>
<h4 href="#mimInheritanceFold" id="mimInheritanceToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimInheritanceToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Inheritance</strong>
</span>
</h4>
</div>
<div id="mimInheritanceFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>The Haldane rule (<a href="#74" class="mim-tip-reference" title="Haldane, J. B. S. &lt;strong&gt;The rate of spontaneous mutation of a human gene.&lt;/strong&gt; J. Genet. 31: 317-326, 1935."None>Haldane, 1935</a>) predicts that one-third of cases of a genetic lethal X-linked recessive will be the consequence of new mutation. <a href="#75" class="mim-tip-reference" title="Haldane, J. B. S. &lt;strong&gt;Mutation in the X-linked recessive type of muscular dystrophy: a possible sex difference.&lt;/strong&gt; Ann. Hum. Genet. 20: 344-347, 1956.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/13314403/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;13314403&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1469-1809.1955.tb01289.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="13314403">Haldane (1956)</a> further suggested that the mutation rate for Duchenne muscular dystrophy might be higher in males. Such would result in a lower proportion of cases being new mutants. <a href="#34" class="mim-tip-reference" title="Caskey, C. T., Nussbaum, R. L., Cohan, L. C., Pollack, L. &lt;strong&gt;Sporadic occurrence of Duchenne muscular dystrophy: evidence for new mutation.&lt;/strong&gt; Clin. Genet. 18: 329-341, 1980.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7460369/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7460369&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1980.tb02293.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7460369">Caskey et al. (1980)</a> concluded that in their series cases resulting from new mutation approached closely the theoretically expected one-third. <a href="#88" class="mim-tip-reference" title="Ionasescu, V., Burmeister, L., Hanson, J. &lt;strong&gt;Discriminant analysis of ribosomal protein synthesis findings in carrier detection of Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Med. Genet. 5: 5-12, 1980.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7395900/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7395900&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320050103&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7395900">Ionasescu et al. (1980)</a> concluded that measures of ribosomal protein synthesis, analyzed by discriminant function, identify 95% of proved and presumptive DMD carriers. <a href="#27" class="mim-tip-reference" title="Bucher, K., Ionasescu, V., Hanson, J. &lt;strong&gt;Frequency of new mutants among boys with Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Med. Genet. 7: 27-34, 1980.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7211951/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7211951&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320070107&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7211951">Bucher et al. (1980)</a> used this measure to test the Haldane rule. They found that only 9 (16.4%) of 55 mothers were noncarriers. When only the mothers of isolated cases were studied, 23.1% (9 of 39) were classified as noncarriers. They felt that a higher male than female mutation rate was the cause of the discrepancy. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7395900+13314403+7460369+7211951" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a study of 514 probands who constituted two-thirds of the known cases in Japan, <a href="#217" class="mim-tip-reference" title="Yasuda, N., Kondo, K. &lt;strong&gt;The effect of parental age on rate of mutation for Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Med. Genet. 13: 91-99, 1982.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7137225/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7137225&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320130114&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7137225">Yasuda and Kondo (1982)</a> could not demonstrate an effect of maternal grandfather's age at birth of the proband's mother. They pointed out that the data relevant to a maternal grandfather age effect in hemophilia A are conflicting, just as the data for DMD are inconsistent with those of <a href="#27" class="mim-tip-reference" title="Bucher, K., Ionasescu, V., Hanson, J. &lt;strong&gt;Frequency of new mutants among boys with Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Med. Genet. 7: 27-34, 1980.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7211951/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7211951&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320070107&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7211951">Bucher et al. (1980)</a>. Examining the frequency of affected boys among the next-born male sibs of 37 initially 'sporadic' cases of DMD, <a href="#106" class="mim-tip-reference" title="Lane, R. J. M., Robinow, M., Roses, A. D. &lt;strong&gt;The genetic status of mothers of isolated cases of Duchenne muscular dystrophy.&lt;/strong&gt; J. Med. Genet. 20: 1-11, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6842530/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6842530&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.20.1.1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6842530">Lane et al. (1983)</a> found that the frequency was significantly greater than predicted by the Haldane theory (p = 0.029). The estimated proportion of new mutant cases in the combined clinic population of 106 families was 0.127 (SE = 0.111). They proposed that the absence of affected males in earlier generations in families of isolated cases may be explained in part by a high ratio of male to female stillbirths and infant deaths which in this study was more than 3 times that in the general population. (Note that there is at least one other 'Haldane's rule' (<a href="#73" class="mim-tip-reference" title="Haldane, J. B. S. &lt;strong&gt;Sex ratio and unisexual sterility in hybrid animals.&lt;/strong&gt; J. Genet. 12: 101-109, 1922."None>Haldane, 1922</a>): 'When in the F1 offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous, heterogametic or XY sex.' See discussion of <a href="#139" class="mim-tip-reference" title="Orr, H. A. &lt;strong&gt;Haldane&#x27;s rule has multiple genetic causes.&lt;/strong&gt; Nature 361: 532-533, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8429905/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8429905&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/361532a0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8429905">Orr (1993)</a>.) <a href="https://pubmed.ncbi.nlm.nih.gov/?term=6842530+8429905+7137225+7211951" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#45" class="mim-tip-reference" title="Danieli, G. A., Barbujani, G. &lt;strong&gt;Duchenne muscular dystrophy: frequency of sporadic cases.&lt;/strong&gt; Hum. Genet. 67: 252-256, 1984.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6469240/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6469240&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00291351&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6469240">Danieli and Barbujani (1984)</a> concluded that the proportion of sporadic cases was 0.227 +/- 0.048 in an Italian series of 135 families combined with other sets of data. In a segregation analysis of 1,885 DMD families, <a href="#9" class="mim-tip-reference" title="Barbujani, G., Russo, A., Danieli, G. A., Spiegler, A. W. J., Borkowska, J., Hausmanova Petrusewicz, I. &lt;strong&gt;Segregation analysis of 1885 DMD families: significant departure from the expected proportion of sporadic cases.&lt;/strong&gt; Hum. Genet. 84: 522-526, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2338336/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2338336&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00210802&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2338336">Barbujani et al. (1990)</a> arrived at an estimate of sporadic cases of 0.229, a significant deviation from the expected 0.333 based on mutation-selection equilibrium. They mentioned the previously discussed possible explanations for the finding, such as sex differences in mutation rate, and added a new one, namely, the occurrence of multiple DMD cases in the same sibship as a consequence of mutational mosaicism of the maternal germ cells, a phenomenon documented in a number of instances. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=6469240+2338336" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>As might perhaps have been anticipated, a report appeared concerning a man with DMD who had fathered 2 children, a normal son and a carrier daughter (<a href="#190" class="mim-tip-reference" title="Thompson, C. E. &lt;strong&gt;Reproduction in Duchenne dystrophy.&lt;/strong&gt; Neurology 28: 1045-1047, 1978.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/570659/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;570659&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/wnl.28.10.1045&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="570659">Thompson, 1978</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=570659" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By analysis of Xp21 DNA markers in a family with 2 affected brothers, <a href="#23" class="mim-tip-reference" title="Borresen, A. L., Heiberg, A., Moller, P., Berg, K. &lt;strong&gt;Evidence for a sperm mutation resulting in Duchenne muscular dystrophy.&lt;/strong&gt; Clin. Genet. 32: 187-191, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2887319/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2887319&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1987.tb03352.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2887319">Borresen et al. (1987)</a> demonstrated that the mutation had most likely occurred in a grandpaternal sperm. Therefore, barring gonadal mosaicism, it is unlikely that the maternal aunts and their daughters are carriers of the DMD gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2887319" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#121" class="mim-tip-reference" title="Miciak, A., Keen, A., Jadayel, D., Bundey, S. &lt;strong&gt;Multiple mutation in an extended Duchenne muscular dystrophy family.&lt;/strong&gt; J. Med. Genet. 29: 123-126, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1351947/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1351947&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.29.2.123&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1351947">Miciak et al. (1992)</a> studied 3 boys with DMD, 2 of whom were related as first cousins and the third as a second cousin, all being related through males. They demonstrated that the molecular defect was different in each and speculated about instability of the DMD gene and possible involvement of transposons. They referred to similar observations by <a href="#225" class="mim-tip-reference" title="Zatz, M., Passos-Bueno, M. R., Rapaport, D., Vainzof, M. &lt;strong&gt;Familial occurrence of Duchenne dystrophy through paternal lines in four families.&lt;/strong&gt; Am. J. Med. Genet. 38: 80-84, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1849353/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1849353&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320380118&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1849353">Zatz et al. (1991)</a> in 4 Brazilian families. <a href="#201" class="mim-tip-reference" title="Vitiello, L., Mostacciuolo, M. L., Oliviero, S., Schiavon, F., Nicoletti, L., Angelini, C., Danieli, G. A. &lt;strong&gt;Screening for mutations in the muscle promoter region and for exonic deletions in a series of 115 DMD and BMD patients.&lt;/strong&gt; J. Med. Genet. 29: 127-130, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1613762/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1613762&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.29.2.127&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1613762">Vitiello et al. (1992)</a> found no instance of mutation in the muscle promoter region of the DMD gene in a series of 115 unrelated DMD and BMD patients from northeast Italy. In 3 cases in which dystrophin of normal size was expressed at low levels, the DNA sequence of the promoter region showed no abnormality. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1351947+1849353+1613762" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Gonadal Mosaicism</em></strong></p><p>
A possible example of gonadal mosaicism for the DMD locus was discussed by <a href="#215" class="mim-tip-reference" title="Wood, S., McGillivray, B. C. &lt;strong&gt;Germinal mosaicism in Duchenne muscular dystrophy.&lt;/strong&gt; Hum. Genet. 78: 282-284, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3346017/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3346017&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00291677&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3346017">Wood and McGillivray (1988)</a>, who described a family in which a female ancestor of an individual with Duchenne muscular dystrophy seemed to have transmitted 3 distinct types of X chromosome to her offspring, as indicated by RFLP analysis. The authors postulated that in this individual the mutation arose as a postzygotic deletion, resulting in germinal mosaicism. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3346017" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#214" class="mim-tip-reference" title="Witkowski, R. &lt;strong&gt;Germinal &#x27;mosaicism&#x27;--germline mutation or chimerism?&lt;/strong&gt; Hum. Genet. 88: 359-360, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1733841/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1733841&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00197278&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1733841">Witkowski (1992)</a> suggested another explanation for those cases in which gonadal mosaicism has been suspected: such a female may represent a chimera that has originated from 2 fertilized eggs, one carrying the mutation. This, of course, has quite different implications regarding the risk that a maternal aunt of the proband is a carrier. <a href="#115" class="mim-tip-reference" title="Melis, M. A., Cau, M., Congiu, R., Puddu, R., Muntoni, F., Cao, A. &lt;strong&gt;Germinal mosaicism in a Duchenne muscular dystrophy family: implications for genetic counselling.&lt;/strong&gt; Clin. Genet. 43: 247-249, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8375105/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8375105&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1993.tb03811.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8375105">Melis et al. (1993)</a> reported a 3-generation family in which 2 sibs were affected with DMD. Immunohistochemical analysis of muscle dystrophin and haplotype analysis of the DMD locus demonstrated that the X chromosome carrying the DMD gene was transmitted from the healthy maternal grandfather to his 3 daughters, including the proband's mother. The definition of carrier status in 2 possible carriers permitted accurate genetic counseling and the prevention of the birth of an affected boy. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1733841+8375105" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#214" class="mim-tip-reference" title="Witkowski, R. &lt;strong&gt;Germinal &#x27;mosaicism&#x27;--germline mutation or chimerism?&lt;/strong&gt; Hum. Genet. 88: 359-360, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1733841/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1733841&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00197278&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1733841">Witkowski (1992)</a> presented the pedigree of a family with a balanced autosomal translocation in 3 generations: a son of a carrier exhibited lymphocytes with a normal karyotype as well as lymphocytes with the balanced translocation. She also cited the 47,XXX karyotype as a possible alternative explanation to germline mosaicism; there are known sibships in which boys have received 3 different haplotypes on the X chromosome from the mother. Unexpectedly, <a href="#142" class="mim-tip-reference" title="Passos-Bueno, M. R., Bakker, E., Kneppers, A. L. J., Takata, R. I., Rapaport, D., den Dunnen, J. T., Zatz, M., van Ommen, G. J. B. &lt;strong&gt;Different mosaicism frequencies for proximal and distal Duchenne muscular dystrophy (DMD) mutations indicate difference in etiology and recurrence risk.&lt;/strong&gt; Am. J. Hum. Genet. 51: 1150-1155, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1415256/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1415256&lt;/a&gt;]" pmid="1415256">Passos-Bueno et al. (1992)</a> observed that among 24 proven germline mosaic cases, 19 (79%) had a proximal mutation, while only 5 (21%) had a distal mutation. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1733841+1415256" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Somatic Mosaicism and Heterozygous Females</em></strong></p><p>
<a href="#219" class="mim-tip-reference" title="Yoshioka, M. &lt;strong&gt;Clinically manifesting carriers in Duchenne muscular dystrophy.&lt;/strong&gt; Clin. Genet. 20: 6-12, 1981.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7296949/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7296949&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1981.tb01799.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7296949">Yoshioka (1981)</a> observed unusually severely affected heterozygous females and suggested that factor(s) other than lyonization may be involved. One of the women was the product of a consanguineous mating, suggesting modification of expression by homozygosity at an autosomal locus. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7296949" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#30" class="mim-tip-reference" title="Burn, J., Povey, S., Boyd, Y., Munro, E. A., West, L., Harper, K., Thomas, D. &lt;strong&gt;Duchenne muscular dystrophy in one of monozygotic twin girls.&lt;/strong&gt; J. Med. Genet. 23: 494-500, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2879922/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2879922&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.23.6.494&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2879922">Burn et al. (1986)</a> reported monozygotic twin girls, one of whom had typical clinical features of DMD despite a normal female karyotype and the second of whom was normal. <a href="#30" class="mim-tip-reference" title="Burn, J., Povey, S., Boyd, Y., Munro, E. A., West, L., Harper, K., Thomas, D. &lt;strong&gt;Duchenne muscular dystrophy in one of monozygotic twin girls.&lt;/strong&gt; J. Med. Genet. 23: 494-500, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2879922/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2879922&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.23.6.494&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2879922">Burn et al. (1986)</a> proposed that differences in lyonization accounted for the findings. Hybridization of fibroblasts from each twin with RAG-mouse cell line deficient in HPRT showed that in the affected twin it was the mother's X chromosome that was predominantly the active one, whereas in the normal twin it was the father's. In female monozygotic twins discordant for muscular dystrophy, <a href="#157" class="mim-tip-reference" title="Richards, C. S., Watkins, S. C., Hoffman, E. P., Schneider, N. R., Milsark, I. W., Katz, K. S., Cook, J. D., Kunkel, L. M., Cortada, J. M. &lt;strong&gt;Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Hum. Genet. 46: 672-681, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2180286/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2180286&lt;/a&gt;]" pmid="2180286">Richards et al. (1990)</a> showed that there was a mutation in dystrophin in both twins. Uniparental disomy and chromosome abnormality were excluded, but on the basis of methylation differences of the paternal and maternal X chromosomes, <a href="#157" class="mim-tip-reference" title="Richards, C. S., Watkins, S. C., Hoffman, E. P., Schneider, N. R., Milsark, I. W., Katz, K. S., Cook, J. D., Kunkel, L. M., Cortada, J. M. &lt;strong&gt;Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Hum. Genet. 46: 672-681, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2180286/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2180286&lt;/a&gt;]" pmid="2180286">Richards et al. (1990)</a> concluded that uneven lyonization was the underlying mechanism for disease expression in the affected female. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2180286+2879922" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#111" class="mim-tip-reference" title="Lupski, J. R., Garcia, C. A., Zoghbi, H. Y., Hoffman, E. P., Fenwick, R. G. &lt;strong&gt;Discordance of muscular dystrophy in monozygotic female twins: evidence supporting asymmetric splitting of the inner cell mass in a manifesting carrier of Duchenne dystrophy.&lt;/strong&gt; Am. J. Med. Genet. 40: 354-364, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1683155/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1683155&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320400323&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1683155">Lupski et al. (1991)</a> pointed out that discordance of the DMD phenotype had never been described in male monozygotic twins. <a href="#111" class="mim-tip-reference" title="Lupski, J. R., Garcia, C. A., Zoghbi, H. Y., Hoffman, E. P., Fenwick, R. G. &lt;strong&gt;Discordance of muscular dystrophy in monozygotic female twins: evidence supporting asymmetric splitting of the inner cell mass in a manifesting carrier of Duchenne dystrophy.&lt;/strong&gt; Am. J. Med. Genet. 40: 354-364, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1683155/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1683155&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320400323&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1683155">Lupski et al. (1991)</a> described female monozygotic twins who carried the same mutation involving duplication of exons 42 and 43 of the DMD gene. One was a manifesting heterozygote, whereas the other was normal. Unlike the study of <a href="#157" class="mim-tip-reference" title="Richards, C. S., Watkins, S. C., Hoffman, E. P., Schneider, N. R., Milsark, I. W., Katz, K. S., Cook, J. D., Kunkel, L. M., Cortada, J. M. &lt;strong&gt;Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Hum. Genet. 46: 672-681, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2180286/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2180286&lt;/a&gt;]" pmid="2180286">Richards et al. (1990)</a> in which the skewed inactivation pattern was symmetrical in opposite directions, one twin being affected with DMD and the other being normal, the skew in this case involved only the affected twin, while the normal twin showed a random X-inactivation pattern. They suggested that the result was consistent with the model of twinning and X-inactivation proposed by <a href="#134" class="mim-tip-reference" title="Nance, W. E. &lt;strong&gt;Do twin lyons have larger spots? (Editorial)&lt;/strong&gt; Am. J. Hum. Genet. 46: 646-648, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2316517/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2316517&lt;/a&gt;]" pmid="2316517">Nance (1990)</a> in that these twins probably represented asymmetric splitting of the inner cell mass (ICM): the affected twin probably arose when a small proportion of the ICM split off after lyonization had occurred. In this situation, the original ICM could have given rise to the normal twin with random lyonization, while the newly split cells would experience catch-up growth and lead to the affected twin. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1683155+2180286+2316517" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Many DMD patients have rare staining dystrophin-positive fibers. The possibility of somatic mosaicism can be raised, but somatic reversion/suppression is another possibility. Indeed, the dystrophin-positive fibers have been referred to as 'revertants.' The revertants are found in both familial and nonfamilial cases. <a href="#99" class="mim-tip-reference" title="Klein, C. J., Coovert, D. D., Bulman, D. E., Ray, P. N., Mendell, J. R., Burghes, A. H. M. &lt;strong&gt;Somatic reversion/suppression in Duchenne muscular dystrophy (DMD): evidence supporting a frame-restoring mechanism in rare dystrophin-positive fibers.&lt;/strong&gt; Am. J. Hum. Genet. 50: 950-959, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1570844/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1570844&lt;/a&gt;]" pmid="1570844">Klein et al. (1992)</a> found that in patients with deletions, revertants did not stain with antibodies raised to polypeptide sequences within the deletion. These results indicated that positively stained fibers were not the result of somatic mosaicism in deletion patients. <a href="#99" class="mim-tip-reference" title="Klein, C. J., Coovert, D. D., Bulman, D. E., Ray, P. N., Mendell, J. R., Burghes, A. H. M. &lt;strong&gt;Somatic reversion/suppression in Duchenne muscular dystrophy (DMD): evidence supporting a frame-restoring mechanism in rare dystrophin-positive fibers.&lt;/strong&gt; Am. J. Hum. Genet. 50: 950-959, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1570844/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1570844&lt;/a&gt;]" pmid="1570844">Klein et al. (1992)</a> concluded that the most likely mechanism giving rise to positively staining fibers is a second site in-frame deletion. <a href="#188" class="mim-tip-reference" title="Thanh, L. T., Nguyen, T. M., Helliwell, T. R., Morris, G. E. &lt;strong&gt;Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin.&lt;/strong&gt; Am. J. Hum. Genet. 56: 725-731, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7887428/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7887428&lt;/a&gt;]" pmid="7887428">Thanh et al. (1995)</a> used exon-specific monoclonal antibodies to determine which exons are removed in order to correct the reading frame in individual revertant muscle fibers. They showed that 15 revertant fibers in a DMD patient with a frameshift deletion of exon 45 had correction of the frameshift by the additional deletion of exon 44 (or perhaps exon 46 in some fibers) from the dystrophin mRNA, but not by larger deletions. This result was consistent with RT-PCR and sequencing of a minor dystrophin mRNA with an exon 43/46 junction in the biopsy. The results were consistent with somatic mutations in revertant-fiber nuclei, which result in removal of additional exons from dystrophin mRNA. These data did not clearly distinguish between additional somatic deletions and somatic effects on dystrophin mRNA splicing, however, and both mechanisms may be operating. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1570844+7887428" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#146" class="mim-tip-reference" title="Pena, S. D. J., Karpati, G., Carpenter, S., Fraser, F. C. &lt;strong&gt;The clinical consequences of X-chromosome inactivation: Duchenne muscular dystrophy in one of monozygotic twins.&lt;/strong&gt; J. Neurol. Sci. 79: 337-344, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3612177/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3612177&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0022-510x(87)90240-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3612177">Pena et al. (1987)</a> reported an extraordinary case of DMD leading to death at age 28 years in a heterozygous monozygotic female twin. Her sister was clinically normal but had an affected son. Eleven affected males in 3 generations and 7 separate sibships of the kindred were known. An undetected monozygotic twinning event was proposed by <a href="#66" class="mim-tip-reference" title="Glass, I. A., Nicholson, L. V. B., Watkiss, E., Johnson, M. A., Roberts, R. G., Abbs, S., Brittain-Jones, S., Boddie, H. G. &lt;strong&gt;Investigation of a female manifesting Becker muscular dystrophy.&lt;/strong&gt; J. Med. Genet. 29: 578-582, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1518025/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1518025&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.29.8.578&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1518025">Glass et al. (1992)</a> to explain a manifesting female for Becker muscular dystrophy. They concluded that females heterozygous for BMD have less likelihood of showing manifestations of muscular dystrophy than do females heterozygous for DMD. <a href="#4" class="mim-tip-reference" title="Abbadi, N., Philippe, C., Chery, M., Gilgenkrantz, H., Tome, F., Collin, H., Theau, D., Recan, D., Broux, O., Fardeau, M., Kaplan, J.-C., Gilgenkrantz, S. &lt;strong&gt;Additional case of female monozygotic twins discordant for the clinical manifestations of Duchenne muscular dystrophy due to opposite X-chromosome inactivation.&lt;/strong&gt; Am. J. Med. Genet. 52: 198-206, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7802009/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7802009&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320520215&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7802009">Abbadi et al. (1994)</a> reported a pair of female monozygotic twins heterozygous for a deletion in the DMD gene and discordant for the clinical manifestations of the disorder. Results in lymphocytes and skin fibroblast cell lines suggested a partial mirror inactivation with the normal X chromosome preferentially active in the unaffected twin, and the maternally deleted X chromosome preferentially active in the affected twin. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1518025+3612177+7802009" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#144" class="mim-tip-reference" title="Pegoraro, E., Schimke, R. N., Arahata, K., Hayashi, Y., Stern, H., Marks, H., Glasberg, M. R., Carroll, J. E., Taber, J. W., Wessel, H. B., Bauserman, S. C., Marks, W. A., Toriello, H. V., Higgins, J. V., Appleton, S., Schwartz, L., Garcia, C. A., Hoffman, E. P. &lt;strong&gt;Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females.&lt;/strong&gt; Am. J. Hum. Genet. 54: 989-1003, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8198142/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8198142&lt;/a&gt;]" pmid="8198142">Pegoraro et al. (1994)</a> studied 13 female dystrophinopathy patients--10 isolated cases and 3 with a positive family history for DMD in males. All 13 had skewed X-inactivation patterns in peripheral blood DNA. Of the 9 isolated cases informative in their assay, 8 showed inheritance of the dystrophin gene mutation from the paternal germline. Only a single case showed maternal inheritance. <a href="#144" class="mim-tip-reference" title="Pegoraro, E., Schimke, R. N., Arahata, K., Hayashi, Y., Stern, H., Marks, H., Glasberg, M. R., Carroll, J. E., Taber, J. W., Wessel, H. B., Bauserman, S. C., Marks, W. A., Toriello, H. V., Higgins, J. V., Appleton, S., Schwartz, L., Garcia, C. A., Hoffman, E. P. &lt;strong&gt;Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females.&lt;/strong&gt; Am. J. Hum. Genet. 54: 989-1003, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8198142/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8198142&lt;/a&gt;]" pmid="8198142">Pegoraro et al. (1994)</a> estimated that the 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus they suggested that there is some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8198142" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#39" class="mim-tip-reference" title="Chelly, J., Marlhens, F., Le Marec, B., Jeanpierre, M., Lambert, M., Hamard, G., Dutrillaux, B., Kaplan, J.-C. &lt;strong&gt;De novo DNA microdeletion in a girl with Turner syndrome and Duchenne muscular dystrophy.&lt;/strong&gt; Hum. Genet. 74: 193-196, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2876949/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2876949&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00282093&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2876949">Chelly et al. (1986)</a> reported the first observation of a girl with typical DMD and typical 45,XO Turner syndrome. The one X chromosome in the girl was normal by high resolution banding, but DNA analysis by Southern blotting and hybridization with 7 cloned probes mapping in the Xp21 region showed a deletion of 3 of the probes. In this case, the paternal chromosome was lost and the maternal X chromosome suffered a deletion mutation in the Xp21.2 region. <a href="#185" class="mim-tip-reference" title="Suthers, G. K., Manson, J. I., Stern, L. M., Haan, E. A., Mulley, J. C. &lt;strong&gt;Becker muscular dystrophy (BMD) and Klinefelter&#x27;s syndrome: a possible cause of variable expression of BMD within a pedigree.&lt;/strong&gt; J. Med. Genet. 26: 251-254, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2716035/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2716035&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.26.4.251&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2716035">Suthers et al. (1989)</a> described a man with Becker muscular dystrophy and the Klinefelter syndrome who was much more mildly affected than his 3 nephews. The mild expression may be due to the fact that he was heterozygous for the muscular dystrophy mutation. The nephews indeed may have had Duchenne muscular dystrophy. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2716035+2876949" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Among 35 children produced by 34 deliveries in 13 women who were mothers of males attending a muscular dystrophy clinic, <a href="#64" class="mim-tip-reference" title="Geifman-Holtzman, O., Bernstein, I. M., Capeless, E. L., Hawley, P., Specht, L. A., Bianchi, D. W. &lt;strong&gt;Increase in fetal breech presentation in female carriers of Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Med. Genet. 73: 276-278, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9415684/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9415684&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/(sici)1096-8628(19971219)73:3&lt;276::aid-ajmg9&gt;3.0.co;2-q&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9415684">Geifman-Holtzman et al. (1997)</a> found that 6 (17%) were delivered in the breech position, which is a 5-fold increase above the national standards for term pregnancies. Of the 6 infants with breech presentation, 2 were males affected with DMD, 1 was a female heterozygote, 1 was a male who died perinatally, and the carrier status of the other 2 females was unknown. Most DMD affected males (12/14) were delivered in the vertex position. Thus, the authors concluded that maternal rather than fetal muscle weakness was the significant factor in determining fetal position at term. They suggested that subtle changes in uterine or pelvic girdle muscle tone may contribute to a higher rate of fetal breech presentation in carriers of the DMD gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9415684" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#218" class="mim-tip-reference" title="Yoshioka, M., Yorifuji, T., Mituyoshi, I. &lt;strong&gt;Skewed X inactivation in manifesting carriers of Duchenne muscular dystrophy.&lt;/strong&gt; Clin. Genet. 53: 102-107, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9611069/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9611069&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1998.tb02655.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9611069">Yoshioka et al. (1998)</a> analyzed X inactivation in 4 manifesting heterozygotes, 5 asymptomatic carriers, and 32 female controls. Ninety-two percent were heterozygous for the CAG repeat in the androgen receptor (AR; <a href="/entry/313700">313700</a>) gene. All manifesting carriers showed 70 to 93% skewed inactivation, whereas the asymptomatic carriers showed random inactivation (50-60%). Of the control females, 6% showed greater than 70% skewed inactivation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9611069" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Reported genetic mechanisms for female DMD include (1) a skewed pattern of X-chromosome inactivation in female carriers of a DMD mutation (<a href="#8" class="mim-tip-reference" title="Azofeifa, J., Voit, T., Hubner, C., Cremer, M. &lt;strong&gt;X-chromosome methylation in manifesting and healthy carriers of dystrophinopathies (sic): concordance of activation ratios among first degree female relatives and skewed inactivation as cause of the affected phenotypes.&lt;/strong&gt; Hum. Genet. 96: 167-176, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7635465/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7635465&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00207374&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7635465">Azofeifa et al., 1995</a>); (2) X;autosome translocations that disrupt the DMD gene (<a href="#33" class="mim-tip-reference" title="Cantagrel, V., Lossi, A.-M., Boulanger, S., Depetris, D., Mattei, M.-G., Gecz, J., Schwartz, C. E., Van Maldergem, L., Villard, L. &lt;strong&gt;Disruption of a new X linked gene highly expressed in brain in a family with two mentally retarded males.&lt;/strong&gt; J. Med. Genet. 41: 736-742, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15466006/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15466006&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.2004.021626&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15466006">Cantagrel et al., 2004</a>); (3) monosomy X, or Turner syndrome, associated with a DMD mutation in the remaining X chromosome (<a href="#39" class="mim-tip-reference" title="Chelly, J., Marlhens, F., Le Marec, B., Jeanpierre, M., Lambert, M., Hamard, G., Dutrillaux, B., Kaplan, J.-C. &lt;strong&gt;De novo DNA microdeletion in a girl with Turner syndrome and Duchenne muscular dystrophy.&lt;/strong&gt; Hum. Genet. 74: 193-196, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2876949/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2876949&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00282093&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2876949">Chelly et al., 1986</a>); and (4) maternal isodisomy for the X chromosome carrying a DMD mutation (<a href="#154" class="mim-tip-reference" title="Quan, F., Janas, J., Toth-Fejel, S., Johnson, D. B., Wolford, J. K., Popovich, B. W. &lt;strong&gt;Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Hum. Genet. 60: 160-165, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8981959/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8981959&lt;/a&gt;]" pmid="8981959">Quan et al., 1997</a>). <a href="#94" class="mim-tip-reference" title="Katayama, Y., Tran, V. K., Hoan, N. T., Zhang, Z., Goji, K., Yagi, M., Takeshima, Y., Saiki, K., Nhan, N. T., Matsuo, M. &lt;strong&gt;Co-occurrence of mutations in both dystrophin- and androgen-receptor genes is a novel cause of female Duchenne muscular dystrophy.&lt;/strong&gt; Hum. Genet. 119: 516-519, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16528518/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16528518&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-006-0159-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16528518">Katayama et al. (2006)</a> reported a fifth mechanism in a Vietnamese child with DMD confirmed by genetic analysis. Although the child was phenotypically female, the karyotype showed 46,XY, and she was found to have a mutation in the AR gene causing androgen insensitivity syndrome (AIS; <a href="/entry/300068">300068</a>). The patient's sister also had the AR mutation and AIS, but did not have the DMD mutation. The unaffected mother was found to be heterozygous for the AR mutation, but did not have the DMD mutation, indicating it was de novo in the proband. <a href="#94" class="mim-tip-reference" title="Katayama, Y., Tran, V. K., Hoan, N. T., Zhang, Z., Goji, K., Yagi, M., Takeshima, Y., Saiki, K., Nhan, N. T., Matsuo, M. &lt;strong&gt;Co-occurrence of mutations in both dystrophin- and androgen-receptor genes is a novel cause of female Duchenne muscular dystrophy.&lt;/strong&gt; Hum. Genet. 119: 516-519, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16528518/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16528518&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-006-0159-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16528518">Katayama et al. (2006)</a> concluded that the cooccurrence of independent mutations in both the DMD and AR genes constituted a fifth mechanism underlying female DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8981959+7635465+15466006+16528518+2876949" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#156" class="mim-tip-reference" title="Rajakulendran, S., Kuntzer, T., Dunand, M., Yau, S. C., Ashton, E. J., Storey, H., McCauley, J., Abbs, S., Thonney, F., Leturcq, F., Lobrinus, J. A., Yousry, T., Farmer, S., Holton, J. L., Hanna, M. G. &lt;strong&gt;Marked hemiatrophy in carriers of Duchenne muscular dystrophy.&lt;/strong&gt; Arch. Neurol. 67: 497-500, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20385919/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20385919&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1001/archneurol.2010.58&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20385919">Rajakulendran et al. (2010)</a> reported 2 unrelated female carriers of DMD mutations who presented in adulthood with marked right-sided hemiatrophy and weakness of the arm and leg muscles. MRI showed muscle atrophy and fatty replacement on the affected side, and histologic studies showed decreased dystrophin staining. Both had increased serum creatine kinase. The older woman had areflexia of the affected side, no family history of muscular dystrophy, and showed skewed ratio of X inactivation in lymphocytes. The younger woman had an affected son and showed normal X inactivation in lymphocytes. <a href="#156" class="mim-tip-reference" title="Rajakulendran, S., Kuntzer, T., Dunand, M., Yau, S. C., Ashton, E. J., Storey, H., McCauley, J., Abbs, S., Thonney, F., Leturcq, F., Lobrinus, J. A., Yousry, T., Farmer, S., Holton, J. L., Hanna, M. G. &lt;strong&gt;Marked hemiatrophy in carriers of Duchenne muscular dystrophy.&lt;/strong&gt; Arch. Neurol. 67: 497-500, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20385919/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20385919&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1001/archneurol.2010.58&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20385919">Rajakulendran et al. (2010)</a> suggested that a combination of skewed X inactivation in muscle tissue and somatic mosaicism accounted for the marked asymmetric manifestations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20385919" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="cytogenetics" class="mim-anchor"></a>
<h4 href="#mimCytogeneticsFold" id="mimCytogeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCytogeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cytogenetics</strong>
</span>
</h4>
</div>
<div id="mimCytogeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#71" class="mim-tip-reference" title="Greenstein, R. M., Reardon, M. P., Chan, T. S. &lt;strong&gt;An X-autosome translocation in a girl with Duchenne muscular dystrophy (DMD): evidence for DMD gene localization. (Abstract)&lt;/strong&gt; Pediat. Res. 11: 457, 1977."None>Greenstein et al. (1977)</a> found DMD in a 16-year-old girl with a reciprocal X;11 translocation. The mother was thought not to be a carrier. Possibly the break at Xp21 caused a null mutation; the normal X chromosome was inactivated. <a href="#197" class="mim-tip-reference" title="Verellen, C., Markovic, V., DeMeyer, R., Freund, M., Laterre, C., Worton, R. &lt;strong&gt;Expression of an X-linked recessive disease in a female due to non-random inactivation of the X chromosome. (Abstract)&lt;/strong&gt; Am. J. Hum. Genet. 30: 97A, 1978."None>Verellen et al. (1978)</a> reported the same situation with X;21 translocation and break at Xp21. <a href="#32" class="mim-tip-reference" title="Canki, N., Dutrillaux, B., Tivadar, I. &lt;strong&gt;Dystrophie musculaire de Duchenne chez une petite fille porteuse d&#x27;une translocation t(X;3) (p21;q13) de novo.&lt;/strong&gt; Ann. Genet. 22: 35-39, 1979."None>Canki et al. (1979)</a> described similar findings in a girl with X;3 translocation with break at Xp21. The mother was thought to be heterozygous.</p><p><a href="#227" class="mim-tip-reference" title="Zneimer, S. M., Schneider, N. R., Richards, C. S. &lt;strong&gt;In situ hybridization shows direct evidence of skewed X inactivation in one of monozygotic twin females manifesting Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Med. Genet. 45: 601-605, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8456832/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8456832&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320450517&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8456832">Zneimer et al. (1993)</a> used a combination of conventional and molecular cytogenetic techniques to investigate the twins first reported by <a href="#157" class="mim-tip-reference" title="Richards, C. S., Watkins, S. C., Hoffman, E. P., Schneider, N. R., Milsark, I. W., Katz, K. S., Cook, J. D., Kunkel, L. M., Cortada, J. M. &lt;strong&gt;Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Hum. Genet. 46: 672-681, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2180286/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2180286&lt;/a&gt;]" pmid="2180286">Richards et al. (1990)</a>. The twins carried a deletion of approximately 300 kb within the dystrophin gene on one X chromosome. A unique DNA fragment generated from an exon within the deletion was hybridized in situ to metaphase chromosomes of both twins, a probe that would presumably hybridize only to the normal X chromosome and not to the X chromosome carrying the deletion. The chromosomes were identified by reverse-banding (R-banding) and by the addition of 5-bromodeoxyuridine in culture to distinguish early and late replicating X chromosomes, corresponding to active and inactive X chromosomes, respectively. The experiment showed predominant inactivation of the normal X chromosome in the twin with DMD. With an improved method of high resolution R-banding, <a href="#207" class="mim-tip-reference" title="Werner, W., Spiegler, A. W. J. &lt;strong&gt;Inherited deletion of subband Xp21.13 in a male with Duchenne muscular dystrophy.&lt;/strong&gt; J. Med. Genet. 25: 377-382, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3294410/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3294410&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.25.6.377&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3294410">Werner and Spiegler (1988)</a> showed deletion of Xp21.13 in an 8-year-old boy with normal intelligence and no disorder other than DMD. His healthy mother was heterozygous for the deletion, which was subject to random X inactivation in lymphocytes. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2180286+8456832+3294410" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#167" class="mim-tip-reference" title="Saito-Ohara, F., Fukuda, Y., Ito, M., Agarwala, K. L., Hayashi, M., Matsuo, M., Imoto, I., Yamakawa, K., Nakamura, Y., Inazawa, J. &lt;strong&gt;The Xq22 inversion breakpoint interrupted a novel Ras-like GTPase gene in a patient with Duchenne muscular dystrophy and profound mental retardation.&lt;/strong&gt; Am. J. Hum. Genet. 71: 637-645, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12145744/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12145744&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12145744[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/342208&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12145744">Saito-Ohara et al. (2002)</a> studied a 16-year-old patient with Duchenne muscular dystrophy, profound mental retardation, athetosis, and nystagmus who was shown to have a pericentric inversion of the X chromosome, 46,Y,inv(X)(p21.2q22.2). His mother carried this inversion on one allele. The patient's condition was originally misdiagnosed as cerebral palsy. Because the DMD gene is located at Xp21.2, which is one breakpoint of the inv(X), and because its defects are rarely associated with severe mental retardation, the other clinical features of this patient were deemed likely to be associated with the opposite breakpoint at Xq22. The molecular-cytogenetic characterization of both breakpoints revealed 3 genetic events that probably had disastrous influence on neuromuscular and cognitive development: deletion of part of the DMD gene at Xp21.2, duplication of the proteolipid protein gene (PLP1; <a href="/entry/300401">300401</a>) at Xq22.2, and disruption of the RAB40AL gene (<a href="/entry/300405">300405</a>). <a href="#167" class="mim-tip-reference" title="Saito-Ohara, F., Fukuda, Y., Ito, M., Agarwala, K. L., Hayashi, M., Matsuo, M., Imoto, I., Yamakawa, K., Nakamura, Y., Inazawa, J. &lt;strong&gt;The Xq22 inversion breakpoint interrupted a novel Ras-like GTPase gene in a patient with Duchenne muscular dystrophy and profound mental retardation.&lt;/strong&gt; Am. J. Hum. Genet. 71: 637-645, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12145744/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12145744&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12145744[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/342208&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12145744">Saito-Ohara et al. (2002)</a> speculated that disruption of RAB40AL was responsible for the patient's profound mental retardation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12145744" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#192" class="mim-tip-reference" title="Tran, T. H. T., Zhang, Z., Yagi, M., Lee, T., Awano, H., Nishida, A., Okinaga, T., Takeshima, Y., Matsuo, M. &lt;strong&gt;Molecular characterization of an X(p21.2;q28) chromosomal inversion in a Duchenne muscular dystrophy patient with mental retardation reveals a novel long non-coding gene on Xq28.&lt;/strong&gt; J. Hum. Genet. 58: 33-39, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23223008/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23223008&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/jhg.2012.131&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23223008">Tran et al. (2013)</a> reported a 3-year-old Japanese boy with Duchenne muscular dystrophy and moderate mental retardation associated with an intrachromosomal inversion, inv(X)(p21.2;q28), involving both the dystrophin and the KUCG1 (<a href="/entry/300892">300892</a>) genes. KUCG1 is a long noncoding RNA that shows brain expression. The first exon of KUCG1 was spliced to a dislocated part of the dystrophin gene, producing a chimeric dystrophin transcript. Brain MRI in the patient was normal. <a href="#192" class="mim-tip-reference" title="Tran, T. H. T., Zhang, Z., Yagi, M., Lee, T., Awano, H., Nishida, A., Okinaga, T., Takeshima, Y., Matsuo, M. &lt;strong&gt;Molecular characterization of an X(p21.2;q28) chromosomal inversion in a Duchenne muscular dystrophy patient with mental retardation reveals a novel long non-coding gene on Xq28.&lt;/strong&gt; J. Hum. Genet. 58: 33-39, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23223008/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23223008&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/jhg.2012.131&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23223008">Tran et al. (2013)</a> hypothesized that interruption of the KUCG1 gene may have contributed to mental retardation in this patient. However, sequencing of the KUCG1 gene in 10 additional Japanese families with X-linked mental retardation did not identify any mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23223008" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Duchenne muscular dystrophy is not linked to colorblindness or G6PD (<a href="#55" class="mim-tip-reference" title="Emery, A. E. H., Smith, C. A. B., Sanger, R. &lt;strong&gt;The linkage relations of the loci for benign (Becker type) X-borne muscular dystrophy, colour blindness and the Xg blood groups.&lt;/strong&gt; Ann. Hum. Genet. 32: 261-269, 1969.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/5305175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;5305175&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1469-1809.1969.tb00075.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="5305175">Emery et al., 1969</a>; <a href="#224" class="mim-tip-reference" title="Zatz, M., Itskan, S. B., Sanger, R., Frota-Pessoa, O., Saldanha, P. H. &lt;strong&gt;New linkage data for the X-linked types of muscular dystrophy and G6PD variants, colour blindness, and Xg blood groups.&lt;/strong&gt; J. Med. Genet. 11: 321-327, 1974.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4548443/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4548443&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.11.4.321&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="4548443">Zatz et al., 1974</a>). No linkage with Xg has been found; total lod scores were -14.6 and -2.4 for theta of 0.10 and 0.30, respectively (<a href="#155" class="mim-tip-reference" title="Race, R. R., Sanger, R. &lt;strong&gt;Blood Groups in Man. (6th ed.)&lt;/strong&gt; Oxford: Blackwell (pub.) 1975. P. 605."None>Race and Sanger, 1975</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=5305175+4548443" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#110" class="mim-tip-reference" title="Lindenbaum, R. H., Clarke, G., Patel, C., Moncrieff, M., Hughes, J. T. &lt;strong&gt;Muscular dystrophy in an X;1 translocation female suggests that Duchenne locus is on X chromosome short arm.&lt;/strong&gt; J. Med. Genet. 16: 389-392, 1979.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/513085/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;513085&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.16.5.389&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="513085">Lindenbaum et al. (1979)</a> found DMD with X-1 translocation and suggested that the DMD locus is at Xp1106 or Xp2107. A number of females with X-autosome translocations with the breakpoint in the Xp21 band have shown Duchenne muscular dystrophy. One interpretation is that the gene locus is in that region and that the locus on the normal X is inactivated. <a href="#133" class="mim-tip-reference" title="Murray, J. M., Davies, K. E., Harper, P. S., Meredith, L., Mueller, C. R., Williamson, R. &lt;strong&gt;Linkage relationship of a cloned DNA sequence on the short arm of the X chromosome to Duchenne muscular dystrophy.&lt;/strong&gt; Nature 300: 69-71, 1982.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6982420/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6982420&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/300069a0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6982420">Murray et al. (1982)</a> found linkage of DMD with a restriction enzyme polymorphism at a distance of about 10 cM. The cloned DNA sequence bearing the polymorphism (lambda RC8) was assigned to Xp22.3-p21 by study of somatic cell hybrids. <a href="#183" class="mim-tip-reference" title="Spowart, G., Buckton, K. E., Skinner, R., Emery, A. E. H. &lt;strong&gt;X chromosome in Duchenne muscular dystrophy. (Letter)&lt;/strong&gt; Lancet 319: 1251 only, 1982. Note: Originally Volume I.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6123008/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6123008&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0140-6736(82)92380-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6123008">Spowart et al. (1982)</a> outlined reasons for doubting the location of the DMD gene at Xp21. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=513085+6982420+6123008" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#208" class="mim-tip-reference" title="Wieacker, P., Davies, K. E., Mevorah, B., Ropers, H. H. &lt;strong&gt;Linkage studies in a family with X-linked recessive ichthyosis employing a cloned DNA sequence from the distal short arm of the X chromosome.&lt;/strong&gt; Hum. Genet. 63: 113-116, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6301973/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6301973&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00291528&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6301973">Wieacker et al. (1983)</a> studied the linkage between the restriction fragment length polymorphism defined by the cloned DNA sequence RC8 and X-linked ichthyosis. At least 2 crossovers were found among 9 meioses in an informative family, suggesting that RC8 and STS may be about 25 cM apart. Since STS is 15 cM proximal to the Xg locus and since the RC8 and Duchenne muscular dystrophy are closely linked, DMD may be 50 cM or more from Xg. <a href="#216" class="mim-tip-reference" title="Worton, R. G., Duff, C., Sylvester, J. E., Schmickel, R. D., Willard, H. F. &lt;strong&gt;Duchenne muscular dystrophy involving translocation of the dmd gene next to ribosomal RNA genes.&lt;/strong&gt; Science 224: 1447-1449, 1984.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6729462/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6729462&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.6729462&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6729462">Worton et al. (1984)</a> studied a female with DMD and an X;21 translocation which split the block of genes encoding ribosomal RNA on 21p. Thus, ribosomal RNA gene probes can be used to identify a junction fragment from the translocation site and to clone segments of the X at or near the DMD locus. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=6301973+6729462" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Kingston et al. (<a href="#97" class="mim-tip-reference" title="Kingston, H. M., Thomas, N. S. T., Pearson, P. L., Sarfarazi, M., Harper, P. S. &lt;strong&gt;Genetic linkage between Becker muscular dystrophy and a polymorphic DNA sequence on the short arm of the X chromosome.&lt;/strong&gt; J. Med. Genet. 20: 255-258, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6620324/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6620324&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.20.4.255&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6620324">1983</a>, <a href="#96" class="mim-tip-reference" title="Kingston, H. M., Sarfarazi, M., Thomas, N. S. T., Harper, P. S. &lt;strong&gt;Localisation of the Becker muscular dystrophy gene on the short arm of the X chromosome by linkage to cloned DNA sequences.&lt;/strong&gt; Hum. Genet. 67: 6-17, 1984.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6086495/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6086495&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00270551&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6086495">1984</a>) found linkage of BMD with the cloned sequence L1.28 (designated DXS7 by the seventh Human Gene Mapping Workshop in Los Angeles; D = DNA, X = X chromosome, S = segment, 7 = sequence of delineation). The interval was estimated to be about 16 cM, which is also the approximate interval between DXS7 and DMD. DXS7 is located between Xp11.0 and Xp11.3. Thus, these 2 forms of X-linked muscular dystrophy appeared to be allelic, a possibility also supported by the finding of both severe and mild disease (Duchenne and Becker, if you will) in females with X-autosome translocations. Contrary to reports of others, <a href="#96" class="mim-tip-reference" title="Kingston, H. M., Sarfarazi, M., Thomas, N. S. T., Harper, P. S. &lt;strong&gt;Localisation of the Becker muscular dystrophy gene on the short arm of the X chromosome by linkage to cloned DNA sequences.&lt;/strong&gt; Hum. Genet. 67: 6-17, 1984.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6086495/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6086495&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00270551&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6086495">Kingston et al. (1984)</a> found no evidence of linkage of BMD to colorblindness; Xg also showed no linkage. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=6620324+6086495" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#60" class="mim-tip-reference" title="Francke, U., Ochs, H. D., de Martinville, B., Giacalone, J., Lindgren, V., Disteche, C., Pagon, R. A., Hofker, M. H., van Ommen, G.-J. B., Pearson, P. L., Wedgwood, R. J. &lt;strong&gt;Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa, and McLeod syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 37: 250-267, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4039107/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4039107&lt;/a&gt;]" pmid="4039107">Francke et al. (1985)</a> studied a male patient with 3 X-linked disorders: chronic granulomatous disease with cytochrome b(-245) deficiency and McLeod red cell phenotype, Duchenne muscular dystrophy, and retinitis pigmentosa (see RP3, <a href="/entry/300029">300029</a>). A very subtle interstitial deletion of part of Xp21 was demonstrated as the presumed basis of this 'contiguous gene syndrome.' That this was a deletion and not a translocation was demonstrated by the absence of 1 DNA probe from the genome of the patient. Since this probe (called 754) was clearly very close to DMD and recognized a RFLP of high frequency, it proved highly useful for linkage studies of DMD. The close clustering of CGD, DMD, and RP suggested by these findings was inconsistent with separate linkage data, which indicated that McLeod and CGD were close to Xg and that DMD and RP are far away (perhaps at least 55 cM) and as much as 15 cM from each other. At least 4 possible explanations of the discrepancy were proposed by <a href="#60" class="mim-tip-reference" title="Francke, U., Ochs, H. D., de Martinville, B., Giacalone, J., Lindgren, V., Disteche, C., Pagon, R. A., Hofker, M. H., van Ommen, G.-J. B., Pearson, P. L., Wedgwood, R. J. &lt;strong&gt;Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa, and McLeod syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 37: 250-267, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4039107/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4039107&lt;/a&gt;]" pmid="4039107">Francke et al. (1985)</a>. One suggestion was that the deletion contained a single defect affecting perhaps a cell membrane component with the several disorders following thereon. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4039107" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#132" class="mim-tip-reference" title="Mulley, J. C., Haan, E. A., Sheffield, L. J., Sutherland, G. R. &lt;strong&gt;Recombination frequencies between Duchenne muscular dystrophy and intragenic markers in multigeneration families. (Letter)&lt;/strong&gt; Hum. Genet. 78: 296-297, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3162229/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3162229&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00291684&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3162229">Mulley et al. (1988)</a> reported the recombination frequencies between DMD and intragenic markers from 8 informative families containing 30 informative meioses. No recombinants were observed. The authors commented that the average theta between intragenic markers and DMD may be 1 to 2%. Grimm et al.(1989) reported a recombination rate of 4% between 2 subclones of the DNA segment DXS164 within the dystrophin locus, indicating a hotspot for recombination. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3162229" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#193" class="mim-tip-reference" title="Tuffery-Giraud, S., Beroud, C., Leturcq, F., Yaou, R. B., Hamroun, D., Michel-Calemard, L., Moizard, M.-P., Bernard, R., Cossee, M., Boisseau, P., Blayau, M., Creveaux, I., and 11 others. &lt;strong&gt;Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase.&lt;/strong&gt; Hum. Mutat. 30: 934-945, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19367636/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19367636&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.20976&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19367636">Tuffery-Giraud et al. (2009)</a> described a French database for mutations in the DMD gene that includes 2,411 entries consisting of 2,084 independent mutation events identified in 2,046 male patients and 38 expressing females. This corresponds to an estimated frequency of 39 per million with a genetic diagnosis of a 'dystrophinopathy' in France. Mutations in the database include 1,404 large deletions, 215 large duplications, and 465 small rearrangements, of which 39.8% are nonsense mutations. About 24% of the mutations are de novo events. The true frequency of BMD in France was found to be almost half (43%) that of DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19367636" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Among 624 index cases evaluated for DMD mutations, <a href="#140" class="mim-tip-reference" title="Oshima, J., Magner, D. B., Lee, J. A., Breman, A. M., Schmitt, E. S., White, L. D., Crowe, C. A., Merrill, M., Jayakar, P., Rajadhyaksha, A., Eng, C. M., del Gaudio, D. &lt;strong&gt;Regional genomic instability predisposes to complex dystrophin gene rearrangements.&lt;/strong&gt; Hum. Genet. 126: 411-423, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19449031/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19449031&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-009-0679-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19449031">Oshima et al. (2009)</a> reported that a genomic rearrangement was detected in 238 (38.1%) samples. Deletions were detected in 188 (79.0%), and included 31 cases with single-exon deletions and 157 cases with multi-exonic deletions. Most of the deletions fell between exons 45 and 52 and between exons 8 and 13 of the gene. Duplications were detected in 44 (18.5%) cases, of which 12 involved single exons and 32 multiple exons. Complex rearrangements were detected in 6 (2.5%) cases. The remaining 386 cases showed normal results. <a href="#140" class="mim-tip-reference" title="Oshima, J., Magner, D. B., Lee, J. A., Breman, A. M., Schmitt, E. S., White, L. D., Crowe, C. A., Merrill, M., Jayakar, P., Rajadhyaksha, A., Eng, C. M., del Gaudio, D. &lt;strong&gt;Regional genomic instability predisposes to complex dystrophin gene rearrangements.&lt;/strong&gt; Hum. Genet. 126: 411-423, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19449031/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19449031&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-009-0679-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19449031">Oshima et al. (2009)</a> selected 15 unique rearrangement, of which none shared a common breakpoint, and used array CGH and MLPA analyses to evaluate the mechanism rearrangements. Fourteen of the deletions had microhomology and small insertions at the breakpoints, consistent with a mechanism of nonhomologous end joining (NHEJ) after DNA damage and repair. Analysis of 3 complex intragenic DMD gene rearrangements identified several features that could result in genomic instability, including breakpoints that aligned with repetitive sequences, an inversion/deletion involving a stem-loop structure, replication-dependent fork stalling and template switching (FoSTeS), and duplications causing secondary deletions. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19449031" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Modifier Genes</em></strong></p><p>
<a href="#143" class="mim-tip-reference" title="Pegoraro, E., Hoffman, E. P., Piva, L., Gavassini, B. F., Cagnin, S., Ermani, M., Bello, L., Soraru, G., Pacchioni, B., Bonifati, M. D., Lanfranchi, G., Angelini, C., Kesari, A., Lee, I., Gordish-Dressman, H., Devaney, J. M., McDonald, C. M. &lt;strong&gt;SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy.&lt;/strong&gt; Neurology 76: 219-226, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21178099/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21178099&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21178099[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/WNL.0b013e318207afeb&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21178099">Pegoraro et al. (2011)</a> examined 106 DMD patients for variations in 29 genes selected as candidate modifiers of disease severity. Skeletal muscle mRNA profiling identified the G allele of <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs28357094;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs28357094</a> in the promoter of the SPP1 gene (<a href="/entry/166490">166490</a>), which encodes osteopontin, as having a significant effect on both disease progression and response to glucocorticoids. In an autosomal dominant model, carriers of the G allele (35% of subjects) had more rapid progression and 12 to 19% less grip strength. The association was validated in a second cohort of 156 patients. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21178099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using whole-exome sequencing of DMD patients with extreme phenotypes, followed by validation studies in 2 independent DMD cohorts, <a href="#182" class="mim-tip-reference" title="Spitali, P., Zaharieva, I., Bohringer, S., Hiller, M., Chaouch, A., Roos, A., Scotton, C., Claustres, M., Bello, L., McDonald, C. M., Hoffman, E. P., Koeks, Z., and 11 others. &lt;strong&gt;TCTEX1D1 is a genetic modifier of disease progression in Duchenne muscular dystrophy.&lt;/strong&gt; Europ. J. Hum. Genet. 28: 815-825, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31896777/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31896777&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31896777[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41431-019-0563-6&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31896777">Spitali et al. (2020)</a> found that the minor alleles of 2 SNPs in the TCTEX1D1 gene (<a href="/entry/619994">619994</a>), <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1060575;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1060575</a> and <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3816989;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3816989</a>, were associated with earlier age of ambulation loss. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31896777" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="diagnosis" class="mim-anchor"></a>
<h4 href="#mimDiagnosisFold" id="mimDiagnosisToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimDiagnosisToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Diagnosis</strong>
</span>
</h4>
</div>
<div id="mimDiagnosisFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Symptomatic Hemizygotes</em></strong></p><p>
Clinical diagnosis of males affected with DMD is straightforward. Gait difficulty beginning at age three, progressive myopathic weakness with pseudohypertrophy of calves and massive elevations of serum levels of creatine kinase permit diagnosis. Electromyography and muscle biopsy are confirmatory. Inflammatory changes seen in biopsies taken early in the course of the disorder can erroneously suggest a diagnosis of polymyositis if careful note is not made of the histologic hallmarks of dystrophy.</p><p><a href="#80" class="mim-tip-reference" title="Heyck, H., Laudahn, G., Carsten, P. M. &lt;strong&gt;Enzymaktivitaetsbestimmungen bei Dystrophia musculorum progressiva.&lt;/strong&gt; Klin. Wschr. 44: 695-700, 1966.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/5990806/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;5990806&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF01790793&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="5990806">Heyck et al. (1966)</a> documented a high level of CPK (and other enzymes) in a 9-day-old infant from a family at risk. According to <a href="#52" class="mim-tip-reference" title="Dubowitz, V. &lt;strong&gt;Screening for Duchenne muscular dystrophy.&lt;/strong&gt; Arch. Dis. Child. 51: 249-251, 1976.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/776092/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;776092&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/adc.51.4.249&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="776092">Dubowitz (1976)</a>, elevation in cord blood in a proven case had not been documented. Furthermore, many perinatal factors seem to cause elevation of CPK. <a href="#112" class="mim-tip-reference" title="Mahoney, M. J., Haseltine, F. P., Hobbins, J. C., Banker, B. Q., Caskey, C. T., Golbus, M. S. &lt;strong&gt;Prenatal diagnosis of Duchenne&#x27;s muscular dystrophy.&lt;/strong&gt; New Eng. J. Med. 297: 968-973, 1977.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/909543/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;909543&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM197711032971803&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="909543">Mahoney et al. (1977)</a> demonstrated elevated CPK in fetal blood obtained by placental puncture and validated this as a method of prenatal diagnosis by demonstrating histologic changes in the skeletal muscle of the aborted fetus. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=5990806+909543+776092" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#46" class="mim-tip-reference" title="Darras, B. T., Harper, J. F., Francke, U. &lt;strong&gt;Prenatal diagnosis and detection of carriers with DNA probes in Duchenne&#x27;s muscular dystrophy.&lt;/strong&gt; New Eng. J. Med. 316: 985-992, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3561454/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3561454&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198704163161604&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3561454">Darras et al. (1987)</a> reported experience suggesting that despite the large number of intragenic and flanking DNA polymorphisms then available, uncertainties often remain in the prenatal diagnosis of DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3561454" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#12" class="mim-tip-reference" title="Bartlett, R. J., Pericak-Vance, M. A., Koh, J., Yamaoka, L. H., Chen, J. C., Hung, W.-Y., Speer, M. C., Wapenaar, M. C., Van Ommen, G. J. B., Bakker, E., Pearson, P. L., Kandt, R. S., Siddique, T., Gilbert, J. R., Lee, J. E., Sirotkin-Roses, M. J., Roses, A. D. &lt;strong&gt;Duchenne muscular dystrophy: high frequency of deletions.&lt;/strong&gt; Neurology 38: 1-4, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3275902/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3275902&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/wnl.38.1.1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3275902">Bartlett et al. (1988)</a> pointed out that mapping of deletions is a more reliable and an easier way to do prenatal diagnosis and carrier detection than by use of RFLPs. They suggested that once the entire gene is available for screening, most DMD boys will show deletions. <a href="#93" class="mim-tip-reference" title="Katayama, S., Montano, M., Slotnick, N., Lebo, R. V., Golbus, M. S. &lt;strong&gt;Prenatal diagnosis and carrier detection of Duchenne muscular dystrophy by restriction fragment length polymorphism analysis with pERT 87 deoxyribonucleic acid probes.&lt;/strong&gt; Am. J. Obstet. Gynec. 158: 548-555, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2894769/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2894769&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0002-9378(88)90023-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2894769">Katayama et al. (1988)</a> demonstrated the usefulness of RFLPs in prenatal diagnosis and carrier detection of DMD. In some of the examples cited, the authors made use of creatine phosphokinase levels as well. <a href="#180" class="mim-tip-reference" title="Speer, A., Spiegler, A. W. J., Hanke, R., Grade, K., Giertler, U., Schieck, J., Forrest, S., Davies, K. E., Neumann, R., Bollmann, R., Bommer, C., Sommer, D., Coutelle, C. &lt;strong&gt;Possibilities and limitation of prenatal diagnosis and carrier determination for Duchenne and Becker muscular dystrophy using cDNA probes.&lt;/strong&gt; J. Med. Genet. 26: 1-5, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2918522/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2918522&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.26.1.1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2918522">Speer et al. (1989)</a> reviewed the status of prenatal diagnosis and carrier detection using cDNA probes. <a href="#41" class="mim-tip-reference" title="Clemens, P. R., Fenwick, R. G., Chamberlain, J. S., Gibbs, R. A., de Andrade, M., Chakraborty, R., Caskey, C. T. &lt;strong&gt;Carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophy families, using dinucleotide repeat polymorphisms.&lt;/strong&gt; Am. J. Hum. Genet. 49: 951-960, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1928100/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1928100&lt;/a&gt;]" pmid="1928100">Clemens et al. (1991)</a> took advantage of the existence of approximately 50,000-100,000 (CA)n loci in the human genome (<a href="#187" class="mim-tip-reference" title="Tautz, D., Renz, M. &lt;strong&gt;Simple sequences are ubiquitous repetitive components of eukaryotic genomes.&lt;/strong&gt; Nucleic Acids Res. 12: 4127-4138, 1984.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6328411/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6328411&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/nar/12.10.4127&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6328411">Tautz and Renz, 1984</a>) for carrier detection and prenatal diagnosis in DMD and BMD. (CA)n loci are a subclass of all short tandem repeat (STR) sequences. Because they are frequently polymorphic, so-called pSTR, they are useful for linkage purposes and are readily studied by PCR. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2918522+2894769+3275902+6328411+1928100" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#18" class="mim-tip-reference" title="Bieber, F. R., Hoffman, E. P., Amos, J. A. &lt;strong&gt;Dystrophin analysis in Duchenne muscular dystrophy: use in fetal diagnosis and in genetic counseling.&lt;/strong&gt; Am. J. Hum. Genet. 45: 362-367, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2672800/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2672800&lt;/a&gt;]" pmid="2672800">Bieber et al. (1989)</a> described the use of immunoblotting for dystrophin analysis in the diagnosis of DMD in cases in which a gene deletion cannot be identified and RFLPs are equivocal. <a href="#57" class="mim-tip-reference" title="Evans, M. I., Greb, A., Kunkel, L. M., Sacks, A. J., Johnson, M. P., Boehm, C., Kazazian, H. H., Jr., Hoffman, E. P. &lt;strong&gt;In utero fetal muscle biopsy for the diagnosis of Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Obstet. Gynec. 165: 728-732, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1892202/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1892202&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0002-9378(91)90318-l&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1892202">Evans et al. (1991)</a> used in utero fetal muscle biopsy to assess dystrophin in a male fetus with the same X chromosome as an affected sib. <a href="#56" class="mim-tip-reference" title="Evans, M. I., Farrell, S. A., Greb, A., Ray, P., Johnson, M. P., Hoffman, E. P. &lt;strong&gt;In utero fetal muscle biopsy for the diagnosis of Duchenne muscular dystrophy in a female fetus &#x27;suddenly at risk&#x27;.&lt;/strong&gt; Am. J. Med. Genet. 46: 309-312, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8488877/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8488877&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320460314&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8488877">Evans et al. (1993)</a> used the same procedure to evaluate a female fetus found on amniocentesis performed for advanced maternal age to be carrying a de novo X;1 translocation with a breakpoint at Xp21. In utero muscle biopsy at 20 weeks of gestation showed normal dystrophin, and serum creatine kinase was normal at the time of birth of the infant. Situations in which testing of dystrophin by fetal muscle biopsy may be indicated were reviewed. <a href="#169" class="mim-tip-reference" title="Sancho, S., Mongini, T., Tanji, K., Tapscott, S. J., Walker, W. F., Weintraub, H., Miller, A. D., Miranda, A. F. &lt;strong&gt;Analysis of dystrophin expression after activation of myogenesis in amniocytes, chorionic-villus cells, and fibroblasts: a new method for diagnosing Duchenne&#x27;s muscular dystrophy.&lt;/strong&gt; New Eng. J. Med. 329: 915-920, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8361505/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8361505&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199309233291303&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8361505">Sancho et al. (1993)</a> demonstrated that when conventional DNA analysis is not informative for the prenatal and postnatal diagnosis of DMD, myogenesis can be induced in cultured skin fibroblasts, amniocytes, or chorionic-villus cells by infecting the cells with a retrovirus vector containing MYOD (<a href="/entry/159970">159970</a>), a gene regulating myogenesis. Immunocytochemical analysis of dystrophin in the MYOD-converted muscle cells is an effective way of demonstrating dystrophin deficiency. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2672800+8488877+8361505+1892202" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#16" class="mim-tip-reference" title="Beggs, A. H., Kunkel, L. M. &lt;strong&gt;Improved diagnosis of Duchenne/Becker muscular dystrophy.&lt;/strong&gt; J. Clin. Invest. 85: 613-619, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1968908/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1968908&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI114482&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1968908">Beggs and Kunkel (1990)</a> presented a flow diagram illustrating procedures for the molecular diagnosis of DMD or BMD. For males with consistent clinical features, CPK levels, and muscle biopsy, they suggested that Western blot testing for dystrophin be done first. If this is normal, the patient should be studied for other neuromuscular diseases. If dystrophin is of reduced or increased size, with or without reduction in the amount of dystrophin, BMD should be suspected. If dystrophin is absent, DMD should be suspected. Thereafter, PCR testing and Southern blot analysis should be done, looking for deletion/duplication. These procedures detect about 65% of patients, and the Southern blot permits prognostication of severity by distinguishing in-frame versus frameshift mutations in over 90% of cases. If no deletion or duplication is found, it is then necessary to resort to RFLP-based linkage studies, which unfortunately are laborious and time consuming. Once the diagnosis has been made, the information can be used for carrier detection and prenatal diagnosis. In females who are having symptoms of muscular dystrophy, immunohistochemistry for dystrophin in muscle showing a patchy loss of dystrophin can be used, and when abnormality is found, the same procedures of PCR, Southern blot, and linkage studies can be pursued. If the immunohistochemistry is normal, the female can be studied for other neuromuscular diseases. (Abnormality is indicative of the manifesting carrier state.) <a href="#16" class="mim-tip-reference" title="Beggs, A. H., Kunkel, L. M. &lt;strong&gt;Improved diagnosis of Duchenne/Becker muscular dystrophy.&lt;/strong&gt; J. Clin. Invest. 85: 613-619, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1968908/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1968908&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI114482&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1968908">Beggs and Kunkel (1990)</a> provided useful illustrative case histories as well as a hypothetical case in which a newborn male was found to have elevated CPK on a screening program but normal physical examination and negative family history. If Western blotting revealed absence of detectable dystrophin in the muscle and the PCR analysis detected a deletion which was confirmed by Southern blotting, his mother might carry the deletion or be normal. Even if normal, prenatal diagnosis could be offered her because of the significant probability that she was a germline mosaic. The usefulness of such screening programs for diagnosing DMD at a stage when diagnosis can be useful to the parents in the planning of other pregnancies is worthy of consideration. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1968908" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#103" class="mim-tip-reference" title="Kristjansson, K., Chong, S. S., Van den Veyver, I. B., Subramanian, S., Snabes, M. C., Hughes, M. R. &lt;strong&gt;Preimplantation single cell analyses of dystrophin gene deletions using whole genome amplification.&lt;/strong&gt; Nature Genet. 6: 19-24, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8136827/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8136827&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0194-19&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8136827">Kristjansson et al. (1994)</a> used primer extension preamplification (PEP) to increase the scope and capacity of single cell genetic diagnosis by generating sufficient template to perform multiple subsequent DNA analyses using PCR. They reported the simultaneous analysis of single cells at 5 commonly deleted dystrophin exons. In 93% of PEP reactions with single amniocytes, chorionic villus cells and blastomeres, successful results were obtained, and a blinded analysis of single lymphoblasts from affected males resulted in 93% diagnostic accuracy. They suggested that transfer of unaffected male embryos and improved diagnostic reliability is achieved with the ability to perform replicate multilocus analyses from the same blastomere. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8136827" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#141" class="mim-tip-reference" title="Parsons, E., Bradley D., Clarke, A. &lt;strong&gt;Disclosure of Duchenne muscular dystrophy after newborn screening.&lt;/strong&gt; Arch. Dis. Child. 74: 550-553, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8758137/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8758137&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/adc.74.6.550&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8758137">Parsons et al. (1996)</a> discussed procedures used for disclosure of the diagnosis of Duchenne muscular dystrophy to parents after newborn screening. Newborn screening for DMD was introduced into Wales in 1990. While screening in the newborn period for DMD was still under evaluation, preliminary evidence indicated that the excessive trauma anticipated in making such a disclosure presymptomatically could be avoided by implementing a strict protocol of disclosure and support. Parental choice should be facilitated at every stage from screen to diagnosis, and parents should be provided with maximum unbiased information on which to base their decisions. The family should not experience delay in getting the results with the additional stress this may cause. Meetings with the primary health care team and with the pediatrician facilitated ongoing support for the family. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8758137" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Heterozygotes</em></strong></p><p>
<a href="#162" class="mim-tip-reference" title="Roses, A. D., Roses, M. J., Nicholson, G. A., Roe, C. R. &lt;strong&gt;Lactate dehydrogenase isoenzyme 5 in detecting carriers of Duchenne muscular dystrophy.&lt;/strong&gt; Neurology 27: 414-421, 1977.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/558544/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;558544&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/wnl.27.5.414&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="558544">Roses et al. (1977)</a> concluded that isoenzyme 5 of lactate dehydrogenase is as sensitive an indicator of carrier status as creatine phosphokinase. Indeed, some carrier females with normal CPK were identified with LDH-5. By combining the 2 enzyme determinations and screening pedigrees extensively, they found that 28 of 30 mothers were probably heterozygotes. This high proportion of carriers is consistent with a higher mutation rate in males than in females, a conclusion suggested also by data on Lesch-Nyhan syndrome (<a href="/entry/308000">308000</a>) and hemophilia (<a href="/entry/306700">306700</a>). Hemopexin (<a href="/entry/142290">142290</a>) is elevated in some DMD carriers. <a href="#147" class="mim-tip-reference" title="Percy, M. E., Andrews, D. F., Thompson, M. W. &lt;strong&gt;Duchenne muscular dystrophy carrier detection using logistic discrimination: serum creatine kinase and hemopexin in combination.&lt;/strong&gt; Am. J. Med. Genet. 8: 397-409, 1981.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7246612/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7246612&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320080406&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7246612">Percy et al. (1981)</a> found that hemopexin, used in combination with creatine kinase, improved the identification of carriers. <a href="#171" class="mim-tip-reference" title="Sato, B., Nishikida, K., Samuels, L. T., Tyler, F. H. &lt;strong&gt;Electron spin resonance studies of erythrocytes from patients with Duchenne muscular dystrophy.&lt;/strong&gt; J. Clin. Invest. 61: 251-259, 1978.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23391/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23391&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI108934&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23391">Sato et al. (1978)</a> presented evidence that red cell membrane as well as muscle membrane is involved. <a href="#15" class="mim-tip-reference" title="Beckmann, R., Sauer, M., Ketelsen, U.-P., Scheuerbrandt, G. &lt;strong&gt;Early diagnosis of Duchenne muscular dystrophy. (Letter)&lt;/strong&gt; Lancet 312: 105 only, 1978. Note: Originally Volume II.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/78271/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;78271&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0140-6736(78)91419-8&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="78271">Beckmann et al. (1978)</a> pointed out that the diagnosis of carrier females with plasma CPK is best in the neonatal or infant period. They suggested screening of all infants. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7246612+78271+558544+23391" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Although analysis of DNA with probes complementary to the dystrophin gene clarifies the diagnosis in at least two-thirds of isolated adult male patients, this approach in female patients is frustrated by the obfuscation of molecular deletion by heterozygosity, when gene dosage alone is not sufficiently reliable. Pulsed field gel electrophoresis may allow detection of abnormal-sized fragments of the dystrophin gene in these patients, and analysis of the dystrophin protein itself may be helpful.</p><p><a href="#186" class="mim-tip-reference" title="Tangorra, A., Curatola, G., Milani-Comparetti, M., Ferretti, G. &lt;strong&gt;Echinogenic action of L-alpha-lysophosphatidylcholine in Duchenne muscular dystrophy: a study of carrier detection.&lt;/strong&gt; Am. J. Med. Genet. 32: 540-544, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2774000/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2774000&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320320423&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2774000">Tangorra et al. (1989)</a> suggested that an increased tendency of erythrocytes to form echinocytes (spine cells) on exposure to L-alpha-lysophosphatidylcholine could be used as a means of detecting DMD carriers. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2774000" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>With increased utilization of dystrophin protein analysis of muscle biopsies for molecular diagnosis, many female myopathy patients with no previous family history of any neuromuscular disease have been found to have a mosaic dystrophin immunostaining pattern on muscle biopsy (<a href="#122" class="mim-tip-reference" title="Minetti, C., Chang, H. W., Medori, R., Prelle, A., Moggio, M., Johnsen, S. D., Bonilla, E. &lt;strong&gt;Dystrophin deficiency in young girls with sporadic myopathy and normal karyotype.&lt;/strong&gt; Neurology 41: 1288-1292, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1714059/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1714059&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/wnl.41.8.1288&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1714059">Minetti et al., 1991</a>). These patients generally were diagnosed as having limb-girdle muscular dystrophy (with presumed autosomal recessive inheritance) before reclassification, by dystrophin testing, as female dystrophinopathy patients (<a href="#7" class="mim-tip-reference" title="Arikawa, E., Hoffman, E. P., Kaido, M., Nonaka, I., Sugita, H., Arahata, K. &lt;strong&gt;The frequency of patients with dystrophin abnormalities in a limb-girdle patient population.&lt;/strong&gt; Neurology 41: 1491-1496, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1842672/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1842672&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/wnl.41.9.1491&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1842672">Arikawa et al., 1991</a>). In a large follow-up study of 505 muscle biopsies from female myopathy patients, <a href="#81" class="mim-tip-reference" title="Hoffman, E. P., Arahata, K., Minetti, C., Bonilla, E., Rowland, L. P., Angelini, C., Arikawa, E., Baba, C., Barkhaus, P. E., Bauserman, S. C., Butler, I. J., Cook, J. D., and 40 others. &lt;strong&gt;Dystrophinopathy in isolated cases of myopathy in females.&lt;/strong&gt; Neurology 42: 967-975, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1579251/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1579251&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/wnl.42.5.967&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1579251">Hoffman et al. (1992)</a> found that about 10% of women with hyperCKemia, myopathic pattern by muscle biopsy, and no family history of DMD could be identified as carriers of DMD when tested with the dystrophin immunofluorescence assay. It was assumed that such female dystrophinopathy patients were heterozygous carriers who showed preferential inactivation of the X chromosome harboring the normal dystrophin gene. Such was shown to be the case, for example, in 2 sets of discordant monozygotic twins (<a href="#22" class="mim-tip-reference" title="Bonilla, E., Younger, D. S., Chang, H. W., Tantravahi, U., Miranda, A. F., Medori, R., DiMauro, S., Warburton, D., Rowland, L. P. &lt;strong&gt;Partial dystrophin deficiency in monozygous twin carriers of the Duchenne gene discordant for clinical myopathy.&lt;/strong&gt; Neurology 40: 1267-1270, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2199849/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2199849&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/wnl.40.8.1267&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2199849">Bonilla et al., 1990</a>; <a href="#157" class="mim-tip-reference" title="Richards, C. S., Watkins, S. C., Hoffman, E. P., Schneider, N. R., Milsark, I. W., Katz, K. S., Cook, J. D., Kunkel, L. M., Cortada, J. M. &lt;strong&gt;Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Hum. Genet. 46: 672-681, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2180286/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2180286&lt;/a&gt;]" pmid="2180286">Richards et al., 1990</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2180286+1842672+1714059+2199849+1579251" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>However, mosaic staining patterns have only been detected in heterozygote females with elevated levels of creatine kinase in the blood. Diagnosis of asymptomatic women without deletions or elevated creatine kinase remains a problem. In a study of clonal myogenic cell cultures from a potential heterozygote for DMD who also was heterozygous for G6PD isozymes, <a href="#85" class="mim-tip-reference" title="Hurko, O., Hoffman, E. P., McKee, L., Johns, D. R., Kunkel, L. M. &lt;strong&gt;Dystrophin analysis in clonal myoblasts derived from Duchenne muscular dystrophy carrier.&lt;/strong&gt; Am. J. Hum. Genet. 44: 820-826, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2658563/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2658563&lt;/a&gt;]" pmid="2658563">Hurko et al. (1989)</a> found that only those myogenic colonies expressing the G6PD-A isozyme also expressed dystrophin. He suggested that somatic cell testing of dystrophin expression may be useful in genetic carrier tests in ambiguous cases. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2658563" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#83" class="mim-tip-reference" title="Hoogerwaard, E. M., Ginjaar, I. B., Bakker, E., de Visser, M. &lt;strong&gt;Dystrophin analysis in carriers of Duchenne and Becker muscular dystrophy.&lt;/strong&gt; Neurology 65: 1984-1986, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16380627/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16380627&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/01.wnl.0000188909.89849.59&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16380627">Hoogerwaard et al. (2005)</a> examined skeletal muscle biopsies from 50 definite carriers of DMD and BMD, including 22 manifesting carriers, 5 carriers with exertion-dependent myalgia or cramps, and 23 nonmanifesting carriers. Although 42% of the biopsies showed nonspecific abnormalities, no association was found between histopathologic changes and muscle weakness, dilated cardiomyopathy, serum creatine kinase activities, dystrophin abnormalities, or age. For example, 5 carriers with cardiomyopathy had no dystrophin abnormalities, whereas 6 nonmanifesting carriers had abnormal immunohistochemical dystrophin patterns. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16380627" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Intrafamilial Variability</em></strong></p><p>
<a href="#177" class="mim-tip-reference" title="Sifringer, M., Uhlenberg, B., Lammel, S., Hanke, R., Neumann, B., von Moers, A., Koch, I., Speer, A. &lt;strong&gt;Identification of transcripts from a subtraction library which might be responsible for the mild phenotype in an intrafamilially variable course of Duchenne muscular dystrophy.&lt;/strong&gt; Hum. Genet. 114: 149-156, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14600829/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14600829&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-003-1041-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14600829">Sifringer et al. (2004)</a> investigated the differences between the expression profiles of skeletal muscle biopsies from a very rare instance of 2 brothers with a different clinical course of DMD. Comparison of important parameters in the development of the 2 brothers made clear that the older brother was far more affected by muscle weakness than the younger. The younger brother was able to sit 9 months earlier and to walk 22 months earlier than the older one. The older brother was wheelchair-bound at the age of 9 years, whereas the younger one was not expected to become wheelchair dependent at the same age. Furthermore, the older boy was mentally retarded. Though deletions or point mutations in the DMD gene were not detected, negative immunofluorescence in both brothers supported the diagnosis of dystrophinopathy and suggested compensating mechanisms for the younger less affected brother. <a href="#177" class="mim-tip-reference" title="Sifringer, M., Uhlenberg, B., Lammel, S., Hanke, R., Neumann, B., von Moers, A., Koch, I., Speer, A. &lt;strong&gt;Identification of transcripts from a subtraction library which might be responsible for the mild phenotype in an intrafamilially variable course of Duchenne muscular dystrophy.&lt;/strong&gt; Hum. Genet. 114: 149-156, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14600829/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14600829&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-003-1041-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14600829">Sifringer et al. (2004)</a> compared the transcriptomes in skeletal muscle in the 2 brothers to identify overexpressed transcripts that might be responsible for the milder phenotype. Six genes were found to be overexpressed 3 to 20 times in the less affected patient compared with the more severely affected boy; casein kinase 1 (<a href="/entry/600505">600505</a>) showed a slightly higher expression. Upregulation of myosin light polypeptide 2 (MYL2; <a href="/entry/160781">160781</a>), one of the most sensitive markers of muscle fiber regeneration, was found with the milder phenotype. The purpose of these studies was to identify modifiers that might be exploited therapeutically in Duchenne muscular dystrophy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14600829" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalManagement" class="mim-anchor"></a>
<h4 href="#mimClinicalManagementFold" id="mimClinicalManagementToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalManagementToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<div id="mimClinicalManagementFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>The management of DMD is largely symptomatic: providing assisting devices for walking, prevention of scoliosis, and respiratory toilet. <a href="#67" class="mim-tip-reference" title="Goertzen, M., Baltzer, A., Voit, T. &lt;strong&gt;Clinical results of early orthopaedic management in Duchenne muscular dystrophy.&lt;/strong&gt; Neuropediatrics 26: 257-259, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8552216/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8552216&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1055/s-2007-979767&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8552216">Goertzen et al. (1995)</a> reported on the efficacy of early release of the spina muscles, resection of the tensor fasciae latae muscle, and a lengthening of the tendo calcaneus in 32 patients with Duchenne muscular dystrophy at the mean age of 6.1 years in safely preventing severe contractures and delaying the progression of scoliosis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8552216" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a kindred with 9 previous cases of DMD, <a href="#222" class="mim-tip-reference" title="Zatz, M., Betti, R. T. B., Levy, J. A. &lt;strong&gt;Benign Duchenne muscular dystrophy in a patient with growth hormone deficiency. (Letter)&lt;/strong&gt; Am. J. Med. Genet. 10: 301-304, 1981.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7304674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7304674&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320100313&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7304674">Zatz et al. (1981)</a> observed a boy who was unusually mildly affected, perhaps because of the coincidence of growth hormone deficiency. Following up on this observation (<a href="#223" class="mim-tip-reference" title="Zatz, M., Betti, R. T. B. &lt;strong&gt;Benign Duchenne muscular dystrophy in a patient with growth hormone deficiency: a five years follow-up. (Letter)&lt;/strong&gt; Am. J. Med. Genet. 24: 567-572, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3728575/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3728575&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320240323&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3728575">Zatz and Betti, 1986</a>), <a href="#221" class="mim-tip-reference" title="Zatz, M., Betti, R. T. B., Frota-Pessoa, O. &lt;strong&gt;Treatment of Duchenne muscular dystrophy with growth hormone inhibitors.&lt;/strong&gt; Am. J. Med. Genet. 24: 549-566, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3524231/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3524231&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320240322&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3524231">Zatz et al. (1986)</a> used a growth hormone inhibitor, mazindol, in one of monozygotic twins concordant for DMD. The other twin received a placebo. After 1 year, the 'code was broken' and the placebo-treated twin was found to be much worse than his mazindol-treated brother in whom the 'condition was practically arrested.' <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3524231+7304674+3728575" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>From a 6-month trial study, <a href="#119" class="mim-tip-reference" title="Mendell, J. R., Moxley, R. T., Griggs, R. C., Brooke, M. H., Fenichel, G. M., Miller, J. P., King, W., Signore, L., Pandya, S., Florence, J., Schierbecker, J., Robison, J., Kaiser, K., Mandel, S., Arfken, C., Gilder, B. &lt;strong&gt;Randomized, double-blind six-month trial of prednisone in Duchenne&#x27;s muscular dystrophy.&lt;/strong&gt; New Eng. J. Med. 320: 1592-1597, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2657428/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2657428&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198906153202405&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2657428">Mendell et al. (1989)</a> concluded that prednisone improves the strength and function of patients with DMD. The mechanism of the improvement was not known and it was not clear whether prolonged treatment with corticosteroids is warranted despite their side effects. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2657428" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Studies had shown a correlative relationship between calpain (<a href="/entry/114220">114220</a>) activity in dystrophic muscle and muscle necrosis, but had not tested whether calpain activation precedes cell death or is a consequence of it. <a href="#181" class="mim-tip-reference" title="Spencer, M. J., Mellgren, R. L. &lt;strong&gt;Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology.&lt;/strong&gt; Hum. Molec. Genet. 11: 2645-2655, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12354790/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12354790&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/11.21.2645&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12354790">Spencer and Mellgren (2002)</a> hypothesized that calpains may play an active role in necrotic processes in dystrophic muscle, and that inhibition of calpains might provide a therapeutic option for treatment of DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12354790" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#113" class="mim-tip-reference" title="Malik, V., Rodino-Klapac, L. R., Viollet, L., Wall, C., King, W., Al-Dahhak, R., Lewis, S., Shilling, C. J., Kota, J., Serrano-Munuera, C., Hayes, J., Mahan, J. D., and 11 others. &lt;strong&gt;Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy.&lt;/strong&gt; Ann. Neurol. 67: 771-780, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20517938/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20517938&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ana.22024&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20517938">Malik et al. (2010)</a> found that 10 boys with DMD due to stop codon mutations in the dystrophin gene showed a 50% decrease in serum creatine kinase levels compared to baseline levels after a 14-day treatment with intravenous infusion of gentamicin. In contrast, this treatment had no effect on 8 boys with frameshift mutations. Among 12 patients treated for 6 months, 6 showed an increase of dystrophin levels in serial skeletal muscle biopsies, 3 of whom had increases into a potentially therapeutic range (300% or more increase in dystrophin levels). The average muscle scale in these patients did not decrease over the study period, and some patients even had a slight increase in forced vital capacity, suggesting a clinical benefit. Only 1 patient developed a T-cell immune response to a novel epitope. The results of the study indicated that long-term dosing of gentamicin over 6 months could be safely achieved, and supported the concept that gentamicin can induce a read-through of stop codons in DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20517938" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Gene Therapy</em></strong></p><p>
Donor myoblasts injected into muscles of patients with DMD could theoretically fuse with host muscle fibers, thus contributing their nuclei which could potentially replace deficient gene products. <a href="#118" class="mim-tip-reference" title="Mendell, J. R., Kissel, J. T., Amato, A. A., King, W., Signore, L., Prior, T. W., Sahenk, Z., Benson, S., McAndrew, P. E., Rice, R., Nagaraja, H., Stephens, R., Lantry, L., Morris, G. E., Burghes, A. H. M. &lt;strong&gt;Myoblast transfer in the treatment of Duchenne&#x27;s muscular dystrophy.&lt;/strong&gt; New Eng. J. Med. 333: 832-838, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7651473/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7651473&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199509283331303&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7651473">Mendell et al. (1995)</a> injected muscle cells donated by unaffected fathers or brothers once a month for 6 months into the biceps brachii muscle of 1 arm of each of 12 boys with DMD. Although in 1 patient 10.3% of muscle fibers expressed donor-derived dystrophin after myoblast transfer and 3 other patients had a low level of donor dystrophin, there was no significant difference in muscle strength between arms injected with myoblasts and control arms. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7651473" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#195" class="mim-tip-reference" title="van Deutekom, J. C. T., Bremmer-Bout, M., Janson, A. A. M., Ginjaar, I. B., Baas, F., den Dunnen, J. T., van Ommen, G.-J. B. &lt;strong&gt;Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells.&lt;/strong&gt; Hum. Molec. Genet. 10: 1547-1554, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11468272/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11468272&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/10.15.1547&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11468272">Van Deutekom et al. (2001)</a> explored a genetic therapy aimed at restoring the reading frame in muscle cells from DMD patients through targeted modulation of dystrophin pre-mRNA splicing. Considering that exon 45 is the single most frequently deleted exon in DMD, whereas exon (45+46) deletions cause only a mild form of BMD, the authors devised an antisense-based system to induce exon 46 skipping from the transcript in cultured myotubes of both mouse and human origin. In myotube cultures from 2 unrelated DMD patients carrying an exon 45 deletion, the induced skipping of exon 46 in approximately 15% of the mRNA led to normal amounts of properly localized dystrophin in at least 75% of myotubes. The authors hypothesized that this strategy may be applicable to not only more than 65% of DMD mutations, but also to many other genetic diseases. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11468272" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#1" class="mim-tip-reference" title="Aartsma-Rus, A., Janson, A. A. M., Kaman, W. E., Bremmer-Bout, M., den Dunnen, J. T., Baas, F., van Ommen, G.-J. B., van Deutekom, J. C. T. &lt;strong&gt;Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients.&lt;/strong&gt; Hum. Molec. Genet. 12: 907-914, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12668614/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12668614&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddg100&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12668614">Aartsma-Rus et al. (2003)</a> expanded the application of the antisense rescue method (<a href="#195" class="mim-tip-reference" title="van Deutekom, J. C. T., Bremmer-Bout, M., Janson, A. A. M., Ginjaar, I. B., Baas, F., den Dunnen, J. T., van Ommen, G.-J. B. &lt;strong&gt;Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells.&lt;/strong&gt; Hum. Molec. Genet. 10: 1547-1554, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11468272/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11468272&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/10.15.1547&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11468272">van Deutekom et al., 2001</a>) to cultured muscle cells from 6 DMD patients carrying different deletions and a nonsense mutation. In each case, the specific skipping of the targeted exon was induced, restoring dystrophin synthesis in over 75% of cells. The protein was detectable 16 hours posttransfection, increased to significant levels at the membrane within 2 days, and was maintained for at least a week. Its proper function was further suggested by the restored membrane expression of 4 associated proteins from the dystrophin-glycoprotein complex. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=11468272+12668614" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#77" class="mim-tip-reference" title="Harper, S. Q., Hauser, M. A., DelloRusso, C., Duan, D., Crawford, R. W., Phelps, S. F., Harper, H. A., Robinson, A. S., Engelhardt, J. F., Brooks, S. V., Chamberlain, J. S. &lt;strong&gt;Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy.&lt;/strong&gt; Nature Med. 8: 253-261, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11875496/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11875496&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm0302-253&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11875496">Harper et al. (2002)</a> performed a detailed functional analysis of dystrophin structural domains and showed that multiple regions of the protein can be deleted in various combinations to generate highly functional mini- and micro-dystrophins. Studies in transgenic mdx mice, a model for DMD, revealed that a wide variety of functional characteristics of dystrophy are prevented by some of these truncated dystrophins. Muscles expressing the smallest dystrophins were fully protected against damage caused by muscle activity and were not morphologically different from normal muscle. Moreover, injection of adeno-associated viruses carrying micro-dystrophins into dystrophic muscles of immunocompetent mdx mice resulted in a striking reversal of histopathologic features of the disease. <a href="#77" class="mim-tip-reference" title="Harper, S. Q., Hauser, M. A., DelloRusso, C., Duan, D., Crawford, R. W., Phelps, S. F., Harper, H. A., Robinson, A. S., Engelhardt, J. F., Brooks, S. V., Chamberlain, J. S. &lt;strong&gt;Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy.&lt;/strong&gt; Nature Med. 8: 253-261, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11875496/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11875496&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm0302-253&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11875496">Harper et al. (2002)</a> concluded that the dystrophic pathology can be both prevented and reversed by gene therapy using micro-dystrophins. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11875496" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To address the need for a drug capable of suppressing premature termination, <a href="#206" class="mim-tip-reference" title="Welch, E. M., Barton, E. R., Zhuo, J., Tomizawa, Y., Friesen, W. J., Trifillis, P., Paushkin, S., Patel, M., Trotta, C. R., Hwang, S., Wilde, R. G., Karp, G., and 30 others. &lt;strong&gt;PTC124 targets genetic disorders caused by nonsense mutations.&lt;/strong&gt; Nature 447: 87-91, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17450125/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17450125&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature05756&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17450125">Welch et al. (2007)</a> identified PTC124, a chemical entity that selectively induces ribosomal read-through of premature but not normal termination codons. PTC124 is a 284.24-Da, achiral, 1,2,4-oxadiazole linked to fluorobenzene and benzoic acid rings. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2 to 8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well-characterized activity profile, oral bioavailability, and pharmacologic properties indicated that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options. Clinical trials had been initiated for the treatment of both cystic fibrosis (<a href="/entry/219700">219700</a>) and DMD at the time of the report. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17450125" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Up to 50% of patients with Duchenne muscular dystrophy show evidence of rare, dystrophin-positive fibers (revertant fibers) caused by spontaneous, clonal, frame-restoring skipping of stretches of exons (<a href="#2" class="mim-tip-reference" title="Aartsma-Rus, A., Janson, A. A. M., Kaman, W. E., Bremmer-Bout, M., van Ommen, G.-J. B., den Dunnen, J. T., van Deutekom, J. C. T. &lt;strong&gt;Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense.&lt;/strong&gt; Am. J. Hum. Genet. 74: 83-92, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14681829/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14681829&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=14681829[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/381039&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14681829">Aartsma-Rus et al., 2004</a>). This finding prompted the investigation of the potential for therapeutic conversion of DMD into its in-frame counterpart, Becker muscular dystrophy, with the use of antisense techniques. Because of their capacity to skip an exon specifically by blocking its inclusion during splicing, antisense oligonucleotides can correct the reading frame of DMD transcripts, yielding internally truncated dystrophins such as those associated with Becker muscular dystrophy. <a href="#1" class="mim-tip-reference" title="Aartsma-Rus, A., Janson, A. A. M., Kaman, W. E., Bremmer-Bout, M., den Dunnen, J. T., Baas, F., van Ommen, G.-J. B., van Deutekom, J. C. T. &lt;strong&gt;Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients.&lt;/strong&gt; Hum. Molec. Genet. 12: 907-914, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12668614/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12668614&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddg100&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12668614">Aartsma-Rus et al. (2003)</a> showed in cultured cells from DMD patients that an intraexonic antisense oligonucleotide, PRO051, efficiently induced specific exon-51 skipping. On the basis of the frequency of mutations in patients with DMD in the Leiden database (<a href="#3" class="mim-tip-reference" title="Aartsma-Rus, A., Van Deutekom, J. C. T., Fokkema, I. F., Van Ommen, G.-J. B., Den Dunnen, J. T. &lt;strong&gt;Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule.&lt;/strong&gt; Muscle Nerve 34: 135-144, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16770791/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16770791&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/mus.20586&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16770791">Aartsma-Rus et al., 2006</a>), <a href="#194" class="mim-tip-reference" title="van Deutekom, J. C., Janson, A. A., Ginjaar, I. B., Frankhuizen, W. S., Aartsma-Rus, A., Bremmer-Bout, M., den Dunnen, J. T., Koop, K., van der Kooi, A. J., Goemans, N. M., de Kimpe, S. J., Ekhart, P. F., Venneker, E. H., Platenburg, G. J., Verschuuren, J. J., van Ommen, G.-J. B. &lt;strong&gt;Local dystrophin restoration with antisense oligonucleotide PRO051.&lt;/strong&gt; New Eng. J. Med. 357: 2677-2686, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18160687/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18160687&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa073108&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18160687">van Deutekom et al. (2007)</a> concluded that PRO051 might correct the reading frame in 16% of all patients with the disease. The effectiveness of antisense compounds in correcting the open reading frame of the DMD gene and thus restoring dystrophin expression in vitro and in animal models in vivo prompted <a href="#194" class="mim-tip-reference" title="van Deutekom, J. C., Janson, A. A., Ginjaar, I. B., Frankhuizen, W. S., Aartsma-Rus, A., Bremmer-Bout, M., den Dunnen, J. T., Koop, K., van der Kooi, A. J., Goemans, N. M., de Kimpe, S. J., Ekhart, P. F., Venneker, E. H., Platenburg, G. J., Verschuuren, J. J., van Ommen, G.-J. B. &lt;strong&gt;Local dystrophin restoration with antisense oligonucleotide PRO051.&lt;/strong&gt; New Eng. J. Med. 357: 2677-2686, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18160687/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18160687&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa073108&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18160687">van Deutekom et al. (2007)</a> to test the effect of intramuscular injection of PRO051 in patients with this disorder. Four patients were selected for treatment who had a positive exon-skipping response to PRO051 in vitro. A single injection was made in the tibialis anterior muscle and biopsy performed 28 days later. Each patient was found to show specific skipping of exon 51 and sarcolemmal dystrophin in 64 to 97% of myofibers. The amount of dystrophin in total protein extracts ranged from 3 to 12% of that found in the control specimen and from 17 to 35% of that of the control specimen in the quantitative ratio of dystrophin to laminin alpha-2 (<a href="/entry/156225">156225</a>). <a href="#82" class="mim-tip-reference" title="Hoffman, E. P. &lt;strong&gt;Skipping toward personalized molecular medicine. (Editorial)&lt;/strong&gt; New Eng. J. Med. 357: 2719-2722, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18160693/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18160693&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMe0707795&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18160693">Hoffman (2007)</a> reviewed the potential of this approach for a form of personalized molecular medicine. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=18160693+16770791+18160687+14681829+12668614" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#160" class="mim-tip-reference" title="Rodino-Klapac, L. R., Chicoine, L. G., Kaspar, B. K., Mendell, J. R. &lt;strong&gt;Gene therapy for Duchenne muscular dystrophy: expectations and challenges.&lt;/strong&gt; Arch. Neurol. 64: 1236-1241, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17846262/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17846262&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1001/archneur.64.9.1236&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17846262">Rodino-Klapac et al. (2007)</a> provided a review of the state of research in gene therapy for DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17846262" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#117" class="mim-tip-reference" title="Mendell, J. R., Campbell, K., Rodino-Klapac, L., Sahenk, Z., Shilling, C., Lewis, S., Bowles, D., Gray, S., Li, C., Galloway, G., Malik, V., Coley, B., Clark, K. R., Li, J., Xiao, X., Samulski, J., McPhee, S. W., Samulski, R. J., Walker, C. M. &lt;strong&gt;Dystrophin immunity in Duchenne&#x27;s muscular dystrophy.&lt;/strong&gt; New Eng. J. Med. 363: 1429-1437, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20925545/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20925545&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20925545[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa1000228&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20925545">Mendell et al. (2010)</a> reported on the delivery of a functional dystrophin transgene to skeletal muscle in 6 patients with Duchenne muscular dystrophy. Dystrophin-specific T cells were detected after treatment, providing evidence of transgene expression even when the functional protein was not visualized in skeletal muscle. Circulating dystrophin-specific T cells were unexpectedly detected in 2 patients before vector treatment. Revertant dystrophin fibers, which expressed functional, truncated dystrophin from the deleted endogenous gene after spontaneous in-frame splicing, contained epitopes targeted by the autoreactive T cells. <a href="#117" class="mim-tip-reference" title="Mendell, J. R., Campbell, K., Rodino-Klapac, L., Sahenk, Z., Shilling, C., Lewis, S., Bowles, D., Gray, S., Li, C., Galloway, G., Malik, V., Coley, B., Clark, K. R., Li, J., Xiao, X., Samulski, J., McPhee, S. W., Samulski, R. J., Walker, C. M. &lt;strong&gt;Dystrophin immunity in Duchenne&#x27;s muscular dystrophy.&lt;/strong&gt; New Eng. J. Med. 363: 1429-1437, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20925545/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20925545&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20925545[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa1000228&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20925545">Mendell et al. (2010)</a> cautioned that the potential for T-cell immunity to self and nonself dystrophin epitopes should be considered in designing and monitoring experimental therapies for this disease. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20925545" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="populationGenetics" class="mim-anchor"></a>
<h4 href="#mimPopulationGeneticsFold" id="mimPopulationGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimPopulationGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Population Genetics</strong>
</span>
</h4>
</div>
<div id="mimPopulationGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>In a 12-year prospective study in the Campania region of southern Italy, <a href="#135" class="mim-tip-reference" title="Nigro, G., Comi, L. I., Limongelli, F. M., Giugliano, M. A. M., Politano, L., Petretta, V., Passamano, L., Stefanelli, S. &lt;strong&gt;Prospective study of X-linked progressive muscular dystrophy in Campania.&lt;/strong&gt; Muscle Nerve 6: 253-262, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6683357/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6683357&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/mus.880060403&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6683357">Nigro et al. (1983)</a> found an incidence of DMD of 21.7 per 100,000 male live births and of BMD of 3.2 per 100,000. The latter might be underestimated because of lesser severity but surely not to an extent to explain an incidence one-seventh of that of DMD. Of the DMD patients, 38.5% were familial; of the BMD cases, 50%. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6683357" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#209" class="mim-tip-reference" title="Williams, W. R., Thompson, M. W., Morton, N. E. &lt;strong&gt;Complex segregation analysis and computer-assisted genetic risk assessment for Duchenne muscular dystrophy.&lt;/strong&gt; Am. J. Med. Genet. 14: 315-333, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6837627/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6837627&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320140212&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6837627">Williams et al. (1983)</a> analyzed 244 Toronto pedigrees of DMD. The incidence of DMD in Ontario was estimated to be 292 per million male births. The proportion of sporadic cases was one-third, demonstrating equal mutation rates in males and females. A multifactorial component (H = 0.379) contributing to familial resemblance for CPK measurements was found. They illustrated use in genetic counseling of a computer program COUNSEL, which takes the multifactorial component in CPK into account. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6837627" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#130" class="mim-tip-reference" title="Mostacciuolo, M. L., Lombardi, A., Cambissa, V., Danieli, G. A., Angelini, C. &lt;strong&gt;Population data on benign and severe forms of X-linked muscular dystrophy.&lt;/strong&gt; Hum. Genet. 75: 217-220, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3557448/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3557448&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00281062&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3557448">Mostacciuolo et al. (1987)</a> presented population data on the incidence and prevalence of the Becker and Duchenne forms of muscular dystrophy and estimated mutation rates for each. <a href="#131" class="mim-tip-reference" title="Muller, C. R., Grimm, T. &lt;strong&gt;Estimation of the male to female ratio of mutation rates from the segregation of X-chromosomal DNA haplotypes in Duchenne muscular dystrophy families.&lt;/strong&gt; Hum. Genet. 74: 181-183, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3464560/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3464560&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00282088&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3464560">Muller and Grimm (1986)</a> pointed out that by using X chromosomal RFLPs to establish DNA haplotypes in 3-generation DMD families, one can calculate the ratio of mutation rates in males and females from the proportion of DMD patients who have inherited their maternal grandfather's X-chromosome. In the Netherlands, <a href="#196" class="mim-tip-reference" title="van Essen, A. J., Busch, H. F. M., te Meerman, G. J., ten Kate, L. P. &lt;strong&gt;Birth and population prevalence of Duchenne muscular dystrophy in the Netherlands.&lt;/strong&gt; Hum. Genet. 88: 258-266, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1733827/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1733827&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00197256&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1733827">van Essen et al. (1992)</a> estimated the prevalence rate of DMD at birth to be 1:4,215 male live births. The prevalence rate in the male population on January 1, 1983 was estimated to be 1:18,496. An extensive tabulation of previous data was provided. <a href="#158" class="mim-tip-reference" title="Roddie, A., Bundey, S. &lt;strong&gt;Racial distribution of Duchenne muscular dystrophy in the west midlands region of Britain.&lt;/strong&gt; J. Med. Genet. 29: 555-557, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1518024/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1518024&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.29.8.555&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1518024">Roddie and Bundey (1992)</a> observed that in the West Midlands region of Britain, DMD is twice as common as expected in Asiatic Indians and less common than expected in Pakistanis. Although the numbers were small, they could not be explained by bias of ascertainment and were considered to be real. They suggested that a possible mechanism for the high frequency of DMD in Indians is the presence of repetitive elements in the wildtype gene that predispose to mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3464560+3557448+1518024+1733827" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#175" class="mim-tip-reference" title="Shomrat, R., Gluck, E., Legum, C., Shiloh, Y. &lt;strong&gt;Relatively low proportion of dystrophin gene deletions in Israeli Duchenne and Becker muscular dystrophy patients.&lt;/strong&gt; Am. J. Med. Genet. 49: 369-373, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8160727/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8160727&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320490403&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8160727">Shomrat et al. (1994)</a> suggested that in Israeli patients with either Duchenne or Becker muscular dystrophy, deletions in the DMD gene constitute a much smaller proportion of cases than is found in European and North American populations. The figures were 37% in Israelis as compared to 55 to 65% in the other populations. They pointed to reports suggesting that the proportion of deletions among mutant dystrophin alleles is lower also in some Asian populations such as Japanese and Chinese than it is in Western countries. They found no correlation between the size of the deletion and the severity of the disease. All of the deletions causing frameshift resulted in the DMD phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8160727" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#138" class="mim-tip-reference" title="Onengut, S., Kavaslar, G. N., Battaloglu, E., Serdaroglu, P., Deymeer, F., Ozdemir, C., Calafell, F., Tolun, A. &lt;strong&gt;Deletion pattern in the dystrophin gene in Turks and a comparison with Europeans and Indians.&lt;/strong&gt; Ann. Hum. Genet. 64: 33-40, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11388892/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11388892&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1017/S0003480000007934&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11388892">Onengut et al. (2000)</a> compared patterns of DMD gene deletions in 4 populations: Turks, Europeans, North Indians, and Indians from all over India. Statistical tests revealed differences in the proportions of small deletions. In contrast, the distribution of deletion breakpoints and the frequencies of specific deletions commonly observed in the 4 populations were not significantly different. The variations strongly suggested that sequence differences exist in the introns, and that the differences are in agreement with genetic distances among populations. The similarities suggested that some intronic sequences have been conserved and that those will trigger recurrent deletions. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11388892" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="animalModel" class="mim-anchor"></a>
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#210" class="mim-tip-reference" title="Willmann, R., Possekel, S., Dubach-Powell, J., Meier, T., Ruegg, M. A. &lt;strong&gt;Mammalian animal models for Duchenne muscular dystrophy.&lt;/strong&gt; Neuromusc. Disord. 19: 241-249, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19217290/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19217290&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.nmd.2008.11.015&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19217290">Willmann et al. (2009)</a> reviewed mammalian models of Duchenne muscular dystrophy, with emphasis on the models that are most effective for testing treatment options at the preclinical stage. The review included mouse, canine, and feline models. The mdx mouse was recommended as the model of choice for preclinical testing, and the canine model for use in well-controlled experimental settings. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19217290" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Mouse Models</em></strong></p><p>
<a href="#102" class="mim-tip-reference" title="Krahn, M. J., Anderson, J. E. &lt;strong&gt;Anabolic steroid treatment increases myofiber damage in mdx mouse muscular dystrophy.&lt;/strong&gt; J. Neurol. Sci. 125: 138-146, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7807158/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7807158&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0022-510x(94)90026-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7807158">Krahn and Anderson (1994)</a> studied the mdx mouse model of muscular dystrophy and showed that treatment with anabolic steroids increases myofiber damage. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7807158" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#114" class="mim-tip-reference" title="Mann, C. J., Honeyman, K., Cheng, A. J., Ly, T., Lloyd, F., Fletcher, S., Morgan, J. E., Partridge, T. A., Wilton, S. D. &lt;strong&gt;Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse.&lt;/strong&gt; Proc. Nat. Acad. Sci. 98: 42-47, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11120883/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11120883&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=11120883[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.98.1.42&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11120883">Mann et al. (2001)</a> reported a potential therapeutic approach to Duchenne muscular dystrophy as an alternative to the introduction of functional dystrophin into dystrophic tissue through either cell or gene replacement: the use of 2-prime-O-methyl antisense oligoribonucleotides to modify processing of the dystrophin pre-mRNA in the mdx mouse model of DMD. By targeting the antisense oligoribonucleotides to block motifs involved in normal dystrophin pre-mRNA splicing, they induced excision of exon 23, and the mdx nonsense mutation, without disrupting the reading frame. Immunohistochemical staining demonstrated the synthesis and correct subsarcolemmal localization of dystrophin and gamma-sarcoglycan in the mdx mouse after intramuscular delivery of antisense oligoribonucleotide-liposome complexes. They suggested that this approach should reduce the severity of DMD by allowing a dystrophic gene transcript to be modified, such that it can be translated into a Becker-dystrophin-like protein with milder clinical expression. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11120883" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#38" class="mim-tip-reference" title="Chamberlain, J. S. &lt;strong&gt;Gene therapy of muscular dystrophy.&lt;/strong&gt; Hum. Molec. Genet. 11: 2355-2362, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12351570/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12351570&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/11.20.2355&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12351570">Chamberlain (2002)</a> reviewed the progress and pitfalls associated with gene therapy in the context of murine models of muscular dystrophy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12351570" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Because insulin-like growth factor I (IGF1; <a href="/entry/147440">147440</a>) enhances muscle regeneration and protein synthetic pathways, <a href="#13" class="mim-tip-reference" title="Barton, E. R., Morris, L., Musaro, A., Rosenthal, N., Sweeney, H. L. &lt;strong&gt;Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice.&lt;/strong&gt; J. Cell Biol. 157: 137-147, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11927606/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11927606&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=11927606[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1083/jcb.200108071&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11927606">Barton et al. (2002)</a> hypothesized that muscle-specific expression of Igf1 could preserve muscle function in the mdx mouse model. Transgenic mdx mice overexpressing Igf1 in muscle showed increased muscle mass, increased force generation, reduced fibrosis, and decreased myonecrosis compared with mdx mice. In addition, signaling pathways associated with muscle regeneration and protection against apoptosis showed significantly elevated activities. <a href="#13" class="mim-tip-reference" title="Barton, E. R., Morris, L., Musaro, A., Rosenthal, N., Sweeney, H. L. &lt;strong&gt;Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice.&lt;/strong&gt; J. Cell Biol. 157: 137-147, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11927606/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11927606&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=11927606[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1083/jcb.200108071&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11927606">Barton et al. (2002)</a> concluded that a combination of promoting muscle regenerative capacity and preventing muscle necrosis could be an effective treatment for the secondary symptoms caused by the primary loss of dystrophin. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11927606" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#65" class="mim-tip-reference" title="Gilbert, R., Dudley, R. W. R., Liu, A.-B., Petrof, B. J., Nalbantoglu, J., Karpati, G. &lt;strong&gt;Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin.&lt;/strong&gt; Hum. Molec. Genet. 12: 1287-1299, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12761044/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12761044&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddg141&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12761044">Gilbert et al. (2003)</a> injected the tibialis anterior (TA) muscle of neonatal and juvenile dystrophin-deficient (mdx) mice with HDCBDysM, a viral construct encoding 2 full-length murine dystrophin cDNAs regulated by the CMV enhancer/beta-actin promoter. After 10 days, 42% of the total number of TA fibers in neonatal muscles were dystrophin-positive (dys+), a value that did not decrease for 6 months (the study duration). In treated juveniles, maximal transduction occurred after 30 days (24% of TA fibers positive), but decreased by 51% after 6 months. In neonatally treated muscles, the percentage of dys+ fibers with centrally localized myonuclei remained low, localization of the dystrophin-associated protein complex was restored at the plasma membrane, muscle hypertrophy was reduced, and maximal force-generating capacity and resistance to contraction-induced injuries were increased. The same pathologic aspects were improved in the treated juveniles, except for reduction of muscle hypertrophy and maximal force-generating capacity. A strong humoral response against murine dystrophin was evident in both animal groups, but mild inflammatory response occurred only in the treated juveniles. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12761044" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>ADAM12 (<a href="/entry/602714">602714</a>) is a disintegrin and metalloprotease shown to prevent muscle cell necrosis in the mdx mouse (<a href="#104" class="mim-tip-reference" title="Kronqvist, P., Kawaguchi, N., Albrechtsen, R., Xu, X., Daa Schroder, H., Moghadaszadeh, B., Cilius Nielsen, F., Frohlich, C., Engvall, E., Wewer, U. M. &lt;strong&gt;ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice.&lt;/strong&gt; Am. J. Path. 161: 1535-1540, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12414501/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12414501&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12414501[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/S0002-9440(10)64431-8&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12414501">Kronqvist et al., 2002</a>). <a href="#126" class="mim-tip-reference" title="Moghadaszadeh, B., Albrechtsen, R., Guo, L. T., Zaik, M., Kawaguchi, N., Borup, R. H., Kronqvist, P., Schroder, H. D., Davies, K. E., Voit, T., Nielsen, F. C., Engvall, E., Wewer, U. M. &lt;strong&gt;Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha-7 integrin, utrophin and associated glycoproteins.&lt;/strong&gt; Hum. Molec. Genet. 12: 2467-2479, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12915458/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12915458&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddg264&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12915458">Moghadaszadeh et al. (2003)</a> found that transgenic mice overexpressing ADAM12 exhibited only mild myopathic changes and accelerated regeneration following acute injury. Only small changes in gene expression profiles were found between mdx/ADAM12 transgenic mice and mdx mice, suggesting that significant changes in mdx/ADAM12 muscle might occur posttranscriptionally. By immunostaining and immunoblotting, <a href="#126" class="mim-tip-reference" title="Moghadaszadeh, B., Albrechtsen, R., Guo, L. T., Zaik, M., Kawaguchi, N., Borup, R. H., Kronqvist, P., Schroder, H. D., Davies, K. E., Voit, T., Nielsen, F. C., Engvall, E., Wewer, U. M. &lt;strong&gt;Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha-7 integrin, utrophin and associated glycoproteins.&lt;/strong&gt; Hum. Molec. Genet. 12: 2467-2479, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12915458/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12915458&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddg264&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12915458">Moghadaszadeh et al. (2003)</a> detected a 2-fold increase in expression and extrasynaptic localization of alpha-7B integrin (ITGA7; <a href="/entry/600536">600536</a>) and utrophin (<a href="/entry/128240">128240</a>), the functional homolog of dystrophin. Expression of dystrophin-associated glycoproteins was also increased. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=12414501+12915458" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Utrophin is a chromosome 6-encoded dystrophin-related protein that has functional motifs in common with dystrophin. The ability of utrophin to compensate for dystrophin during development and when transgenically overexpressed provided an important impetus for identifying activators of utrophin expression. The utrophin promoter A is transcriptionally regulated in part by heregulin (<a href="/entry/142445">142445</a>)-mediated, extracellular signal-related kinase-dependent activation of the GABP(alpha/beta) transcription factor complex (see <a href="/entry/600610">600610</a>). Therefore, this pathway offers a potential mechanism to modulate utrophin expression in muscle. <a href="#101" class="mim-tip-reference" title="Krag, T. O. B., Bogdanovich, S., Jensen, C. J., Fischer, M. D., Hansen-Schwartz, J., Javazon, E. H., Flake, A. W., Edvinsson, L., Khurana, T. S. &lt;strong&gt;Heregulin ameliorates the dystrophic phenotype in mdx mice.&lt;/strong&gt; Proc. Nat. Acad. Sci. 101: 13856-13860, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15365169/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15365169&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15365169[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0405972101&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15365169">Krag et al. (2004)</a> tested the ability of heregulin to improve the dystrophic phenotype in the mdx mouse model of DMD. Intraperitoneal injections of the small peptide encoding the epidermal growth factor-like region of heregulin ectodomain for 3 months in vivo resulted in upregulation of utrophin, a marked improvement in the mechanical properties of muscle as evidenced by resistance to eccentric contraction-mediated damage, and a reduction of muscle pathology. The amelioration of dystrophic phenotype by heregulin-mediated utrophin upregulation offered a pharmacologic therapeutic modality that obviates many of the toxicity and delivery issues associated with viral vector-based gene therapy for DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15365169" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#36" class="mim-tip-reference" title="Chakkalakal, J. V., Harrison, M.-A., Carbonetto, S., Chin, E., Michel, R. N., Jasmin, B. J. &lt;strong&gt;Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 13: 379-388, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14681302/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14681302&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh037&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14681302">Chakkalakal et al. (2004)</a> showed that mice expressing enhanced muscle calcineurin (PPP3CA; <a href="/entry/114105">114105</a>) activity (CnA*) displayed elevated levels of utrophin around their sarcolemma. The authors crossed CnA* mice with mdx mice to determine the suitability of elevating calcineurin activity in preventing dystrophic pathology. Muscles from mdx/CnA* displayed increased nuclear localization of Nfatc1 (<a href="/entry/600489">600489</a>) and a fiber type shift toward a slower phenotype. Measurements of utrophin levels in mdx/CnA* muscles revealed an 2-fold induction in utrophin expression. Members of the dystrophin-associated protein (DAP) complex were present at the sarcolemma of mdx/CnA* mouse muscle. Restoration of the utrophin/DAP complex was accompanied by significant reductions in the extent of central nucleation and fiber size variability. Assessment of myofiber sarcolemmal damage revealed a net amelioration of membrane integrity, and immunofluorescence studies showed a reduction in the number of infiltrating immune cells in muscles from mdx/CnA* mice. <a href="#36" class="mim-tip-reference" title="Chakkalakal, J. V., Harrison, M.-A., Carbonetto, S., Chin, E., Michel, R. N., Jasmin, B. J. &lt;strong&gt;Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 13: 379-388, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14681302/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14681302&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh037&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14681302">Chakkalakal et al. (2004)</a> concluded that elevated calcineurin activity attenuates dystrophic pathology. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14681302" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#69" class="mim-tip-reference" title="Goyenvalle, A., Vulin, A., Fougerousse, F., Leturcq, F., Kaplan, J.-C., Garcia, L., Danos, O. &lt;strong&gt;Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping.&lt;/strong&gt; Science 306: 1796-1799, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15528407/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15528407&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1104297&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15528407">Goyenvalle et al. (2004)</a> achieved persistent exon skipping that removed the mutated exon on the dystrophin mRNA of the mdx mouse by single administration of an adeno-associated virus (AAV) vector expressing antisense sequences linked to a modified U7 small nuclear RNA (RNU7-1; <a href="/entry/617876">617876</a>). <a href="#69" class="mim-tip-reference" title="Goyenvalle, A., Vulin, A., Fougerousse, F., Leturcq, F., Kaplan, J.-C., Garcia, L., Danos, O. &lt;strong&gt;Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping.&lt;/strong&gt; Science 306: 1796-1799, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15528407/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15528407&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1104297&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15528407">Goyenvalle et al. (2004)</a> reported the sustained production of functional dystrophin at physiologic levels in entire groups of muscles and the correction of the muscular dystrophy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15528407" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#220" class="mim-tip-reference" title="Yue, Y., Skimming, J. W., Liu, M., Strawn, T., Duan, D. &lt;strong&gt;Full-length dystrophin expression in half of the heart cells ameliorates beta-isoproterenol-induced cardiomyopathy in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 13: 1669-1675, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15190010/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15190010&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15190010[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh174&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15190010">Yue et al. (2004)</a> generated female heterozygous mdx mice that persistently expressed the full-length dystrophin gene in 50% of cardiomyocytes. Heart function of mdx mice was normal in the absence of external stress. Using beta-isoproterenol challenge in 3-month-old mice, cardiomyocyte sarcolemma integrity was significantly impaired in mdx but not in heterozygous mdx and C57BL/10 mice. In vivo closed-chest hemodynamic assays revealed normal left ventricular function in beta-isoproterenol-stimulated heterozygous mdx mice. The nonuniform dystrophin expression pattern in heterozygous mdx mice resembled the pattern seen in viral gene transfer studies. <a href="#220" class="mim-tip-reference" title="Yue, Y., Skimming, J. W., Liu, M., Strawn, T., Duan, D. &lt;strong&gt;Full-length dystrophin expression in half of the heart cells ameliorates beta-isoproterenol-induced cardiomyopathy in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 13: 1669-1675, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15190010/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15190010&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15190010[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh174&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15190010">Yue et al. (2004)</a> concluded that gene therapy correction in 50% of the heart cells may be sufficient to treat cardiomyopathy in mdx mice. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15190010" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#204" class="mim-tip-reference" title="Wehling-Henricks, M., Jordan, M. C., Roos, K. P., Deng, B., Tidball, J. G. &lt;strong&gt;Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium.&lt;/strong&gt; Hum. Molec. Genet. 14: 1921-1933, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15917272/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15917272&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddi197&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15917272">Wehling-Henricks et al. (2005)</a> produced dystrophin-deficient mdx mice in which there was myocardial expression of a neuronal nitric oxide synthase (NOS1; <a href="/entry/163731">163731</a>) transgene. Expression of the transgene prevented the progressive ventricular fibrosis of mdx mice and greatly reduced myocarditis. Electrocardiographs (ECG) of ambulatory mdx mice showed cardiac abnormalities that were characteristic of DMD patients. All of these ECG abnormalities in mdx mice were improved or corrected by NOS1 transgene expression. In addition, defects in mdx cardiac autonomic function, which were reflected by decreased heart rate variability, were significantly reduced by NOS1 transgene expression. <a href="#204" class="mim-tip-reference" title="Wehling-Henricks, M., Jordan, M. C., Roos, K. P., Deng, B., Tidball, J. G. &lt;strong&gt;Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium.&lt;/strong&gt; Hum. Molec. Genet. 14: 1921-1933, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15917272/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15917272&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddi197&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15917272">Wehling-Henricks et al. (2005)</a> concluded that their findings indicate that increasing NO production by dystrophic hearts may have therapeutic value. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15917272" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In dystrophin-deficient mdx mice, <a href="#42" class="mim-tip-reference" title="Cohn, R. D., van Erp, C., Habashi, J. P., Soleimani, A. A., Klein, E. C., Lisi, M. T., Gamradt, M., ap Rhys, C. M., Holm, T. M., Loeys, B. L., Ramirez, F., Judge, D. P., Ward, C. W., Dietz, H. C. &lt;strong&gt;Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states.&lt;/strong&gt; Nature Med. 13: 204-210, 2007. Note: Erratum: Nature Med. 13: 511 only, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17237794/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17237794&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17237794[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1536&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17237794">Cohn et al. (2007)</a> demonstrated that increased TGF-beta (TGFB1; <a href="/entry/190180">190180</a>) activity caused failure of muscle regeneration. Systemic antagonism of TGF-beta through administration of TGF-beta-neutralizing antibody or AGTR1 (<a href="/entry/106165">106165</a>) blocker losartan improved muscle regeneration and diminished fibrosis. After 6 to 9 months of treatment with losartan, analysis of various muscle groups showed significant attenuation of disease progression in mdx mice, and in vivo grip-strength testing showed improvement after 6 months of losartan treatment. Physiologic analysis of explanted extensor digitorum longus muscles revealed a losartan-induced increase in muscle mass that correlated with a significant increase in the number of fibers per muscle, and the performance of the losartan-treated muscle in generating absolute force over a range of stimulation intensities was statistically indistinguishable from that of wildtype mice. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17237794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#150" class="mim-tip-reference" title="Peter, A. K., Ko, C. Y., Kim, M. H., Hsu, N., Ouchi, N., Rhie, S., Izumiya, Y., Zeng, L., Walsh, K., Crosbie, R. H. &lt;strong&gt;Myogenic Akt signaling upregulates the utrophin-glycoprotein complex and promotes sarcolemma stability in muscular dystrophy.&lt;/strong&gt; Hum. Molec. Genet. 18: 318-327, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18986978/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18986978&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18986978[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddn358&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18986978">Peter et al. (2009)</a> showed that myogenic Akt (<a href="/entry/164730">164730</a>) signaling in mouse models of DMD promoted increased expression of utrophin (UTRN; <a href="/entry/128240">128240</a>), which replaced the function of dystrophin, thereby preventing sarcolemma damage and muscle wasting. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18986978" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#17" class="mim-tip-reference" title="Bellinger, A. M., Reiken, S., Carlson, C., Mongillo, M., Liu, X., Rothman, L., Matecki, S., Lacampagne, A., Marks, A. R. &lt;strong&gt;Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle.&lt;/strong&gt; Nature Med. 15: 325-330, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19198614/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19198614&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19198614[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm.1916&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19198614">Bellinger et al. (2009)</a> found that the calcium channel Ryr1 (<a href="/entry/180901">180901</a>) in skeletal muscle from mdx mice showed increased inducible nitric oxide (NOS2A; <a href="/entry/163730">163730</a>)-mediated S-nitrosylation of cysteine residues, which depleted the channel complex of calstabin-1 (FKBP12; <a href="/entry/186945">186945</a>). This resulted in leaky channels with increased calcium flux. These changes were age-dependent and coincided with dystrophic changes in muscle. Prevention of calstabin-1 depletion from Ryr1 with S107, a compound that binds the Ryr1 channel and enhances binding affinity, inhibited sarcoplasmic reticulum calcium leak, reduced biochemical and histologic evidence of muscle damage, improved muscle function, and increased exercise performance in mdx mice. <a href="#17" class="mim-tip-reference" title="Bellinger, A. M., Reiken, S., Carlson, C., Mongillo, M., Liu, X., Rothman, L., Matecki, S., Lacampagne, A., Marks, A. R. &lt;strong&gt;Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle.&lt;/strong&gt; Nature Med. 15: 325-330, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19198614/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19198614&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19198614[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm.1916&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19198614">Bellinger et al. (2009)</a> proposed that the increased calcium flux via a defective Ryr1 channel contributes to muscle weakness and degeneration in DMD by increasing calcium-activated proteases. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19198614" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#89" class="mim-tip-reference" title="Iwata, Y., Katanosaka, Y., Arai, Y., Shigekawa, M., Wakabayashi, S. &lt;strong&gt;Dominant-negative inhibition of Ca(2+) influx via TRPV2 ameliorates muscular dystrophy in animal models.&lt;/strong&gt; Hum. Molec. Genet. 18: 824-834, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19050039/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19050039&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddn408&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19050039">Iwata et al. (2009)</a> demonstrated that muscular dystrophy is ameliorated in mdx mice by dominant-negative inhibition of Trpv2 (<a href="/entry/606676">606676</a>), a principal candidate for Ca(2+)-entry pathways. When transgenic (Tg) mice expressing a Trpv2 mutant in muscle were crossed with mdx mice, the cytosolic Ca(2+) concentration increase in muscle fibers was reduced. Histologic, biochemical, and physiologic indices characterizing dystrophic pathology, such as an increased number of central nuclei and fiber size variability/fibrosis/apoptosis, elevated serum creatine kinase levels, and reduced muscle performance, were all ameliorated in the mdx/Tg mice. <a href="#89" class="mim-tip-reference" title="Iwata, Y., Katanosaka, Y., Arai, Y., Shigekawa, M., Wakabayashi, S. &lt;strong&gt;Dominant-negative inhibition of Ca(2+) influx via TRPV2 ameliorates muscular dystrophy in animal models.&lt;/strong&gt; Hum. Molec. Genet. 18: 824-834, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19050039/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19050039&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddn408&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19050039">Iwata et al. (2009)</a> proposed that TRPV2 is a principal Ca(2+)-entry route leading to a sustained Ca(2+) concentration increase and muscle degeneration. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19050039" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#107" class="mim-tip-reference" title="Li, D., Long, C., Yue, Y., Duan, D. &lt;strong&gt;Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 18: 1209-1220, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19131360/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19131360&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19131360[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp015&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19131360">Li et al. (2009)</a> generated delta-sarcoglycan (SGCD; <a href="/entry/601411">601411</a>)/dystrophin double-knockout mice (delta-Dko) in which residual sarcoglycans were completely eliminated from the sarcolemma. Utrophin levels were increased in these mice but did not mitigate disease. The clinical manifestation of delta-Dko mice was worse than that of mdx mice. They showed characteristic dystrophic signs, body emaciation, macrophage infiltration, decreased life span, less absolute muscle force, and greater susceptibility to contraction-induced injury. <a href="#107" class="mim-tip-reference" title="Li, D., Long, C., Yue, Y., Duan, D. &lt;strong&gt;Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 18: 1209-1220, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19131360/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19131360&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19131360[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp015&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19131360">Li et al. (2009)</a> suggested that subphysiologic sarcoglycan expression may play a role in ameliorating muscle disease in mdx mice. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19131360" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#108" class="mim-tip-reference" title="Li, H., Mittal, A., Makonchuk, D. Y., Bhatnagar, S., Kumar, A. &lt;strong&gt;Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy.&lt;/strong&gt; Hum. Molec. Genet. 18: 2584-2598, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19401296/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19401296&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19401296[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp191&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19401296">Li et al. (2009)</a> investigated the role and the mechanisms by which increased levels of matrix metalloproteinase-9 (MMP9; <a href="/entry/120361">120361</a>) protein cause myopathy in dystrophin-deficient mdx mice. Levels of MMP9 but not tissue inhibitor of MMPs were drastically increased in skeletal muscle of mdx mice. Infiltrating macrophages also contributed to the elevated levels of MMP9 in dystrophic muscle. In vivo administration of a NFKB-inhibitory peptide NBD blocked the expression of MMP9 in dystrophic muscle of mdx mice. Deletion of the Mmp9 gene in mdx mice improved skeletal muscle structure and functions and reduced muscle injury, inflammation, and fiber necrosis. Inhibition of MMP9 increased the levels of cytoskeletal protein beta-dystroglycan (DAG1; <a href="/entry/128239">128239</a>) and Nos1 and reduced the amounts of caveolin-3 (CAV3; <a href="/entry/601253">601253</a>) and Tgfb in myofibers of mdx mice. Genetic ablation of MMP9 significantly augmented the skeletal muscle regeneration in mdx mice. Pharmacologic inhibition of MMP9 activity also ameliorated skeletal muscle pathogenesis and enhanced myofiber regeneration in mdx mice. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19401296" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#205" class="mim-tip-reference" title="Wehling-Henricks, M., Oltmann, M., Rinaldi, C., Myung, K. H., Tidball, J. G. &lt;strong&gt;Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy.&lt;/strong&gt; Hum. Molec. Genet. 18: 3439-3451, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19542095/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19542095&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19542095[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp288&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19542095">Wehling-Henricks et al. (2009)</a> tested whether the loss of neuronal nitric oxide synthase, nNOS (NOS1; <a href="/entry/163731">163731</a>), contributes to the increased fatigability of mdx mice. The expression of a muscle-specific nNOS transgene increased the endurance of mdx mice and enhanced glycogen metabolism during treadmill running, but did not affect vascular perfusion of muscles. The specific activity of phosphofructokinase (PFK; <a href="/entry/610681">610681</a>), the rate-limiting enzyme in glycolysis, was positively affected by nNOS in muscle; PFK-specific activity was significantly reduced in mdx muscles and the muscles of nNOS-null mutants, but significantly increased in nNOS transgenic muscles and muscles from mdx mice that expressed the nNOS transgene. PFK activity measured under allosteric conditions was significantly increased by nNOS, but unaffected by endothelial NOS or inducible NOS. The specific domain of nNOS that positively regulates PFK activity was assayed by cloning and expressing different domains of nNOS and assaying their effects on PFK activity. This approach yielded a polypeptide that included the flavin adenine dinucleotide (FAD)-binding domain of nNOS as the region of the molecule that promotes PFK activity. A 36-amino acid peptide in the FAD-binding domain was identified in which most of the positive allosteric activity of nNOS for PFK resides. <a href="#205" class="mim-tip-reference" title="Wehling-Henricks, M., Oltmann, M., Rinaldi, C., Myung, K. H., Tidball, J. G. &lt;strong&gt;Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy.&lt;/strong&gt; Hum. Molec. Genet. 18: 3439-3451, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19542095/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19542095&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19542095[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp288&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19542095">Wehling-Henricks et al. (2009)</a> proposed that defects in glycolytic metabolism and increased fatigability in dystrophic muscle may be caused in part by the loss of positive allosteric interactions between nNOS and PFK. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19542095" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#125" class="mim-tip-reference" title="Miura, P., Chakkalakal, J. V., Boudreault, L., Belanger, G., Hebert, R. L., Renaud, J.-M., Jasmin, B. J. &lt;strong&gt;Pharmacological activation of PPAR-beta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 18: 4640-4649, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19744959/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19744959&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp431&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19744959">Miura et al. (2009)</a> found that GW501516, a peroxisome proliferator-activated receptor PPAR-beta/delta (PPARD; <a href="/entry/600409">600409</a>) agonist, stimulated utrophin A (UTRN; <a href="/entry/128240">128240</a>) mRNA levels in mdx muscle cells, through an element in the utrophin A promoter. Expression of PPARD was greater in skeletal muscles of mdx versus wildtype mice. Over a 4-week trial, treatment increased the percentage of muscle fibers expressing slower myosin heavy chain isoforms and stimulated utrophin A mRNA levels, leading to its increased expression at the sarcolemma. Expression of alpha-1-syntrophin (SNTA1; <a href="/entry/601017">601017</a>) and beta-dystroglycan (DAG1; <a href="/entry/128239">128239</a>) was also restored to the sarcolemma. The mdx sarcolemmal integrity was improved, and treatment also conferred protection against eccentric contraction-induced damage of mdx skeletal muscles. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19744959" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Dystrophin deficiency does not fully recapitulate the human disorder in mdx mice, which show milder skeletal muscle defects and potent regenerative capacity of the myofiber. <a href="#165" class="mim-tip-reference" title="Sacco, A., Mourkioti, F., Tran, R., Choi, J., Llewellyn, M., Kraft, P., Shkreli, M., Delp, S., Pomerantz, J. H., Artandi, S. E., Blau, H. M. &lt;strong&gt;Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice.&lt;/strong&gt; Cell 143: 1059-1071, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21145579/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21145579&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21145579[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.cell.2010.11.039&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21145579">Sacco et al. (2010)</a> demonstrated that the milder mouse mdx phenotype resulted from a greater reserve of functional muscle stem cells caused by longer telomeres in inbred mice. Mdx mice also lacking the telomerase RNA component (TERC; <a href="/entry/602322">602322</a>) (mTR) developed severe progressive muscular dystrophy more consistent with the human phenotype. Mdx/mTR double-mutant mice had shortened telomeres in muscle cells associated with a decline in muscle stem cell regenerative capacity. The defect in mdx/mTR double-mutant mice was ameliorated histologically by transplantation of wildtype muscle stem cells. <a href="#165" class="mim-tip-reference" title="Sacco, A., Mourkioti, F., Tran, R., Choi, J., Llewellyn, M., Kraft, P., Shkreli, M., Delp, S., Pomerantz, J. H., Artandi, S. E., Blau, H. M. &lt;strong&gt;Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice.&lt;/strong&gt; Cell 143: 1059-1071, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21145579/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21145579&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21145579[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.cell.2010.11.039&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21145579">Sacco et al. (2010)</a> suggested that progression of the human disorder results, in part, from a cell-autonomous failure of muscle stem cells to maintain the damage-repair cycle initiated by dystrophin deficiency. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21145579" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To obtain therapeutic levels of utrophin expression in dystrophic muscle, <a href="#49" class="mim-tip-reference" title="Di Certo, M. G., Corbi, N., Strimpakos, G., Onori, A., Luvisetto, S., Severini, C., Guglielmotti, A., Batassa, E. M., Pisani, C., Floridi, A., Benassi, B., Fanciulli, M., Magrelli, A., Mattei, E., Passananti, C. &lt;strong&gt;The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dysmorphic pathology in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 19: 752-760, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19965907/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19965907&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp539&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19965907">Di Certo et al. (2010)</a> developed a strategy based on artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was engineered and tested in vivo by generating a transgenic mouse specifically expressing Jazz at the muscular level. To validate the ZF ATF technology for DMD treatment, the authors generated a second mouse model by crossing Jazz-transgenic mice with dystrophin-deficient mdx mice. The artificial Jazz protein restored sarcolemmal integrity and prevented the development of the dystrophic disease in mdx mice. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19965907" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In addition to its presence in muscle, dystrophin is also found in vasculature, and its absence results in vascular deficiency and abnormal blood flow. To create a mouse model of DMD with increased vasculature, <a href="#198" class="mim-tip-reference" title="Verma, M., Asakura, Y., Hirai, H., Watanabe, S., Tastad, C., Fong, G.-H., Ema, M., Call, J. A., Lowe, D. A., Asakura, A. &lt;strong&gt;Flt-1 haploinsufficiency ameliorates muscular dystrophy phenotype by developmentally increased vasculature in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 19: 4145-4159, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20705734/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20705734&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20705734[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq334&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20705734">Verma et al. (2010)</a> crossed mdx mice with Flt1 knockout mice, which display increased endothelial cell proliferation and vascular density during embryogenesis. Flt1 +/- and mdx:Flt1 +/- adult mice displayed a developmentally increased vascular density in skeletal muscle compared with wildtype and mdx mice, respectively. The mdx:Flt1 +/- mice showed improved muscle histology compared with mdx mice, with decreased fibrosis, calcification, and membrane permeability. Functionally, the mdx:Flt1 +/- mice had an increase in muscle blood flow and force production compared with mdx mice. Because utrophin is upregulated in mdx mice and can compensate for the lacking function of dystrophin, <a href="#198" class="mim-tip-reference" title="Verma, M., Asakura, Y., Hirai, H., Watanabe, S., Tastad, C., Fong, G.-H., Ema, M., Call, J. A., Lowe, D. A., Asakura, A. &lt;strong&gt;Flt-1 haploinsufficiency ameliorates muscular dystrophy phenotype by developmentally increased vasculature in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 19: 4145-4159, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20705734/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20705734&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20705734[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq334&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20705734">Verma et al. (2010)</a> created a triple-mutant mouse (mdx:utrophin -/-:Flt1 +/-). The mdx:utrophin -/-:Flt1 +/- mice also displayed improved muscle histology and significantly higher survival rates compared with mdx:utrophin -/- mice, which showed more severe muscle phenotypes than mdx mice. <a href="#198" class="mim-tip-reference" title="Verma, M., Asakura, Y., Hirai, H., Watanabe, S., Tastad, C., Fong, G.-H., Ema, M., Call, J. A., Lowe, D. A., Asakura, A. &lt;strong&gt;Flt-1 haploinsufficiency ameliorates muscular dystrophy phenotype by developmentally increased vasculature in mdx mice.&lt;/strong&gt; Hum. Molec. Genet. 19: 4145-4159, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20705734/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20705734&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20705734[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq334&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20705734">Verma et al. (2010)</a> suggested that increasing the vasculature in DMD may ameliorate the histologic and functional phenotypes associated with this disease. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20705734" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#116" class="mim-tip-reference" title="Menazza, S., Blaauw, B., Tiepolo, T., Toniolo, L., Braghetta, P., Spolaore, B., Reggiani, C., Di Lisa, F., Bonaldo, P., Canton, M. &lt;strong&gt;Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy.&lt;/strong&gt; Hum. Molec. Genet. 19: 4207-4215, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20716577/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20716577&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq339&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20716577">Menazza et al. (2010)</a> investigated whether reactive oxygen species (ROS) produced in mitochondria by monoamine oxidase (MAO) contribute to muscular dystrophy pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1 (<a href="/entry/120220">120220</a>) -/- mice, a model of Bethlem myopathy (<a href="/entry/158810">158810</a>) and Ullrich congenital muscular dystrophy (UCMD; <a href="/entry/254090">254090</a>), and mdx mice, a model of Duchenne muscular dystrophy. Oxidation of myofibrillar proteins, as probed by formation of disulfide crossbridges in tropomyosin (see <a href="/entry/191010">191010</a>), was detected in both Col6a1 -/- and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1 -/- mice. <a href="#116" class="mim-tip-reference" title="Menazza, S., Blaauw, B., Tiepolo, T., Toniolo, L., Braghetta, P., Spolaore, B., Reggiani, C., Di Lisa, F., Bonaldo, P., Canton, M. &lt;strong&gt;Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy.&lt;/strong&gt; Hum. Molec. Genet. 19: 4207-4215, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20716577/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20716577&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq339&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20716577">Menazza et al. (2010)</a> concluded that there is a novel and determinant role of MAO in muscular dystrophies, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20716577" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In the mdx mouse model, M1 macrophages play a major role in worsening muscle injury. However, mdx muscle contains M2c macrophages that promote tissue repair. <a href="#200" class="mim-tip-reference" title="Villalta, S. A., Rinaldi, C., Deng, B., Liu, G., Fedor, B., Tidball, J. G. &lt;strong&gt;Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype.&lt;/strong&gt; Hum. Molec. Genet. 20: 790-805, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21118895/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21118895&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21118895[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq523&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21118895">Villalta et al. (2011)</a> investigated factors regulating the balance between M1 and M2c macrophages in mdx mice. Ablation of Il10 (<a href="/entry/124092">124092</a>) expression in mdx mice increased muscle damage in vivo and reduced mouse strength. Treatment of mdx muscle macrophages with Il10 reduced activation of the M1 phenotype, as assessed by iNOS expression. Macrophages from mice lacking Il10 were more cytolytic than macrophages from wildtype mice. Real-time PCR and immunohistochemical analysis detected expression of Il10 receptor (IL10RA; <a href="/entry/146933">146933</a>) in mdx muscle. Ablation of Il10 expression in mdx mice did not affect satellite cell numbers, but it increased myogenin (MYOG; <a href="/entry/159980">159980</a>) expression in vivo during the acute and regenerative phases of mdx pathology. <a href="#200" class="mim-tip-reference" title="Villalta, S. A., Rinaldi, C., Deng, B., Liu, G., Fedor, B., Tidball, J. G. &lt;strong&gt;Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype.&lt;/strong&gt; Hum. Molec. Genet. 20: 790-805, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21118895/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21118895&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21118895[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq523&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21118895">Villalta et al. (2011)</a> concluded that IL10 plays a significant role in muscular dystrophy by reducing M1 macrophage activation and cytotoxicity, increasing M2c macrophage activation, and modulating muscle differentiation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21118895" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#63" class="mim-tip-reference" title="Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., Lamon, S., Russell, A. P., Davies, K. E., Febbraio, M. A., Lynch, G. S. &lt;strong&gt;Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.&lt;/strong&gt; Nature 484: 394-398, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22495301/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22495301&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature10980&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22495301">Gehrig et al. (2012)</a> showed that increasing the expression of intramuscular heat-shock protein-72 (Hsp72; <a href="/entry/140550">140550</a>) preserves muscle strength and ameliorates the dystrophic pathology in 2 mouse models of muscular dystrophy. Treatment with BGP-15, a pharmacologic inducer of Hsp72 that can protect against obesity-induced insulin resistance, improved muscular architecture, strength, and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe kyphosis, muscle weakness, and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles, and extended life span. <a href="#63" class="mim-tip-reference" title="Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., Lamon, S., Russell, A. P., Davies, K. E., Febbraio, M. A., Lynch, G. S. &lt;strong&gt;Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.&lt;/strong&gt; Nature 484: 394-398, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22495301/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22495301&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature10980&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22495301">Gehrig et al. (2012)</a> found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA; <a href="/entry/108730">108730</a>) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with Serca to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased Serca activity in dystrophic skeletal muscles. <a href="#63" class="mim-tip-reference" title="Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., Lamon, S., Russell, A. P., Davies, K. E., Febbraio, M. A., Lynch, G. S. &lt;strong&gt;Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.&lt;/strong&gt; Nature 484: 394-398, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22495301/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22495301&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature10980&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22495301">Gehrig et al. (2012)</a> concluded that their results provided evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell, and pharmacologic therapies. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22495301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Cathepsin S (CTSS; <a href="/entry/116845">116845</a>) is a cysteine protease that is actively secreted in areas of tissue injury and inflammation, where it participates in extracellular matrix remodeling and healing. <a href="#191" class="mim-tip-reference" title="Tjondrokoesoemo, A., Schips, T. G., Sargent, M. A., Vanhoutte, D., Kanisicak, O., Prasad, V., Lin, S.-C. J., Maillet, M., Molkentin, J. D. &lt;strong&gt;Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice.&lt;/strong&gt; J. Biol. Chem. 291: 9920-9928, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26966179/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26966179&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26966179[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M116.719054&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26966179">Tjondrokoesoemo et al. (2016)</a> observed significant induction of Ctss expression in injured wildtype mouse muscle or muscle from mdx mice. Deletion of Ctss in mdx mice resulted in protection from DMD pathogenesis, including reduced myofiber turnover and pathology, reduced fibrosis, and improved running capacity. Ctss deletion in mdx mice significantly increased myofiber sarcolemma membrane stability, with enhanced expression and membrane localization of utrophin, intregrins, and beta-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Transgenic mice overexpressing Ctss in skeletal muscle exhibited increased myofiber necrosis, muscle histopathology, and deficits similar to those of muscular dystrophy. <a href="#191" class="mim-tip-reference" title="Tjondrokoesoemo, A., Schips, T. G., Sargent, M. A., Vanhoutte, D., Kanisicak, O., Prasad, V., Lin, S.-C. J., Maillet, M., Molkentin, J. D. &lt;strong&gt;Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice.&lt;/strong&gt; J. Biol. Chem. 291: 9920-9928, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26966179/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26966179&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26966179[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M116.719054&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26966179">Tjondrokoesoemo et al. (2016)</a> concluded that CTSS induction during muscular dystrophy is a pathologic event that underlies disease pathogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26966179" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Canine Models</em></strong></p><p>
In a review, <a href="#174" class="mim-tip-reference" title="Shelton, G. D., Engvall, E. &lt;strong&gt;Canine and feline models of human inherited muscle diseases.&lt;/strong&gt; Neuromusc. Disord. 15: 127-138, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15694134/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15694134&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.nmd.2004.10.019&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15694134">Shelton and Engvall (2005)</a> stated that canine models of DMD had been described in the golden retriever, beagle, Rottweiler, German shorthaired pointer, and Japanese spitz breeds. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15694134" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#168" class="mim-tip-reference" title="Sampaolesi, M., Blot, S., D&#x27;Antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., Mognol, P., Thibaud, J.-L., Galvez, B. G., Barthelemy, I., Perani, L., Mantero, S., Guttinger, M., Pansarasa, O., Rinaldi, C., Cusella De Angelis, M. G., Torrente, Y., Bordignon, C., Bottinelli, R., Cossu, G. &lt;strong&gt;Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs.&lt;/strong&gt; Nature 444: 574-579, 2006. Note: Erratum: Nature 494: 506 only, 2013. Erratum: Nature 507: 262 only, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17108972/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17108972&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature05282&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17108972">Sampaolesi et al. (2006)</a> stated that the only animal model specifically reproducing the alterations in the dystrophin gene and the full spectrum of human pathology is the golden retriever dog model. Affected animals present a single mutation in intron 6, resulting in complete absence of the dystrophin protein, and early and severe muscle degeneration with nearly complete loss of motility and walking ability. Death usually occurs at about one year of age as a result of failure of respiratory muscles. <a href="#168" class="mim-tip-reference" title="Sampaolesi, M., Blot, S., D&#x27;Antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., Mognol, P., Thibaud, J.-L., Galvez, B. G., Barthelemy, I., Perani, L., Mantero, S., Guttinger, M., Pansarasa, O., Rinaldi, C., Cusella De Angelis, M. G., Torrente, Y., Bordignon, C., Bottinelli, R., Cossu, G. &lt;strong&gt;Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs.&lt;/strong&gt; Nature 444: 574-579, 2006. Note: Erratum: Nature 494: 506 only, 2013. Erratum: Nature 507: 262 only, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17108972/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17108972&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature05282&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17108972">Sampaolesi et al. (2006)</a> reported that intraarterial delivery of wildtype canine mesoangioblasts (vessel-associated stem cells) resulted in an extensive recovery of dystrophin expression, normal muscle morphology and function (confirmed by measurement of contraction force on single fibers). The authors concluded that the outcome is a remarkable clinical amelioration and preservation of active motility. These data qualify mesoangioblasts as candidates for future stem cell therapy for Duchenne patients. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17108972" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#6" class="mim-tip-reference" title="Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. &lt;strong&gt;Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy.&lt;/strong&gt; Science 362: 86-91, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30166439/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30166439&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30166439[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.aau1549&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30166439">Amoasii et al. (2018)</a> used adeno-associated viruses to deliver CRISPR gene-editing components to 4 dogs with the deltaE50-MD dog model of DMD and examined dystrophin protein expression 6 weeks after intramuscular delivery in 2 dogs or 8 weeks after systemic delivery in 2 dogs. After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. <a href="#6" class="mim-tip-reference" title="Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N. &lt;strong&gt;Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy.&lt;/strong&gt; Science 362: 86-91, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30166439/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30166439&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30166439[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.aau1549&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30166439">Amoasii et al. (2018)</a> concluded that these large-animal data supported the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30166439" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Feline Models</em></strong></p><p>
<a href="#211" class="mim-tip-reference" title="Winand, N. J., Edwards, M., Pradhan, D., Berian, C. A., Cooper, B. J. &lt;strong&gt;Deletion of the dystrophin muscle promoter in feline muscular dystrophy.&lt;/strong&gt; Neuromusc. Disord. 4: 433-445, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7881288/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7881288&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0960-8966(94)90082-5&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7881288">Winand et al. (1994)</a> found a deletion of the dystrophin promoter in a male domestic short-haired cat with a generalized muscle hypertrophy, stiffness, and mild histopathologic dystrophy. The mutation eliminated expression of the muscle and Purkinje neuronal dystrophin isoforms. The cortical neuronal isoform was expressed at a detectable level in skeletal muscle, but not in the heart. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7881288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a review, <a href="#174" class="mim-tip-reference" title="Shelton, G. D., Engvall, E. &lt;strong&gt;Canine and feline models of human inherited muscle diseases.&lt;/strong&gt; Neuromusc. Disord. 15: 127-138, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15694134/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15694134&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.nmd.2004.10.019&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15694134">Shelton and Engvall (2005)</a> discussed feline models of DMD. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15694134" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Zebrafish Models</em></strong></p><p>
<a href="#14" class="mim-tip-reference" title="Bassett, D. I., Currie, P. D. &lt;strong&gt;The zebrafish as a model for muscular dystrophy and congenital myopathy.&lt;/strong&gt; Hum. Molec. Genet. 12: R265-R270, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14504264/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14504264&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddg279&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14504264">Bassett and Currie (2003)</a> reviewed zebrafish models for muscular dystrophy and congenital myopathy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14504264" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="seeAlso" class="mim-anchor"></a>
<h4 href="#mimSeeAlsoFold" id="mimSeeAlsoToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimSeeAlsoToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>See Also:</strong>
</span>
</h4>
<div id="mimSeeAlsoFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<a href="#Adornato1978" class="mim-tip-reference" title="Adornato, B. T., Kagen, L. J., Engel, W. K. &lt;strong&gt;Myoglobinaemia in Duchenne muscular dystrophy patients and carriers: a new adjunct to carrier detection.&lt;/strong&gt; Lancet 312: 499-501, 1978. Note: Originally Volume II.">Adornato et al. (1978)</a>; <a href="#Blyth1959" class="mim-tip-reference" title="Blyth, H. M., Pugh, R. J. &lt;strong&gt;Muscular dystrophy in childhood: the genetical aspect: a field study in the Leeds region of clinical types and their inheritance.&lt;/strong&gt; Ann. Hum. Genet. 23: 127-163, 1959.">Blyth and Pugh (1959)</a>; <a href="#Brockdorff1987" class="mim-tip-reference" title="Brockdorff, N., Cross, G. S., Cavanna, J. S., Fisher, E. M. C., Lyon, M. F., Davies, K. E., Brown, S. D. M. &lt;strong&gt;The mapping of a cDNA from the human X-linked Duchenne muscular dystrophy gene to the mouse X chromosome.&lt;/strong&gt; Nature 328: 166-168, 1987.">Brockdorff et al.
(1987)</a>; <a href="#Brown1985" class="mim-tip-reference" title="Brown, C. S., Thomas, N. S. T., Sarfarazi, M., Davies, K. E., Kunkel, L., Pearson, P. L., Kingston, H. M., Shaw, D. J., Harper, P. S. &lt;strong&gt;Genetic linkage relationships of seven DNA probes with Duchenne and Becker muscular dystrophy.&lt;/strong&gt; Hum. Genet. 71: 62-74, 1985.">Brown et al. (1985)</a>; <a href="#Bulfield1984" class="mim-tip-reference" title="Bulfield, G., Siller, W. G., Wight, P. A. L., Moore, K. J. &lt;strong&gt;X chromosome-linked muscular dystrophy (mdx) in the mouse.&lt;/strong&gt; Proc. Nat. Acad. Sci. 81: 1189-1192, 1984.">Bulfield et al. (1984)</a>; <a href="#Bundey1974" class="mim-tip-reference" title="Bundey, S. E. &lt;strong&gt;Extreme muscle hypertrophy in Duchenne muscular dystrophy.&lt;/strong&gt; Birth Defects Orig. Art. Ser. X(4): 341, 1974.">Bundey (1974)</a>; <a href="#Cavanagh1981" class="mim-tip-reference" title="Cavanagh, N. P. C., Preece, M. A. &lt;strong&gt;Calf hypertrophy and asymmetry in female carriers of X-linked Duchenne muscular dystrophy: an over-diagnosed clinical manifestation.&lt;/strong&gt; Clin. Genet. 20: 168-172, 1981.">Cavanagh and Preece (1981)</a>; <a href="#Chamberlain1987" class="mim-tip-reference" title="Chamberlain, J. S., Grant, S. G., Reeves, A. A., Mullins, L. J., Stephenson, D. A., Hoffman, E. P., Monaco, A. P., Kunkel, L. M., Caskey, C. T., Chapman, V. M. &lt;strong&gt;Regional localization of the murine Duchenne muscular dystrophy gene on the mouse X chromosome.&lt;/strong&gt; Somat. Cell Molec. Genet. 13: 671-678, 1987.">Chamberlain et al. (1987)</a>; <a href="#Cowan1980" class="mim-tip-reference" title="Cowan, J., Macdessi, J., Stark, A., Morgan, G. &lt;strong&gt;Incidence of Duchenne muscular dystrophy in New South Wales and the Australian Capital Territory.&lt;/strong&gt; J. Med. Genet. 17: 245-249, 1980.">Cowan et al.
(1980)</a>; <a href="#Davies1985" class="mim-tip-reference" title="Davies, K. E., Speer, A., Herrmann, F., Spiegler, A. W. J., McGlade, S., Hofker, M. H., Briand, P., Hanke, R., Schwartz, M., Steinbicker, V., Szibor, R., Korner, H., Sommer, D., Pearson, P. L., Coutelle, C. &lt;strong&gt;Human X chromosome markers and Duchenne muscular dystrophy.&lt;/strong&gt; Nucleic Acids Res. 13: 3419-3426, 1985.">Davies et al. (1985)</a>; <a href="#de1985" class="mim-tip-reference" title="de Martinville, B., Kunkel, L. M., Bruns, G., Morle, F., Koenig, M., Mandel, J. L., Horwich, A., Latt, S. A., Gusella, J. F., Housman, D., Francke, U. &lt;strong&gt;Localization of DNA sequences in region Xp21 of the human X chromosome: search for molecular markers close to the Duchenne muscular dystrophy locus.&lt;/strong&gt; Am. J. Hum. Genet. 37: 235-249, 1985.">de Martinville et al. (1985)</a>; <a href="#Dorkins1985" class="mim-tip-reference" title="Dorkins, H., Junien, C., Mandel, J. L., Wrogemann, K., Moison, J. P., Martinez, M., Old, J. M., Bundey, S., Schwartz, M., Carpenter, N., Hill, D., Lindlof, M., de la Chapelle, A., Pearson, P. L., Davies, K. E. &lt;strong&gt;Segregation analysis of a marker localised Xp21.2-Xp21.3 in Duchenne and Becker muscular dystrophy families.&lt;/strong&gt; Hum. Genet. 71: 103-107, 1985.">Dorkins
et al. (1985)</a>; <a href="#Drummond1979" class="mim-tip-reference" title="Drummond, L. M. &lt;strong&gt;Creatine phosphokinase levels in the newborn and their use in screening for Duchenne muscular dystrophy.&lt;/strong&gt; Arch. Dis. Child. 54: 362-366, 1979.">Drummond (1979)</a>; <a href="#Emanuel1981" class="mim-tip-reference" title="Emanuel, B. S., Zackai, E. H., Tucker, S. &lt;strong&gt;Further evidence for Xp21 location of Duchenne muscular dystrophy (DMD) locus: X-9 translocation in a female with DMD. (Abstract)&lt;/strong&gt; Am. J. Hum. Genet. 33: 103A, 1981.">Emanuel et al. (1981)</a>; <a href="#Fenichel1975" class="mim-tip-reference" title="Fenichel, G. M. &lt;strong&gt;On the pathogenesis of Duchenne muscular dystrophy.&lt;/strong&gt; Dev. Med. Child Neurol. 17: 527-537, 1975.">Fenichel
(1975)</a>; <a href="#Gardner-Medwin1970" class="mim-tip-reference" title="Gardner-Medwin, D. &lt;strong&gt;Mutation rate in the Duchenne type of muscular dystrophy.&lt;/strong&gt; J. Med. Genet. 7: 334-337, 1970.">Gardner-Medwin (1970)</a>; <a href="#Gomez1977" class="mim-tip-reference" title="Gomez, M. R., Engel, A. G., Dewald, G., Peterson, H. A. &lt;strong&gt;Failure of inactivation of Duchenne dystrophy X-chromosome in one of female identical twins.&lt;/strong&gt; Neurology 27: 537-541, 1977.">Gomez et al. (1977)</a>; <a href="#Greenberg1994" class="mim-tip-reference" title="Greenberg, D. S., Sunada, Y., Campbell, K. P., Yaffe, D., Nudel, U. &lt;strong&gt;Exogenous Dp71 restores the levels of dystrophin associated proteins but does not alleviate muscle damage in mdx mice.&lt;/strong&gt; Nature Genet. 8: 340-344, 1994.">Greenberg et al.
(1994)</a>; <a href="#Grimm1989" class="mim-tip-reference" title="Grimm, T., Muller, B., Dreier, M., Kind, E., Bettecken, T., Meng, G., Muller, C. R. &lt;strong&gt;Hot spot of recombination within DXS164 in the Duchenne muscular dystrophy gene.&lt;/strong&gt; Am. J. Hum. Genet. 45: 368-372, 1989.">Grimm et al. (1989)</a>; <a href="#Harper1983" class="mim-tip-reference" title="Harper, P. S., O&#x27;Brien, T., Murray, J. M., Davies, K. E., Pearson, P., Williamson, R. &lt;strong&gt;The use of linked DNA polymorphisms for genotype prediction in families with Duchenne muscular dystrophy.&lt;/strong&gt; J. Med. Genet. 20: 252-254, 1983.">Harper et al. (1983)</a>; <a href="#Heilig1987" class="mim-tip-reference" title="Heilig, R., Lemaire, C., Mandel, J.-L., Dandolo, L., Amar, L., Avner, P. &lt;strong&gt;Localization of the region homologous to the Duchenne muscular dystrophy locus on the mouse X chromosome.&lt;/strong&gt; Nature 328: 168-170, 1987.">Heilig et al.
(1987)</a>; <a href="#Howland1977" class="mim-tip-reference" title="Howland, J. L., Iyer, S. L. &lt;strong&gt;Erythrocyte lipids in heterozygous carriers of Duchenne muscular dystrophy.&lt;/strong&gt; Science 198: 309-310, 1977.">Howland and Iyer (1977)</a>; <a href="#Ingle1985" class="mim-tip-reference" title="Ingle, C., Williamson, R., de la Chapelle, A., Herva, R. R., Haapala, K., Bates, G., Willard, H. F., Pearson, P., Davies, K. E. &lt;strong&gt;Mapping DNA sequences in a human X-chromosome deletion which extends across the region of the Duchenne muscular dystrophy mutation.&lt;/strong&gt; Am. J. Hum. Genet. 37: 451-462, 1985.">Ingle et al. (1985)</a>; <a href="#Jacobs1981" class="mim-tip-reference" title="Jacobs, P. A., Hunt, P. A., Mayer, M., Bart, R. D. &lt;strong&gt;Duchenne muscular dystrophy (DMD) in a female with an X-autosome translocation: further evidence that the DMD locus is at Xp21.&lt;/strong&gt; Am. J. Hum. Genet. 33: 513-518, 1981.">Jacobs et al.
(1981)</a>; <a href="#Kingston1984" class="mim-tip-reference" title="Kingston, H. M., Thomas, N. S. T., Sarfarazi, M., Harper, P. S. &lt;strong&gt;Localization of the Becker muscular dystrophy gene by linkage to DNA sequence polymorphisms. (Abstract)&lt;/strong&gt; Cytogenet. Cell Genet. 37: 512, 1984.">Kingston et al. (1984)</a>; <a href="#Minetti1993" class="mim-tip-reference" title="Minetti, C., Tanji, K., Chang, H. W., Medori, R., Cordone, G., DiMauro, S., Bonilla, E. &lt;strong&gt;Dystrophinopathy in two young boys with exercise-induced cramps and myoglobinuria.&lt;/strong&gt; Europ. J. Pediat. 152: 848-851, 1993.">Minetti et al. (1993)</a>; <a href="#Morton1959" class="mim-tip-reference" title="Morton, N. E., Chung, C. S. &lt;strong&gt;Formal genetics of muscular dystrophy.&lt;/strong&gt; Am. J. Hum. Genet. 11: 360-379, 1959.">Morton and
Chung (1959)</a>; <a href="#Moser1984" class="mim-tip-reference" title="Moser, H. &lt;strong&gt;Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention.&lt;/strong&gt; Hum. Genet. 66: 17-40, 1984.">Moser (1984)</a>; <a href="#O'Brien1983" class="mim-tip-reference" title="O&#x27;Brien, T., Harper, P. S., Davies, K. E., Murray, J. M., Sarfarazi, M., Williamson, R. &lt;strong&gt;Absence of genetic heterogeneity in Duchenne muscular dystrophy shown by a linkage study using two cloned DNA sequences.&lt;/strong&gt; J. Med. Genet. 20: 249-251, 1983.">O'Brien et al. (1983)</a>; <a href="#Pembrey1984" class="mim-tip-reference" title="Pembrey, M. E., Davies, K. E., Winter, R. M., Elles, R. G., Williamson, R., Fazzone, T. A., Walker, C. &lt;strong&gt;Clinical use of DNA markers linked to the gene for Duchenne muscular dystrophy.&lt;/strong&gt; Arch. Dis. Child. 59: 208-216, 1984.">Pembrey et al.
(1984)</a>; <a href="#Percy1982" class="mim-tip-reference" title="Percy, M. E., Andrews, D. F., Thompson, M. W. &lt;strong&gt;Duchenne muscular dystrophy carrier detection using logistic discrimination: serum creatine kinase, hemopexin, pyruvate kinase, and lactate dehydrogenase in combination.&lt;/strong&gt; Am. J. Med. Genet. 13: 27-38, 1982.">Percy et al. (1982)</a>; <a href="#Pernelle1988" class="mim-tip-reference" title="Pernelle, J.-J., Chafey, P., Chelly, J., Wahrmann, J. P., Kaplan, J.-C., Tome, F., Fardeau, M. &lt;strong&gt;Nebulin seen in DMD males including one patient with a large DNA deletion encompassing the DMD gene.&lt;/strong&gt; Hum. Genet. 78: 285, 1988.">Pernelle et al. (1988)</a>; <a href="#Prosser1969" class="mim-tip-reference" title="Prosser, E. J., Murphy, E. G., Thompson, M. W. &lt;strong&gt;Intelligence and the gene for Duchenne muscular dystrophy.&lt;/strong&gt; Arch. Dis. Child. 44: 221-230, 1969.">Prosser et al.
(1969)</a>; <a href="#Rodemann1984" class="mim-tip-reference" title="Rodemann, H. P., Bayreuther, K. &lt;strong&gt;Abnormal collagen metabolism in cultured skin fibroblasts from patients with Duchenne muscular dystrophy.&lt;/strong&gt; Proc. Nat. Acad. Sci. 81: 5130-5134, 1984.">Rodemann and Bayreuther (1984)</a>; <a href="#Roses1976" class="mim-tip-reference" title="Roses, A. D., Roses, M. J., Miller, S. E., Hull, K. L., Jr., Appel, S. H. &lt;strong&gt;Carrier detection in Duchenne muscular dystrophy.&lt;/strong&gt; New Eng. J. Med. 294: 193-198, 1976.">Roses et al. (1976)</a>; <a href="#Rosman1966" class="mim-tip-reference" title="Rosman, N. P., Kakulas, B. A. &lt;strong&gt;Mental deficiency associated with muscular dystrophy--a neurological study.&lt;/strong&gt; Brain 89: 769-788, 1966.">Rosman
and Kakulas (1966)</a>; <a href="#Rosman1970" class="mim-tip-reference" title="Rosman, N. P. &lt;strong&gt;The cerebral defect and myopathy in Duchenne muscular dystrophy: a comparative clinicopathological study.&lt;/strong&gt; Neurology 20: 329-335, 1970.">Rosman (1970)</a>; <a href="#Saito1985" class="mim-tip-reference" title="Saito, F., Tonomura, A., Kimura, S., Misugi, N., Sugita, H. &lt;strong&gt;High-resolution banding study of an X/4 translocation in a female with Duchenne muscular dystrophy.&lt;/strong&gt; Hum. Genet. 71: 370-371, 1985.">Saito et al. (1985)</a>; <a href="#Sanyal1980" class="mim-tip-reference" title="Sanyal, S. K., Johnson, W. W., Dische, M. R., Pitner, S. E., Beard, C. &lt;strong&gt;Dystrophic degeneration of papillary muscle and ventricular myocardium: a basis for mitral valve prolapse in Duchenne&#x27;s muscular dystrophy.&lt;/strong&gt; Circulation 62: 430-438, 1980.">Sanyal et al.
(1980)</a>; <a href="#Shaw1969" class="mim-tip-reference" title="Shaw, R. F., Dreifuss, F. E. &lt;strong&gt;Mild and severe forms of X-linked muscular dystrophy.&lt;/strong&gt; Arch. Neurol. 20: 451-460, 1969.">Shaw and Dreifuss (1969)</a>; <a href="#Sica1978" class="mim-tip-reference" title="Sica, R. E. P., McComas, A. J. &lt;strong&gt;The neural hypothesis of muscular dystrophy: a review of recent experimental evidence with particular reference to the Duchenne form.&lt;/strong&gt; Canad. J. Neurol. Sci. 5: 189-197, 1978.">Sica and McComas (1978)</a>; <a href="#Skyring1961" class="mim-tip-reference" title="Skyring, A. P., McKusick, V. A. &lt;strong&gt;Clinical, genetic and electrocardiographic studies of childhood muscular dystrophy.&lt;/strong&gt; Am. J. Med. Sci. 242: 534-547, 1961.">Skyring
and McKusick (1961)</a>; <a href="#Thompson1978" class="mim-tip-reference" title="Thompson, C. E. &lt;strong&gt;Reproduction in Duchenne dystrophy.&lt;/strong&gt; Neurology 28: 1045-1047, 1978.">Thompson (1978)</a>; <a href="#Winn1978" class="mim-tip-reference" title="Winn, K. J., Heller, R. H. &lt;strong&gt;Pathologic diagnosis of Duchenne muscular dystrophy in an aborted fetus.&lt;/strong&gt; Clin. Genet. 13: 335-338, 1978.">Winn and Heller (1978)</a>; <a href="#Witkowski1981" class="mim-tip-reference" title="Witkowski, J. A., Jones, G. E. &lt;strong&gt;Duchenne muscular dystrophy--a membrane abnormality?&lt;/strong&gt; Trends Biochem. Sci. 6: ix-xii, 1981.">Witkowski and Jones (1981)</a>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Aartsma-Rus2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aartsma-Rus, A., Janson, A. A. M., Kaman, W. E., Bremmer-Bout, M., den Dunnen, J. T., Baas, F., van Ommen, G.-J. B., van Deutekom, J. C. T.
<strong>Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients.</strong>
Hum. Molec. Genet. 12: 907-914, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12668614/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12668614</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12668614" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddg100" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Aartsma-Rus2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aartsma-Rus, A., Janson, A. A. M., Kaman, W. E., Bremmer-Bout, M., van Ommen, G.-J. B., den Dunnen, J. T., van Deutekom, J. C. T.
<strong>Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense.</strong>
Am. J. Hum. Genet. 74: 83-92, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14681829/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14681829</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=14681829[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14681829" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/381039" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Aartsma-Rus2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aartsma-Rus, A., Van Deutekom, J. C. T., Fokkema, I. F., Van Ommen, G.-J. B., Den Dunnen, J. T.
<strong>Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule.</strong>
Muscle Nerve 34: 135-144, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16770791/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16770791</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16770791" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/mus.20586" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Abbadi1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Abbadi, N., Philippe, C., Chery, M., Gilgenkrantz, H., Tome, F., Collin, H., Theau, D., Recan, D., Broux, O., Fardeau, M., Kaplan, J.-C., Gilgenkrantz, S.
<strong>Additional case of female monozygotic twins discordant for the clinical manifestations of Duchenne muscular dystrophy due to opposite X-chromosome inactivation.</strong>
Am. J. Med. Genet. 52: 198-206, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7802009/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7802009</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7802009" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320520215" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Adornato1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Adornato, B. T., Kagen, L. J., Engel, W. K.
<strong>Myoglobinaemia in Duchenne muscular dystrophy patients and carriers: a new adjunct to carrier detection.</strong>
Lancet 312: 499-501, 1978. Note: Originally Volume II.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/79868/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">79868</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=79868" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0140-6736(78)92221-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Amoasii2018" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N.
<strong>Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy.</strong>
Science 362: 86-91, 2018.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/30166439/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">30166439</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=30166439[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30166439" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.aau1549" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Arikawa1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Arikawa, E., Hoffman, E. P., Kaido, M., Nonaka, I., Sugita, H., Arahata, K.
<strong>The frequency of patients with dystrophin abnormalities in a limb-girdle patient population.</strong>
Neurology 41: 1491-1496, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1842672/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1842672</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1842672" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.41.9.1491" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Azofeifa1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Azofeifa, J., Voit, T., Hubner, C., Cremer, M.
<strong>X-chromosome methylation in manifesting and healthy carriers of dystrophinopathies (sic): concordance of activation ratios among first degree female relatives and skewed inactivation as cause of the affected phenotypes.</strong>
Hum. Genet. 96: 167-176, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7635465/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7635465</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7635465" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00207374" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Barbujani1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Barbujani, G., Russo, A., Danieli, G. A., Spiegler, A. W. J., Borkowska, J., Hausmanova Petrusewicz, I.
<strong>Segregation analysis of 1885 DMD families: significant departure from the expected proportion of sporadic cases.</strong>
Hum. Genet. 84: 522-526, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2338336/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2338336</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2338336" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00210802" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Baricordi1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Baricordi, O. R., Sensi, A., Balboni, A., Romeo, G., Rocchi, M., Melchiorri, L., Gandini, E.
<strong>Impairment of capping in lymphoblastoid cell lines of Duchenne patients indicates an intrinsic cellular defect.</strong>
Hum. Genet. 83: 217-219, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2793164/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2793164</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2793164" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00285158" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Barohn1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Barohn, R. J., Levine, E. J., Olson, J. O., Mendell, J. R.
<strong>Gastric hypomotility in Duchenne's muscular dystrophy.</strong>
New Eng. J. Med. 319: 15-18, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3380114/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3380114</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3380114" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM198807073190103" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Bartlett1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bartlett, R. J., Pericak-Vance, M. A., Koh, J., Yamaoka, L. H., Chen, J. C., Hung, W.-Y., Speer, M. C., Wapenaar, M. C., Van Ommen, G. J. B., Bakker, E., Pearson, P. L., Kandt, R. S., Siddique, T., Gilbert, J. R., Lee, J. E., Sirotkin-Roses, M. J., Roses, A. D.
<strong>Duchenne muscular dystrophy: high frequency of deletions.</strong>
Neurology 38: 1-4, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3275902/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3275902</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3275902" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.38.1.1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Barton2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Barton, E. R., Morris, L., Musaro, A., Rosenthal, N., Sweeney, H. L.
<strong>Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice.</strong>
J. Cell Biol. 157: 137-147, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11927606/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11927606</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=11927606[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11927606" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1083/jcb.200108071" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Bassett2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bassett, D. I., Currie, P. D.
<strong>The zebrafish as a model for muscular dystrophy and congenital myopathy.</strong>
Hum. Molec. Genet. 12: R265-R270, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14504264/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14504264</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14504264" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddg279" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Beckmann1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Beckmann, R., Sauer, M., Ketelsen, U.-P., Scheuerbrandt, G.
<strong>Early diagnosis of Duchenne muscular dystrophy. (Letter)</strong>
Lancet 312: 105 only, 1978. Note: Originally Volume II.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/78271/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">78271</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=78271" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0140-6736(78)91419-8" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Beggs1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Beggs, A. H., Kunkel, L. M.
<strong>Improved diagnosis of Duchenne/Becker muscular dystrophy.</strong>
J. Clin. Invest. 85: 613-619, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1968908/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1968908</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1968908" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI114482" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Bellinger2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bellinger, A. M., Reiken, S., Carlson, C., Mongillo, M., Liu, X., Rothman, L., Matecki, S., Lacampagne, A., Marks, A. R.
<strong>Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle.</strong>
Nature Med. 15: 325-330, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19198614/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19198614</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19198614[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19198614" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm.1916" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Bieber1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bieber, F. R., Hoffman, E. P., Amos, J. A.
<strong>Dystrophin analysis in Duchenne muscular dystrophy: use in fetal diagnosis and in genetic counseling.</strong>
Am. J. Hum. Genet. 45: 362-367, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2672800/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2672800</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2672800" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Blau1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Blau, H. M., Webster, C., Pavlath, G. K.
<strong>Defective myoblasts identified in Duchenne muscular dystrophy.</strong>
Proc. Nat. Acad. Sci. 80: 4856-4860, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6576361/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6576361</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6576361" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.80.15.4856" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Blyth1959" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Blyth, H. M., Pugh, R. J.
<strong>Muscular dystrophy in childhood: the genetical aspect: a field study in the Leeds region of clinical types and their inheritance.</strong>
Ann. Hum. Genet. 23: 127-163, 1959.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/13637556/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">13637556</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=13637556" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1469-1809.1958.tb01457.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Boland1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Boland, B. J., Silbert, P. L., Groover, R. V., Wollan, P. C., Silverstein, M. D.
<strong>Skeletal, cardiac, and smooth muscle failure in Duchenne muscular dystrophy.</strong>
Pediat. Neurol. 14: 7-12, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8652023/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8652023</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8652023" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0887-8994(95)00251-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Bonilla1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bonilla, E., Younger, D. S., Chang, H. W., Tantravahi, U., Miranda, A. F., Medori, R., DiMauro, S., Warburton, D., Rowland, L. P.
<strong>Partial dystrophin deficiency in monozygous twin carriers of the Duchenne gene discordant for clinical myopathy.</strong>
Neurology 40: 1267-1270, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2199849/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2199849</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2199849" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.40.8.1267" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Borresen1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Borresen, A. L., Heiberg, A., Moller, P., Berg, K.
<strong>Evidence for a sperm mutation resulting in Duchenne muscular dystrophy.</strong>
Clin. Genet. 32: 187-191, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2887319/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2887319</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2887319" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1987.tb03352.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Bresolin1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bresolin, N., Castelli, E., Comi, P., Felisari, G., Bardoni, A., Perani, D., Grassi, F., Turconi, A., Mazzucchelli, F., Gallotti, D., Moggio, M., Prelle, A., Ausenda, C., Fazio, G., Scarlato, G.
<strong>Cognitive impairment in Duchenne muscular dystrophy.</strong>
Neuromusc. Disord. 4: 359-369, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7981593/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7981593</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7981593" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0960-8966(94)90072-8" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Brockdorff1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Brockdorff, N., Cross, G. S., Cavanna, J. S., Fisher, E. M. C., Lyon, M. F., Davies, K. E., Brown, S. D. M.
<strong>The mapping of a cDNA from the human X-linked Duchenne muscular dystrophy gene to the mouse X chromosome.</strong>
Nature 328: 166-168, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3600793/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3600793</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3600793" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/328166a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="26" class="mim-anchor"></a>
<a id="Brown1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Brown, C. S., Thomas, N. S. T., Sarfarazi, M., Davies, K. E., Kunkel, L., Pearson, P. L., Kingston, H. M., Shaw, D. J., Harper, P. S.
<strong>Genetic linkage relationships of seven DNA probes with Duchenne and Becker muscular dystrophy.</strong>
Hum. Genet. 71: 62-74, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2993158/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2993158</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2993158" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00295671" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="27" class="mim-anchor"></a>
<a id="Bucher1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bucher, K., Ionasescu, V., Hanson, J.
<strong>Frequency of new mutants among boys with Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 7: 27-34, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7211951/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7211951</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7211951" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320070107" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="28" class="mim-anchor"></a>
<a id="Bulfield1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bulfield, G., Siller, W. G., Wight, P. A. L., Moore, K. J.
<strong>X chromosome-linked muscular dystrophy (mdx) in the mouse.</strong>
Proc. Nat. Acad. Sci. 81: 1189-1192, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6583703/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6583703</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6583703" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.81.4.1189" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="29" class="mim-anchor"></a>
<a id="Bundey1974" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bundey, S. E.
<strong>Extreme muscle hypertrophy in Duchenne muscular dystrophy.</strong>
Birth Defects Orig. Art. Ser. X(4): 341, 1974.
</p>
</div>
</li>
<li>
<a id="30" class="mim-anchor"></a>
<a id="Burn1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Burn, J., Povey, S., Boyd, Y., Munro, E. A., West, L., Harper, K., Thomas, D.
<strong>Duchenne muscular dystrophy in one of monozygotic twin girls.</strong>
J. Med. Genet. 23: 494-500, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2879922/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2879922</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2879922" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.23.6.494" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="31" class="mim-anchor"></a>
<a id="Bushby1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bushby, K. M. D., Appleton, R., Anderson, L. V. B., Welch, J. L., Kelly, P., Gardner-Medwin, D.
<strong>Deletion status and intellectual impairment in Duchenne muscular dystrophy.</strong>
Dev. Med. Child Neurol. 37: 260-269, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7890131/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7890131</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7890131" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1469-8749.1995.tb12000.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="32" class="mim-anchor"></a>
<a id="Canki1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Canki, N., Dutrillaux, B., Tivadar, I.
<strong>Dystrophie musculaire de Duchenne chez une petite fille porteuse d'une translocation t(X;3) (p21;q13) de novo.</strong>
Ann. Genet. 22: 35-39, 1979.
</p>
</div>
</li>
<li>
<a id="33" class="mim-anchor"></a>
<a id="Cantagrel2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cantagrel, V., Lossi, A.-M., Boulanger, S., Depetris, D., Mattei, M.-G., Gecz, J., Schwartz, C. E., Van Maldergem, L., Villard, L.
<strong>Disruption of a new X linked gene highly expressed in brain in a family with two mentally retarded males.</strong>
J. Med. Genet. 41: 736-742, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15466006/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15466006</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15466006" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.2004.021626" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="34" class="mim-anchor"></a>
<a id="Caskey1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Caskey, C. T., Nussbaum, R. L., Cohan, L. C., Pollack, L.
<strong>Sporadic occurrence of Duchenne muscular dystrophy: evidence for new mutation.</strong>
Clin. Genet. 18: 329-341, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7460369/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7460369</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7460369" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1980.tb02293.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="35" class="mim-anchor"></a>
<a id="Cavanagh1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cavanagh, N. P. C., Preece, M. A.
<strong>Calf hypertrophy and asymmetry in female carriers of X-linked Duchenne muscular dystrophy: an over-diagnosed clinical manifestation.</strong>
Clin. Genet. 20: 168-172, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7307311/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7307311</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7307311" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1981.tb01823.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="36" class="mim-anchor"></a>
<a id="Chakkalakal2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Chakkalakal, J. V., Harrison, M.-A., Carbonetto, S., Chin, E., Michel, R. N., Jasmin, B. J.
<strong>Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice.</strong>
Hum. Molec. Genet. 13: 379-388, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14681302/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14681302</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14681302" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddh037" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="37" class="mim-anchor"></a>
<a id="Chamberlain1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Chamberlain, J. S., Grant, S. G., Reeves, A. A., Mullins, L. J., Stephenson, D. A., Hoffman, E. P., Monaco, A. P., Kunkel, L. M., Caskey, C. T., Chapman, V. M.
<strong>Regional localization of the murine Duchenne muscular dystrophy gene on the mouse X chromosome.</strong>
Somat. Cell Molec. Genet. 13: 671-678, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2890215/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2890215</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2890215" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF01534487" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="38" class="mim-anchor"></a>
<a id="Chamberlain2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Chamberlain, J. S.
<strong>Gene therapy of muscular dystrophy.</strong>
Hum. Molec. Genet. 11: 2355-2362, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12351570/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12351570</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12351570" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/11.20.2355" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="39" class="mim-anchor"></a>
<a id="Chelly1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Chelly, J., Marlhens, F., Le Marec, B., Jeanpierre, M., Lambert, M., Hamard, G., Dutrillaux, B., Kaplan, J.-C.
<strong>De novo DNA microdeletion in a girl with Turner syndrome and Duchenne muscular dystrophy.</strong>
Hum. Genet. 74: 193-196, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2876949/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2876949</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2876949" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00282093" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="40" class="mim-anchor"></a>
<a id="Cibis1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cibis, G. W., Fitzgerald, K. M., Harris, D. J., Rothberg, P. G., Rupani, M.
<strong>The effects of dystrophin gene mutations on the ERG in mice and humans.</strong>
Invest. Ophthal. Vis. Sci. 34: 3646-3652, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8258524/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8258524</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8258524" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="41" class="mim-anchor"></a>
<a id="Clemens1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Clemens, P. R., Fenwick, R. G., Chamberlain, J. S., Gibbs, R. A., de Andrade, M., Chakraborty, R., Caskey, C. T.
<strong>Carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophy families, using dinucleotide repeat polymorphisms.</strong>
Am. J. Hum. Genet. 49: 951-960, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1928100/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1928100</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1928100" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="42" class="mim-anchor"></a>
<a id="Cohn2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cohn, R. D., van Erp, C., Habashi, J. P., Soleimani, A. A., Klein, E. C., Lisi, M. T., Gamradt, M., ap Rhys, C. M., Holm, T. M., Loeys, B. L., Ramirez, F., Judge, D. P., Ward, C. W., Dietz, H. C.
<strong>Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states.</strong>
Nature Med. 13: 204-210, 2007. Note: Erratum: Nature Med. 13: 511 only, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17237794/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17237794</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17237794[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17237794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm1536" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="43" class="mim-anchor"></a>
<a id="Costa2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Costa, M. F., Oliveira, A. G. F., Feitosa-Santana, C., Zatz, M., Ventura, D. F.
<strong>Red-green color vision impairment in Duchenne muscular dystrophy.</strong>
Am. J. Hum. Genet. 80: 1064-1075, 2007. Note: Erratum: Am. J. Hum. Genet. 83: 148-149, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17503325/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17503325</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17503325[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17503325" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/518127" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="44" class="mim-anchor"></a>
<a id="Cowan1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cowan, J., Macdessi, J., Stark, A., Morgan, G.
<strong>Incidence of Duchenne muscular dystrophy in New South Wales and the Australian Capital Territory.</strong>
J. Med. Genet. 17: 245-249, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7205898/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7205898</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7205898" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.17.4.245" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="45" class="mim-anchor"></a>
<a id="Danieli1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Danieli, G. A., Barbujani, G.
<strong>Duchenne muscular dystrophy: frequency of sporadic cases.</strong>
Hum. Genet. 67: 252-256, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6469240/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6469240</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6469240" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00291351" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="46" class="mim-anchor"></a>
<a id="Darras1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Darras, B. T., Harper, J. F., Francke, U.
<strong>Prenatal diagnosis and detection of carriers with DNA probes in Duchenne's muscular dystrophy.</strong>
New Eng. J. Med. 316: 985-992, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3561454/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3561454</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3561454" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM198704163161604" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="47" class="mim-anchor"></a>
<a id="Davies1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Davies, K. E., Speer, A., Herrmann, F., Spiegler, A. W. J., McGlade, S., Hofker, M. H., Briand, P., Hanke, R., Schwartz, M., Steinbicker, V., Szibor, R., Korner, H., Sommer, D., Pearson, P. L., Coutelle, C.
<strong>Human X chromosome markers and Duchenne muscular dystrophy.</strong>
Nucleic Acids Res. 13: 3419-3426, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3859837/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3859837</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3859837" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/nar/13.10.3419" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="48" class="mim-anchor"></a>
<a id="de Martinville1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
de Martinville, B., Kunkel, L. M., Bruns, G., Morle, F., Koenig, M., Mandel, J. L., Horwich, A., Latt, S. A., Gusella, J. F., Housman, D., Francke, U.
<strong>Localization of DNA sequences in region Xp21 of the human X chromosome: search for molecular markers close to the Duchenne muscular dystrophy locus.</strong>
Am. J. Hum. Genet. 37: 235-249, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2984924/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2984924</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2984924" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="49" class="mim-anchor"></a>
<a id="Di Certo2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Di Certo, M. G., Corbi, N., Strimpakos, G., Onori, A., Luvisetto, S., Severini, C., Guglielmotti, A., Batassa, E. M., Pisani, C., Floridi, A., Benassi, B., Fanciulli, M., Magrelli, A., Mattei, E., Passananti, C.
<strong>The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dysmorphic pathology in mdx mice.</strong>
Hum. Molec. Genet. 19: 752-760, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19965907/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19965907</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19965907" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddp539" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="50" class="mim-anchor"></a>
<a id="Dorkins1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Dorkins, H., Junien, C., Mandel, J. L., Wrogemann, K., Moison, J. P., Martinez, M., Old, J. M., Bundey, S., Schwartz, M., Carpenter, N., Hill, D., Lindlof, M., de la Chapelle, A., Pearson, P. L., Davies, K. E.
<strong>Segregation analysis of a marker localised Xp21.2-Xp21.3 in Duchenne and Becker muscular dystrophy families.</strong>
Hum. Genet. 71: 103-107, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2995231/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2995231</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2995231" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00283362" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="51" class="mim-anchor"></a>
<a id="Drummond1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Drummond, L. M.
<strong>Creatine phosphokinase levels in the newborn and their use in screening for Duchenne muscular dystrophy.</strong>
Arch. Dis. Child. 54: 362-366, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/475411/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">475411</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=475411" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/adc.54.5.362" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="52" class="mim-anchor"></a>
<a id="Dubowitz1976" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Dubowitz, V.
<strong>Screening for Duchenne muscular dystrophy.</strong>
Arch. Dis. Child. 51: 249-251, 1976.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/776092/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">776092</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=776092" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/adc.51.4.249" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="53" class="mim-anchor"></a>
<a id="Emanuel1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Emanuel, B. S., Zackai, E. H., Tucker, S.
<strong>Further evidence for Xp21 location of Duchenne muscular dystrophy (DMD) locus: X-9 translocation in a female with DMD. (Abstract)</strong>
Am. J. Hum. Genet. 33: 103A, 1981.
</p>
</div>
</li>
<li>
<a id="54" class="mim-anchor"></a>
<a id="Emery1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Emery, A. E. H., Skinner, R., Holloway, S.
<strong>A study of possible heterogeneity in Duchenne muscular dystrophy.</strong>
Clin. Genet. 15: 444-449, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/571778/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">571778</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=571778" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1979.tb01777.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="55" class="mim-anchor"></a>
<a id="Emery1969" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Emery, A. E. H., Smith, C. A. B., Sanger, R.
<strong>The linkage relations of the loci for benign (Becker type) X-borne muscular dystrophy, colour blindness and the Xg blood groups.</strong>
Ann. Hum. Genet. 32: 261-269, 1969.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5305175/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5305175</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5305175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1469-1809.1969.tb00075.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="56" class="mim-anchor"></a>
<a id="Evans1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Evans, M. I., Farrell, S. A., Greb, A., Ray, P., Johnson, M. P., Hoffman, E. P.
<strong>In utero fetal muscle biopsy for the diagnosis of Duchenne muscular dystrophy in a female fetus 'suddenly at risk'.</strong>
Am. J. Med. Genet. 46: 309-312, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8488877/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8488877</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8488877" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320460314" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="57" class="mim-anchor"></a>
<a id="Evans1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Evans, M. I., Greb, A., Kunkel, L. M., Sacks, A. J., Johnson, M. P., Boehm, C., Kazazian, H. H., Jr., Hoffman, E. P.
<strong>In utero fetal muscle biopsy for the diagnosis of Duchenne muscular dystrophy.</strong>
Am. J. Obstet. Gynec. 165: 728-732, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1892202/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1892202</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1892202" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0002-9378(91)90318-l" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="58" class="mim-anchor"></a>
<a id="Fenichel1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fenichel, G. M.
<strong>On the pathogenesis of Duchenne muscular dystrophy.</strong>
Dev. Med. Child Neurol. 17: 527-537, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/169179/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">169179</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=169179" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1469-8749.1975.tb03511.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="59" class="mim-anchor"></a>
<a id="Fitzgerald1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fitzgerald, K. M., Cibis, G. W., Giambrone, S. A., Harris, D. J.
<strong>Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway.</strong>
J. Clin. Invest. 93: 2425-2430, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8200977/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8200977</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8200977" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI117250" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="60" class="mim-anchor"></a>
<a id="Francke1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Francke, U., Ochs, H. D., de Martinville, B., Giacalone, J., Lindgren, V., Disteche, C., Pagon, R. A., Hofker, M. H., van Ommen, G.-J. B., Pearson, P. L., Wedgwood, R. J.
<strong>Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa, and McLeod syndrome.</strong>
Am. J. Hum. Genet. 37: 250-267, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4039107/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4039107</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4039107" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="61" class="mim-anchor"></a>
<a id="Frigeri1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Frigeri, A., Nicchia, G. P., Verbavatz, J. M., Valenti, G., Svelto, M.
<strong>Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle.</strong>
J. Clin. Invest. 102: 695-703, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9710437/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9710437</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9710437" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI2545" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="62" class="mim-anchor"></a>
<a id="Gardner-Medwin1970" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gardner-Medwin, D.
<strong>Mutation rate in the Duchenne type of muscular dystrophy.</strong>
J. Med. Genet. 7: 334-337, 1970.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5501697/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5501697</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5501697" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.7.4.334" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="63" class="mim-anchor"></a>
<a id="Gehrig2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., Lamon, S., Russell, A. P., Davies, K. E., Febbraio, M. A., Lynch, G. S.
<strong>Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.</strong>
Nature 484: 394-398, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22495301/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22495301</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22495301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature10980" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="64" class="mim-anchor"></a>
<a id="Geifman-Holtzman1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Geifman-Holtzman, O., Bernstein, I. M., Capeless, E. L., Hawley, P., Specht, L. A., Bianchi, D. W.
<strong>Increase in fetal breech presentation in female carriers of Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 73: 276-278, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9415684/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9415684</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9415684" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/(sici)1096-8628(19971219)73:3&lt;276::aid-ajmg9&gt;3.0.co;2-q" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="65" class="mim-anchor"></a>
<a id="Gilbert2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gilbert, R., Dudley, R. W. R., Liu, A.-B., Petrof, B. J., Nalbantoglu, J., Karpati, G.
<strong>Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin.</strong>
Hum. Molec. Genet. 12: 1287-1299, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12761044/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12761044</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12761044" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddg141" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="66" class="mim-anchor"></a>
<a id="Glass1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Glass, I. A., Nicholson, L. V. B., Watkiss, E., Johnson, M. A., Roberts, R. G., Abbs, S., Brittain-Jones, S., Boddie, H. G.
<strong>Investigation of a female manifesting Becker muscular dystrophy.</strong>
J. Med. Genet. 29: 578-582, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1518025/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1518025</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1518025" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.29.8.578" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="67" class="mim-anchor"></a>
<a id="Goertzen1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Goertzen, M., Baltzer, A., Voit, T.
<strong>Clinical results of early orthopaedic management in Duchenne muscular dystrophy.</strong>
Neuropediatrics 26: 257-259, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8552216/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8552216</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8552216" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1055/s-2007-979767" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="68" class="mim-anchor"></a>
<a id="Gomez1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gomez, M. R., Engel, A. G., Dewald, G., Peterson, H. A.
<strong>Failure of inactivation of Duchenne dystrophy X-chromosome in one of female identical twins.</strong>
Neurology 27: 537-541, 1977.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/559260/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">559260</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=559260" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.27.6.537" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="69" class="mim-anchor"></a>
<a id="Goyenvalle2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Goyenvalle, A., Vulin, A., Fougerousse, F., Leturcq, F., Kaplan, J.-C., Garcia, L., Danos, O.
<strong>Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping.</strong>
Science 306: 1796-1799, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15528407/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15528407</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15528407" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1104297" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="70" class="mim-anchor"></a>
<a id="Greenberg1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Greenberg, D. S., Sunada, Y., Campbell, K. P., Yaffe, D., Nudel, U.
<strong>Exogenous Dp71 restores the levels of dystrophin associated proteins but does not alleviate muscle damage in mdx mice.</strong>
Nature Genet. 8: 340-344, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7894483/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7894483</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7894483" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng1294-340" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="71" class="mim-anchor"></a>
<a id="Greenstein1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Greenstein, R. M., Reardon, M. P., Chan, T. S.
<strong>An X-autosome translocation in a girl with Duchenne muscular dystrophy (DMD): evidence for DMD gene localization. (Abstract)</strong>
Pediat. Res. 11: 457, 1977.
</p>
</div>
</li>
<li>
<a id="72" class="mim-anchor"></a>
<a id="Grimm1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Grimm, T., Muller, B., Dreier, M., Kind, E., Bettecken, T., Meng, G., Muller, C. R.
<strong>Hot spot of recombination within DXS164 in the Duchenne muscular dystrophy gene.</strong>
Am. J. Hum. Genet. 45: 368-372, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2570527/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2570527</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2570527" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="73" class="mim-anchor"></a>
<a id="Haldane1922" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Haldane, J. B. S.
<strong>Sex ratio and unisexual sterility in hybrid animals.</strong>
J. Genet. 12: 101-109, 1922.
</p>
</div>
</li>
<li>
<a id="74" class="mim-anchor"></a>
<a id="Haldane1935" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Haldane, J. B. S.
<strong>The rate of spontaneous mutation of a human gene.</strong>
J. Genet. 31: 317-326, 1935.
</p>
</div>
</li>
<li>
<a id="75" class="mim-anchor"></a>
<a id="Haldane1956" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Haldane, J. B. S.
<strong>Mutation in the X-linked recessive type of muscular dystrophy: a possible sex difference.</strong>
Ann. Hum. Genet. 20: 344-347, 1956.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/13314403/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">13314403</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=13314403" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1469-1809.1955.tb01289.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="76" class="mim-anchor"></a>
<a id="Harper1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Harper, P. S., O'Brien, T., Murray, J. M., Davies, K. E., Pearson, P., Williamson, R.
<strong>The use of linked DNA polymorphisms for genotype prediction in families with Duchenne muscular dystrophy.</strong>
J. Med. Genet. 20: 252-254, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6684693/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6684693</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6684693" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.20.4.252" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="77" class="mim-anchor"></a>
<a id="Harper2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Harper, S. Q., Hauser, M. A., DelloRusso, C., Duan, D., Crawford, R. W., Phelps, S. F., Harper, H. A., Robinson, A. S., Engelhardt, J. F., Brooks, S. V., Chamberlain, J. S.
<strong>Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy.</strong>
Nature Med. 8: 253-261, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11875496/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11875496</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11875496" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm0302-253" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="78" class="mim-anchor"></a>
<a id="Haslett2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Haslett, J. N., Sanoudou, D., Kho, A. T., Bennett, R. R., Greenberg, S. A., Kohane, I. S., Beggs, A. H., Kunkel, L. M.
<strong>Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle.</strong>
Proc. Nat. Acad. Sci. 99: 15000-15005, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12415109/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12415109</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12415109[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12415109" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.192571199" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="79" class="mim-anchor"></a>
<a id="Heilig1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Heilig, R., Lemaire, C., Mandel, J.-L., Dandolo, L., Amar, L., Avner, P.
<strong>Localization of the region homologous to the Duchenne muscular dystrophy locus on the mouse X chromosome.</strong>
Nature 328: 168-170, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3600794/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3600794</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3600794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/328168a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="80" class="mim-anchor"></a>
<a id="Heyck1966" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Heyck, H., Laudahn, G., Carsten, P. M.
<strong>Enzymaktivitaetsbestimmungen bei Dystrophia musculorum progressiva.</strong>
Klin. Wschr. 44: 695-700, 1966.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5990806/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5990806</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5990806" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF01790793" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="81" class="mim-anchor"></a>
<a id="Hoffman1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hoffman, E. P., Arahata, K., Minetti, C., Bonilla, E., Rowland, L. P., Angelini, C., Arikawa, E., Baba, C., Barkhaus, P. E., Bauserman, S. C., Butler, I. J., Cook, J. D., and 40 others.
<strong>Dystrophinopathy in isolated cases of myopathy in females.</strong>
Neurology 42: 967-975, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1579251/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1579251</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1579251" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.42.5.967" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="82" class="mim-anchor"></a>
<a id="Hoffman2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hoffman, E. P.
<strong>Skipping toward personalized molecular medicine. (Editorial)</strong>
New Eng. J. Med. 357: 2719-2722, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18160693/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18160693</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18160693" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMe0707795" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="83" class="mim-anchor"></a>
<a id="Hoogerwaard2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hoogerwaard, E. M., Ginjaar, I. B., Bakker, E., de Visser, M.
<strong>Dystrophin analysis in carriers of Duchenne and Becker muscular dystrophy.</strong>
Neurology 65: 1984-1986, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16380627/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16380627</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16380627" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/01.wnl.0000188909.89849.59" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="84" class="mim-anchor"></a>
<a id="Howland1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Howland, J. L., Iyer, S. L.
<strong>Erythrocyte lipids in heterozygous carriers of Duchenne muscular dystrophy.</strong>
Science 198: 309-310, 1977.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/910129/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">910129</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=910129" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.910129" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="85" class="mim-anchor"></a>
<a id="Hurko1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hurko, O., Hoffman, E. P., McKee, L., Johns, D. R., Kunkel, L. M.
<strong>Dystrophin analysis in clonal myoblasts derived from Duchenne muscular dystrophy carrier.</strong>
Am. J. Hum. Genet. 44: 820-826, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2658563/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2658563</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2658563" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="86" class="mim-anchor"></a>
<a id="Hurko1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hurko, O., McKee, L., Zuurveld, J., Swick, H. M.
<strong>Comparison of Duchenne and normal myoblasts from a heterozygote.</strong>
Neurology 37: 675-681, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3561779/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3561779</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3561779" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.37.4.675" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="87" class="mim-anchor"></a>
<a id="Ingle1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ingle, C., Williamson, R., de la Chapelle, A., Herva, R. R., Haapala, K., Bates, G., Willard, H. F., Pearson, P., Davies, K. E.
<strong>Mapping DNA sequences in a human X-chromosome deletion which extends across the region of the Duchenne muscular dystrophy mutation.</strong>
Am. J. Hum. Genet. 37: 451-462, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2988331/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2988331</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2988331" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="88" class="mim-anchor"></a>
<a id="Ionasescu1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ionasescu, V., Burmeister, L., Hanson, J.
<strong>Discriminant analysis of ribosomal protein synthesis findings in carrier detection of Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 5: 5-12, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7395900/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7395900</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7395900" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320050103" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="89" class="mim-anchor"></a>
<a id="Iwata2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Iwata, Y., Katanosaka, Y., Arai, Y., Shigekawa, M., Wakabayashi, S.
<strong>Dominant-negative inhibition of Ca(2+) influx via TRPV2 ameliorates muscular dystrophy in animal models.</strong>
Hum. Molec. Genet. 18: 824-834, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19050039/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19050039</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19050039" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddn408" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="90" class="mim-anchor"></a>
<a id="Jacobs1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jacobs, P. A., Hunt, P. A., Mayer, M., Bart, R. D.
<strong>Duchenne muscular dystrophy (DMD) in a female with an X-autosome translocation: further evidence that the DMD locus is at Xp21.</strong>
Am. J. Hum. Genet. 33: 513-518, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7258185/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7258185</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7258185" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="91" class="mim-anchor"></a>
<a id="Jensen1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jensen, H., Warburg, M., Sjo, O., Schwartz, M.
<strong>Duchenne muscular dystrophy: negative electroretinograms and normal dark adaptation: reappraisal of assignment of X linked incomplete congenital stationary night blindness.</strong>
J. Med. Genet. 32: 348-351, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7616540/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7616540</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7616540" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.32.5.348" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="92" class="mim-anchor"></a>
<a id="Kaminski1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kaminski, H. J., Al-Hakim, M., Leigh, R. J., Katirji, M. B., Ruff, R. L.
<strong>Extraocular muscles are spared in advanced Duchenne dystrophy.</strong>
Ann. Neurol. 32: 586-588, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1456746/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1456746</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1456746" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ana.410320418" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="93" class="mim-anchor"></a>
<a id="Katayama1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Katayama, S., Montano, M., Slotnick, N., Lebo, R. V., Golbus, M. S.
<strong>Prenatal diagnosis and carrier detection of Duchenne muscular dystrophy by restriction fragment length polymorphism analysis with pERT 87 deoxyribonucleic acid probes.</strong>
Am. J. Obstet. Gynec. 158: 548-555, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2894769/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2894769</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2894769" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0002-9378(88)90023-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="94" class="mim-anchor"></a>
<a id="Katayama2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Katayama, Y., Tran, V. K., Hoan, N. T., Zhang, Z., Goji, K., Yagi, M., Takeshima, Y., Saiki, K., Nhan, N. T., Matsuo, M.
<strong>Co-occurrence of mutations in both dystrophin- and androgen-receptor genes is a novel cause of female Duchenne muscular dystrophy.</strong>
Hum. Genet. 119: 516-519, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16528518/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16528518</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16528518" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00439-006-0159-4" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="95" class="mim-anchor"></a>
<a id="Khurana1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Khurana, T. S., Prendergast, R. A., Alameddine, H. S., Tome, F. M. S., Fardeau, M., Arahata, K., Sugita, H., Kunkel, L. M.
<strong>Absence of extraocular muscle pathology in Duchenne's muscular dystrophy: role for calcium homeostasis in extraocular muscle sparing.</strong>
J. Exp. Med. 182: 467-475, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7629506/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7629506</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7629506" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1084/jem.182.2.467" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="96" class="mim-anchor"></a>
<a id="Kingston1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kingston, H. M., Sarfarazi, M., Thomas, N. S. T., Harper, P. S.
<strong>Localisation of the Becker muscular dystrophy gene on the short arm of the X chromosome by linkage to cloned DNA sequences.</strong>
Hum. Genet. 67: 6-17, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6086495/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6086495</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6086495" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00270551" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="97" class="mim-anchor"></a>
<a id="Kingston1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kingston, H. M., Thomas, N. S. T., Pearson, P. L., Sarfarazi, M., Harper, P. S.
<strong>Genetic linkage between Becker muscular dystrophy and a polymorphic DNA sequence on the short arm of the X chromosome.</strong>
J. Med. Genet. 20: 255-258, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6620324/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6620324</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6620324" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.20.4.255" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="98" class="mim-anchor"></a>
<a id="Kingston1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kingston, H. M., Thomas, N. S. T., Sarfarazi, M., Harper, P. S.
<strong>Localization of the Becker muscular dystrophy gene by linkage to DNA sequence polymorphisms. (Abstract)</strong>
Cytogenet. Cell Genet. 37: 512, 1984.
</p>
</div>
</li>
<li>
<a id="99" class="mim-anchor"></a>
<a id="Klein1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Klein, C. J., Coovert, D. D., Bulman, D. E., Ray, P. N., Mendell, J. R., Burghes, A. H. M.
<strong>Somatic reversion/suppression in Duchenne muscular dystrophy (DMD): evidence supporting a frame-restoring mechanism in rare dystrophin-positive fibers.</strong>
Am. J. Hum. Genet. 50: 950-959, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1570844/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1570844</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1570844" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="100" class="mim-anchor"></a>
<a id="Kleopa2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kleopa, K. A., Drousiotou, A., Mavrikiou, E., Ormiston, A., Kyriakides, T.
<strong>Naturally occurring utrophin correlates with disease severity in Duchenne muscular dystrophy.</strong>
Hum. Molec. Genet. 15: 1623-1628, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16595608/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16595608</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16595608" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddl083" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="101" class="mim-anchor"></a>
<a id="Krag2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Krag, T. O. B., Bogdanovich, S., Jensen, C. J., Fischer, M. D., Hansen-Schwartz, J., Javazon, E. H., Flake, A. W., Edvinsson, L., Khurana, T. S.
<strong>Heregulin ameliorates the dystrophic phenotype in mdx mice.</strong>
Proc. Nat. Acad. Sci. 101: 13856-13860, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15365169/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15365169</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15365169[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15365169" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0405972101" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="102" class="mim-anchor"></a>
<a id="Krahn1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Krahn, M. J., Anderson, J. E.
<strong>Anabolic steroid treatment increases myofiber damage in mdx mouse muscular dystrophy.</strong>
J. Neurol. Sci. 125: 138-146, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7807158/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7807158</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7807158" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0022-510x(94)90026-4" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="103" class="mim-anchor"></a>
<a id="Kristjansson1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kristjansson, K., Chong, S. S., Van den Veyver, I. B., Subramanian, S., Snabes, M. C., Hughes, M. R.
<strong>Preimplantation single cell analyses of dystrophin gene deletions using whole genome amplification.</strong>
Nature Genet. 6: 19-24, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8136827/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8136827</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8136827" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng0194-19" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="104" class="mim-anchor"></a>
<a id="Kronqvist2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kronqvist, P., Kawaguchi, N., Albrechtsen, R., Xu, X., Daa Schroder, H., Moghadaszadeh, B., Cilius Nielsen, F., Frohlich, C., Engvall, E., Wewer, U. M.
<strong>ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice.</strong>
Am. J. Path. 161: 1535-1540, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12414501/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12414501</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12414501[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12414501" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/S0002-9440(10)64431-8" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="105" class="mim-anchor"></a>
<a id="Labarque2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Labarque, V., Freson, K., Thys, C., Wittevrongel, C., Hoylaerts, M. F., De Vos, R., Goemans, N., Van Geet, C.
<strong>Increased Gs signalling in platelets and impaired collagen activation, due to a defect in the dystrophin gene, result in increased blood loss during spinal surgery.</strong>
Hum. Molec. Genet. 17: 357-366, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17981813/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17981813</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17981813" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddm312" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="106" class="mim-anchor"></a>
<a id="Lane1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lane, R. J. M., Robinow, M., Roses, A. D.
<strong>The genetic status of mothers of isolated cases of Duchenne muscular dystrophy.</strong>
J. Med. Genet. 20: 1-11, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6842530/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6842530</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6842530" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.20.1.1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="107" class="mim-anchor"></a>
<a id="Li2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Li, D., Long, C., Yue, Y., Duan, D.
<strong>Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice.</strong>
Hum. Molec. Genet. 18: 1209-1220, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19131360/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19131360</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19131360[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19131360" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddp015" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="108" class="mim-anchor"></a>
<a id="Li2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Li, H., Mittal, A., Makonchuk, D. Y., Bhatnagar, S., Kumar, A.
<strong>Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy.</strong>
Hum. Molec. Genet. 18: 2584-2598, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19401296/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19401296</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19401296[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19401296" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddp191" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="109" class="mim-anchor"></a>
<a id="Li2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Li, J., Patil, R. V., Verkman, A. S.
<strong>Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels.</strong>
Invest. Ophthal. Vis. Sci. 43: 573-579, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11818406/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11818406</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11818406" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="110" class="mim-anchor"></a>
<a id="Lindenbaum1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lindenbaum, R. H., Clarke, G., Patel, C., Moncrieff, M., Hughes, J. T.
<strong>Muscular dystrophy in an X;1 translocation female suggests that Duchenne locus is on X chromosome short arm.</strong>
J. Med. Genet. 16: 389-392, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/513085/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">513085</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=513085" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.16.5.389" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="111" class="mim-anchor"></a>
<a id="Lupski1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lupski, J. R., Garcia, C. A., Zoghbi, H. Y., Hoffman, E. P., Fenwick, R. G.
<strong>Discordance of muscular dystrophy in monozygotic female twins: evidence supporting asymmetric splitting of the inner cell mass in a manifesting carrier of Duchenne dystrophy.</strong>
Am. J. Med. Genet. 40: 354-364, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1683155/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1683155</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1683155" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320400323" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="112" class="mim-anchor"></a>
<a id="Mahoney1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mahoney, M. J., Haseltine, F. P., Hobbins, J. C., Banker, B. Q., Caskey, C. T., Golbus, M. S.
<strong>Prenatal diagnosis of Duchenne's muscular dystrophy.</strong>
New Eng. J. Med. 297: 968-973, 1977.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/909543/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">909543</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=909543" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM197711032971803" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="113" class="mim-anchor"></a>
<a id="Malik2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Malik, V., Rodino-Klapac, L. R., Viollet, L., Wall, C., King, W., Al-Dahhak, R., Lewis, S., Shilling, C. J., Kota, J., Serrano-Munuera, C., Hayes, J., Mahan, J. D., and 11 others.
<strong>Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy.</strong>
Ann. Neurol. 67: 771-780, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20517938/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20517938</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20517938" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ana.22024" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="114" class="mim-anchor"></a>
<a id="Mann2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mann, C. J., Honeyman, K., Cheng, A. J., Ly, T., Lloyd, F., Fletcher, S., Morgan, J. E., Partridge, T. A., Wilton, S. D.
<strong>Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse.</strong>
Proc. Nat. Acad. Sci. 98: 42-47, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11120883/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11120883</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=11120883[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11120883" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.98.1.42" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="115" class="mim-anchor"></a>
<a id="Melis1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Melis, M. A., Cau, M., Congiu, R., Puddu, R., Muntoni, F., Cao, A.
<strong>Germinal mosaicism in a Duchenne muscular dystrophy family: implications for genetic counselling.</strong>
Clin. Genet. 43: 247-249, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8375105/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8375105</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8375105" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1993.tb03811.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="116" class="mim-anchor"></a>
<a id="Menazza2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Menazza, S., Blaauw, B., Tiepolo, T., Toniolo, L., Braghetta, P., Spolaore, B., Reggiani, C., Di Lisa, F., Bonaldo, P., Canton, M.
<strong>Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy.</strong>
Hum. Molec. Genet. 19: 4207-4215, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20716577/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20716577</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20716577" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddq339" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="117" class="mim-anchor"></a>
<a id="Mendell2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mendell, J. R., Campbell, K., Rodino-Klapac, L., Sahenk, Z., Shilling, C., Lewis, S., Bowles, D., Gray, S., Li, C., Galloway, G., Malik, V., Coley, B., Clark, K. R., Li, J., Xiao, X., Samulski, J., McPhee, S. W., Samulski, R. J., Walker, C. M.
<strong>Dystrophin immunity in Duchenne's muscular dystrophy.</strong>
New Eng. J. Med. 363: 1429-1437, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20925545/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20925545</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20925545[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20925545" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa1000228" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="118" class="mim-anchor"></a>
<a id="Mendell1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mendell, J. R., Kissel, J. T., Amato, A. A., King, W., Signore, L., Prior, T. W., Sahenk, Z., Benson, S., McAndrew, P. E., Rice, R., Nagaraja, H., Stephens, R., Lantry, L., Morris, G. E., Burghes, A. H. M.
<strong>Myoblast transfer in the treatment of Duchenne's muscular dystrophy.</strong>
New Eng. J. Med. 333: 832-838, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7651473/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7651473</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7651473" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM199509283331303" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="119" class="mim-anchor"></a>
<a id="Mendell1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mendell, J. R., Moxley, R. T., Griggs, R. C., Brooke, M. H., Fenichel, G. M., Miller, J. P., King, W., Signore, L., Pandya, S., Florence, J., Schierbecker, J., Robison, J., Kaiser, K., Mandel, S., Arfken, C., Gilder, B.
<strong>Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy.</strong>
New Eng. J. Med. 320: 1592-1597, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2657428/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2657428</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2657428" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM198906153202405" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="120" class="mim-anchor"></a>
<a id="Mercier2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mercier, S., Toutain, A., Toussaint, A., Raynaud, M., de Barace, C., Marcorelles, P., Pasquier, L., Blayau, M., Penisson-Besnier, I., Romero, N., Espil, C., Parent, P., and 13 others.
<strong>Genetic and clinical specificity of 26 symptomatic carriers for dystrophinopathies at pediatric age.</strong>
Europ. J. Hum. Genet. 21: 855-863, 2013. Note: Erratum: Europ. J. Hum. Genet. 21: 892 only, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23299919/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23299919</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=23299919[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23299919" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ejhg.2012.269" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="121" class="mim-anchor"></a>
<a id="Miciak1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Miciak, A., Keen, A., Jadayel, D., Bundey, S.
<strong>Multiple mutation in an extended Duchenne muscular dystrophy family.</strong>
J. Med. Genet. 29: 123-126, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1351947/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1351947</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1351947" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.29.2.123" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="122" class="mim-anchor"></a>
<a id="Minetti1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Minetti, C., Chang, H. W., Medori, R., Prelle, A., Moggio, M., Johnsen, S. D., Bonilla, E.
<strong>Dystrophin deficiency in young girls with sporadic myopathy and normal karyotype.</strong>
Neurology 41: 1288-1292, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1714059/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1714059</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1714059" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.41.8.1288" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="123" class="mim-anchor"></a>
<a id="Minetti1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Minetti, C., Tanji, K., Chang, H. W., Medori, R., Cordone, G., DiMauro, S., Bonilla, E.
<strong>Dystrophinopathy in two young boys with exercise-induced cramps and myoglobinuria.</strong>
Europ. J. Pediat. 152: 848-851, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8223790/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8223790</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8223790" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF02073385" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="124" class="mim-anchor"></a>
<a id="Mirabella1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mirabella, M., Servidei, S., Manfredi, G., Ricci, E., Frustaci, A., Bertini, E., Rana, M., Tonali, P.
<strong>Cardiomyopathy may be the only clinical manifestation in female carriers of Duchenne muscular dystrophy.</strong>
Neurology 43: 2342-2345, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8232953/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8232953</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8232953" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.43.11.2342" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="125" class="mim-anchor"></a>
<a id="Miura2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Miura, P., Chakkalakal, J. V., Boudreault, L., Belanger, G., Hebert, R. L., Renaud, J.-M., Jasmin, B. J.
<strong>Pharmacological activation of PPAR-beta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice.</strong>
Hum. Molec. Genet. 18: 4640-4649, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19744959/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19744959</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19744959" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddp431" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="126" class="mim-anchor"></a>
<a id="Moghadaszadeh2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Moghadaszadeh, B., Albrechtsen, R., Guo, L. T., Zaik, M., Kawaguchi, N., Borup, R. H., Kronqvist, P., Schroder, H. D., Davies, K. E., Voit, T., Nielsen, F. C., Engvall, E., Wewer, U. M.
<strong>Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha-7 integrin, utrophin and associated glycoproteins.</strong>
Hum. Molec. Genet. 12: 2467-2479, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12915458/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12915458</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12915458" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddg264" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="127" class="mim-anchor"></a>
<a id="Morton1959" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Morton, N. E., Chung, C. S.
<strong>Formal genetics of muscular dystrophy.</strong>
Am. J. Hum. Genet. 11: 360-379, 1959.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14424475/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14424475</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14424475" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="128" class="mim-anchor"></a>
<a id="Moser1974" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Moser, H., Emery, A. E. H.
<strong>The manifesting carrier in Duchenne muscular dystrophy.</strong>
Clin. Genet. 5: 271-284, 1974.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4854942/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4854942</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4854942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1974.tb01694.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="129" class="mim-anchor"></a>
<a id="Moser1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Moser, H.
<strong>Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention.</strong>
Hum. Genet. 66: 17-40, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6365739/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6365739</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6365739" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00275183" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="130" class="mim-anchor"></a>
<a id="Mostacciuolo1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mostacciuolo, M. L., Lombardi, A., Cambissa, V., Danieli, G. A., Angelini, C.
<strong>Population data on benign and severe forms of X-linked muscular dystrophy.</strong>
Hum. Genet. 75: 217-220, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3557448/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3557448</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3557448" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00281062" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="131" class="mim-anchor"></a>
<a id="Muller1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Muller, C. R., Grimm, T.
<strong>Estimation of the male to female ratio of mutation rates from the segregation of X-chromosomal DNA haplotypes in Duchenne muscular dystrophy families.</strong>
Hum. Genet. 74: 181-183, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3464560/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3464560</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3464560" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00282088" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="132" class="mim-anchor"></a>
<a id="Mulley1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mulley, J. C., Haan, E. A., Sheffield, L. J., Sutherland, G. R.
<strong>Recombination frequencies between Duchenne muscular dystrophy and intragenic markers in multigeneration families. (Letter)</strong>
Hum. Genet. 78: 296-297, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3162229/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3162229</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3162229" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00291684" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="133" class="mim-anchor"></a>
<a id="Murray1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Murray, J. M., Davies, K. E., Harper, P. S., Meredith, L., Mueller, C. R., Williamson, R.
<strong>Linkage relationship of a cloned DNA sequence on the short arm of the X chromosome to Duchenne muscular dystrophy.</strong>
Nature 300: 69-71, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6982420/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6982420</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6982420" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/300069a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="134" class="mim-anchor"></a>
<a id="Nance1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Nance, W. E.
<strong>Do twin lyons have larger spots? (Editorial)</strong>
Am. J. Hum. Genet. 46: 646-648, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2316517/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2316517</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2316517" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="135" class="mim-anchor"></a>
<a id="Nigro1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Nigro, G., Comi, L. I., Limongelli, F. M., Giugliano, M. A. M., Politano, L., Petretta, V., Passamano, L., Stefanelli, S.
<strong>Prospective study of X-linked progressive muscular dystrophy in Campania.</strong>
Muscle Nerve 6: 253-262, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6683357/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6683357</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6683357" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/mus.880060403" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="136" class="mim-anchor"></a>
<a id="Noguchi2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Noguchi, S., Tsukahara, T., Fujita, M., Kurokawa, R., Tachikawa, M., Toda, T., Tsujimoto, A., Arahata, K., Nishino, I.
<strong>cDNA microarray analysis of individual Duchenne muscular dystrophy patients.</strong>
Hum. Molec. Genet. 12: 595-600, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12620965/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12620965</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12620965" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="137" class="mim-anchor"></a>
<a id="O&#x27;Brien1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
O'Brien, T., Harper, P. S., Davies, K. E., Murray, J. M., Sarfarazi, M., Williamson, R.
<strong>Absence of genetic heterogeneity in Duchenne muscular dystrophy shown by a linkage study using two cloned DNA sequences.</strong>
J. Med. Genet. 20: 249-251, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6684692/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6684692</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6684692" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.20.4.249" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="138" class="mim-anchor"></a>
<a id="Onengut2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Onengut, S., Kavaslar, G. N., Battaloglu, E., Serdaroglu, P., Deymeer, F., Ozdemir, C., Calafell, F., Tolun, A.
<strong>Deletion pattern in the dystrophin gene in Turks and a comparison with Europeans and Indians.</strong>
Ann. Hum. Genet. 64: 33-40, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11388892/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11388892</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11388892" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1017/S0003480000007934" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="139" class="mim-anchor"></a>
<a id="Orr1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Orr, H. A.
<strong>Haldane's rule has multiple genetic causes.</strong>
Nature 361: 532-533, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8429905/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8429905</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8429905" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/361532a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="140" class="mim-anchor"></a>
<a id="Oshima2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Oshima, J., Magner, D. B., Lee, J. A., Breman, A. M., Schmitt, E. S., White, L. D., Crowe, C. A., Merrill, M., Jayakar, P., Rajadhyaksha, A., Eng, C. M., del Gaudio, D.
<strong>Regional genomic instability predisposes to complex dystrophin gene rearrangements.</strong>
Hum. Genet. 126: 411-423, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19449031/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19449031</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19449031" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00439-009-0679-9" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="141" class="mim-anchor"></a>
<a id="Parsons1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Parsons, E., Bradley D., Clarke, A.
<strong>Disclosure of Duchenne muscular dystrophy after newborn screening.</strong>
Arch. Dis. Child. 74: 550-553, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8758137/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8758137</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8758137" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/adc.74.6.550" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="142" class="mim-anchor"></a>
<a id="Passos-Bueno1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Passos-Bueno, M. R., Bakker, E., Kneppers, A. L. J., Takata, R. I., Rapaport, D., den Dunnen, J. T., Zatz, M., van Ommen, G. J. B.
<strong>Different mosaicism frequencies for proximal and distal Duchenne muscular dystrophy (DMD) mutations indicate difference in etiology and recurrence risk.</strong>
Am. J. Hum. Genet. 51: 1150-1155, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1415256/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1415256</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1415256" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="143" class="mim-anchor"></a>
<a id="Pegoraro2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pegoraro, E., Hoffman, E. P., Piva, L., Gavassini, B. F., Cagnin, S., Ermani, M., Bello, L., Soraru, G., Pacchioni, B., Bonifati, M. D., Lanfranchi, G., Angelini, C., Kesari, A., Lee, I., Gordish-Dressman, H., Devaney, J. M., McDonald, C. M.
<strong>SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy.</strong>
Neurology 76: 219-226, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21178099/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21178099</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21178099[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21178099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/WNL.0b013e318207afeb" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="144" class="mim-anchor"></a>
<a id="Pegoraro1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pegoraro, E., Schimke, R. N., Arahata, K., Hayashi, Y., Stern, H., Marks, H., Glasberg, M. R., Carroll, J. E., Taber, J. W., Wessel, H. B., Bauserman, S. C., Marks, W. A., Toriello, H. V., Higgins, J. V., Appleton, S., Schwartz, L., Garcia, C. A., Hoffman, E. P.
<strong>Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females.</strong>
Am. J. Hum. Genet. 54: 989-1003, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8198142/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8198142</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8198142" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="145" class="mim-anchor"></a>
<a id="Pembrey1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pembrey, M. E., Davies, K. E., Winter, R. M., Elles, R. G., Williamson, R., Fazzone, T. A., Walker, C.
<strong>Clinical use of DNA markers linked to the gene for Duchenne muscular dystrophy.</strong>
Arch. Dis. Child. 59: 208-216, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6585184/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6585184</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6585184" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/adc.59.3.208" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="146" class="mim-anchor"></a>
<a id="Pena1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pena, S. D. J., Karpati, G., Carpenter, S., Fraser, F. C.
<strong>The clinical consequences of X-chromosome inactivation: Duchenne muscular dystrophy in one of monozygotic twins.</strong>
J. Neurol. Sci. 79: 337-344, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3612177/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3612177</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3612177" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0022-510x(87)90240-1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="147" class="mim-anchor"></a>
<a id="Percy1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Percy, M. E., Andrews, D. F., Thompson, M. W.
<strong>Duchenne muscular dystrophy carrier detection using logistic discrimination: serum creatine kinase and hemopexin in combination.</strong>
Am. J. Med. Genet. 8: 397-409, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7246612/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7246612</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7246612" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320080406" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="148" class="mim-anchor"></a>
<a id="Percy1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Percy, M. E., Andrews, D. F., Thompson, M. W.
<strong>Duchenne muscular dystrophy carrier detection using logistic discrimination: serum creatine kinase, hemopexin, pyruvate kinase, and lactate dehydrogenase in combination.</strong>
Am. J. Med. Genet. 13: 27-38, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7137219/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7137219</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7137219" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320130107" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="149" class="mim-anchor"></a>
<a id="Pernelle1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pernelle, J.-J., Chafey, P., Chelly, J., Wahrmann, J. P., Kaplan, J.-C., Tome, F., Fardeau, M.
<strong>Nebulin seen in DMD males including one patient with a large DNA deletion encompassing the DMD gene.</strong>
Hum. Genet. 78: 285, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3346018/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3346018</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3346018" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00291678" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="150" class="mim-anchor"></a>
<a id="Peter2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Peter, A. K., Ko, C. Y., Kim, M. H., Hsu, N., Ouchi, N., Rhie, S., Izumiya, Y., Zeng, L., Walsh, K., Crosbie, R. H.
<strong>Myogenic Akt signaling upregulates the utrophin-glycoprotein complex and promotes sarcolemma stability in muscular dystrophy.</strong>
Hum. Molec. Genet. 18: 318-327, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18986978/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18986978</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18986978[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18986978" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddn358" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="151" class="mim-anchor"></a>
<a id="Pillers1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pillers, D.-A. M., Bulman, D. E., Weleber, R. G., Sigesmund, D. A., Musarella, M. A., Powell, B. R., Murphey, W. H., Westall, C., Panton, C., Becker, L. E., Worton, R. G., Ray, P. N.
<strong>Dystrophin expression in the human retina is required for normal function as defined by electroretinography.</strong>
Nature Genet. 4: 82-86, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8513332/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8513332</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8513332" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng0593-82" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="152" class="mim-anchor"></a>
<a id="Prelle1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Prelle, A., Medori, R., Moggio, M., Chan, H. W., Gallanti, A., Scarlato, G., Bonilla, E.
<strong>Dystrophin deficiency in a case of congenital myopathy.</strong>
J. Neurol. 239: 76-78, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1552307/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1552307</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1552307" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00862976" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="153" class="mim-anchor"></a>
<a id="Prosser1969" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Prosser, E. J., Murphy, E. G., Thompson, M. W.
<strong>Intelligence and the gene for Duchenne muscular dystrophy.</strong>
Arch. Dis. Child. 44: 221-230, 1969.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5779432/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5779432</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5779432" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/adc.44.234.221" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="154" class="mim-anchor"></a>
<a id="Quan1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Quan, F., Janas, J., Toth-Fejel, S., Johnson, D. B., Wolford, J. K., Popovich, B. W.
<strong>Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy.</strong>
Am. J. Hum. Genet. 60: 160-165, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8981959/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8981959</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8981959" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="155" class="mim-anchor"></a>
<a id="Race1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Race, R. R., Sanger, R.
<strong>Blood Groups in Man. (6th ed.)</strong>
Oxford: Blackwell (pub.) 1975. P. 605.
</p>
</div>
</li>
<li>
<a id="156" class="mim-anchor"></a>
<a id="Rajakulendran2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rajakulendran, S., Kuntzer, T., Dunand, M., Yau, S. C., Ashton, E. J., Storey, H., McCauley, J., Abbs, S., Thonney, F., Leturcq, F., Lobrinus, J. A., Yousry, T., Farmer, S., Holton, J. L., Hanna, M. G.
<strong>Marked hemiatrophy in carriers of Duchenne muscular dystrophy.</strong>
Arch. Neurol. 67: 497-500, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20385919/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20385919</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20385919" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/archneurol.2010.58" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="157" class="mim-anchor"></a>
<a id="Richards1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Richards, C. S., Watkins, S. C., Hoffman, E. P., Schneider, N. R., Milsark, I. W., Katz, K. S., Cook, J. D., Kunkel, L. M., Cortada, J. M.
<strong>Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy.</strong>
Am. J. Hum. Genet. 46: 672-681, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2180286/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2180286</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2180286" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="158" class="mim-anchor"></a>
<a id="Roddie1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Roddie, A., Bundey, S.
<strong>Racial distribution of Duchenne muscular dystrophy in the west midlands region of Britain.</strong>
J. Med. Genet. 29: 555-557, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1518024/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1518024</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1518024" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.29.8.555" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="159" class="mim-anchor"></a>
<a id="Rodemann1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rodemann, H. P., Bayreuther, K.
<strong>Abnormal collagen metabolism in cultured skin fibroblasts from patients with Duchenne muscular dystrophy.</strong>
Proc. Nat. Acad. Sci. 81: 5130-5134, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6591184/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6591184</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6591184" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.81.16.5130" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="160" class="mim-anchor"></a>
<a id="Rodino-Klapac2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rodino-Klapac, L. R., Chicoine, L. G., Kaspar, B. K., Mendell, J. R.
<strong>Gene therapy for Duchenne muscular dystrophy: expectations and challenges.</strong>
Arch. Neurol. 64: 1236-1241, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17846262/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17846262</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17846262" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/archneur.64.9.1236" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="161" class="mim-anchor"></a>
<a id="Roses1976" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Roses, A. D., Roses, M. J., Miller, S. E., Hull, K. L., Jr., Appel, S. H.
<strong>Carrier detection in Duchenne muscular dystrophy.</strong>
New Eng. J. Med. 294: 193-198, 1976.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1244534/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1244534</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1244534" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM197601222940404" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="162" class="mim-anchor"></a>
<a id="Roses1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Roses, A. D., Roses, M. J., Nicholson, G. A., Roe, C. R.
<strong>Lactate dehydrogenase isoenzyme 5 in detecting carriers of Duchenne muscular dystrophy.</strong>
Neurology 27: 414-421, 1977.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/558544/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">558544</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=558544" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.27.5.414" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="163" class="mim-anchor"></a>
<a id="Rosman1966" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rosman, N. P., Kakulas, B. A.
<strong>Mental deficiency associated with muscular dystrophy--a neurological study.</strong>
Brain 89: 769-788, 1966.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4163581/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4163581</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4163581" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/brain/89.4.769" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="164" class="mim-anchor"></a>
<a id="Rosman1970" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rosman, N. P.
<strong>The cerebral defect and myopathy in Duchenne muscular dystrophy: a comparative clinicopathological study.</strong>
Neurology 20: 329-335, 1970.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5534965/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5534965</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5534965" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.20.4.329" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="165" class="mim-anchor"></a>
<a id="Sacco2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sacco, A., Mourkioti, F., Tran, R., Choi, J., Llewellyn, M., Kraft, P., Shkreli, M., Delp, S., Pomerantz, J. H., Artandi, S. E., Blau, H. M.
<strong>Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice.</strong>
Cell 143: 1059-1071, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21145579/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21145579</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21145579[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21145579" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.cell.2010.11.039" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="166" class="mim-anchor"></a>
<a id="Saito1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Saito, F., Tonomura, A., Kimura, S., Misugi, N., Sugita, H.
<strong>High-resolution banding study of an X/4 translocation in a female with Duchenne muscular dystrophy.</strong>
Hum. Genet. 71: 370-371, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4077054/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4077054</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4077054" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00388468" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="167" class="mim-anchor"></a>
<a id="Saito-Ohara2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Saito-Ohara, F., Fukuda, Y., Ito, M., Agarwala, K. L., Hayashi, M., Matsuo, M., Imoto, I., Yamakawa, K., Nakamura, Y., Inazawa, J.
<strong>The Xq22 inversion breakpoint interrupted a novel Ras-like GTPase gene in a patient with Duchenne muscular dystrophy and profound mental retardation.</strong>
Am. J. Hum. Genet. 71: 637-645, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12145744/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12145744</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12145744[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12145744" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/342208" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="168" class="mim-anchor"></a>
<a id="Sampaolesi2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sampaolesi, M., Blot, S., D'Antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., Mognol, P., Thibaud, J.-L., Galvez, B. G., Barthelemy, I., Perani, L., Mantero, S., Guttinger, M., Pansarasa, O., Rinaldi, C., Cusella De Angelis, M. G., Torrente, Y., Bordignon, C., Bottinelli, R., Cossu, G.
<strong>Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs.</strong>
Nature 444: 574-579, 2006. Note: Erratum: Nature 494: 506 only, 2013. Erratum: Nature 507: 262 only, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17108972/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17108972</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17108972" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature05282" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="169" class="mim-anchor"></a>
<a id="Sancho1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sancho, S., Mongini, T., Tanji, K., Tapscott, S. J., Walker, W. F., Weintraub, H., Miller, A. D., Miranda, A. F.
<strong>Analysis of dystrophin expression after activation of myogenesis in amniocytes, chorionic-villus cells, and fibroblasts: a new method for diagnosing Duchenne's muscular dystrophy.</strong>
New Eng. J. Med. 329: 915-920, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8361505/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8361505</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8361505" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM199309233291303" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="170" class="mim-anchor"></a>
<a id="Sanyal1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sanyal, S. K., Johnson, W. W., Dische, M. R., Pitner, S. E., Beard, C.
<strong>Dystrophic degeneration of papillary muscle and ventricular myocardium: a basis for mitral valve prolapse in Duchenne's muscular dystrophy.</strong>
Circulation 62: 430-438, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7397983/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7397983</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7397983" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1161/01.cir.62.2.430" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="171" class="mim-anchor"></a>
<a id="Sato1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sato, B., Nishikida, K., Samuels, L. T., Tyler, F. H.
<strong>Electron spin resonance studies of erythrocytes from patients with Duchenne muscular dystrophy.</strong>
J. Clin. Invest. 61: 251-259, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23391/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23391</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23391" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI108934" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="172" class="mim-anchor"></a>
<a id="Schade van Westrum2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Schade van Westrum, S. M., Hoogerwaard, E. M., Dekker, L., Standaar, T. S., Bakker, E., Ippel, P. F., Oosterwijk, J. C., Majoor-Krakauer, D. F., van Essen, A. J., Leschot, N. J., Wilde, A. A. M., de Haan, R. J., de Visser, M., van der Kooi, A. J.
<strong>Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy.</strong>
Neurology 77: 62-66, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21700587/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21700587</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21700587" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/WNL.0b013e318221ad14" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="173" class="mim-anchor"></a>
<a id="Shaw1969" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shaw, R. F., Dreifuss, F. E.
<strong>Mild and severe forms of X-linked muscular dystrophy.</strong>
Arch. Neurol. 20: 451-460, 1969.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5767609/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5767609</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5767609" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/archneur.1969.00480110015001" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="174" class="mim-anchor"></a>
<a id="Shelton2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shelton, G. D., Engvall, E.
<strong>Canine and feline models of human inherited muscle diseases.</strong>
Neuromusc. Disord. 15: 127-138, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15694134/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15694134</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15694134" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.nmd.2004.10.019" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="175" class="mim-anchor"></a>
<a id="Shomrat1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shomrat, R., Gluck, E., Legum, C., Shiloh, Y.
<strong>Relatively low proportion of dystrophin gene deletions in Israeli Duchenne and Becker muscular dystrophy patients.</strong>
Am. J. Med. Genet. 49: 369-373, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8160727/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8160727</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8160727" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320490403" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="176" class="mim-anchor"></a>
<a id="Sica1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sica, R. E. P., McComas, A. J.
<strong>The neural hypothesis of muscular dystrophy: a review of recent experimental evidence with particular reference to the Duchenne form.</strong>
Canad. J. Neurol. Sci. 5: 189-197, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/667746/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">667746</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=667746" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1017/s0317167100024549" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="177" class="mim-anchor"></a>
<a id="Sifringer2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sifringer, M., Uhlenberg, B., Lammel, S., Hanke, R., Neumann, B., von Moers, A., Koch, I., Speer, A.
<strong>Identification of transcripts from a subtraction library which might be responsible for the mild phenotype in an intrafamilially variable course of Duchenne muscular dystrophy.</strong>
Hum. Genet. 114: 149-156, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14600829/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14600829</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14600829" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00439-003-1041-2" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="178" class="mim-anchor"></a>
<a id="Skyring1961" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Skyring, A. P., McKusick, V. A.
<strong>Clinical, genetic and electrocardiographic studies of childhood muscular dystrophy.</strong>
Am. J. Med. Sci. 242: 534-547, 1961.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/13913764/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">13913764</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=13913764" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/00000441-196111000-00002" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="179" class="mim-anchor"></a>
<a id="Soloway1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Soloway, S. S., Mudge, G. H.
<strong>Acute hypokalemia as a possible cause of death in a patient with advanced muscular dystrophy.</strong>
Johns Hopkins Med. J. 144: 166-167, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/449173/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">449173</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=449173" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="180" class="mim-anchor"></a>
<a id="Speer1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Speer, A., Spiegler, A. W. J., Hanke, R., Grade, K., Giertler, U., Schieck, J., Forrest, S., Davies, K. E., Neumann, R., Bollmann, R., Bommer, C., Sommer, D., Coutelle, C.
<strong>Possibilities and limitation of prenatal diagnosis and carrier determination for Duchenne and Becker muscular dystrophy using cDNA probes.</strong>
J. Med. Genet. 26: 1-5, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2918522/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2918522</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2918522" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.26.1.1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="181" class="mim-anchor"></a>
<a id="Spencer2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Spencer, M. J., Mellgren, R. L.
<strong>Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology.</strong>
Hum. Molec. Genet. 11: 2645-2655, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12354790/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12354790</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12354790" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/11.21.2645" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="182" class="mim-anchor"></a>
<a id="Spitali2020" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Spitali, P., Zaharieva, I., Bohringer, S., Hiller, M., Chaouch, A., Roos, A., Scotton, C., Claustres, M., Bello, L., McDonald, C. M., Hoffman, E. P., Koeks, Z., and 11 others.
<strong>TCTEX1D1 is a genetic modifier of disease progression in Duchenne muscular dystrophy.</strong>
Europ. J. Hum. Genet. 28: 815-825, 2020.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/31896777/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">31896777</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=31896777[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31896777" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/s41431-019-0563-6" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="183" class="mim-anchor"></a>
<a id="Spowart1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Spowart, G., Buckton, K. E., Skinner, R., Emery, A. E. H.
<strong>X chromosome in Duchenne muscular dystrophy. (Letter)</strong>
Lancet 319: 1251 only, 1982. Note: Originally Volume I.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6123008/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6123008</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6123008" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0140-6736(82)92380-7" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="184" class="mim-anchor"></a>
<a id="Straub2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Straub, V., Ratjen, F., Amthor, H., Voit, T., Grasemann, H.
<strong>Airway nitric oxide in Duchenne muscular dystrophy.</strong>
J. Pediat. 141: 132-134, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12091865/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12091865</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12091865" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1067/mpd.2002.125226" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="185" class="mim-anchor"></a>
<a id="Suthers1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Suthers, G. K., Manson, J. I., Stern, L. M., Haan, E. A., Mulley, J. C.
<strong>Becker muscular dystrophy (BMD) and Klinefelter's syndrome: a possible cause of variable expression of BMD within a pedigree.</strong>
J. Med. Genet. 26: 251-254, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2716035/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2716035</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2716035" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.26.4.251" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="186" class="mim-anchor"></a>
<a id="Tangorra1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tangorra, A., Curatola, G., Milani-Comparetti, M., Ferretti, G.
<strong>Echinogenic action of L-alpha-lysophosphatidylcholine in Duchenne muscular dystrophy: a study of carrier detection.</strong>
Am. J. Med. Genet. 32: 540-544, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2774000/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2774000</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2774000" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320320423" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="187" class="mim-anchor"></a>
<a id="Tautz1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tautz, D., Renz, M.
<strong>Simple sequences are ubiquitous repetitive components of eukaryotic genomes.</strong>
Nucleic Acids Res. 12: 4127-4138, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6328411/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6328411</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6328411" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/nar/12.10.4127" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="188" class="mim-anchor"></a>
<a id="Thanh1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Thanh, L. T., Nguyen, T. M., Helliwell, T. R., Morris, G. E.
<strong>Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin.</strong>
Am. J. Hum. Genet. 56: 725-731, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7887428/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7887428</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7887428" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="189" class="mim-anchor"></a>
<a id="Thompson1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Thompson, C. E.
<strong>Fetal-blood creatine phosphokinase in the diagnosis of Duchenne's muscular dystrophy. (Letter)</strong>
New Eng. J. Med. 298: 1479-1480, 1978.
</p>
</div>
</li>
<li>
<a id="190" class="mim-anchor"></a>
<a id="Thompson1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Thompson, C. E.
<strong>Reproduction in Duchenne dystrophy.</strong>
Neurology 28: 1045-1047, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/570659/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">570659</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=570659" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.28.10.1045" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="191" class="mim-anchor"></a>
<a id="Tjondrokoesoemo2016" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tjondrokoesoemo, A., Schips, T. G., Sargent, M. A., Vanhoutte, D., Kanisicak, O., Prasad, V., Lin, S.-C. J., Maillet, M., Molkentin, J. D.
<strong>Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice.</strong>
J. Biol. Chem. 291: 9920-9928, 2016.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/26966179/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">26966179</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=26966179[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26966179" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1074/jbc.M116.719054" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="192" class="mim-anchor"></a>
<a id="Tran2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tran, T. H. T., Zhang, Z., Yagi, M., Lee, T., Awano, H., Nishida, A., Okinaga, T., Takeshima, Y., Matsuo, M.
<strong>Molecular characterization of an X(p21.2;q28) chromosomal inversion in a Duchenne muscular dystrophy patient with mental retardation reveals a novel long non-coding gene on Xq28.</strong>
J. Hum. Genet. 58: 33-39, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23223008/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23223008</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23223008" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/jhg.2012.131" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="193" class="mim-anchor"></a>
<a id="Tuffery-Giraud2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tuffery-Giraud, S., Beroud, C., Leturcq, F., Yaou, R. B., Hamroun, D., Michel-Calemard, L., Moizard, M.-P., Bernard, R., Cossee, M., Boisseau, P., Blayau, M., Creveaux, I., and 11 others.
<strong>Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase.</strong>
Hum. Mutat. 30: 934-945, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19367636/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19367636</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19367636" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/humu.20976" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="194" class="mim-anchor"></a>
<a id="van Deutekom2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
van Deutekom, J. C., Janson, A. A., Ginjaar, I. B., Frankhuizen, W. S., Aartsma-Rus, A., Bremmer-Bout, M., den Dunnen, J. T., Koop, K., van der Kooi, A. J., Goemans, N. M., de Kimpe, S. J., Ekhart, P. F., Venneker, E. H., Platenburg, G. J., Verschuuren, J. J., van Ommen, G.-J. B.
<strong>Local dystrophin restoration with antisense oligonucleotide PRO051.</strong>
New Eng. J. Med. 357: 2677-2686, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18160687/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18160687</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18160687" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa073108" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="195" class="mim-anchor"></a>
<a id="van Deutekom2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
van Deutekom, J. C. T., Bremmer-Bout, M., Janson, A. A. M., Ginjaar, I. B., Baas, F., den Dunnen, J. T., van Ommen, G.-J. B.
<strong>Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells.</strong>
Hum. Molec. Genet. 10: 1547-1554, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11468272/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11468272</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11468272" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/10.15.1547" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="196" class="mim-anchor"></a>
<a id="van Essen1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
van Essen, A. J., Busch, H. F. M., te Meerman, G. J., ten Kate, L. P.
<strong>Birth and population prevalence of Duchenne muscular dystrophy in the Netherlands.</strong>
Hum. Genet. 88: 258-266, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1733827/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1733827</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1733827" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00197256" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="197" class="mim-anchor"></a>
<a id="Verellen1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Verellen, C., Markovic, V., DeMeyer, R., Freund, M., Laterre, C., Worton, R.
<strong>Expression of an X-linked recessive disease in a female due to non-random inactivation of the X chromosome. (Abstract)</strong>
Am. J. Hum. Genet. 30: 97A, 1978.
</p>
</div>
</li>
<li>
<a id="198" class="mim-anchor"></a>
<a id="Verma2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Verma, M., Asakura, Y., Hirai, H., Watanabe, S., Tastad, C., Fong, G.-H., Ema, M., Call, J. A., Lowe, D. A., Asakura, A.
<strong>Flt-1 haploinsufficiency ameliorates muscular dystrophy phenotype by developmentally increased vasculature in mdx mice.</strong>
Hum. Molec. Genet. 19: 4145-4159, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20705734/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20705734</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20705734[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20705734" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddq334" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="199" class="mim-anchor"></a>
<a id="Verrill1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Verrill, H. L., Pickard, N. A., Greumer, H. D.
<strong>Diminished cap formation in lymphocytes from patients and carriers of Duchenne muscular dystrophy.</strong>
Clin. Chem. 23: 2341-2343, 1977.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/923085/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">923085</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=923085" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="200" class="mim-anchor"></a>
<a id="Villalta2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Villalta, S. A., Rinaldi, C., Deng, B., Liu, G., Fedor, B., Tidball, J. G.
<strong>Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype.</strong>
Hum. Molec. Genet. 20: 790-805, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21118895/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21118895</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21118895[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21118895" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddq523" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="201" class="mim-anchor"></a>
<a id="Vitiello1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Vitiello, L., Mostacciuolo, M. L., Oliviero, S., Schiavon, F., Nicoletti, L., Angelini, C., Danieli, G. A.
<strong>Screening for mutations in the muscle promoter region and for exonic deletions in a series of 115 DMD and BMD patients.</strong>
J. Med. Genet. 29: 127-130, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1613762/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1613762</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1613762" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.29.2.127" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="202" class="mim-anchor"></a>
<a id="Wakayama2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wakayama, Y., Jimi, T., Inoue, M., Kojima, H., Murahashi, M., Kumagai, T., Yamashita, S., Hara, H., Shibuya, S.
<strong>Reduced aquaporin 4 expression in the muscle plasma membrane of patients with Duchenne muscular dystrophy.</strong>
Arch. Neurol. 59: 431-437, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11890849/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11890849</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11890849" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/archneur.59.3.431" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="203" class="mim-anchor"></a>
<a id="Webster1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Webster, C., Filippi, G., Rinaldi, A., Mastropaolo, C., Tondi, M., Siniscalco, M., Blau, H. M.
<strong>The myoblast defect identified in Duchenne muscular dystrophy is not a primary expression of the DMD mutation: clonal analysis of myoblasts from five double heterozygotes for two X-linked loci: DMD and G6PD.</strong>
Hum. Genet. 74: 74-80, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3463532/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3463532</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3463532" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00278789" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="204" class="mim-anchor"></a>
<a id="Wehling-Henricks2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wehling-Henricks, M., Jordan, M. C., Roos, K. P., Deng, B., Tidball, J. G.
<strong>Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium.</strong>
Hum. Molec. Genet. 14: 1921-1933, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15917272/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15917272</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15917272" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddi197" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="205" class="mim-anchor"></a>
<a id="Wehling-Henricks2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wehling-Henricks, M., Oltmann, M., Rinaldi, C., Myung, K. H., Tidball, J. G.
<strong>Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy.</strong>
Hum. Molec. Genet. 18: 3439-3451, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19542095/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19542095</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19542095[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19542095" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddp288" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="206" class="mim-anchor"></a>
<a id="Welch2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Welch, E. M., Barton, E. R., Zhuo, J., Tomizawa, Y., Friesen, W. J., Trifillis, P., Paushkin, S., Patel, M., Trotta, C. R., Hwang, S., Wilde, R. G., Karp, G., and 30 others.
<strong>PTC124 targets genetic disorders caused by nonsense mutations.</strong>
Nature 447: 87-91, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17450125/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17450125</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17450125" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature05756" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="207" class="mim-anchor"></a>
<a id="Werner1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Werner, W., Spiegler, A. W. J.
<strong>Inherited deletion of subband Xp21.13 in a male with Duchenne muscular dystrophy.</strong>
J. Med. Genet. 25: 377-382, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3294410/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3294410</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3294410" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.25.6.377" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="208" class="mim-anchor"></a>
<a id="Wieacker1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wieacker, P., Davies, K. E., Mevorah, B., Ropers, H. H.
<strong>Linkage studies in a family with X-linked recessive ichthyosis employing a cloned DNA sequence from the distal short arm of the X chromosome.</strong>
Hum. Genet. 63: 113-116, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6301973/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6301973</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6301973" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00291528" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="209" class="mim-anchor"></a>
<a id="Williams1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Williams, W. R., Thompson, M. W., Morton, N. E.
<strong>Complex segregation analysis and computer-assisted genetic risk assessment for Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 14: 315-333, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6837627/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6837627</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6837627" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320140212" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="210" class="mim-anchor"></a>
<a id="Willmann2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Willmann, R., Possekel, S., Dubach-Powell, J., Meier, T., Ruegg, M. A.
<strong>Mammalian animal models for Duchenne muscular dystrophy.</strong>
Neuromusc. Disord. 19: 241-249, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19217290/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19217290</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19217290" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.nmd.2008.11.015" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="211" class="mim-anchor"></a>
<a id="Winand1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Winand, N. J., Edwards, M., Pradhan, D., Berian, C. A., Cooper, B. J.
<strong>Deletion of the dystrophin muscle promoter in feline muscular dystrophy.</strong>
Neuromusc. Disord. 4: 433-445, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7881288/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7881288</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7881288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0960-8966(94)90082-5" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="212" class="mim-anchor"></a>
<a id="Winn1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Winn, K. J., Heller, R. H.
<strong>Pathologic diagnosis of Duchenne muscular dystrophy in an aborted fetus.</strong>
Clin. Genet. 13: 335-338, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/657573/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">657573</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=657573" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1978.tb01189.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="213" class="mim-anchor"></a>
<a id="Witkowski1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Witkowski, J. A., Jones, G. E.
<strong>Duchenne muscular dystrophy--a membrane abnormality?</strong>
Trends Biochem. Sci. 6: ix-xii, 1981.
</p>
</div>
</li>
<li>
<a id="214" class="mim-anchor"></a>
<a id="Witkowski1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Witkowski, R.
<strong>Germinal 'mosaicism'--germline mutation or chimerism?</strong>
Hum. Genet. 88: 359-360, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1733841/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1733841</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1733841" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00197278" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="215" class="mim-anchor"></a>
<a id="Wood1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wood, S., McGillivray, B. C.
<strong>Germinal mosaicism in Duchenne muscular dystrophy.</strong>
Hum. Genet. 78: 282-284, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3346017/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3346017</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3346017" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00291677" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="216" class="mim-anchor"></a>
<a id="Worton1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Worton, R. G., Duff, C., Sylvester, J. E., Schmickel, R. D., Willard, H. F.
<strong>Duchenne muscular dystrophy involving translocation of the dmd gene next to ribosomal RNA genes.</strong>
Science 224: 1447-1449, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6729462/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6729462</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6729462" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.6729462" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="217" class="mim-anchor"></a>
<a id="Yasuda1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yasuda, N., Kondo, K.
<strong>The effect of parental age on rate of mutation for Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 13: 91-99, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7137225/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7137225</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7137225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320130114" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="218" class="mim-anchor"></a>
<a id="Yoshioka1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yoshioka, M., Yorifuji, T., Mituyoshi, I.
<strong>Skewed X inactivation in manifesting carriers of Duchenne muscular dystrophy.</strong>
Clin. Genet. 53: 102-107, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9611069/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9611069</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9611069" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1998.tb02655.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="219" class="mim-anchor"></a>
<a id="Yoshioka1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yoshioka, M.
<strong>Clinically manifesting carriers in Duchenne muscular dystrophy.</strong>
Clin. Genet. 20: 6-12, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7296949/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7296949</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7296949" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1981.tb01799.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="220" class="mim-anchor"></a>
<a id="Yue2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yue, Y., Skimming, J. W., Liu, M., Strawn, T., Duan, D.
<strong>Full-length dystrophin expression in half of the heart cells ameliorates beta-isoproterenol-induced cardiomyopathy in mdx mice.</strong>
Hum. Molec. Genet. 13: 1669-1675, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15190010/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15190010</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15190010[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15190010" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddh174" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="221" class="mim-anchor"></a>
<a id="Zatz1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zatz, M., Betti, R. T. B., Frota-Pessoa, O.
<strong>Treatment of Duchenne muscular dystrophy with growth hormone inhibitors.</strong>
Am. J. Med. Genet. 24: 549-566, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3524231/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3524231</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3524231" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320240322" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="222" class="mim-anchor"></a>
<a id="Zatz1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zatz, M., Betti, R. T. B., Levy, J. A.
<strong>Benign Duchenne muscular dystrophy in a patient with growth hormone deficiency. (Letter)</strong>
Am. J. Med. Genet. 10: 301-304, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7304674/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7304674</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7304674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320100313" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="223" class="mim-anchor"></a>
<a id="Zatz1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zatz, M., Betti, R. T. B.
<strong>Benign Duchenne muscular dystrophy in a patient with growth hormone deficiency: a five years follow-up. (Letter)</strong>
Am. J. Med. Genet. 24: 567-572, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3728575/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3728575</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3728575" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320240323" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="224" class="mim-anchor"></a>
<a id="Zatz1974" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zatz, M., Itskan, S. B., Sanger, R., Frota-Pessoa, O., Saldanha, P. H.
<strong>New linkage data for the X-linked types of muscular dystrophy and G6PD variants, colour blindness, and Xg blood groups.</strong>
J. Med. Genet. 11: 321-327, 1974.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4548443/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4548443</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4548443" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.11.4.321" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="225" class="mim-anchor"></a>
<a id="Zatz1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zatz, M., Passos-Bueno, M. R., Rapaport, D., Vainzof, M.
<strong>Familial occurrence of Duchenne dystrophy through paternal lines in four families.</strong>
Am. J. Med. Genet. 38: 80-84, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1849353/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1849353</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1849353" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320380118" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="226" class="mim-anchor"></a>
<a id="Zellweger1965" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zellweger, H., Niedermeyer, E.
<strong>Central nervous system manifestations in childhood muscular dystrophy (CMD) I.</strong>
Ann. Paediat. 205: 25-42, 1965.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5897669/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5897669</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5897669" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="227" class="mim-anchor"></a>
<a id="Zneimer1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zneimer, S. M., Schneider, N. R., Richards, C. S.
<strong>In situ hybridization shows direct evidence of skewed X inactivation in one of monozygotic twin females manifesting Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 45: 601-605, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8456832/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8456832</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8456832" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320450517" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Matthew B. Gross - updated : 08/12/2022
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Ada Hamosh - updated : 11/26/2018<br>George E. Tiller - updated : 06/26/2017<br>George E. Tiller - updated : 06/26/2017<br>Paul J. Converse - updated : 07/11/2016<br>Paul J. Converse - updated : 12/5/2014<br>Cassandra L. Kniffin - updated : 9/17/2013<br>Cassandra L. Kniffin - updated : 5/23/2013<br>Cassandra L. Kniffin - updated : 3/4/2013<br>Ada Hamosh - updated : 5/8/2012<br>George E. Tiller - updated : 11/7/2011<br>Cassandra L. Kniffin - updated : 7/28/2011<br>Cassandra L. Kniffin - updated : 4/18/2011<br>Cassandra L. Kniffin - updated : 3/17/2011<br>George E. Tiller - updated : 10/26/2010<br>Ada Hamosh - updated : 10/12/2010<br>Cassandra L. Kniffin - updated : 8/16/2010<br>Cassandra L. Kniffin - updated : 8/2/2010<br>George E. Tiller - updated : 7/7/2010<br>Cassandra L. Kniffin - updated : 5/21/2010<br>George E. Tiller - updated : 4/1/2010<br>Cassandra L. Kniffin - updated : 1/11/2010<br>Cassandra L. Kniffin - updated : 11/11/2009<br>George E. Tiller - updated : 10/27/2009<br>Cassandra L. Kniffin - updated : 9/8/2009<br>George E. Tiller - updated : 8/12/2009<br>Cassandra L. Kniffin - updated : 5/28/2009<br>George E. Tiller - updated : 4/17/2009<br>George E. Tiller - updated : 11/14/2008<br>Cassandra L. Kniffin - updated : 4/1/2008<br>Victor A. McKusick - updated : 1/4/2008<br>Ada Hamosh - updated : 6/4/2007<br>Victor A. McKusick - updated : 5/23/2007<br>Marla J. F. O'Neill - updated : 4/12/2007<br>Ada Hamosh - updated : 2/1/2007<br>George E. Tiller - updated : 1/16/2007<br>George E. Tiller - updated : 12/4/2006<br>Cassandra L. Kniffin - updated : 7/27/2006<br>Cassandra L. Kniffin - updated : 7/10/2006<br>Cassandra L. Kniffin - updated : 4/12/2006<br>Cassandra L. Kniffin - updated : 1/11/2006<br>George E. Tiller - updated : 9/30/2005<br>George E. Tiller - updated : 9/12/2005<br>George E. Tiller - updated : 3/9/2005<br>Ada Hamosh - updated : 3/7/2005<br>George E. Tiller - updated : 2/21/2005<br>Victor A. McKusick - updated : 12/7/2004<br>Natalie E. Krasikov - updated : 8/10/2004<br>Patricia A. Hartz - updated : 3/24/2004<br>George E. Tiller - updated : 2/5/2004<br>Victor A. McKusick - updated : 1/13/2004<br>George E. Tiller - updated : 12/2/2003<br>Cassandra L. Kniffin - updated : 12/11/2002<br>Jane Kelly - updated : 10/23/2002<br>Victor A. McKusick - updated : 8/21/2002<br>Victor A. McKusick - reorganized : 3/13/2002<br>Victor A. McKusick - updated : 2/5/2002<br>George E. Tiller - updated : 12/17/2001<br>Carol A. Bocchini - updated : 9/17/2001<br>Victor A. McKusick - updated : 2/2/2001<br>Victor A. McKusick - updated : 11/2/2000<br>Victor A. McKusick - updated : 9/15/2000<br>George E. Tiller - updated : 8/8/2000<br>Ada Hamosh - updated : 10/7/1999<br>Victor A. McKusick - updated : 8/31/1999<br>Victor A. McKusick - updated : 8/20/1999<br>Victor A. McKusick - updated : 5/5/1999<br>Victor A. McKusick - updated : 2/24/1999<br>Victor A. McKusick - updated : 9/17/1998<br>Victor A. McKusick - updated : 9/11/1998<br>Ada Hamosh - updated : 8/13/1998<br>Victor A. McKusick - updated : 7/8/1998<br>Victor A. McKusick - updated : 1/20/1998<br>Victor A. McKusick - updated : 12/30/1997<br>Paul Brennan - updated : 11/5/1997<br>Victor A. McKusick - updated : 6/23/1997<br>Moyra Smith - updated : 8/13/1996<br>Stylianos E. Antonarakis - updated : 6/21/1996<br>Orest Hurko - updated : 5/16/1996<br>Moyra Smith - updated : 4/15/1996<br>Orest Hurko - updated : 4/1/1996<br>Orest Hurko - updated : 3/9/1996<br>Orest Hurko - updated : 2/5/1996<br>Orest Hurko - updated : 6/14/1995<br>Orest Hurko - updated : 1/4/1995
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/4/1986
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 08/12/2022
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 04/29/2022<br>carol : 10/08/2021<br>carol : 05/10/2019<br>carol : 05/09/2019<br>carol : 05/08/2019<br>alopez : 11/26/2018<br>carol : 09/06/2018<br>mgross : 02/15/2018<br>alopez : 06/26/2017<br>alopez : 06/26/2017<br>mgross : 07/11/2016<br>carol : 7/9/2016<br>carol : 6/16/2016<br>mgross : 12/8/2014<br>mcolton : 12/5/2014<br>tpirozzi : 10/1/2013<br>carol : 9/24/2013<br>ckniffin : 9/19/2013<br>ckniffin : 9/17/2013<br>carol : 5/30/2013<br>ckniffin : 5/23/2013<br>alopez : 3/14/2013<br>ckniffin : 3/4/2013<br>alopez : 10/3/2012<br>alopez : 5/8/2012<br>terry : 5/8/2012<br>terry : 3/16/2012<br>alopez : 11/9/2011<br>terry : 11/7/2011<br>wwang : 8/11/2011<br>ckniffin : 7/28/2011<br>wwang : 4/29/2011<br>ckniffin : 4/18/2011<br>wwang : 3/29/2011<br>ckniffin : 3/17/2011<br>carol : 11/11/2010<br>wwang : 10/26/2010<br>terry : 10/26/2010<br>carol : 10/26/2010<br>terry : 10/12/2010<br>wwang : 8/24/2010<br>ckniffin : 8/16/2010<br>wwang : 8/3/2010<br>ckniffin : 8/2/2010<br>alopez : 7/21/2010<br>terry : 7/7/2010<br>carol : 6/29/2010<br>carol : 6/14/2010<br>wwang : 5/24/2010<br>ckniffin : 5/21/2010<br>terry : 5/12/2010<br>wwang : 4/7/2010<br>terry : 4/1/2010<br>wwang : 1/22/2010<br>wwang : 1/21/2010<br>ckniffin : 1/11/2010<br>wwang : 12/3/2009<br>ckniffin : 11/11/2009<br>wwang : 11/11/2009<br>terry : 10/27/2009<br>wwang : 9/21/2009<br>ckniffin : 9/8/2009<br>wwang : 8/24/2009<br>terry : 8/12/2009<br>wwang : 6/10/2009<br>ckniffin : 5/28/2009<br>wwang : 5/4/2009<br>alopez : 4/17/2009<br>terry : 3/31/2009<br>wwang : 11/14/2008<br>wwang : 8/21/2008<br>terry : 6/6/2008<br>wwang : 4/14/2008<br>ckniffin : 4/1/2008<br>alopez : 2/6/2008<br>terry : 1/4/2008<br>alopez : 7/12/2007<br>alopez : 7/12/2007<br>wwang : 6/13/2007<br>terry : 6/4/2007<br>alopez : 5/23/2007<br>terry : 5/23/2007<br>wwang : 4/18/2007<br>terry : 4/12/2007<br>alopez : 2/5/2007<br>terry : 2/1/2007<br>wwang : 1/23/2007<br>terry : 1/16/2007<br>wwang : 12/4/2006<br>terry : 12/4/2006<br>wwang : 8/3/2006<br>ckniffin : 7/27/2006<br>carol : 7/21/2006<br>ckniffin : 7/10/2006<br>ckniffin : 7/10/2006<br>wwang : 4/19/2006<br>ckniffin : 4/12/2006<br>wwang : 1/17/2006<br>ckniffin : 1/11/2006<br>alopez : 9/30/2005<br>alopez : 9/15/2005<br>terry : 9/12/2005<br>carol : 8/1/2005<br>alopez : 3/9/2005<br>alopez : 3/7/2005<br>wwang : 3/2/2005<br>terry : 2/21/2005<br>alopez : 12/7/2004<br>carol : 8/10/2004<br>terry : 8/10/2004<br>mgross : 4/14/2004<br>terry : 3/24/2004<br>cwells : 2/5/2004<br>cwells : 1/13/2004<br>terry : 1/13/2004<br>mgross : 12/2/2003<br>carol : 12/16/2002<br>tkritzer : 12/13/2002<br>ckniffin : 12/11/2002<br>carol : 12/10/2002<br>tkritzer : 12/6/2002<br>terry : 12/4/2002<br>cwells : 10/23/2002<br>tkritzer : 8/27/2002<br>tkritzer : 8/26/2002<br>terry : 8/21/2002<br>carol : 3/13/2002<br>terry : 3/13/2002<br>terry : 3/13/2002<br>carol : 3/12/2002<br>carol : 2/23/2002<br>carol : 2/7/2002<br>terry : 2/5/2002<br>cwells : 12/28/2001<br>cwells : 12/17/2001<br>mcapotos : 9/17/2001<br>mcapotos : 2/9/2001<br>mcapotos : 2/9/2001<br>mcapotos : 2/6/2001<br>terry : 2/2/2001<br>mcapotos : 11/16/2000<br>carol : 11/15/2000<br>mcapotos : 11/10/2000<br>terry : 11/2/2000<br>mcapotos : 9/27/2000<br>terry : 9/15/2000<br>alopez : 8/8/2000<br>mcapotos : 12/8/1999<br>alopez : 10/7/1999<br>terry : 10/7/1999<br>carol : 9/8/1999<br>alopez : 8/31/1999<br>alopez : 8/31/1999<br>terry : 8/20/1999<br>terry : 5/20/1999<br>carol : 5/10/1999<br>terry : 5/5/1999<br>carol : 4/28/1999<br>mgross : 2/24/1999<br>mgross : 2/24/1999<br>dkim : 12/15/1998<br>carol : 10/14/1998<br>carol : 9/21/1998<br>terry : 9/17/1998<br>carol : 9/16/1998<br>dkim : 9/14/1998<br>terry : 9/11/1998<br>carol : 8/13/1998<br>dkim : 7/24/1998<br>carol : 7/15/1998<br>terry : 7/8/1998<br>terry : 6/18/1998<br>terry : 6/4/1998<br>terry : 6/3/1998<br>alopez : 5/21/1998<br>mark : 1/22/1998<br>terry : 1/22/1998<br>terry : 1/20/1998<br>terry : 1/20/1998<br>dholmes : 12/30/1997<br>dholmes : 12/30/1997<br>alopez : 11/26/1997<br>alopez : 11/19/1997<br>alopez : 11/19/1997<br>alopez : 11/17/1997<br>terry : 8/13/1997<br>mark : 7/16/1997<br>alopez : 7/3/1997<br>jenny : 6/27/1997<br>alopez : 6/25/1997<br>carol : 6/23/1997<br>jenny : 6/23/1997<br>mark : 6/2/1997<br>mark : 6/2/1997<br>mark : 11/27/1996<br>terry : 11/25/1996<br>terry : 11/18/1996<br>jamie : 10/23/1996<br>jamie : 10/16/1996<br>terry : 9/18/1996<br>terry : 8/16/1996<br>mark : 8/13/1996<br>mark : 8/6/1996<br>terry : 7/29/1996<br>mark : 5/16/1996<br>mark : 5/16/1996<br>terry : 4/30/1996<br>mark : 4/15/1996<br>mark : 4/15/1996<br>terry : 4/15/1996<br>terry : 4/1/1996<br>terry : 3/22/1996<br>mark : 3/9/1996<br>terry : 3/1/1996<br>mark : 2/15/1996<br>terry : 2/8/1996<br>mark : 2/5/1996<br>terry : 1/31/1996<br>mark : 1/18/1996<br>terry : 1/17/1996<br>mark : 12/20/1995<br>mark : 12/20/1995<br>pfoster : 11/17/1995<br>mark : 10/17/1995<br>davew : 8/22/1994<br>jason : 7/29/1994
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>#</strong> 310200
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
MUSCULAR DYSTROPHY, DUCHENNE TYPE; DMD
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
DUCHENNE MUSCULAR DYSTROPHY<br />
MUSCULAR DYSTROPHY, PSEUDOHYPERTROPHIC PROGRESSIVE, DUCHENNE TYPE
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>SNOMEDCT:</strong> 387732009, 76670001; &nbsp;
<strong>ORPHA:</strong> 98896; &nbsp;
<strong>DO:</strong> 11723; &nbsp;
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
Xp21.2-p21.1
</span>
</td>
<td>
<span class="mim-font">
Duchenne muscular dystrophy
</span>
</td>
<td>
<span class="mim-font">
310200
</span>
</td>
<td>
<span class="mim-font">
X-linked recessive
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
DMD
</span>
</td>
<td>
<span class="mim-font">
300377
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because Duchenne muscular dystrophy (DMD) is caused by mutation in the gene encoding dystrophin (DMD; 300377) on chromosome Xp21.</p><p>Becker muscular dystrophy (BMD; 300376) is also caused by mutation in the DMD gene.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Dystrophin-associated muscular dystrophies range from the severe Duchenne muscular dystrophy (DMD) to the milder Becker muscular dystrophy (BMD; 300376). Mapping and molecular genetic studies showed that both are the result of mutations in the huge gene that encodes dystrophin, also symbolized DMD. Approximately two-thirds of the mutations in both forms are deletions of one or many exons in the dystrophin gene. Although there is no clear correlation found between the extent of the deletion and the severity of the disorder, DMD deletions usually result in frameshift. Boland et al. (1996) studied a retrospective cohort of 33 male patients born between 1953 and 1983. The mean age at DMD diagnosis was 4.6 years; wheelchair dependency had a median age of 10 years; cardiac muscle failure developed in 15% of patients with a median age of 21.5 years; smooth muscle dysfunction in the digestive or urinary tract occurred in 21% and 6% of the patients, respectively, at a median age of 15 years. In this cohort, death occurred at a median age of 17 years. The authors commented that the diagnosis of DMD is being made at an earlier age but survival has not changed. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Skeletal Muscle</em></strong></p><p>
The most distinctive feature of Duchenne muscular dystrophy is a progressive proximal muscular dystrophy with characteristic pseudohypertrophy of the calves. The bulbar (extraocular) muscles are spared but the myocardium is affected. There is massive elevation of creatine kinase levels in the blood, myopathic changes by electromyography, and myofiber degeneration with fibrosis and fatty infiltration on muscle biopsy.The onset of Duchenne muscular dystrophy usually occurs before age 3 years, and the victim is chairridden by age 12 and dead by age 20. The onset of Becker muscular dystrophy is often in the 20s and 30s and survival to a relatively advanced age is frequent.</p><p>Moser and Emery (1974) found that some female heterozygotes had myopathy resembling autosomal recessive limb-girdle muscular dystrophy (253600). Serum creatine kinase was particularly elevated in these patients. In most populations, the frequency of manifesting heterozygotes is about the same as that of females with limb-girdle muscular dystrophy. </p><p>Soloway and Mudge (1979) remarked that patients with advanced muscular dystrophy may develop hypokalemia from insults (vomiting, diarrhea, diuretics) that would have little effect on normal persons. Reduced intracellular potassium stores are responsible for this perilous situation, which may be the mechanism of death. </p><p>In an Italian boy with congenital myopathy, born to nonconsanguineous parents, Prelle et al. (1992) found absence of dystrophin in the patient's muscle by immunohistochemical methods and a deletion of the 5-prime end of the dystrophin gene. Although the patient showed severe mental retardation, there was no cerebral atrophy. Cardiomyopathy was also present. </p><p>Frigeri et al. (1998) analyzed AQP4 expression in the skeletal muscle of mdx mice; immunofluorescence experiments showed a marked reduction of aquaporin-4 (AQP4; 600308) expression, suggesting a critical role in the membrane alteration of DMD. </p><p>Wakayama et al. (2002) analyzed skeletal muscle samples from 6 patients with DMD and found markedly reduced AQP4 expression by immunohistochemical staining and markedly decreased levels of AQP4 mRNA as measured by RT-PCR, compared to controls. Genomic analysis of the AQP4 gene revealed no abnormalities. The authors concluded that the reduced mRNA was due to either decreased transcription or increased degradation of the message. </p><p>Noguchi et al. (2003) performed cDNA microarray analysis on skeletal muscle biopsy specimens from 6 patients with DMD. There was increased expression of genes related to immune response, sarcomere, extracellular matrix proteins, and signaling or cell growth. Upregulation of these genes reflected dystrophic changes, myofiber necrosis, inflammation, and muscle regeneration. Genes related to muscle homeostasis and energy metabolism were downregulated. </p><p><strong><em>Cardiac Muscle</em></strong></p><p>
Myocardial involvement appeared in a high percentage of DMD patients by about 6 years of age; it was present in 95% of cases by the last years of life. Severe cardiomyopathy did not develop before age 21 in BMD and few patients showed any cardiac signs before age 13 (Nigro et al., 1983). </p><p>Mirabella et al. (1993) noted that electrocardiographic abnormalities had been reported in 6.6 to 16.4% of DMD heterozygous females and that in one carrier female severe cardiomyopathy had been described in association with muscle weakness. They reported 2 carriers with dilated cardiomyopathy and increased serum CK but no symptoms of muscle weakness. Heart biopsies in both patients showed absence of dystrophin in many muscle fibers. </p><p><strong><em>Smooth Muscle</em></strong></p><p>
Noting that in DMD functional impairment of smooth muscle in the gastrointestinal tract can cause acute gastric dilatation and intestinal pseudoobstruction that may be fatal, Barohn et al. (1988) studied gastric emptying in 11 patients with DMD. Strikingly delayed gastric emptying times were observed. </p><p>Enigmatically, the extraocular muscles (EOMs) remain clinically unaffected during the course of Duchenne muscular dystrophy (Kaminski et al., 1992). Khurana et al. (1995) showed that dystrophin deficiency does not result in myonecrosis or pathologically elevated levels of intracellular calcium in the EOMs. They reported in vitro experiments demonstrating that extraocular muscles are inherently more resistant to necrosis caused by pharmacologically elevated intracellular calcium levels when compared with pectoral musculature. They suggested that the EOMs are spared in DMD because of their intrinsic ability to maintain calcium homeostasis better than other striated muscle groups. This suggested further that modulating levels of intracellular calcium in muscle may be of potential therapeutic use in DMD. </p><p><strong><em>Nervous System</em></strong></p><p>
Mental retardation of mild degree is a pleiotropic effect of the Duchenne gene (Zellweger and Niedermeyer, 1965). As indicated later, the finding of dystrophin mRNA in brain may bear a relationship to the mental retardation in DMD patients. Emery et al. (1979) sought heterogeneity in DMD as one explanation for the high birth incidence. Affected boys were categorized according to whether they had severe mental handicap or not. Those with severe mental defect had later age of onset and confinement to wheelchair, less marked fall in creatine kinase with age, and a greater urinary excretion of certain amino acids. In 50 DMD patients with a mean age of 11.1 years (range 3.5 to 20.3), Bresolin et al. (1994) found that 31% had a Wechsler full intelligence quotient (FIQ) lower than 75 and that only 24% had appropriate IQ levels by this index. </p><p>Bushby et al. (1995) examined the hypothesis that the nature of the dystrophin mutation may influence the development of mental retardation. Previously, it had been shown that deletions removing the brain-specific promoter were compatible with normal intelligence. Bushby et al. (1995) studied 74 boys with DMD, 18% of which had a full scale IQ of below 70. The authors found no significant IQ difference between the patients with promoter deletions and those without, nor did they find a relationship between the length of the deletion and full scale IQ. They found, however, that boys with distal deletions were more likely to be mentally retarded than were those with proximal deletions. </p><p><strong><em>Retinal Function</em></strong></p><p>
Abnormal retinal neurotransmission as measured by electroretinography (ERG) was observed in boys with DMD by Cibis et al. (1993) and Pillers et al. (1993). Electroretinography is a recording of summed electrical signal produced by the retina when stimulated with a flash of light. The dark-adapted ERGs, recorded under scotopic testing conditions, have shown normal a-waves (a response of negative polarity generated by the photoreceptors) but reduced amplitude rod-isolated b-waves (a response of positive polarity originating primarily from the ON-bipolar cells) in DMD patients. This type of ERG abnormality with profound b-wave suppression is commonly associated with night blindness; however, there have been no reports of night blindness or any other visual abnormality in boys with DMD, and dark-adaptometry studies have been normal. Fitzgerald et al. (1994) used long-duration stimuli to separate ON (depolarizing bipolar cell) and OFF (hyperpolarizing bipolar cell) contributions to the cone-dominated ERG to understand better how the retina functions in boys with DMD. In the ERGs of 11 DMD boys, they found abnormal signal transmission at the level of the photoreceptor and ON-bipolar cell in both the rod and cone generated responses. Jensen et al. (1995) examined 16 boys with DMD/BMD of whom 10 had negative ERGs. Eight of the boys had DMD gene deletions downstream from exon 44. Normal dark adaptation thresholds were observed in all patients and there were no anomalous visual functions. Hence, negative ERG in DMD/BMD is not associated with eye disease. Normal ERGs were found in 6 boys with DMD/BMD. Jensen et al. (1995) speculated that a retinal or glial dystrophin may be truncated or absent in the boys with negative ERGs. </p><p>The ophthalmic features of DMD include normal ERG a-wave with reduced b-wave, normal visual acuity, and normal retinal morphology. Immunocytochemistry revealed strong AQP4 water channel expression in Muller cells in mouse retina and in fibrous astrocytes in optic nerve. Li et al. (2002) compared ERGs and retinal morphology in wildtype mice and transgenic knockout mice with no Aqp4. Significantly reduced ERG b-wave potentials were recorded in 10-month-old null mice with smaller changes in 1-month-old mice. Morphologic analysis of retina by light and electron microscopy showed no differences in retinal ultrastructure. That retinal function was mildly impaired in Aqp4-null mice suggested a role for Aqp4 in Muller cell fluid balance. The authors suggested that AQP4 expression in supportive cells in the nervous system facilitated neural signal transduction in nearby electrically excitable cells. </p><p>Costa et al. (2007) evaluated color vision in 44 patients with Duchenne muscular dystrophy using 4 different color tests. Patients were divided into 2 groups according to the region of deletion in the dystrophin gene: 12 patients had deletion upstream of exon 30, and 32 downstream of exon 30. Of the patients with DMD, 47% (21/44) had a red-green color vision defect. Of the patients with deletion downstream of exon 30, 66% had a red-green color defect. No color defect was found in the patients with a deletion upstream of exon 30. A negative correlation between the color thresholds and age was found for the controls and patients with DMD, suggesting a nonprogressive color defect. The percentage (66%) of patients with red-green defect was significantly higher than the expected value (less than 10%) for the normal male population (P less than 0.001). Costa et al. (2007) suggested that the findings might be partially explained by a retinal impairment related to dystrophin isoform Dp260. </p><p><strong><em>Carrier Females</em></strong></p><p>
In a 9-year follow-up of study of 99 Dutch female carriers of DMD or BMD mutations, Schade van Westrum et al. (2011) found that 11 carriers (10%) (10 DMD and 1 BMD) fulfilled the criteria for dilated cardiomyopathy (DCM). Nine of the patients had developed DCM during the follow-up period. These carriers were on average older, were more symptomatic, and more often had hypertension, exertional dyspnea, and chest pain compared to mutation carriers without DCM. The findings suggested that female carriers of a mutation can develop progressive cardiac abnormalities and should undergo routine cardiac evaluation, preferably by echocardiology. </p><p>Mercier et al. (2013) reviewed the features of 26 female carriers of pathogenic mutations in the DMD gene who were referred for symptoms related to the disorder before 17 years of age. Five had a Duchenne-like phenotype with loss of ambulation before age 15 years, 13 had a Becker-like phenotype with muscle weakness but persistence of ambulation after age 15 years, and 8 had exercise intolerance. Initial symptoms included significant muscle weakness (88%), mostly affecting the lower limbs, or exercise intolerance (27%). Cardiac dysfunction was present in 19%, and cognitive impairment in 27%. Cognitive impairment was associated with mutations in the distal part of the gene. Muscle biopsy showed dystrophic changes in 83% and mosaic immunostaining for dystrophin in 81%. The X-chromosome inactivation pattern was biased in 62% of cases. Mercier et al. (2013) concluded that carrier females may have significant symptoms of the disorder. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Other Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Blau et al. (1983) suggested that the defect in DMD is intrinsic to the undifferentiated myoblast. This was based on the observation that the number of viable myoblasts obtained per gram DMD muscle tissue was greatly reduced and those that grew in culture had a decreased proliferative capacity and aberrant morphology. The hypothesis was tested by determining whether the myoblast defect was X-linked. Webster et al. (1986) obtained muscle cells from 5 females heterozygous for both DMD and G6PD (305900). In a total of 1,355 muscle clones, although the proportion of defective clones was increased, the cellular defect did not consistently segregate with a single G6PD phenotype in the myoblast clones from any individual. The hypothesis that the DMD gene is expressed in skeletal myoblasts and limits proliferation, was further tested by Hurko et al. (1987) established primary muscle culture from a female who was heterozygous for both DMD and G6PD. Both cloned and mass cultures were grown until senescence and the G6PD phenotype was scored. Myoblasts expressing the 2 different alleles at the G6PD locus did not differ in proliferative capacity, suggesting that expression of the Duchenne gene does not result in a decrease in proliferative capacity of the myoblasts. Thus, the hypothesis of Blau et al. (1983) was disproved. </p><p>Baricordi et al. (1989) studied the capping phenomenon in lymphoblastoid cell lines and found that they retain an impairment of capping of the type seen in nontransformed lymphocytes (Verrill et al., 1977). This was taken to mean that the capping impairment is an intrinsic cellular defect in DMD and not a phenomenon secondary to progression or activity of the disease. Further, it may indicate that there is a generalized membrane disorder in this condition. </p><p>Haslett et al. (2002) used expression microarrays to compare individual gene expression profiles of skeletal muscle biopsies from 12 DMD patients with those of 12 unaffected control patients. They identified 105 genes that differed significantly in expression levels between unaffected and DMD muscle. Many of the differentially expressed genes reflected changes in histologic pathology; e.g., immune response signals and extracellular matrix genes were overexpressed in DMD muscle, indicating the infiltration of inflammatory cells and connective tissue. Significantly more genes were overexpressed than were underexpressed in dystrophic muscle, with dystrophin underexpressed, whereas other genes encoding muscle structure and regeneration processes were overexpressed, reflecting the regenerative nature of the disease. </p><p>Straub et al. (2002) found impaired expression of muscle membrane-associated neuronal nitric oxide synthase (NOS1; 163731) in Duchenne patients; mean exhaled nitric oxide was significantly reduced in 13 males with DMD compared to 11 age-matched and 17 adult controls. </p><p>In muscle biopsy samples from 13 of 16 DMD patients, Kleopa et al. (2006) observed an age-dependent increase in utrophin (UTRN; 128240) staining, resulting in a mean increase of 11-fold compared to that found in normal adult tissue. In disease tissue, utrophin was present along the whole circumference of the sarcolemma, whereas it was present only along vessels and nerve endings in controls. Expression of utrophin in disease tissue showed a positive correlation with age at wheelchair-dependency in DMD, suggesting that utrophin expression has an ameliorating effect on the severity of DMD. </p><p>Patients with DMD have increased blood loss during spinal surgery compared to non-DMD patients. In Duchenne patients, Labarque et al. (2008) found decreased expression of the dystrophin isoforms Dp71 and Dp116 in platelets and skin fibroblasts, respectively, compared to controls. Decreased expression of these isoforms was associated with increased Gs (see, e.g., GNAS; 139320) signaling and activity upon stimulation. Functional studies showed that DMD platelets had slower aggregation in response to collagen with extensive shape changes and reduced platelet adhesion under flow conditions. Platelet membrane receptors were normal. The decreased collagen activation was shown to result from both Gs activation and cytoskeletal disruption. Overall, the findings suggested that DMD platelets have a disorganized cytoskeleton due to dysfunctional dystrophin Dp71, and also manifest Gs hyperactivity with reduced platelet collagen reactivity, which may result in increased bleeding during surgery. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Inheritance</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>The Haldane rule (Haldane, 1935) predicts that one-third of cases of a genetic lethal X-linked recessive will be the consequence of new mutation. Haldane (1956) further suggested that the mutation rate for Duchenne muscular dystrophy might be higher in males. Such would result in a lower proportion of cases being new mutants. Caskey et al. (1980) concluded that in their series cases resulting from new mutation approached closely the theoretically expected one-third. Ionasescu et al. (1980) concluded that measures of ribosomal protein synthesis, analyzed by discriminant function, identify 95% of proved and presumptive DMD carriers. Bucher et al. (1980) used this measure to test the Haldane rule. They found that only 9 (16.4%) of 55 mothers were noncarriers. When only the mothers of isolated cases were studied, 23.1% (9 of 39) were classified as noncarriers. They felt that a higher male than female mutation rate was the cause of the discrepancy. </p><p>In a study of 514 probands who constituted two-thirds of the known cases in Japan, Yasuda and Kondo (1982) could not demonstrate an effect of maternal grandfather's age at birth of the proband's mother. They pointed out that the data relevant to a maternal grandfather age effect in hemophilia A are conflicting, just as the data for DMD are inconsistent with those of Bucher et al. (1980). Examining the frequency of affected boys among the next-born male sibs of 37 initially 'sporadic' cases of DMD, Lane et al. (1983) found that the frequency was significantly greater than predicted by the Haldane theory (p = 0.029). The estimated proportion of new mutant cases in the combined clinic population of 106 families was 0.127 (SE = 0.111). They proposed that the absence of affected males in earlier generations in families of isolated cases may be explained in part by a high ratio of male to female stillbirths and infant deaths which in this study was more than 3 times that in the general population. (Note that there is at least one other 'Haldane's rule' (Haldane, 1922): 'When in the F1 offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous, heterogametic or XY sex.' See discussion of Orr (1993).) </p><p>Danieli and Barbujani (1984) concluded that the proportion of sporadic cases was 0.227 +/- 0.048 in an Italian series of 135 families combined with other sets of data. In a segregation analysis of 1,885 DMD families, Barbujani et al. (1990) arrived at an estimate of sporadic cases of 0.229, a significant deviation from the expected 0.333 based on mutation-selection equilibrium. They mentioned the previously discussed possible explanations for the finding, such as sex differences in mutation rate, and added a new one, namely, the occurrence of multiple DMD cases in the same sibship as a consequence of mutational mosaicism of the maternal germ cells, a phenomenon documented in a number of instances. </p><p>As might perhaps have been anticipated, a report appeared concerning a man with DMD who had fathered 2 children, a normal son and a carrier daughter (Thompson, 1978). </p><p>By analysis of Xp21 DNA markers in a family with 2 affected brothers, Borresen et al. (1987) demonstrated that the mutation had most likely occurred in a grandpaternal sperm. Therefore, barring gonadal mosaicism, it is unlikely that the maternal aunts and their daughters are carriers of the DMD gene. </p><p>Miciak et al. (1992) studied 3 boys with DMD, 2 of whom were related as first cousins and the third as a second cousin, all being related through males. They demonstrated that the molecular defect was different in each and speculated about instability of the DMD gene and possible involvement of transposons. They referred to similar observations by Zatz et al. (1991) in 4 Brazilian families. Vitiello et al. (1992) found no instance of mutation in the muscle promoter region of the DMD gene in a series of 115 unrelated DMD and BMD patients from northeast Italy. In 3 cases in which dystrophin of normal size was expressed at low levels, the DNA sequence of the promoter region showed no abnormality. </p><p><strong><em>Gonadal Mosaicism</em></strong></p><p>
A possible example of gonadal mosaicism for the DMD locus was discussed by Wood and McGillivray (1988), who described a family in which a female ancestor of an individual with Duchenne muscular dystrophy seemed to have transmitted 3 distinct types of X chromosome to her offspring, as indicated by RFLP analysis. The authors postulated that in this individual the mutation arose as a postzygotic deletion, resulting in germinal mosaicism. </p><p>Witkowski (1992) suggested another explanation for those cases in which gonadal mosaicism has been suspected: such a female may represent a chimera that has originated from 2 fertilized eggs, one carrying the mutation. This, of course, has quite different implications regarding the risk that a maternal aunt of the proband is a carrier. Melis et al. (1993) reported a 3-generation family in which 2 sibs were affected with DMD. Immunohistochemical analysis of muscle dystrophin and haplotype analysis of the DMD locus demonstrated that the X chromosome carrying the DMD gene was transmitted from the healthy maternal grandfather to his 3 daughters, including the proband's mother. The definition of carrier status in 2 possible carriers permitted accurate genetic counseling and the prevention of the birth of an affected boy. </p><p>Witkowski (1992) presented the pedigree of a family with a balanced autosomal translocation in 3 generations: a son of a carrier exhibited lymphocytes with a normal karyotype as well as lymphocytes with the balanced translocation. She also cited the 47,XXX karyotype as a possible alternative explanation to germline mosaicism; there are known sibships in which boys have received 3 different haplotypes on the X chromosome from the mother. Unexpectedly, Passos-Bueno et al. (1992) observed that among 24 proven germline mosaic cases, 19 (79%) had a proximal mutation, while only 5 (21%) had a distal mutation. </p><p><strong><em>Somatic Mosaicism and Heterozygous Females</em></strong></p><p>
Yoshioka (1981) observed unusually severely affected heterozygous females and suggested that factor(s) other than lyonization may be involved. One of the women was the product of a consanguineous mating, suggesting modification of expression by homozygosity at an autosomal locus. </p><p>Burn et al. (1986) reported monozygotic twin girls, one of whom had typical clinical features of DMD despite a normal female karyotype and the second of whom was normal. Burn et al. (1986) proposed that differences in lyonization accounted for the findings. Hybridization of fibroblasts from each twin with RAG-mouse cell line deficient in HPRT showed that in the affected twin it was the mother's X chromosome that was predominantly the active one, whereas in the normal twin it was the father's. In female monozygotic twins discordant for muscular dystrophy, Richards et al. (1990) showed that there was a mutation in dystrophin in both twins. Uniparental disomy and chromosome abnormality were excluded, but on the basis of methylation differences of the paternal and maternal X chromosomes, Richards et al. (1990) concluded that uneven lyonization was the underlying mechanism for disease expression in the affected female. </p><p>Lupski et al. (1991) pointed out that discordance of the DMD phenotype had never been described in male monozygotic twins. Lupski et al. (1991) described female monozygotic twins who carried the same mutation involving duplication of exons 42 and 43 of the DMD gene. One was a manifesting heterozygote, whereas the other was normal. Unlike the study of Richards et al. (1990) in which the skewed inactivation pattern was symmetrical in opposite directions, one twin being affected with DMD and the other being normal, the skew in this case involved only the affected twin, while the normal twin showed a random X-inactivation pattern. They suggested that the result was consistent with the model of twinning and X-inactivation proposed by Nance (1990) in that these twins probably represented asymmetric splitting of the inner cell mass (ICM): the affected twin probably arose when a small proportion of the ICM split off after lyonization had occurred. In this situation, the original ICM could have given rise to the normal twin with random lyonization, while the newly split cells would experience catch-up growth and lead to the affected twin. </p><p>Many DMD patients have rare staining dystrophin-positive fibers. The possibility of somatic mosaicism can be raised, but somatic reversion/suppression is another possibility. Indeed, the dystrophin-positive fibers have been referred to as 'revertants.' The revertants are found in both familial and nonfamilial cases. Klein et al. (1992) found that in patients with deletions, revertants did not stain with antibodies raised to polypeptide sequences within the deletion. These results indicated that positively stained fibers were not the result of somatic mosaicism in deletion patients. Klein et al. (1992) concluded that the most likely mechanism giving rise to positively staining fibers is a second site in-frame deletion. Thanh et al. (1995) used exon-specific monoclonal antibodies to determine which exons are removed in order to correct the reading frame in individual revertant muscle fibers. They showed that 15 revertant fibers in a DMD patient with a frameshift deletion of exon 45 had correction of the frameshift by the additional deletion of exon 44 (or perhaps exon 46 in some fibers) from the dystrophin mRNA, but not by larger deletions. This result was consistent with RT-PCR and sequencing of a minor dystrophin mRNA with an exon 43/46 junction in the biopsy. The results were consistent with somatic mutations in revertant-fiber nuclei, which result in removal of additional exons from dystrophin mRNA. These data did not clearly distinguish between additional somatic deletions and somatic effects on dystrophin mRNA splicing, however, and both mechanisms may be operating. </p><p>Pena et al. (1987) reported an extraordinary case of DMD leading to death at age 28 years in a heterozygous monozygotic female twin. Her sister was clinically normal but had an affected son. Eleven affected males in 3 generations and 7 separate sibships of the kindred were known. An undetected monozygotic twinning event was proposed by Glass et al. (1992) to explain a manifesting female for Becker muscular dystrophy. They concluded that females heterozygous for BMD have less likelihood of showing manifestations of muscular dystrophy than do females heterozygous for DMD. Abbadi et al. (1994) reported a pair of female monozygotic twins heterozygous for a deletion in the DMD gene and discordant for the clinical manifestations of the disorder. Results in lymphocytes and skin fibroblast cell lines suggested a partial mirror inactivation with the normal X chromosome preferentially active in the unaffected twin, and the maternally deleted X chromosome preferentially active in the affected twin. </p><p>Pegoraro et al. (1994) studied 13 female dystrophinopathy patients--10 isolated cases and 3 with a positive family history for DMD in males. All 13 had skewed X-inactivation patterns in peripheral blood DNA. Of the 9 isolated cases informative in their assay, 8 showed inheritance of the dystrophin gene mutation from the paternal germline. Only a single case showed maternal inheritance. Pegoraro et al. (1994) estimated that the 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus they suggested that there is some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. </p><p>Chelly et al. (1986) reported the first observation of a girl with typical DMD and typical 45,XO Turner syndrome. The one X chromosome in the girl was normal by high resolution banding, but DNA analysis by Southern blotting and hybridization with 7 cloned probes mapping in the Xp21 region showed a deletion of 3 of the probes. In this case, the paternal chromosome was lost and the maternal X chromosome suffered a deletion mutation in the Xp21.2 region. Suthers et al. (1989) described a man with Becker muscular dystrophy and the Klinefelter syndrome who was much more mildly affected than his 3 nephews. The mild expression may be due to the fact that he was heterozygous for the muscular dystrophy mutation. The nephews indeed may have had Duchenne muscular dystrophy. </p><p>Among 35 children produced by 34 deliveries in 13 women who were mothers of males attending a muscular dystrophy clinic, Geifman-Holtzman et al. (1997) found that 6 (17%) were delivered in the breech position, which is a 5-fold increase above the national standards for term pregnancies. Of the 6 infants with breech presentation, 2 were males affected with DMD, 1 was a female heterozygote, 1 was a male who died perinatally, and the carrier status of the other 2 females was unknown. Most DMD affected males (12/14) were delivered in the vertex position. Thus, the authors concluded that maternal rather than fetal muscle weakness was the significant factor in determining fetal position at term. They suggested that subtle changes in uterine or pelvic girdle muscle tone may contribute to a higher rate of fetal breech presentation in carriers of the DMD gene. </p><p>Yoshioka et al. (1998) analyzed X inactivation in 4 manifesting heterozygotes, 5 asymptomatic carriers, and 32 female controls. Ninety-two percent were heterozygous for the CAG repeat in the androgen receptor (AR; 313700) gene. All manifesting carriers showed 70 to 93% skewed inactivation, whereas the asymptomatic carriers showed random inactivation (50-60%). Of the control females, 6% showed greater than 70% skewed inactivation. </p><p>Reported genetic mechanisms for female DMD include (1) a skewed pattern of X-chromosome inactivation in female carriers of a DMD mutation (Azofeifa et al., 1995); (2) X;autosome translocations that disrupt the DMD gene (Cantagrel et al., 2004); (3) monosomy X, or Turner syndrome, associated with a DMD mutation in the remaining X chromosome (Chelly et al., 1986); and (4) maternal isodisomy for the X chromosome carrying a DMD mutation (Quan et al., 1997). Katayama et al. (2006) reported a fifth mechanism in a Vietnamese child with DMD confirmed by genetic analysis. Although the child was phenotypically female, the karyotype showed 46,XY, and she was found to have a mutation in the AR gene causing androgen insensitivity syndrome (AIS; 300068). The patient's sister also had the AR mutation and AIS, but did not have the DMD mutation. The unaffected mother was found to be heterozygous for the AR mutation, but did not have the DMD mutation, indicating it was de novo in the proband. Katayama et al. (2006) concluded that the cooccurrence of independent mutations in both the DMD and AR genes constituted a fifth mechanism underlying female DMD. </p><p>Rajakulendran et al. (2010) reported 2 unrelated female carriers of DMD mutations who presented in adulthood with marked right-sided hemiatrophy and weakness of the arm and leg muscles. MRI showed muscle atrophy and fatty replacement on the affected side, and histologic studies showed decreased dystrophin staining. Both had increased serum creatine kinase. The older woman had areflexia of the affected side, no family history of muscular dystrophy, and showed skewed ratio of X inactivation in lymphocytes. The younger woman had an affected son and showed normal X inactivation in lymphocytes. Rajakulendran et al. (2010) suggested that a combination of skewed X inactivation in muscle tissue and somatic mosaicism accounted for the marked asymmetric manifestations. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Cytogenetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Greenstein et al. (1977) found DMD in a 16-year-old girl with a reciprocal X;11 translocation. The mother was thought not to be a carrier. Possibly the break at Xp21 caused a null mutation; the normal X chromosome was inactivated. Verellen et al. (1978) reported the same situation with X;21 translocation and break at Xp21. Canki et al. (1979) described similar findings in a girl with X;3 translocation with break at Xp21. The mother was thought to be heterozygous.</p><p>Zneimer et al. (1993) used a combination of conventional and molecular cytogenetic techniques to investigate the twins first reported by Richards et al. (1990). The twins carried a deletion of approximately 300 kb within the dystrophin gene on one X chromosome. A unique DNA fragment generated from an exon within the deletion was hybridized in situ to metaphase chromosomes of both twins, a probe that would presumably hybridize only to the normal X chromosome and not to the X chromosome carrying the deletion. The chromosomes were identified by reverse-banding (R-banding) and by the addition of 5-bromodeoxyuridine in culture to distinguish early and late replicating X chromosomes, corresponding to active and inactive X chromosomes, respectively. The experiment showed predominant inactivation of the normal X chromosome in the twin with DMD. With an improved method of high resolution R-banding, Werner and Spiegler (1988) showed deletion of Xp21.13 in an 8-year-old boy with normal intelligence and no disorder other than DMD. His healthy mother was heterozygous for the deletion, which was subject to random X inactivation in lymphocytes. </p><p>Saito-Ohara et al. (2002) studied a 16-year-old patient with Duchenne muscular dystrophy, profound mental retardation, athetosis, and nystagmus who was shown to have a pericentric inversion of the X chromosome, 46,Y,inv(X)(p21.2q22.2). His mother carried this inversion on one allele. The patient's condition was originally misdiagnosed as cerebral palsy. Because the DMD gene is located at Xp21.2, which is one breakpoint of the inv(X), and because its defects are rarely associated with severe mental retardation, the other clinical features of this patient were deemed likely to be associated with the opposite breakpoint at Xq22. The molecular-cytogenetic characterization of both breakpoints revealed 3 genetic events that probably had disastrous influence on neuromuscular and cognitive development: deletion of part of the DMD gene at Xp21.2, duplication of the proteolipid protein gene (PLP1; 300401) at Xq22.2, and disruption of the RAB40AL gene (300405). Saito-Ohara et al. (2002) speculated that disruption of RAB40AL was responsible for the patient's profound mental retardation. </p><p>Tran et al. (2013) reported a 3-year-old Japanese boy with Duchenne muscular dystrophy and moderate mental retardation associated with an intrachromosomal inversion, inv(X)(p21.2;q28), involving both the dystrophin and the KUCG1 (300892) genes. KUCG1 is a long noncoding RNA that shows brain expression. The first exon of KUCG1 was spliced to a dislocated part of the dystrophin gene, producing a chimeric dystrophin transcript. Brain MRI in the patient was normal. Tran et al. (2013) hypothesized that interruption of the KUCG1 gene may have contributed to mental retardation in this patient. However, sequencing of the KUCG1 gene in 10 additional Japanese families with X-linked mental retardation did not identify any mutations. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Duchenne muscular dystrophy is not linked to colorblindness or G6PD (Emery et al., 1969; Zatz et al., 1974). No linkage with Xg has been found; total lod scores were -14.6 and -2.4 for theta of 0.10 and 0.30, respectively (Race and Sanger, 1975). </p><p>Lindenbaum et al. (1979) found DMD with X-1 translocation and suggested that the DMD locus is at Xp1106 or Xp2107. A number of females with X-autosome translocations with the breakpoint in the Xp21 band have shown Duchenne muscular dystrophy. One interpretation is that the gene locus is in that region and that the locus on the normal X is inactivated. Murray et al. (1982) found linkage of DMD with a restriction enzyme polymorphism at a distance of about 10 cM. The cloned DNA sequence bearing the polymorphism (lambda RC8) was assigned to Xp22.3-p21 by study of somatic cell hybrids. Spowart et al. (1982) outlined reasons for doubting the location of the DMD gene at Xp21. </p><p>Wieacker et al. (1983) studied the linkage between the restriction fragment length polymorphism defined by the cloned DNA sequence RC8 and X-linked ichthyosis. At least 2 crossovers were found among 9 meioses in an informative family, suggesting that RC8 and STS may be about 25 cM apart. Since STS is 15 cM proximal to the Xg locus and since the RC8 and Duchenne muscular dystrophy are closely linked, DMD may be 50 cM or more from Xg. Worton et al. (1984) studied a female with DMD and an X;21 translocation which split the block of genes encoding ribosomal RNA on 21p. Thus, ribosomal RNA gene probes can be used to identify a junction fragment from the translocation site and to clone segments of the X at or near the DMD locus. </p><p>Kingston et al. (1983, 1984) found linkage of BMD with the cloned sequence L1.28 (designated DXS7 by the seventh Human Gene Mapping Workshop in Los Angeles; D = DNA, X = X chromosome, S = segment, 7 = sequence of delineation). The interval was estimated to be about 16 cM, which is also the approximate interval between DXS7 and DMD. DXS7 is located between Xp11.0 and Xp11.3. Thus, these 2 forms of X-linked muscular dystrophy appeared to be allelic, a possibility also supported by the finding of both severe and mild disease (Duchenne and Becker, if you will) in females with X-autosome translocations. Contrary to reports of others, Kingston et al. (1984) found no evidence of linkage of BMD to colorblindness; Xg also showed no linkage. </p><p>Francke et al. (1985) studied a male patient with 3 X-linked disorders: chronic granulomatous disease with cytochrome b(-245) deficiency and McLeod red cell phenotype, Duchenne muscular dystrophy, and retinitis pigmentosa (see RP3, 300029). A very subtle interstitial deletion of part of Xp21 was demonstrated as the presumed basis of this 'contiguous gene syndrome.' That this was a deletion and not a translocation was demonstrated by the absence of 1 DNA probe from the genome of the patient. Since this probe (called 754) was clearly very close to DMD and recognized a RFLP of high frequency, it proved highly useful for linkage studies of DMD. The close clustering of CGD, DMD, and RP suggested by these findings was inconsistent with separate linkage data, which indicated that McLeod and CGD were close to Xg and that DMD and RP are far away (perhaps at least 55 cM) and as much as 15 cM from each other. At least 4 possible explanations of the discrepancy were proposed by Francke et al. (1985). One suggestion was that the deletion contained a single defect affecting perhaps a cell membrane component with the several disorders following thereon. </p><p>Mulley et al. (1988) reported the recombination frequencies between DMD and intragenic markers from 8 informative families containing 30 informative meioses. No recombinants were observed. The authors commented that the average theta between intragenic markers and DMD may be 1 to 2%. Grimm et al.(1989) reported a recombination rate of 4% between 2 subclones of the DNA segment DXS164 within the dystrophin locus, indicating a hotspot for recombination. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Tuffery-Giraud et al. (2009) described a French database for mutations in the DMD gene that includes 2,411 entries consisting of 2,084 independent mutation events identified in 2,046 male patients and 38 expressing females. This corresponds to an estimated frequency of 39 per million with a genetic diagnosis of a 'dystrophinopathy' in France. Mutations in the database include 1,404 large deletions, 215 large duplications, and 465 small rearrangements, of which 39.8% are nonsense mutations. About 24% of the mutations are de novo events. The true frequency of BMD in France was found to be almost half (43%) that of DMD. </p><p>Among 624 index cases evaluated for DMD mutations, Oshima et al. (2009) reported that a genomic rearrangement was detected in 238 (38.1%) samples. Deletions were detected in 188 (79.0%), and included 31 cases with single-exon deletions and 157 cases with multi-exonic deletions. Most of the deletions fell between exons 45 and 52 and between exons 8 and 13 of the gene. Duplications were detected in 44 (18.5%) cases, of which 12 involved single exons and 32 multiple exons. Complex rearrangements were detected in 6 (2.5%) cases. The remaining 386 cases showed normal results. Oshima et al. (2009) selected 15 unique rearrangement, of which none shared a common breakpoint, and used array CGH and MLPA analyses to evaluate the mechanism rearrangements. Fourteen of the deletions had microhomology and small insertions at the breakpoints, consistent with a mechanism of nonhomologous end joining (NHEJ) after DNA damage and repair. Analysis of 3 complex intragenic DMD gene rearrangements identified several features that could result in genomic instability, including breakpoints that aligned with repetitive sequences, an inversion/deletion involving a stem-loop structure, replication-dependent fork stalling and template switching (FoSTeS), and duplications causing secondary deletions. </p><p><strong><em>Modifier Genes</em></strong></p><p>
Pegoraro et al. (2011) examined 106 DMD patients for variations in 29 genes selected as candidate modifiers of disease severity. Skeletal muscle mRNA profiling identified the G allele of rs28357094 in the promoter of the SPP1 gene (166490), which encodes osteopontin, as having a significant effect on both disease progression and response to glucocorticoids. In an autosomal dominant model, carriers of the G allele (35% of subjects) had more rapid progression and 12 to 19% less grip strength. The association was validated in a second cohort of 156 patients. </p><p>Using whole-exome sequencing of DMD patients with extreme phenotypes, followed by validation studies in 2 independent DMD cohorts, Spitali et al. (2020) found that the minor alleles of 2 SNPs in the TCTEX1D1 gene (619994), rs1060575 and rs3816989, were associated with earlier age of ambulation loss. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Diagnosis</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Symptomatic Hemizygotes</em></strong></p><p>
Clinical diagnosis of males affected with DMD is straightforward. Gait difficulty beginning at age three, progressive myopathic weakness with pseudohypertrophy of calves and massive elevations of serum levels of creatine kinase permit diagnosis. Electromyography and muscle biopsy are confirmatory. Inflammatory changes seen in biopsies taken early in the course of the disorder can erroneously suggest a diagnosis of polymyositis if careful note is not made of the histologic hallmarks of dystrophy.</p><p>Heyck et al. (1966) documented a high level of CPK (and other enzymes) in a 9-day-old infant from a family at risk. According to Dubowitz (1976), elevation in cord blood in a proven case had not been documented. Furthermore, many perinatal factors seem to cause elevation of CPK. Mahoney et al. (1977) demonstrated elevated CPK in fetal blood obtained by placental puncture and validated this as a method of prenatal diagnosis by demonstrating histologic changes in the skeletal muscle of the aborted fetus. </p><p>Darras et al. (1987) reported experience suggesting that despite the large number of intragenic and flanking DNA polymorphisms then available, uncertainties often remain in the prenatal diagnosis of DMD. </p><p>Bartlett et al. (1988) pointed out that mapping of deletions is a more reliable and an easier way to do prenatal diagnosis and carrier detection than by use of RFLPs. They suggested that once the entire gene is available for screening, most DMD boys will show deletions. Katayama et al. (1988) demonstrated the usefulness of RFLPs in prenatal diagnosis and carrier detection of DMD. In some of the examples cited, the authors made use of creatine phosphokinase levels as well. Speer et al. (1989) reviewed the status of prenatal diagnosis and carrier detection using cDNA probes. Clemens et al. (1991) took advantage of the existence of approximately 50,000-100,000 (CA)n loci in the human genome (Tautz and Renz, 1984) for carrier detection and prenatal diagnosis in DMD and BMD. (CA)n loci are a subclass of all short tandem repeat (STR) sequences. Because they are frequently polymorphic, so-called pSTR, they are useful for linkage purposes and are readily studied by PCR. </p><p>Bieber et al. (1989) described the use of immunoblotting for dystrophin analysis in the diagnosis of DMD in cases in which a gene deletion cannot be identified and RFLPs are equivocal. Evans et al. (1991) used in utero fetal muscle biopsy to assess dystrophin in a male fetus with the same X chromosome as an affected sib. Evans et al. (1993) used the same procedure to evaluate a female fetus found on amniocentesis performed for advanced maternal age to be carrying a de novo X;1 translocation with a breakpoint at Xp21. In utero muscle biopsy at 20 weeks of gestation showed normal dystrophin, and serum creatine kinase was normal at the time of birth of the infant. Situations in which testing of dystrophin by fetal muscle biopsy may be indicated were reviewed. Sancho et al. (1993) demonstrated that when conventional DNA analysis is not informative for the prenatal and postnatal diagnosis of DMD, myogenesis can be induced in cultured skin fibroblasts, amniocytes, or chorionic-villus cells by infecting the cells with a retrovirus vector containing MYOD (159970), a gene regulating myogenesis. Immunocytochemical analysis of dystrophin in the MYOD-converted muscle cells is an effective way of demonstrating dystrophin deficiency. </p><p>Beggs and Kunkel (1990) presented a flow diagram illustrating procedures for the molecular diagnosis of DMD or BMD. For males with consistent clinical features, CPK levels, and muscle biopsy, they suggested that Western blot testing for dystrophin be done first. If this is normal, the patient should be studied for other neuromuscular diseases. If dystrophin is of reduced or increased size, with or without reduction in the amount of dystrophin, BMD should be suspected. If dystrophin is absent, DMD should be suspected. Thereafter, PCR testing and Southern blot analysis should be done, looking for deletion/duplication. These procedures detect about 65% of patients, and the Southern blot permits prognostication of severity by distinguishing in-frame versus frameshift mutations in over 90% of cases. If no deletion or duplication is found, it is then necessary to resort to RFLP-based linkage studies, which unfortunately are laborious and time consuming. Once the diagnosis has been made, the information can be used for carrier detection and prenatal diagnosis. In females who are having symptoms of muscular dystrophy, immunohistochemistry for dystrophin in muscle showing a patchy loss of dystrophin can be used, and when abnormality is found, the same procedures of PCR, Southern blot, and linkage studies can be pursued. If the immunohistochemistry is normal, the female can be studied for other neuromuscular diseases. (Abnormality is indicative of the manifesting carrier state.) Beggs and Kunkel (1990) provided useful illustrative case histories as well as a hypothetical case in which a newborn male was found to have elevated CPK on a screening program but normal physical examination and negative family history. If Western blotting revealed absence of detectable dystrophin in the muscle and the PCR analysis detected a deletion which was confirmed by Southern blotting, his mother might carry the deletion or be normal. Even if normal, prenatal diagnosis could be offered her because of the significant probability that she was a germline mosaic. The usefulness of such screening programs for diagnosing DMD at a stage when diagnosis can be useful to the parents in the planning of other pregnancies is worthy of consideration. </p><p>Kristjansson et al. (1994) used primer extension preamplification (PEP) to increase the scope and capacity of single cell genetic diagnosis by generating sufficient template to perform multiple subsequent DNA analyses using PCR. They reported the simultaneous analysis of single cells at 5 commonly deleted dystrophin exons. In 93% of PEP reactions with single amniocytes, chorionic villus cells and blastomeres, successful results were obtained, and a blinded analysis of single lymphoblasts from affected males resulted in 93% diagnostic accuracy. They suggested that transfer of unaffected male embryos and improved diagnostic reliability is achieved with the ability to perform replicate multilocus analyses from the same blastomere. </p><p>Parsons et al. (1996) discussed procedures used for disclosure of the diagnosis of Duchenne muscular dystrophy to parents after newborn screening. Newborn screening for DMD was introduced into Wales in 1990. While screening in the newborn period for DMD was still under evaluation, preliminary evidence indicated that the excessive trauma anticipated in making such a disclosure presymptomatically could be avoided by implementing a strict protocol of disclosure and support. Parental choice should be facilitated at every stage from screen to diagnosis, and parents should be provided with maximum unbiased information on which to base their decisions. The family should not experience delay in getting the results with the additional stress this may cause. Meetings with the primary health care team and with the pediatrician facilitated ongoing support for the family. </p><p><strong><em>Heterozygotes</em></strong></p><p>
Roses et al. (1977) concluded that isoenzyme 5 of lactate dehydrogenase is as sensitive an indicator of carrier status as creatine phosphokinase. Indeed, some carrier females with normal CPK were identified with LDH-5. By combining the 2 enzyme determinations and screening pedigrees extensively, they found that 28 of 30 mothers were probably heterozygotes. This high proportion of carriers is consistent with a higher mutation rate in males than in females, a conclusion suggested also by data on Lesch-Nyhan syndrome (308000) and hemophilia (306700). Hemopexin (142290) is elevated in some DMD carriers. Percy et al. (1981) found that hemopexin, used in combination with creatine kinase, improved the identification of carriers. Sato et al. (1978) presented evidence that red cell membrane as well as muscle membrane is involved. Beckmann et al. (1978) pointed out that the diagnosis of carrier females with plasma CPK is best in the neonatal or infant period. They suggested screening of all infants. </p><p>Although analysis of DNA with probes complementary to the dystrophin gene clarifies the diagnosis in at least two-thirds of isolated adult male patients, this approach in female patients is frustrated by the obfuscation of molecular deletion by heterozygosity, when gene dosage alone is not sufficiently reliable. Pulsed field gel electrophoresis may allow detection of abnormal-sized fragments of the dystrophin gene in these patients, and analysis of the dystrophin protein itself may be helpful.</p><p>Tangorra et al. (1989) suggested that an increased tendency of erythrocytes to form echinocytes (spine cells) on exposure to L-alpha-lysophosphatidylcholine could be used as a means of detecting DMD carriers. </p><p>With increased utilization of dystrophin protein analysis of muscle biopsies for molecular diagnosis, many female myopathy patients with no previous family history of any neuromuscular disease have been found to have a mosaic dystrophin immunostaining pattern on muscle biopsy (Minetti et al., 1991). These patients generally were diagnosed as having limb-girdle muscular dystrophy (with presumed autosomal recessive inheritance) before reclassification, by dystrophin testing, as female dystrophinopathy patients (Arikawa et al., 1991). In a large follow-up study of 505 muscle biopsies from female myopathy patients, Hoffman et al. (1992) found that about 10% of women with hyperCKemia, myopathic pattern by muscle biopsy, and no family history of DMD could be identified as carriers of DMD when tested with the dystrophin immunofluorescence assay. It was assumed that such female dystrophinopathy patients were heterozygous carriers who showed preferential inactivation of the X chromosome harboring the normal dystrophin gene. Such was shown to be the case, for example, in 2 sets of discordant monozygotic twins (Bonilla et al., 1990; Richards et al., 1990). </p><p>However, mosaic staining patterns have only been detected in heterozygote females with elevated levels of creatine kinase in the blood. Diagnosis of asymptomatic women without deletions or elevated creatine kinase remains a problem. In a study of clonal myogenic cell cultures from a potential heterozygote for DMD who also was heterozygous for G6PD isozymes, Hurko et al. (1989) found that only those myogenic colonies expressing the G6PD-A isozyme also expressed dystrophin. He suggested that somatic cell testing of dystrophin expression may be useful in genetic carrier tests in ambiguous cases. </p><p>Hoogerwaard et al. (2005) examined skeletal muscle biopsies from 50 definite carriers of DMD and BMD, including 22 manifesting carriers, 5 carriers with exertion-dependent myalgia or cramps, and 23 nonmanifesting carriers. Although 42% of the biopsies showed nonspecific abnormalities, no association was found between histopathologic changes and muscle weakness, dilated cardiomyopathy, serum creatine kinase activities, dystrophin abnormalities, or age. For example, 5 carriers with cardiomyopathy had no dystrophin abnormalities, whereas 6 nonmanifesting carriers had abnormal immunohistochemical dystrophin patterns. </p><p><strong><em>Intrafamilial Variability</em></strong></p><p>
Sifringer et al. (2004) investigated the differences between the expression profiles of skeletal muscle biopsies from a very rare instance of 2 brothers with a different clinical course of DMD. Comparison of important parameters in the development of the 2 brothers made clear that the older brother was far more affected by muscle weakness than the younger. The younger brother was able to sit 9 months earlier and to walk 22 months earlier than the older one. The older brother was wheelchair-bound at the age of 9 years, whereas the younger one was not expected to become wheelchair dependent at the same age. Furthermore, the older boy was mentally retarded. Though deletions or point mutations in the DMD gene were not detected, negative immunofluorescence in both brothers supported the diagnosis of dystrophinopathy and suggested compensating mechanisms for the younger less affected brother. Sifringer et al. (2004) compared the transcriptomes in skeletal muscle in the 2 brothers to identify overexpressed transcripts that might be responsible for the milder phenotype. Six genes were found to be overexpressed 3 to 20 times in the less affected patient compared with the more severely affected boy; casein kinase 1 (600505) showed a slightly higher expression. Upregulation of myosin light polypeptide 2 (MYL2; 160781), one of the most sensitive markers of muscle fiber regeneration, was found with the milder phenotype. The purpose of these studies was to identify modifiers that might be exploited therapeutically in Duchenne muscular dystrophy. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>The management of DMD is largely symptomatic: providing assisting devices for walking, prevention of scoliosis, and respiratory toilet. Goertzen et al. (1995) reported on the efficacy of early release of the spina muscles, resection of the tensor fasciae latae muscle, and a lengthening of the tendo calcaneus in 32 patients with Duchenne muscular dystrophy at the mean age of 6.1 years in safely preventing severe contractures and delaying the progression of scoliosis. </p><p>In a kindred with 9 previous cases of DMD, Zatz et al. (1981) observed a boy who was unusually mildly affected, perhaps because of the coincidence of growth hormone deficiency. Following up on this observation (Zatz and Betti, 1986), Zatz et al. (1986) used a growth hormone inhibitor, mazindol, in one of monozygotic twins concordant for DMD. The other twin received a placebo. After 1 year, the 'code was broken' and the placebo-treated twin was found to be much worse than his mazindol-treated brother in whom the 'condition was practically arrested.' </p><p>From a 6-month trial study, Mendell et al. (1989) concluded that prednisone improves the strength and function of patients with DMD. The mechanism of the improvement was not known and it was not clear whether prolonged treatment with corticosteroids is warranted despite their side effects. </p><p>Studies had shown a correlative relationship between calpain (114220) activity in dystrophic muscle and muscle necrosis, but had not tested whether calpain activation precedes cell death or is a consequence of it. Spencer and Mellgren (2002) hypothesized that calpains may play an active role in necrotic processes in dystrophic muscle, and that inhibition of calpains might provide a therapeutic option for treatment of DMD. </p><p>Malik et al. (2010) found that 10 boys with DMD due to stop codon mutations in the dystrophin gene showed a 50% decrease in serum creatine kinase levels compared to baseline levels after a 14-day treatment with intravenous infusion of gentamicin. In contrast, this treatment had no effect on 8 boys with frameshift mutations. Among 12 patients treated for 6 months, 6 showed an increase of dystrophin levels in serial skeletal muscle biopsies, 3 of whom had increases into a potentially therapeutic range (300% or more increase in dystrophin levels). The average muscle scale in these patients did not decrease over the study period, and some patients even had a slight increase in forced vital capacity, suggesting a clinical benefit. Only 1 patient developed a T-cell immune response to a novel epitope. The results of the study indicated that long-term dosing of gentamicin over 6 months could be safely achieved, and supported the concept that gentamicin can induce a read-through of stop codons in DMD. </p><p><strong><em>Gene Therapy</em></strong></p><p>
Donor myoblasts injected into muscles of patients with DMD could theoretically fuse with host muscle fibers, thus contributing their nuclei which could potentially replace deficient gene products. Mendell et al. (1995) injected muscle cells donated by unaffected fathers or brothers once a month for 6 months into the biceps brachii muscle of 1 arm of each of 12 boys with DMD. Although in 1 patient 10.3% of muscle fibers expressed donor-derived dystrophin after myoblast transfer and 3 other patients had a low level of donor dystrophin, there was no significant difference in muscle strength between arms injected with myoblasts and control arms. </p><p>Van Deutekom et al. (2001) explored a genetic therapy aimed at restoring the reading frame in muscle cells from DMD patients through targeted modulation of dystrophin pre-mRNA splicing. Considering that exon 45 is the single most frequently deleted exon in DMD, whereas exon (45+46) deletions cause only a mild form of BMD, the authors devised an antisense-based system to induce exon 46 skipping from the transcript in cultured myotubes of both mouse and human origin. In myotube cultures from 2 unrelated DMD patients carrying an exon 45 deletion, the induced skipping of exon 46 in approximately 15% of the mRNA led to normal amounts of properly localized dystrophin in at least 75% of myotubes. The authors hypothesized that this strategy may be applicable to not only more than 65% of DMD mutations, but also to many other genetic diseases. </p><p>Aartsma-Rus et al. (2003) expanded the application of the antisense rescue method (van Deutekom et al., 2001) to cultured muscle cells from 6 DMD patients carrying different deletions and a nonsense mutation. In each case, the specific skipping of the targeted exon was induced, restoring dystrophin synthesis in over 75% of cells. The protein was detectable 16 hours posttransfection, increased to significant levels at the membrane within 2 days, and was maintained for at least a week. Its proper function was further suggested by the restored membrane expression of 4 associated proteins from the dystrophin-glycoprotein complex. </p><p>Harper et al. (2002) performed a detailed functional analysis of dystrophin structural domains and showed that multiple regions of the protein can be deleted in various combinations to generate highly functional mini- and micro-dystrophins. Studies in transgenic mdx mice, a model for DMD, revealed that a wide variety of functional characteristics of dystrophy are prevented by some of these truncated dystrophins. Muscles expressing the smallest dystrophins were fully protected against damage caused by muscle activity and were not morphologically different from normal muscle. Moreover, injection of adeno-associated viruses carrying micro-dystrophins into dystrophic muscles of immunocompetent mdx mice resulted in a striking reversal of histopathologic features of the disease. Harper et al. (2002) concluded that the dystrophic pathology can be both prevented and reversed by gene therapy using micro-dystrophins. </p><p>To address the need for a drug capable of suppressing premature termination, Welch et al. (2007) identified PTC124, a chemical entity that selectively induces ribosomal read-through of premature but not normal termination codons. PTC124 is a 284.24-Da, achiral, 1,2,4-oxadiazole linked to fluorobenzene and benzoic acid rings. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2 to 8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well-characterized activity profile, oral bioavailability, and pharmacologic properties indicated that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options. Clinical trials had been initiated for the treatment of both cystic fibrosis (219700) and DMD at the time of the report. </p><p>Up to 50% of patients with Duchenne muscular dystrophy show evidence of rare, dystrophin-positive fibers (revertant fibers) caused by spontaneous, clonal, frame-restoring skipping of stretches of exons (Aartsma-Rus et al., 2004). This finding prompted the investigation of the potential for therapeutic conversion of DMD into its in-frame counterpart, Becker muscular dystrophy, with the use of antisense techniques. Because of their capacity to skip an exon specifically by blocking its inclusion during splicing, antisense oligonucleotides can correct the reading frame of DMD transcripts, yielding internally truncated dystrophins such as those associated with Becker muscular dystrophy. Aartsma-Rus et al. (2003) showed in cultured cells from DMD patients that an intraexonic antisense oligonucleotide, PRO051, efficiently induced specific exon-51 skipping. On the basis of the frequency of mutations in patients with DMD in the Leiden database (Aartsma-Rus et al., 2006), van Deutekom et al. (2007) concluded that PRO051 might correct the reading frame in 16% of all patients with the disease. The effectiveness of antisense compounds in correcting the open reading frame of the DMD gene and thus restoring dystrophin expression in vitro and in animal models in vivo prompted van Deutekom et al. (2007) to test the effect of intramuscular injection of PRO051 in patients with this disorder. Four patients were selected for treatment who had a positive exon-skipping response to PRO051 in vitro. A single injection was made in the tibialis anterior muscle and biopsy performed 28 days later. Each patient was found to show specific skipping of exon 51 and sarcolemmal dystrophin in 64 to 97% of myofibers. The amount of dystrophin in total protein extracts ranged from 3 to 12% of that found in the control specimen and from 17 to 35% of that of the control specimen in the quantitative ratio of dystrophin to laminin alpha-2 (156225). Hoffman (2007) reviewed the potential of this approach for a form of personalized molecular medicine. </p><p>Rodino-Klapac et al. (2007) provided a review of the state of research in gene therapy for DMD. </p><p>Mendell et al. (2010) reported on the delivery of a functional dystrophin transgene to skeletal muscle in 6 patients with Duchenne muscular dystrophy. Dystrophin-specific T cells were detected after treatment, providing evidence of transgene expression even when the functional protein was not visualized in skeletal muscle. Circulating dystrophin-specific T cells were unexpectedly detected in 2 patients before vector treatment. Revertant dystrophin fibers, which expressed functional, truncated dystrophin from the deleted endogenous gene after spontaneous in-frame splicing, contained epitopes targeted by the autoreactive T cells. Mendell et al. (2010) cautioned that the potential for T-cell immunity to self and nonself dystrophin epitopes should be considered in designing and monitoring experimental therapies for this disease. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Population Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>In a 12-year prospective study in the Campania region of southern Italy, Nigro et al. (1983) found an incidence of DMD of 21.7 per 100,000 male live births and of BMD of 3.2 per 100,000. The latter might be underestimated because of lesser severity but surely not to an extent to explain an incidence one-seventh of that of DMD. Of the DMD patients, 38.5% were familial; of the BMD cases, 50%. </p><p>Williams et al. (1983) analyzed 244 Toronto pedigrees of DMD. The incidence of DMD in Ontario was estimated to be 292 per million male births. The proportion of sporadic cases was one-third, demonstrating equal mutation rates in males and females. A multifactorial component (H = 0.379) contributing to familial resemblance for CPK measurements was found. They illustrated use in genetic counseling of a computer program COUNSEL, which takes the multifactorial component in CPK into account. </p><p>Mostacciuolo et al. (1987) presented population data on the incidence and prevalence of the Becker and Duchenne forms of muscular dystrophy and estimated mutation rates for each. Muller and Grimm (1986) pointed out that by using X chromosomal RFLPs to establish DNA haplotypes in 3-generation DMD families, one can calculate the ratio of mutation rates in males and females from the proportion of DMD patients who have inherited their maternal grandfather's X-chromosome. In the Netherlands, van Essen et al. (1992) estimated the prevalence rate of DMD at birth to be 1:4,215 male live births. The prevalence rate in the male population on January 1, 1983 was estimated to be 1:18,496. An extensive tabulation of previous data was provided. Roddie and Bundey (1992) observed that in the West Midlands region of Britain, DMD is twice as common as expected in Asiatic Indians and less common than expected in Pakistanis. Although the numbers were small, they could not be explained by bias of ascertainment and were considered to be real. They suggested that a possible mechanism for the high frequency of DMD in Indians is the presence of repetitive elements in the wildtype gene that predispose to mutations. </p><p>Shomrat et al. (1994) suggested that in Israeli patients with either Duchenne or Becker muscular dystrophy, deletions in the DMD gene constitute a much smaller proportion of cases than is found in European and North American populations. The figures were 37% in Israelis as compared to 55 to 65% in the other populations. They pointed to reports suggesting that the proportion of deletions among mutant dystrophin alleles is lower also in some Asian populations such as Japanese and Chinese than it is in Western countries. They found no correlation between the size of the deletion and the severity of the disease. All of the deletions causing frameshift resulted in the DMD phenotype. </p><p>Onengut et al. (2000) compared patterns of DMD gene deletions in 4 populations: Turks, Europeans, North Indians, and Indians from all over India. Statistical tests revealed differences in the proportions of small deletions. In contrast, the distribution of deletion breakpoints and the frequencies of specific deletions commonly observed in the 4 populations were not significantly different. The variations strongly suggested that sequence differences exist in the introns, and that the differences are in agreement with genetic distances among populations. The similarities suggested that some intronic sequences have been conserved and that those will trigger recurrent deletions. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Willmann et al. (2009) reviewed mammalian models of Duchenne muscular dystrophy, with emphasis on the models that are most effective for testing treatment options at the preclinical stage. The review included mouse, canine, and feline models. The mdx mouse was recommended as the model of choice for preclinical testing, and the canine model for use in well-controlled experimental settings. </p><p><strong><em>Mouse Models</em></strong></p><p>
Krahn and Anderson (1994) studied the mdx mouse model of muscular dystrophy and showed that treatment with anabolic steroids increases myofiber damage. </p><p>Mann et al. (2001) reported a potential therapeutic approach to Duchenne muscular dystrophy as an alternative to the introduction of functional dystrophin into dystrophic tissue through either cell or gene replacement: the use of 2-prime-O-methyl antisense oligoribonucleotides to modify processing of the dystrophin pre-mRNA in the mdx mouse model of DMD. By targeting the antisense oligoribonucleotides to block motifs involved in normal dystrophin pre-mRNA splicing, they induced excision of exon 23, and the mdx nonsense mutation, without disrupting the reading frame. Immunohistochemical staining demonstrated the synthesis and correct subsarcolemmal localization of dystrophin and gamma-sarcoglycan in the mdx mouse after intramuscular delivery of antisense oligoribonucleotide-liposome complexes. They suggested that this approach should reduce the severity of DMD by allowing a dystrophic gene transcript to be modified, such that it can be translated into a Becker-dystrophin-like protein with milder clinical expression. </p><p>Chamberlain (2002) reviewed the progress and pitfalls associated with gene therapy in the context of murine models of muscular dystrophy. </p><p>Because insulin-like growth factor I (IGF1; 147440) enhances muscle regeneration and protein synthetic pathways, Barton et al. (2002) hypothesized that muscle-specific expression of Igf1 could preserve muscle function in the mdx mouse model. Transgenic mdx mice overexpressing Igf1 in muscle showed increased muscle mass, increased force generation, reduced fibrosis, and decreased myonecrosis compared with mdx mice. In addition, signaling pathways associated with muscle regeneration and protection against apoptosis showed significantly elevated activities. Barton et al. (2002) concluded that a combination of promoting muscle regenerative capacity and preventing muscle necrosis could be an effective treatment for the secondary symptoms caused by the primary loss of dystrophin. </p><p>Gilbert et al. (2003) injected the tibialis anterior (TA) muscle of neonatal and juvenile dystrophin-deficient (mdx) mice with HDCBDysM, a viral construct encoding 2 full-length murine dystrophin cDNAs regulated by the CMV enhancer/beta-actin promoter. After 10 days, 42% of the total number of TA fibers in neonatal muscles were dystrophin-positive (dys+), a value that did not decrease for 6 months (the study duration). In treated juveniles, maximal transduction occurred after 30 days (24% of TA fibers positive), but decreased by 51% after 6 months. In neonatally treated muscles, the percentage of dys+ fibers with centrally localized myonuclei remained low, localization of the dystrophin-associated protein complex was restored at the plasma membrane, muscle hypertrophy was reduced, and maximal force-generating capacity and resistance to contraction-induced injuries were increased. The same pathologic aspects were improved in the treated juveniles, except for reduction of muscle hypertrophy and maximal force-generating capacity. A strong humoral response against murine dystrophin was evident in both animal groups, but mild inflammatory response occurred only in the treated juveniles. </p><p>ADAM12 (602714) is a disintegrin and metalloprotease shown to prevent muscle cell necrosis in the mdx mouse (Kronqvist et al., 2002). Moghadaszadeh et al. (2003) found that transgenic mice overexpressing ADAM12 exhibited only mild myopathic changes and accelerated regeneration following acute injury. Only small changes in gene expression profiles were found between mdx/ADAM12 transgenic mice and mdx mice, suggesting that significant changes in mdx/ADAM12 muscle might occur posttranscriptionally. By immunostaining and immunoblotting, Moghadaszadeh et al. (2003) detected a 2-fold increase in expression and extrasynaptic localization of alpha-7B integrin (ITGA7; 600536) and utrophin (128240), the functional homolog of dystrophin. Expression of dystrophin-associated glycoproteins was also increased. </p><p>Utrophin is a chromosome 6-encoded dystrophin-related protein that has functional motifs in common with dystrophin. The ability of utrophin to compensate for dystrophin during development and when transgenically overexpressed provided an important impetus for identifying activators of utrophin expression. The utrophin promoter A is transcriptionally regulated in part by heregulin (142445)-mediated, extracellular signal-related kinase-dependent activation of the GABP(alpha/beta) transcription factor complex (see 600610). Therefore, this pathway offers a potential mechanism to modulate utrophin expression in muscle. Krag et al. (2004) tested the ability of heregulin to improve the dystrophic phenotype in the mdx mouse model of DMD. Intraperitoneal injections of the small peptide encoding the epidermal growth factor-like region of heregulin ectodomain for 3 months in vivo resulted in upregulation of utrophin, a marked improvement in the mechanical properties of muscle as evidenced by resistance to eccentric contraction-mediated damage, and a reduction of muscle pathology. The amelioration of dystrophic phenotype by heregulin-mediated utrophin upregulation offered a pharmacologic therapeutic modality that obviates many of the toxicity and delivery issues associated with viral vector-based gene therapy for DMD. </p><p>Chakkalakal et al. (2004) showed that mice expressing enhanced muscle calcineurin (PPP3CA; 114105) activity (CnA*) displayed elevated levels of utrophin around their sarcolemma. The authors crossed CnA* mice with mdx mice to determine the suitability of elevating calcineurin activity in preventing dystrophic pathology. Muscles from mdx/CnA* displayed increased nuclear localization of Nfatc1 (600489) and a fiber type shift toward a slower phenotype. Measurements of utrophin levels in mdx/CnA* muscles revealed an 2-fold induction in utrophin expression. Members of the dystrophin-associated protein (DAP) complex were present at the sarcolemma of mdx/CnA* mouse muscle. Restoration of the utrophin/DAP complex was accompanied by significant reductions in the extent of central nucleation and fiber size variability. Assessment of myofiber sarcolemmal damage revealed a net amelioration of membrane integrity, and immunofluorescence studies showed a reduction in the number of infiltrating immune cells in muscles from mdx/CnA* mice. Chakkalakal et al. (2004) concluded that elevated calcineurin activity attenuates dystrophic pathology. </p><p>Goyenvalle et al. (2004) achieved persistent exon skipping that removed the mutated exon on the dystrophin mRNA of the mdx mouse by single administration of an adeno-associated virus (AAV) vector expressing antisense sequences linked to a modified U7 small nuclear RNA (RNU7-1; 617876). Goyenvalle et al. (2004) reported the sustained production of functional dystrophin at physiologic levels in entire groups of muscles and the correction of the muscular dystrophy. </p><p>Yue et al. (2004) generated female heterozygous mdx mice that persistently expressed the full-length dystrophin gene in 50% of cardiomyocytes. Heart function of mdx mice was normal in the absence of external stress. Using beta-isoproterenol challenge in 3-month-old mice, cardiomyocyte sarcolemma integrity was significantly impaired in mdx but not in heterozygous mdx and C57BL/10 mice. In vivo closed-chest hemodynamic assays revealed normal left ventricular function in beta-isoproterenol-stimulated heterozygous mdx mice. The nonuniform dystrophin expression pattern in heterozygous mdx mice resembled the pattern seen in viral gene transfer studies. Yue et al. (2004) concluded that gene therapy correction in 50% of the heart cells may be sufficient to treat cardiomyopathy in mdx mice. </p><p>Wehling-Henricks et al. (2005) produced dystrophin-deficient mdx mice in which there was myocardial expression of a neuronal nitric oxide synthase (NOS1; 163731) transgene. Expression of the transgene prevented the progressive ventricular fibrosis of mdx mice and greatly reduced myocarditis. Electrocardiographs (ECG) of ambulatory mdx mice showed cardiac abnormalities that were characteristic of DMD patients. All of these ECG abnormalities in mdx mice were improved or corrected by NOS1 transgene expression. In addition, defects in mdx cardiac autonomic function, which were reflected by decreased heart rate variability, were significantly reduced by NOS1 transgene expression. Wehling-Henricks et al. (2005) concluded that their findings indicate that increasing NO production by dystrophic hearts may have therapeutic value. </p><p>In dystrophin-deficient mdx mice, Cohn et al. (2007) demonstrated that increased TGF-beta (TGFB1; 190180) activity caused failure of muscle regeneration. Systemic antagonism of TGF-beta through administration of TGF-beta-neutralizing antibody or AGTR1 (106165) blocker losartan improved muscle regeneration and diminished fibrosis. After 6 to 9 months of treatment with losartan, analysis of various muscle groups showed significant attenuation of disease progression in mdx mice, and in vivo grip-strength testing showed improvement after 6 months of losartan treatment. Physiologic analysis of explanted extensor digitorum longus muscles revealed a losartan-induced increase in muscle mass that correlated with a significant increase in the number of fibers per muscle, and the performance of the losartan-treated muscle in generating absolute force over a range of stimulation intensities was statistically indistinguishable from that of wildtype mice. </p><p>Peter et al. (2009) showed that myogenic Akt (164730) signaling in mouse models of DMD promoted increased expression of utrophin (UTRN; 128240), which replaced the function of dystrophin, thereby preventing sarcolemma damage and muscle wasting. </p><p>Bellinger et al. (2009) found that the calcium channel Ryr1 (180901) in skeletal muscle from mdx mice showed increased inducible nitric oxide (NOS2A; 163730)-mediated S-nitrosylation of cysteine residues, which depleted the channel complex of calstabin-1 (FKBP12; 186945). This resulted in leaky channels with increased calcium flux. These changes were age-dependent and coincided with dystrophic changes in muscle. Prevention of calstabin-1 depletion from Ryr1 with S107, a compound that binds the Ryr1 channel and enhances binding affinity, inhibited sarcoplasmic reticulum calcium leak, reduced biochemical and histologic evidence of muscle damage, improved muscle function, and increased exercise performance in mdx mice. Bellinger et al. (2009) proposed that the increased calcium flux via a defective Ryr1 channel contributes to muscle weakness and degeneration in DMD by increasing calcium-activated proteases. </p><p>Iwata et al. (2009) demonstrated that muscular dystrophy is ameliorated in mdx mice by dominant-negative inhibition of Trpv2 (606676), a principal candidate for Ca(2+)-entry pathways. When transgenic (Tg) mice expressing a Trpv2 mutant in muscle were crossed with mdx mice, the cytosolic Ca(2+) concentration increase in muscle fibers was reduced. Histologic, biochemical, and physiologic indices characterizing dystrophic pathology, such as an increased number of central nuclei and fiber size variability/fibrosis/apoptosis, elevated serum creatine kinase levels, and reduced muscle performance, were all ameliorated in the mdx/Tg mice. Iwata et al. (2009) proposed that TRPV2 is a principal Ca(2+)-entry route leading to a sustained Ca(2+) concentration increase and muscle degeneration. </p><p>Li et al. (2009) generated delta-sarcoglycan (SGCD; 601411)/dystrophin double-knockout mice (delta-Dko) in which residual sarcoglycans were completely eliminated from the sarcolemma. Utrophin levels were increased in these mice but did not mitigate disease. The clinical manifestation of delta-Dko mice was worse than that of mdx mice. They showed characteristic dystrophic signs, body emaciation, macrophage infiltration, decreased life span, less absolute muscle force, and greater susceptibility to contraction-induced injury. Li et al. (2009) suggested that subphysiologic sarcoglycan expression may play a role in ameliorating muscle disease in mdx mice. </p><p>Li et al. (2009) investigated the role and the mechanisms by which increased levels of matrix metalloproteinase-9 (MMP9; 120361) protein cause myopathy in dystrophin-deficient mdx mice. Levels of MMP9 but not tissue inhibitor of MMPs were drastically increased in skeletal muscle of mdx mice. Infiltrating macrophages also contributed to the elevated levels of MMP9 in dystrophic muscle. In vivo administration of a NFKB-inhibitory peptide NBD blocked the expression of MMP9 in dystrophic muscle of mdx mice. Deletion of the Mmp9 gene in mdx mice improved skeletal muscle structure and functions and reduced muscle injury, inflammation, and fiber necrosis. Inhibition of MMP9 increased the levels of cytoskeletal protein beta-dystroglycan (DAG1; 128239) and Nos1 and reduced the amounts of caveolin-3 (CAV3; 601253) and Tgfb in myofibers of mdx mice. Genetic ablation of MMP9 significantly augmented the skeletal muscle regeneration in mdx mice. Pharmacologic inhibition of MMP9 activity also ameliorated skeletal muscle pathogenesis and enhanced myofiber regeneration in mdx mice. </p><p>Wehling-Henricks et al. (2009) tested whether the loss of neuronal nitric oxide synthase, nNOS (NOS1; 163731), contributes to the increased fatigability of mdx mice. The expression of a muscle-specific nNOS transgene increased the endurance of mdx mice and enhanced glycogen metabolism during treadmill running, but did not affect vascular perfusion of muscles. The specific activity of phosphofructokinase (PFK; 610681), the rate-limiting enzyme in glycolysis, was positively affected by nNOS in muscle; PFK-specific activity was significantly reduced in mdx muscles and the muscles of nNOS-null mutants, but significantly increased in nNOS transgenic muscles and muscles from mdx mice that expressed the nNOS transgene. PFK activity measured under allosteric conditions was significantly increased by nNOS, but unaffected by endothelial NOS or inducible NOS. The specific domain of nNOS that positively regulates PFK activity was assayed by cloning and expressing different domains of nNOS and assaying their effects on PFK activity. This approach yielded a polypeptide that included the flavin adenine dinucleotide (FAD)-binding domain of nNOS as the region of the molecule that promotes PFK activity. A 36-amino acid peptide in the FAD-binding domain was identified in which most of the positive allosteric activity of nNOS for PFK resides. Wehling-Henricks et al. (2009) proposed that defects in glycolytic metabolism and increased fatigability in dystrophic muscle may be caused in part by the loss of positive allosteric interactions between nNOS and PFK. </p><p>Miura et al. (2009) found that GW501516, a peroxisome proliferator-activated receptor PPAR-beta/delta (PPARD; 600409) agonist, stimulated utrophin A (UTRN; 128240) mRNA levels in mdx muscle cells, through an element in the utrophin A promoter. Expression of PPARD was greater in skeletal muscles of mdx versus wildtype mice. Over a 4-week trial, treatment increased the percentage of muscle fibers expressing slower myosin heavy chain isoforms and stimulated utrophin A mRNA levels, leading to its increased expression at the sarcolemma. Expression of alpha-1-syntrophin (SNTA1; 601017) and beta-dystroglycan (DAG1; 128239) was also restored to the sarcolemma. The mdx sarcolemmal integrity was improved, and treatment also conferred protection against eccentric contraction-induced damage of mdx skeletal muscles. </p><p>Dystrophin deficiency does not fully recapitulate the human disorder in mdx mice, which show milder skeletal muscle defects and potent regenerative capacity of the myofiber. Sacco et al. (2010) demonstrated that the milder mouse mdx phenotype resulted from a greater reserve of functional muscle stem cells caused by longer telomeres in inbred mice. Mdx mice also lacking the telomerase RNA component (TERC; 602322) (mTR) developed severe progressive muscular dystrophy more consistent with the human phenotype. Mdx/mTR double-mutant mice had shortened telomeres in muscle cells associated with a decline in muscle stem cell regenerative capacity. The defect in mdx/mTR double-mutant mice was ameliorated histologically by transplantation of wildtype muscle stem cells. Sacco et al. (2010) suggested that progression of the human disorder results, in part, from a cell-autonomous failure of muscle stem cells to maintain the damage-repair cycle initiated by dystrophin deficiency. </p><p>To obtain therapeutic levels of utrophin expression in dystrophic muscle, Di Certo et al. (2010) developed a strategy based on artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was engineered and tested in vivo by generating a transgenic mouse specifically expressing Jazz at the muscular level. To validate the ZF ATF technology for DMD treatment, the authors generated a second mouse model by crossing Jazz-transgenic mice with dystrophin-deficient mdx mice. The artificial Jazz protein restored sarcolemmal integrity and prevented the development of the dystrophic disease in mdx mice. </p><p>In addition to its presence in muscle, dystrophin is also found in vasculature, and its absence results in vascular deficiency and abnormal blood flow. To create a mouse model of DMD with increased vasculature, Verma et al. (2010) crossed mdx mice with Flt1 knockout mice, which display increased endothelial cell proliferation and vascular density during embryogenesis. Flt1 +/- and mdx:Flt1 +/- adult mice displayed a developmentally increased vascular density in skeletal muscle compared with wildtype and mdx mice, respectively. The mdx:Flt1 +/- mice showed improved muscle histology compared with mdx mice, with decreased fibrosis, calcification, and membrane permeability. Functionally, the mdx:Flt1 +/- mice had an increase in muscle blood flow and force production compared with mdx mice. Because utrophin is upregulated in mdx mice and can compensate for the lacking function of dystrophin, Verma et al. (2010) created a triple-mutant mouse (mdx:utrophin -/-:Flt1 +/-). The mdx:utrophin -/-:Flt1 +/- mice also displayed improved muscle histology and significantly higher survival rates compared with mdx:utrophin -/- mice, which showed more severe muscle phenotypes than mdx mice. Verma et al. (2010) suggested that increasing the vasculature in DMD may ameliorate the histologic and functional phenotypes associated with this disease. </p><p>Menazza et al. (2010) investigated whether reactive oxygen species (ROS) produced in mitochondria by monoamine oxidase (MAO) contribute to muscular dystrophy pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1 (120220) -/- mice, a model of Bethlem myopathy (158810) and Ullrich congenital muscular dystrophy (UCMD; 254090), and mdx mice, a model of Duchenne muscular dystrophy. Oxidation of myofibrillar proteins, as probed by formation of disulfide crossbridges in tropomyosin (see 191010), was detected in both Col6a1 -/- and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1 -/- mice. Menazza et al. (2010) concluded that there is a novel and determinant role of MAO in muscular dystrophies, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition. </p><p>In the mdx mouse model, M1 macrophages play a major role in worsening muscle injury. However, mdx muscle contains M2c macrophages that promote tissue repair. Villalta et al. (2011) investigated factors regulating the balance between M1 and M2c macrophages in mdx mice. Ablation of Il10 (124092) expression in mdx mice increased muscle damage in vivo and reduced mouse strength. Treatment of mdx muscle macrophages with Il10 reduced activation of the M1 phenotype, as assessed by iNOS expression. Macrophages from mice lacking Il10 were more cytolytic than macrophages from wildtype mice. Real-time PCR and immunohistochemical analysis detected expression of Il10 receptor (IL10RA; 146933) in mdx muscle. Ablation of Il10 expression in mdx mice did not affect satellite cell numbers, but it increased myogenin (MYOG; 159980) expression in vivo during the acute and regenerative phases of mdx pathology. Villalta et al. (2011) concluded that IL10 plays a significant role in muscular dystrophy by reducing M1 macrophage activation and cytotoxicity, increasing M2c macrophage activation, and modulating muscle differentiation. </p><p>Gehrig et al. (2012) showed that increasing the expression of intramuscular heat-shock protein-72 (Hsp72; 140550) preserves muscle strength and ameliorates the dystrophic pathology in 2 mouse models of muscular dystrophy. Treatment with BGP-15, a pharmacologic inducer of Hsp72 that can protect against obesity-induced insulin resistance, improved muscular architecture, strength, and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe kyphosis, muscle weakness, and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles, and extended life span. Gehrig et al. (2012) found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA; 108730) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with Serca to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased Serca activity in dystrophic skeletal muscles. Gehrig et al. (2012) concluded that their results provided evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell, and pharmacologic therapies. </p><p>Cathepsin S (CTSS; 116845) is a cysteine protease that is actively secreted in areas of tissue injury and inflammation, where it participates in extracellular matrix remodeling and healing. Tjondrokoesoemo et al. (2016) observed significant induction of Ctss expression in injured wildtype mouse muscle or muscle from mdx mice. Deletion of Ctss in mdx mice resulted in protection from DMD pathogenesis, including reduced myofiber turnover and pathology, reduced fibrosis, and improved running capacity. Ctss deletion in mdx mice significantly increased myofiber sarcolemma membrane stability, with enhanced expression and membrane localization of utrophin, intregrins, and beta-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Transgenic mice overexpressing Ctss in skeletal muscle exhibited increased myofiber necrosis, muscle histopathology, and deficits similar to those of muscular dystrophy. Tjondrokoesoemo et al. (2016) concluded that CTSS induction during muscular dystrophy is a pathologic event that underlies disease pathogenesis. </p><p><strong><em>Canine Models</em></strong></p><p>
In a review, Shelton and Engvall (2005) stated that canine models of DMD had been described in the golden retriever, beagle, Rottweiler, German shorthaired pointer, and Japanese spitz breeds. </p><p>Sampaolesi et al. (2006) stated that the only animal model specifically reproducing the alterations in the dystrophin gene and the full spectrum of human pathology is the golden retriever dog model. Affected animals present a single mutation in intron 6, resulting in complete absence of the dystrophin protein, and early and severe muscle degeneration with nearly complete loss of motility and walking ability. Death usually occurs at about one year of age as a result of failure of respiratory muscles. Sampaolesi et al. (2006) reported that intraarterial delivery of wildtype canine mesoangioblasts (vessel-associated stem cells) resulted in an extensive recovery of dystrophin expression, normal muscle morphology and function (confirmed by measurement of contraction force on single fibers). The authors concluded that the outcome is a remarkable clinical amelioration and preservation of active motility. These data qualify mesoangioblasts as candidates for future stem cell therapy for Duchenne patients. </p><p>Amoasii et al. (2018) used adeno-associated viruses to deliver CRISPR gene-editing components to 4 dogs with the deltaE50-MD dog model of DMD and examined dystrophin protein expression 6 weeks after intramuscular delivery in 2 dogs or 8 weeks after systemic delivery in 2 dogs. After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. Amoasii et al. (2018) concluded that these large-animal data supported the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD. </p><p><strong><em>Feline Models</em></strong></p><p>
Winand et al. (1994) found a deletion of the dystrophin promoter in a male domestic short-haired cat with a generalized muscle hypertrophy, stiffness, and mild histopathologic dystrophy. The mutation eliminated expression of the muscle and Purkinje neuronal dystrophin isoforms. The cortical neuronal isoform was expressed at a detectable level in skeletal muscle, but not in the heart. </p><p>In a review, Shelton and Engvall (2005) discussed feline models of DMD. </p><p><strong><em>Zebrafish Models</em></strong></p><p>
Bassett and Currie (2003) reviewed zebrafish models for muscular dystrophy and congenital myopathy. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>See Also:</strong>
</span>
</h4>
<span class="mim-text-font">
Adornato et al. (1978); Blyth and Pugh (1959); Brockdorff et al.
(1987); Brown et al. (1985); Bulfield et al. (1984); Bundey (1974);
Cavanagh and Preece (1981); Chamberlain et al. (1987); Cowan et al.
(1980); Davies et al. (1985); de Martinville et al. (1985); Dorkins
et al. (1985); Drummond (1979); Emanuel et al. (1981); Fenichel
(1975); Gardner-Medwin (1970); Gomez et al. (1977); Greenberg et al.
(1994); Grimm et al. (1989); Harper et al. (1983); Heilig et al.
(1987); Howland and Iyer (1977); Ingle et al. (1985); Jacobs et al.
(1981); Kingston et al. (1984); Minetti et al. (1993); Morton and
Chung (1959); Moser (1984); O&#x27;Brien et al. (1983); Pembrey et al.
(1984); Percy et al. (1982); Pernelle et al. (1988); Prosser et al.
(1969); Rodemann and Bayreuther (1984); Roses et al. (1976); Rosman
and Kakulas (1966); Rosman (1970); Saito et al. (1985); Sanyal et al.
(1980); Shaw and Dreifuss (1969); Sica and McComas (1978); Skyring
and McKusick (1961); Thompson (1978); Winn and Heller (1978);
Witkowski and Jones (1981)
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Aartsma-Rus, A., Janson, A. A. M., Kaman, W. E., Bremmer-Bout, M., den Dunnen, J. T., Baas, F., van Ommen, G.-J. B., van Deutekom, J. C. T.
<strong>Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients.</strong>
Hum. Molec. Genet. 12: 907-914, 2003.
[PubMed: 12668614]
[Full Text: https://doi.org/10.1093/hmg/ddg100]
</p>
</li>
<li>
<p class="mim-text-font">
Aartsma-Rus, A., Janson, A. A. M., Kaman, W. E., Bremmer-Bout, M., van Ommen, G.-J. B., den Dunnen, J. T., van Deutekom, J. C. T.
<strong>Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense.</strong>
Am. J. Hum. Genet. 74: 83-92, 2004.
[PubMed: 14681829]
[Full Text: https://doi.org/10.1086/381039]
</p>
</li>
<li>
<p class="mim-text-font">
Aartsma-Rus, A., Van Deutekom, J. C. T., Fokkema, I. F., Van Ommen, G.-J. B., Den Dunnen, J. T.
<strong>Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule.</strong>
Muscle Nerve 34: 135-144, 2006.
[PubMed: 16770791]
[Full Text: https://doi.org/10.1002/mus.20586]
</p>
</li>
<li>
<p class="mim-text-font">
Abbadi, N., Philippe, C., Chery, M., Gilgenkrantz, H., Tome, F., Collin, H., Theau, D., Recan, D., Broux, O., Fardeau, M., Kaplan, J.-C., Gilgenkrantz, S.
<strong>Additional case of female monozygotic twins discordant for the clinical manifestations of Duchenne muscular dystrophy due to opposite X-chromosome inactivation.</strong>
Am. J. Med. Genet. 52: 198-206, 1994.
[PubMed: 7802009]
[Full Text: https://doi.org/10.1002/ajmg.1320520215]
</p>
</li>
<li>
<p class="mim-text-font">
Adornato, B. T., Kagen, L. J., Engel, W. K.
<strong>Myoglobinaemia in Duchenne muscular dystrophy patients and carriers: a new adjunct to carrier detection.</strong>
Lancet 312: 499-501, 1978. Note: Originally Volume II.
[PubMed: 79868]
[Full Text: https://doi.org/10.1016/s0140-6736(78)92221-3]
</p>
</li>
<li>
<p class="mim-text-font">
Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.-R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., Olson, E. N.
<strong>Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy.</strong>
Science 362: 86-91, 2018.
[PubMed: 30166439]
[Full Text: https://doi.org/10.1126/science.aau1549]
</p>
</li>
<li>
<p class="mim-text-font">
Arikawa, E., Hoffman, E. P., Kaido, M., Nonaka, I., Sugita, H., Arahata, K.
<strong>The frequency of patients with dystrophin abnormalities in a limb-girdle patient population.</strong>
Neurology 41: 1491-1496, 1991.
[PubMed: 1842672]
[Full Text: https://doi.org/10.1212/wnl.41.9.1491]
</p>
</li>
<li>
<p class="mim-text-font">
Azofeifa, J., Voit, T., Hubner, C., Cremer, M.
<strong>X-chromosome methylation in manifesting and healthy carriers of dystrophinopathies (sic): concordance of activation ratios among first degree female relatives and skewed inactivation as cause of the affected phenotypes.</strong>
Hum. Genet. 96: 167-176, 1995.
[PubMed: 7635465]
[Full Text: https://doi.org/10.1007/BF00207374]
</p>
</li>
<li>
<p class="mim-text-font">
Barbujani, G., Russo, A., Danieli, G. A., Spiegler, A. W. J., Borkowska, J., Hausmanova Petrusewicz, I.
<strong>Segregation analysis of 1885 DMD families: significant departure from the expected proportion of sporadic cases.</strong>
Hum. Genet. 84: 522-526, 1990.
[PubMed: 2338336]
[Full Text: https://doi.org/10.1007/BF00210802]
</p>
</li>
<li>
<p class="mim-text-font">
Baricordi, O. R., Sensi, A., Balboni, A., Romeo, G., Rocchi, M., Melchiorri, L., Gandini, E.
<strong>Impairment of capping in lymphoblastoid cell lines of Duchenne patients indicates an intrinsic cellular defect.</strong>
Hum. Genet. 83: 217-219, 1989.
[PubMed: 2793164]
[Full Text: https://doi.org/10.1007/BF00285158]
</p>
</li>
<li>
<p class="mim-text-font">
Barohn, R. J., Levine, E. J., Olson, J. O., Mendell, J. R.
<strong>Gastric hypomotility in Duchenne&#x27;s muscular dystrophy.</strong>
New Eng. J. Med. 319: 15-18, 1988.
[PubMed: 3380114]
[Full Text: https://doi.org/10.1056/NEJM198807073190103]
</p>
</li>
<li>
<p class="mim-text-font">
Bartlett, R. J., Pericak-Vance, M. A., Koh, J., Yamaoka, L. H., Chen, J. C., Hung, W.-Y., Speer, M. C., Wapenaar, M. C., Van Ommen, G. J. B., Bakker, E., Pearson, P. L., Kandt, R. S., Siddique, T., Gilbert, J. R., Lee, J. E., Sirotkin-Roses, M. J., Roses, A. D.
<strong>Duchenne muscular dystrophy: high frequency of deletions.</strong>
Neurology 38: 1-4, 1988.
[PubMed: 3275902]
[Full Text: https://doi.org/10.1212/wnl.38.1.1]
</p>
</li>
<li>
<p class="mim-text-font">
Barton, E. R., Morris, L., Musaro, A., Rosenthal, N., Sweeney, H. L.
<strong>Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice.</strong>
J. Cell Biol. 157: 137-147, 2002.
[PubMed: 11927606]
[Full Text: https://doi.org/10.1083/jcb.200108071]
</p>
</li>
<li>
<p class="mim-text-font">
Bassett, D. I., Currie, P. D.
<strong>The zebrafish as a model for muscular dystrophy and congenital myopathy.</strong>
Hum. Molec. Genet. 12: R265-R270, 2003.
[PubMed: 14504264]
[Full Text: https://doi.org/10.1093/hmg/ddg279]
</p>
</li>
<li>
<p class="mim-text-font">
Beckmann, R., Sauer, M., Ketelsen, U.-P., Scheuerbrandt, G.
<strong>Early diagnosis of Duchenne muscular dystrophy. (Letter)</strong>
Lancet 312: 105 only, 1978. Note: Originally Volume II.
[PubMed: 78271]
[Full Text: https://doi.org/10.1016/s0140-6736(78)91419-8]
</p>
</li>
<li>
<p class="mim-text-font">
Beggs, A. H., Kunkel, L. M.
<strong>Improved diagnosis of Duchenne/Becker muscular dystrophy.</strong>
J. Clin. Invest. 85: 613-619, 1990.
[PubMed: 1968908]
[Full Text: https://doi.org/10.1172/JCI114482]
</p>
</li>
<li>
<p class="mim-text-font">
Bellinger, A. M., Reiken, S., Carlson, C., Mongillo, M., Liu, X., Rothman, L., Matecki, S., Lacampagne, A., Marks, A. R.
<strong>Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle.</strong>
Nature Med. 15: 325-330, 2009.
[PubMed: 19198614]
[Full Text: https://doi.org/10.1038/nm.1916]
</p>
</li>
<li>
<p class="mim-text-font">
Bieber, F. R., Hoffman, E. P., Amos, J. A.
<strong>Dystrophin analysis in Duchenne muscular dystrophy: use in fetal diagnosis and in genetic counseling.</strong>
Am. J. Hum. Genet. 45: 362-367, 1989.
[PubMed: 2672800]
</p>
</li>
<li>
<p class="mim-text-font">
Blau, H. M., Webster, C., Pavlath, G. K.
<strong>Defective myoblasts identified in Duchenne muscular dystrophy.</strong>
Proc. Nat. Acad. Sci. 80: 4856-4860, 1983.
[PubMed: 6576361]
[Full Text: https://doi.org/10.1073/pnas.80.15.4856]
</p>
</li>
<li>
<p class="mim-text-font">
Blyth, H. M., Pugh, R. J.
<strong>Muscular dystrophy in childhood: the genetical aspect: a field study in the Leeds region of clinical types and their inheritance.</strong>
Ann. Hum. Genet. 23: 127-163, 1959.
[PubMed: 13637556]
[Full Text: https://doi.org/10.1111/j.1469-1809.1958.tb01457.x]
</p>
</li>
<li>
<p class="mim-text-font">
Boland, B. J., Silbert, P. L., Groover, R. V., Wollan, P. C., Silverstein, M. D.
<strong>Skeletal, cardiac, and smooth muscle failure in Duchenne muscular dystrophy.</strong>
Pediat. Neurol. 14: 7-12, 1996.
[PubMed: 8652023]
[Full Text: https://doi.org/10.1016/0887-8994(95)00251-0]
</p>
</li>
<li>
<p class="mim-text-font">
Bonilla, E., Younger, D. S., Chang, H. W., Tantravahi, U., Miranda, A. F., Medori, R., DiMauro, S., Warburton, D., Rowland, L. P.
<strong>Partial dystrophin deficiency in monozygous twin carriers of the Duchenne gene discordant for clinical myopathy.</strong>
Neurology 40: 1267-1270, 1990.
[PubMed: 2199849]
[Full Text: https://doi.org/10.1212/wnl.40.8.1267]
</p>
</li>
<li>
<p class="mim-text-font">
Borresen, A. L., Heiberg, A., Moller, P., Berg, K.
<strong>Evidence for a sperm mutation resulting in Duchenne muscular dystrophy.</strong>
Clin. Genet. 32: 187-191, 1987.
[PubMed: 2887319]
[Full Text: https://doi.org/10.1111/j.1399-0004.1987.tb03352.x]
</p>
</li>
<li>
<p class="mim-text-font">
Bresolin, N., Castelli, E., Comi, P., Felisari, G., Bardoni, A., Perani, D., Grassi, F., Turconi, A., Mazzucchelli, F., Gallotti, D., Moggio, M., Prelle, A., Ausenda, C., Fazio, G., Scarlato, G.
<strong>Cognitive impairment in Duchenne muscular dystrophy.</strong>
Neuromusc. Disord. 4: 359-369, 1994.
[PubMed: 7981593]
[Full Text: https://doi.org/10.1016/0960-8966(94)90072-8]
</p>
</li>
<li>
<p class="mim-text-font">
Brockdorff, N., Cross, G. S., Cavanna, J. S., Fisher, E. M. C., Lyon, M. F., Davies, K. E., Brown, S. D. M.
<strong>The mapping of a cDNA from the human X-linked Duchenne muscular dystrophy gene to the mouse X chromosome.</strong>
Nature 328: 166-168, 1987.
[PubMed: 3600793]
[Full Text: https://doi.org/10.1038/328166a0]
</p>
</li>
<li>
<p class="mim-text-font">
Brown, C. S., Thomas, N. S. T., Sarfarazi, M., Davies, K. E., Kunkel, L., Pearson, P. L., Kingston, H. M., Shaw, D. J., Harper, P. S.
<strong>Genetic linkage relationships of seven DNA probes with Duchenne and Becker muscular dystrophy.</strong>
Hum. Genet. 71: 62-74, 1985.
[PubMed: 2993158]
[Full Text: https://doi.org/10.1007/BF00295671]
</p>
</li>
<li>
<p class="mim-text-font">
Bucher, K., Ionasescu, V., Hanson, J.
<strong>Frequency of new mutants among boys with Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 7: 27-34, 1980.
[PubMed: 7211951]
[Full Text: https://doi.org/10.1002/ajmg.1320070107]
</p>
</li>
<li>
<p class="mim-text-font">
Bulfield, G., Siller, W. G., Wight, P. A. L., Moore, K. J.
<strong>X chromosome-linked muscular dystrophy (mdx) in the mouse.</strong>
Proc. Nat. Acad. Sci. 81: 1189-1192, 1984.
[PubMed: 6583703]
[Full Text: https://doi.org/10.1073/pnas.81.4.1189]
</p>
</li>
<li>
<p class="mim-text-font">
Bundey, S. E.
<strong>Extreme muscle hypertrophy in Duchenne muscular dystrophy.</strong>
Birth Defects Orig. Art. Ser. X(4): 341, 1974.
</p>
</li>
<li>
<p class="mim-text-font">
Burn, J., Povey, S., Boyd, Y., Munro, E. A., West, L., Harper, K., Thomas, D.
<strong>Duchenne muscular dystrophy in one of monozygotic twin girls.</strong>
J. Med. Genet. 23: 494-500, 1986.
[PubMed: 2879922]
[Full Text: https://doi.org/10.1136/jmg.23.6.494]
</p>
</li>
<li>
<p class="mim-text-font">
Bushby, K. M. D., Appleton, R., Anderson, L. V. B., Welch, J. L., Kelly, P., Gardner-Medwin, D.
<strong>Deletion status and intellectual impairment in Duchenne muscular dystrophy.</strong>
Dev. Med. Child Neurol. 37: 260-269, 1995.
[PubMed: 7890131]
[Full Text: https://doi.org/10.1111/j.1469-8749.1995.tb12000.x]
</p>
</li>
<li>
<p class="mim-text-font">
Canki, N., Dutrillaux, B., Tivadar, I.
<strong>Dystrophie musculaire de Duchenne chez une petite fille porteuse d&#x27;une translocation t(X;3) (p21;q13) de novo.</strong>
Ann. Genet. 22: 35-39, 1979.
</p>
</li>
<li>
<p class="mim-text-font">
Cantagrel, V., Lossi, A.-M., Boulanger, S., Depetris, D., Mattei, M.-G., Gecz, J., Schwartz, C. E., Van Maldergem, L., Villard, L.
<strong>Disruption of a new X linked gene highly expressed in brain in a family with two mentally retarded males.</strong>
J. Med. Genet. 41: 736-742, 2004.
[PubMed: 15466006]
[Full Text: https://doi.org/10.1136/jmg.2004.021626]
</p>
</li>
<li>
<p class="mim-text-font">
Caskey, C. T., Nussbaum, R. L., Cohan, L. C., Pollack, L.
<strong>Sporadic occurrence of Duchenne muscular dystrophy: evidence for new mutation.</strong>
Clin. Genet. 18: 329-341, 1980.
[PubMed: 7460369]
[Full Text: https://doi.org/10.1111/j.1399-0004.1980.tb02293.x]
</p>
</li>
<li>
<p class="mim-text-font">
Cavanagh, N. P. C., Preece, M. A.
<strong>Calf hypertrophy and asymmetry in female carriers of X-linked Duchenne muscular dystrophy: an over-diagnosed clinical manifestation.</strong>
Clin. Genet. 20: 168-172, 1981.
[PubMed: 7307311]
[Full Text: https://doi.org/10.1111/j.1399-0004.1981.tb01823.x]
</p>
</li>
<li>
<p class="mim-text-font">
Chakkalakal, J. V., Harrison, M.-A., Carbonetto, S., Chin, E., Michel, R. N., Jasmin, B. J.
<strong>Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice.</strong>
Hum. Molec. Genet. 13: 379-388, 2004.
[PubMed: 14681302]
[Full Text: https://doi.org/10.1093/hmg/ddh037]
</p>
</li>
<li>
<p class="mim-text-font">
Chamberlain, J. S., Grant, S. G., Reeves, A. A., Mullins, L. J., Stephenson, D. A., Hoffman, E. P., Monaco, A. P., Kunkel, L. M., Caskey, C. T., Chapman, V. M.
<strong>Regional localization of the murine Duchenne muscular dystrophy gene on the mouse X chromosome.</strong>
Somat. Cell Molec. Genet. 13: 671-678, 1987.
[PubMed: 2890215]
[Full Text: https://doi.org/10.1007/BF01534487]
</p>
</li>
<li>
<p class="mim-text-font">
Chamberlain, J. S.
<strong>Gene therapy of muscular dystrophy.</strong>
Hum. Molec. Genet. 11: 2355-2362, 2002.
[PubMed: 12351570]
[Full Text: https://doi.org/10.1093/hmg/11.20.2355]
</p>
</li>
<li>
<p class="mim-text-font">
Chelly, J., Marlhens, F., Le Marec, B., Jeanpierre, M., Lambert, M., Hamard, G., Dutrillaux, B., Kaplan, J.-C.
<strong>De novo DNA microdeletion in a girl with Turner syndrome and Duchenne muscular dystrophy.</strong>
Hum. Genet. 74: 193-196, 1986.
[PubMed: 2876949]
[Full Text: https://doi.org/10.1007/BF00282093]
</p>
</li>
<li>
<p class="mim-text-font">
Cibis, G. W., Fitzgerald, K. M., Harris, D. J., Rothberg, P. G., Rupani, M.
<strong>The effects of dystrophin gene mutations on the ERG in mice and humans.</strong>
Invest. Ophthal. Vis. Sci. 34: 3646-3652, 1993.
[PubMed: 8258524]
</p>
</li>
<li>
<p class="mim-text-font">
Clemens, P. R., Fenwick, R. G., Chamberlain, J. S., Gibbs, R. A., de Andrade, M., Chakraborty, R., Caskey, C. T.
<strong>Carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophy families, using dinucleotide repeat polymorphisms.</strong>
Am. J. Hum. Genet. 49: 951-960, 1991.
[PubMed: 1928100]
</p>
</li>
<li>
<p class="mim-text-font">
Cohn, R. D., van Erp, C., Habashi, J. P., Soleimani, A. A., Klein, E. C., Lisi, M. T., Gamradt, M., ap Rhys, C. M., Holm, T. M., Loeys, B. L., Ramirez, F., Judge, D. P., Ward, C. W., Dietz, H. C.
<strong>Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states.</strong>
Nature Med. 13: 204-210, 2007. Note: Erratum: Nature Med. 13: 511 only, 2007.
[PubMed: 17237794]
[Full Text: https://doi.org/10.1038/nm1536]
</p>
</li>
<li>
<p class="mim-text-font">
Costa, M. F., Oliveira, A. G. F., Feitosa-Santana, C., Zatz, M., Ventura, D. F.
<strong>Red-green color vision impairment in Duchenne muscular dystrophy.</strong>
Am. J. Hum. Genet. 80: 1064-1075, 2007. Note: Erratum: Am. J. Hum. Genet. 83: 148-149, 2008.
[PubMed: 17503325]
[Full Text: https://doi.org/10.1086/518127]
</p>
</li>
<li>
<p class="mim-text-font">
Cowan, J., Macdessi, J., Stark, A., Morgan, G.
<strong>Incidence of Duchenne muscular dystrophy in New South Wales and the Australian Capital Territory.</strong>
J. Med. Genet. 17: 245-249, 1980.
[PubMed: 7205898]
[Full Text: https://doi.org/10.1136/jmg.17.4.245]
</p>
</li>
<li>
<p class="mim-text-font">
Danieli, G. A., Barbujani, G.
<strong>Duchenne muscular dystrophy: frequency of sporadic cases.</strong>
Hum. Genet. 67: 252-256, 1984.
[PubMed: 6469240]
[Full Text: https://doi.org/10.1007/BF00291351]
</p>
</li>
<li>
<p class="mim-text-font">
Darras, B. T., Harper, J. F., Francke, U.
<strong>Prenatal diagnosis and detection of carriers with DNA probes in Duchenne&#x27;s muscular dystrophy.</strong>
New Eng. J. Med. 316: 985-992, 1987.
[PubMed: 3561454]
[Full Text: https://doi.org/10.1056/NEJM198704163161604]
</p>
</li>
<li>
<p class="mim-text-font">
Davies, K. E., Speer, A., Herrmann, F., Spiegler, A. W. J., McGlade, S., Hofker, M. H., Briand, P., Hanke, R., Schwartz, M., Steinbicker, V., Szibor, R., Korner, H., Sommer, D., Pearson, P. L., Coutelle, C.
<strong>Human X chromosome markers and Duchenne muscular dystrophy.</strong>
Nucleic Acids Res. 13: 3419-3426, 1985.
[PubMed: 3859837]
[Full Text: https://doi.org/10.1093/nar/13.10.3419]
</p>
</li>
<li>
<p class="mim-text-font">
de Martinville, B., Kunkel, L. M., Bruns, G., Morle, F., Koenig, M., Mandel, J. L., Horwich, A., Latt, S. A., Gusella, J. F., Housman, D., Francke, U.
<strong>Localization of DNA sequences in region Xp21 of the human X chromosome: search for molecular markers close to the Duchenne muscular dystrophy locus.</strong>
Am. J. Hum. Genet. 37: 235-249, 1985.
[PubMed: 2984924]
</p>
</li>
<li>
<p class="mim-text-font">
Di Certo, M. G., Corbi, N., Strimpakos, G., Onori, A., Luvisetto, S., Severini, C., Guglielmotti, A., Batassa, E. M., Pisani, C., Floridi, A., Benassi, B., Fanciulli, M., Magrelli, A., Mattei, E., Passananti, C.
<strong>The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dysmorphic pathology in mdx mice.</strong>
Hum. Molec. Genet. 19: 752-760, 2010.
[PubMed: 19965907]
[Full Text: https://doi.org/10.1093/hmg/ddp539]
</p>
</li>
<li>
<p class="mim-text-font">
Dorkins, H., Junien, C., Mandel, J. L., Wrogemann, K., Moison, J. P., Martinez, M., Old, J. M., Bundey, S., Schwartz, M., Carpenter, N., Hill, D., Lindlof, M., de la Chapelle, A., Pearson, P. L., Davies, K. E.
<strong>Segregation analysis of a marker localised Xp21.2-Xp21.3 in Duchenne and Becker muscular dystrophy families.</strong>
Hum. Genet. 71: 103-107, 1985.
[PubMed: 2995231]
[Full Text: https://doi.org/10.1007/BF00283362]
</p>
</li>
<li>
<p class="mim-text-font">
Drummond, L. M.
<strong>Creatine phosphokinase levels in the newborn and their use in screening for Duchenne muscular dystrophy.</strong>
Arch. Dis. Child. 54: 362-366, 1979.
[PubMed: 475411]
[Full Text: https://doi.org/10.1136/adc.54.5.362]
</p>
</li>
<li>
<p class="mim-text-font">
Dubowitz, V.
<strong>Screening for Duchenne muscular dystrophy.</strong>
Arch. Dis. Child. 51: 249-251, 1976.
[PubMed: 776092]
[Full Text: https://doi.org/10.1136/adc.51.4.249]
</p>
</li>
<li>
<p class="mim-text-font">
Emanuel, B. S., Zackai, E. H., Tucker, S.
<strong>Further evidence for Xp21 location of Duchenne muscular dystrophy (DMD) locus: X-9 translocation in a female with DMD. (Abstract)</strong>
Am. J. Hum. Genet. 33: 103A, 1981.
</p>
</li>
<li>
<p class="mim-text-font">
Emery, A. E. H., Skinner, R., Holloway, S.
<strong>A study of possible heterogeneity in Duchenne muscular dystrophy.</strong>
Clin. Genet. 15: 444-449, 1979.
[PubMed: 571778]
[Full Text: https://doi.org/10.1111/j.1399-0004.1979.tb01777.x]
</p>
</li>
<li>
<p class="mim-text-font">
Emery, A. E. H., Smith, C. A. B., Sanger, R.
<strong>The linkage relations of the loci for benign (Becker type) X-borne muscular dystrophy, colour blindness and the Xg blood groups.</strong>
Ann. Hum. Genet. 32: 261-269, 1969.
[PubMed: 5305175]
[Full Text: https://doi.org/10.1111/j.1469-1809.1969.tb00075.x]
</p>
</li>
<li>
<p class="mim-text-font">
Evans, M. I., Farrell, S. A., Greb, A., Ray, P., Johnson, M. P., Hoffman, E. P.
<strong>In utero fetal muscle biopsy for the diagnosis of Duchenne muscular dystrophy in a female fetus &#x27;suddenly at risk&#x27;.</strong>
Am. J. Med. Genet. 46: 309-312, 1993.
[PubMed: 8488877]
[Full Text: https://doi.org/10.1002/ajmg.1320460314]
</p>
</li>
<li>
<p class="mim-text-font">
Evans, M. I., Greb, A., Kunkel, L. M., Sacks, A. J., Johnson, M. P., Boehm, C., Kazazian, H. H., Jr., Hoffman, E. P.
<strong>In utero fetal muscle biopsy for the diagnosis of Duchenne muscular dystrophy.</strong>
Am. J. Obstet. Gynec. 165: 728-732, 1991.
[PubMed: 1892202]
[Full Text: https://doi.org/10.1016/0002-9378(91)90318-l]
</p>
</li>
<li>
<p class="mim-text-font">
Fenichel, G. M.
<strong>On the pathogenesis of Duchenne muscular dystrophy.</strong>
Dev. Med. Child Neurol. 17: 527-537, 1975.
[PubMed: 169179]
[Full Text: https://doi.org/10.1111/j.1469-8749.1975.tb03511.x]
</p>
</li>
<li>
<p class="mim-text-font">
Fitzgerald, K. M., Cibis, G. W., Giambrone, S. A., Harris, D. J.
<strong>Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway.</strong>
J. Clin. Invest. 93: 2425-2430, 1994.
[PubMed: 8200977]
[Full Text: https://doi.org/10.1172/JCI117250]
</p>
</li>
<li>
<p class="mim-text-font">
Francke, U., Ochs, H. D., de Martinville, B., Giacalone, J., Lindgren, V., Disteche, C., Pagon, R. A., Hofker, M. H., van Ommen, G.-J. B., Pearson, P. L., Wedgwood, R. J.
<strong>Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa, and McLeod syndrome.</strong>
Am. J. Hum. Genet. 37: 250-267, 1985.
[PubMed: 4039107]
</p>
</li>
<li>
<p class="mim-text-font">
Frigeri, A., Nicchia, G. P., Verbavatz, J. M., Valenti, G., Svelto, M.
<strong>Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle.</strong>
J. Clin. Invest. 102: 695-703, 1998.
[PubMed: 9710437]
[Full Text: https://doi.org/10.1172/JCI2545]
</p>
</li>
<li>
<p class="mim-text-font">
Gardner-Medwin, D.
<strong>Mutation rate in the Duchenne type of muscular dystrophy.</strong>
J. Med. Genet. 7: 334-337, 1970.
[PubMed: 5501697]
[Full Text: https://doi.org/10.1136/jmg.7.4.334]
</p>
</li>
<li>
<p class="mim-text-font">
Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., Lamon, S., Russell, A. P., Davies, K. E., Febbraio, M. A., Lynch, G. S.
<strong>Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.</strong>
Nature 484: 394-398, 2012.
[PubMed: 22495301]
[Full Text: https://doi.org/10.1038/nature10980]
</p>
</li>
<li>
<p class="mim-text-font">
Geifman-Holtzman, O., Bernstein, I. M., Capeless, E. L., Hawley, P., Specht, L. A., Bianchi, D. W.
<strong>Increase in fetal breech presentation in female carriers of Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 73: 276-278, 1997.
[PubMed: 9415684]
[Full Text: https://doi.org/10.1002/(sici)1096-8628(19971219)73:3&lt;276::aid-ajmg9&gt;3.0.co;2-q]
</p>
</li>
<li>
<p class="mim-text-font">
Gilbert, R., Dudley, R. W. R., Liu, A.-B., Petrof, B. J., Nalbantoglu, J., Karpati, G.
<strong>Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin.</strong>
Hum. Molec. Genet. 12: 1287-1299, 2003.
[PubMed: 12761044]
[Full Text: https://doi.org/10.1093/hmg/ddg141]
</p>
</li>
<li>
<p class="mim-text-font">
Glass, I. A., Nicholson, L. V. B., Watkiss, E., Johnson, M. A., Roberts, R. G., Abbs, S., Brittain-Jones, S., Boddie, H. G.
<strong>Investigation of a female manifesting Becker muscular dystrophy.</strong>
J. Med. Genet. 29: 578-582, 1992.
[PubMed: 1518025]
[Full Text: https://doi.org/10.1136/jmg.29.8.578]
</p>
</li>
<li>
<p class="mim-text-font">
Goertzen, M., Baltzer, A., Voit, T.
<strong>Clinical results of early orthopaedic management in Duchenne muscular dystrophy.</strong>
Neuropediatrics 26: 257-259, 1995.
[PubMed: 8552216]
[Full Text: https://doi.org/10.1055/s-2007-979767]
</p>
</li>
<li>
<p class="mim-text-font">
Gomez, M. R., Engel, A. G., Dewald, G., Peterson, H. A.
<strong>Failure of inactivation of Duchenne dystrophy X-chromosome in one of female identical twins.</strong>
Neurology 27: 537-541, 1977.
[PubMed: 559260]
[Full Text: https://doi.org/10.1212/wnl.27.6.537]
</p>
</li>
<li>
<p class="mim-text-font">
Goyenvalle, A., Vulin, A., Fougerousse, F., Leturcq, F., Kaplan, J.-C., Garcia, L., Danos, O.
<strong>Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping.</strong>
Science 306: 1796-1799, 2004.
[PubMed: 15528407]
[Full Text: https://doi.org/10.1126/science.1104297]
</p>
</li>
<li>
<p class="mim-text-font">
Greenberg, D. S., Sunada, Y., Campbell, K. P., Yaffe, D., Nudel, U.
<strong>Exogenous Dp71 restores the levels of dystrophin associated proteins but does not alleviate muscle damage in mdx mice.</strong>
Nature Genet. 8: 340-344, 1994.
[PubMed: 7894483]
[Full Text: https://doi.org/10.1038/ng1294-340]
</p>
</li>
<li>
<p class="mim-text-font">
Greenstein, R. M., Reardon, M. P., Chan, T. S.
<strong>An X-autosome translocation in a girl with Duchenne muscular dystrophy (DMD): evidence for DMD gene localization. (Abstract)</strong>
Pediat. Res. 11: 457, 1977.
</p>
</li>
<li>
<p class="mim-text-font">
Grimm, T., Muller, B., Dreier, M., Kind, E., Bettecken, T., Meng, G., Muller, C. R.
<strong>Hot spot of recombination within DXS164 in the Duchenne muscular dystrophy gene.</strong>
Am. J. Hum. Genet. 45: 368-372, 1989.
[PubMed: 2570527]
</p>
</li>
<li>
<p class="mim-text-font">
Haldane, J. B. S.
<strong>Sex ratio and unisexual sterility in hybrid animals.</strong>
J. Genet. 12: 101-109, 1922.
</p>
</li>
<li>
<p class="mim-text-font">
Haldane, J. B. S.
<strong>The rate of spontaneous mutation of a human gene.</strong>
J. Genet. 31: 317-326, 1935.
</p>
</li>
<li>
<p class="mim-text-font">
Haldane, J. B. S.
<strong>Mutation in the X-linked recessive type of muscular dystrophy: a possible sex difference.</strong>
Ann. Hum. Genet. 20: 344-347, 1956.
[PubMed: 13314403]
[Full Text: https://doi.org/10.1111/j.1469-1809.1955.tb01289.x]
</p>
</li>
<li>
<p class="mim-text-font">
Harper, P. S., O'Brien, T., Murray, J. M., Davies, K. E., Pearson, P., Williamson, R.
<strong>The use of linked DNA polymorphisms for genotype prediction in families with Duchenne muscular dystrophy.</strong>
J. Med. Genet. 20: 252-254, 1983.
[PubMed: 6684693]
[Full Text: https://doi.org/10.1136/jmg.20.4.252]
</p>
</li>
<li>
<p class="mim-text-font">
Harper, S. Q., Hauser, M. A., DelloRusso, C., Duan, D., Crawford, R. W., Phelps, S. F., Harper, H. A., Robinson, A. S., Engelhardt, J. F., Brooks, S. V., Chamberlain, J. S.
<strong>Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy.</strong>
Nature Med. 8: 253-261, 2002.
[PubMed: 11875496]
[Full Text: https://doi.org/10.1038/nm0302-253]
</p>
</li>
<li>
<p class="mim-text-font">
Haslett, J. N., Sanoudou, D., Kho, A. T., Bennett, R. R., Greenberg, S. A., Kohane, I. S., Beggs, A. H., Kunkel, L. M.
<strong>Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle.</strong>
Proc. Nat. Acad. Sci. 99: 15000-15005, 2002.
[PubMed: 12415109]
[Full Text: https://doi.org/10.1073/pnas.192571199]
</p>
</li>
<li>
<p class="mim-text-font">
Heilig, R., Lemaire, C., Mandel, J.-L., Dandolo, L., Amar, L., Avner, P.
<strong>Localization of the region homologous to the Duchenne muscular dystrophy locus on the mouse X chromosome.</strong>
Nature 328: 168-170, 1987.
[PubMed: 3600794]
[Full Text: https://doi.org/10.1038/328168a0]
</p>
</li>
<li>
<p class="mim-text-font">
Heyck, H., Laudahn, G., Carsten, P. M.
<strong>Enzymaktivitaetsbestimmungen bei Dystrophia musculorum progressiva.</strong>
Klin. Wschr. 44: 695-700, 1966.
[PubMed: 5990806]
[Full Text: https://doi.org/10.1007/BF01790793]
</p>
</li>
<li>
<p class="mim-text-font">
Hoffman, E. P., Arahata, K., Minetti, C., Bonilla, E., Rowland, L. P., Angelini, C., Arikawa, E., Baba, C., Barkhaus, P. E., Bauserman, S. C., Butler, I. J., Cook, J. D., and 40 others.
<strong>Dystrophinopathy in isolated cases of myopathy in females.</strong>
Neurology 42: 967-975, 1992.
[PubMed: 1579251]
[Full Text: https://doi.org/10.1212/wnl.42.5.967]
</p>
</li>
<li>
<p class="mim-text-font">
Hoffman, E. P.
<strong>Skipping toward personalized molecular medicine. (Editorial)</strong>
New Eng. J. Med. 357: 2719-2722, 2007.
[PubMed: 18160693]
[Full Text: https://doi.org/10.1056/NEJMe0707795]
</p>
</li>
<li>
<p class="mim-text-font">
Hoogerwaard, E. M., Ginjaar, I. B., Bakker, E., de Visser, M.
<strong>Dystrophin analysis in carriers of Duchenne and Becker muscular dystrophy.</strong>
Neurology 65: 1984-1986, 2005.
[PubMed: 16380627]
[Full Text: https://doi.org/10.1212/01.wnl.0000188909.89849.59]
</p>
</li>
<li>
<p class="mim-text-font">
Howland, J. L., Iyer, S. L.
<strong>Erythrocyte lipids in heterozygous carriers of Duchenne muscular dystrophy.</strong>
Science 198: 309-310, 1977.
[PubMed: 910129]
[Full Text: https://doi.org/10.1126/science.910129]
</p>
</li>
<li>
<p class="mim-text-font">
Hurko, O., Hoffman, E. P., McKee, L., Johns, D. R., Kunkel, L. M.
<strong>Dystrophin analysis in clonal myoblasts derived from Duchenne muscular dystrophy carrier.</strong>
Am. J. Hum. Genet. 44: 820-826, 1989.
[PubMed: 2658563]
</p>
</li>
<li>
<p class="mim-text-font">
Hurko, O., McKee, L., Zuurveld, J., Swick, H. M.
<strong>Comparison of Duchenne and normal myoblasts from a heterozygote.</strong>
Neurology 37: 675-681, 1987.
[PubMed: 3561779]
[Full Text: https://doi.org/10.1212/wnl.37.4.675]
</p>
</li>
<li>
<p class="mim-text-font">
Ingle, C., Williamson, R., de la Chapelle, A., Herva, R. R., Haapala, K., Bates, G., Willard, H. F., Pearson, P., Davies, K. E.
<strong>Mapping DNA sequences in a human X-chromosome deletion which extends across the region of the Duchenne muscular dystrophy mutation.</strong>
Am. J. Hum. Genet. 37: 451-462, 1985.
[PubMed: 2988331]
</p>
</li>
<li>
<p class="mim-text-font">
Ionasescu, V., Burmeister, L., Hanson, J.
<strong>Discriminant analysis of ribosomal protein synthesis findings in carrier detection of Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 5: 5-12, 1980.
[PubMed: 7395900]
[Full Text: https://doi.org/10.1002/ajmg.1320050103]
</p>
</li>
<li>
<p class="mim-text-font">
Iwata, Y., Katanosaka, Y., Arai, Y., Shigekawa, M., Wakabayashi, S.
<strong>Dominant-negative inhibition of Ca(2+) influx via TRPV2 ameliorates muscular dystrophy in animal models.</strong>
Hum. Molec. Genet. 18: 824-834, 2009.
[PubMed: 19050039]
[Full Text: https://doi.org/10.1093/hmg/ddn408]
</p>
</li>
<li>
<p class="mim-text-font">
Jacobs, P. A., Hunt, P. A., Mayer, M., Bart, R. D.
<strong>Duchenne muscular dystrophy (DMD) in a female with an X-autosome translocation: further evidence that the DMD locus is at Xp21.</strong>
Am. J. Hum. Genet. 33: 513-518, 1981.
[PubMed: 7258185]
</p>
</li>
<li>
<p class="mim-text-font">
Jensen, H., Warburg, M., Sjo, O., Schwartz, M.
<strong>Duchenne muscular dystrophy: negative electroretinograms and normal dark adaptation: reappraisal of assignment of X linked incomplete congenital stationary night blindness.</strong>
J. Med. Genet. 32: 348-351, 1995.
[PubMed: 7616540]
[Full Text: https://doi.org/10.1136/jmg.32.5.348]
</p>
</li>
<li>
<p class="mim-text-font">
Kaminski, H. J., Al-Hakim, M., Leigh, R. J., Katirji, M. B., Ruff, R. L.
<strong>Extraocular muscles are spared in advanced Duchenne dystrophy.</strong>
Ann. Neurol. 32: 586-588, 1992.
[PubMed: 1456746]
[Full Text: https://doi.org/10.1002/ana.410320418]
</p>
</li>
<li>
<p class="mim-text-font">
Katayama, S., Montano, M., Slotnick, N., Lebo, R. V., Golbus, M. S.
<strong>Prenatal diagnosis and carrier detection of Duchenne muscular dystrophy by restriction fragment length polymorphism analysis with pERT 87 deoxyribonucleic acid probes.</strong>
Am. J. Obstet. Gynec. 158: 548-555, 1988.
[PubMed: 2894769]
[Full Text: https://doi.org/10.1016/0002-9378(88)90023-3]
</p>
</li>
<li>
<p class="mim-text-font">
Katayama, Y., Tran, V. K., Hoan, N. T., Zhang, Z., Goji, K., Yagi, M., Takeshima, Y., Saiki, K., Nhan, N. T., Matsuo, M.
<strong>Co-occurrence of mutations in both dystrophin- and androgen-receptor genes is a novel cause of female Duchenne muscular dystrophy.</strong>
Hum. Genet. 119: 516-519, 2006.
[PubMed: 16528518]
[Full Text: https://doi.org/10.1007/s00439-006-0159-4]
</p>
</li>
<li>
<p class="mim-text-font">
Khurana, T. S., Prendergast, R. A., Alameddine, H. S., Tome, F. M. S., Fardeau, M., Arahata, K., Sugita, H., Kunkel, L. M.
<strong>Absence of extraocular muscle pathology in Duchenne&#x27;s muscular dystrophy: role for calcium homeostasis in extraocular muscle sparing.</strong>
J. Exp. Med. 182: 467-475, 1995.
[PubMed: 7629506]
[Full Text: https://doi.org/10.1084/jem.182.2.467]
</p>
</li>
<li>
<p class="mim-text-font">
Kingston, H. M., Sarfarazi, M., Thomas, N. S. T., Harper, P. S.
<strong>Localisation of the Becker muscular dystrophy gene on the short arm of the X chromosome by linkage to cloned DNA sequences.</strong>
Hum. Genet. 67: 6-17, 1984.
[PubMed: 6086495]
[Full Text: https://doi.org/10.1007/BF00270551]
</p>
</li>
<li>
<p class="mim-text-font">
Kingston, H. M., Thomas, N. S. T., Pearson, P. L., Sarfarazi, M., Harper, P. S.
<strong>Genetic linkage between Becker muscular dystrophy and a polymorphic DNA sequence on the short arm of the X chromosome.</strong>
J. Med. Genet. 20: 255-258, 1983.
[PubMed: 6620324]
[Full Text: https://doi.org/10.1136/jmg.20.4.255]
</p>
</li>
<li>
<p class="mim-text-font">
Kingston, H. M., Thomas, N. S. T., Sarfarazi, M., Harper, P. S.
<strong>Localization of the Becker muscular dystrophy gene by linkage to DNA sequence polymorphisms. (Abstract)</strong>
Cytogenet. Cell Genet. 37: 512, 1984.
</p>
</li>
<li>
<p class="mim-text-font">
Klein, C. J., Coovert, D. D., Bulman, D. E., Ray, P. N., Mendell, J. R., Burghes, A. H. M.
<strong>Somatic reversion/suppression in Duchenne muscular dystrophy (DMD): evidence supporting a frame-restoring mechanism in rare dystrophin-positive fibers.</strong>
Am. J. Hum. Genet. 50: 950-959, 1992.
[PubMed: 1570844]
</p>
</li>
<li>
<p class="mim-text-font">
Kleopa, K. A., Drousiotou, A., Mavrikiou, E., Ormiston, A., Kyriakides, T.
<strong>Naturally occurring utrophin correlates with disease severity in Duchenne muscular dystrophy.</strong>
Hum. Molec. Genet. 15: 1623-1628, 2006.
[PubMed: 16595608]
[Full Text: https://doi.org/10.1093/hmg/ddl083]
</p>
</li>
<li>
<p class="mim-text-font">
Krag, T. O. B., Bogdanovich, S., Jensen, C. J., Fischer, M. D., Hansen-Schwartz, J., Javazon, E. H., Flake, A. W., Edvinsson, L., Khurana, T. S.
<strong>Heregulin ameliorates the dystrophic phenotype in mdx mice.</strong>
Proc. Nat. Acad. Sci. 101: 13856-13860, 2004.
[PubMed: 15365169]
[Full Text: https://doi.org/10.1073/pnas.0405972101]
</p>
</li>
<li>
<p class="mim-text-font">
Krahn, M. J., Anderson, J. E.
<strong>Anabolic steroid treatment increases myofiber damage in mdx mouse muscular dystrophy.</strong>
J. Neurol. Sci. 125: 138-146, 1994.
[PubMed: 7807158]
[Full Text: https://doi.org/10.1016/0022-510x(94)90026-4]
</p>
</li>
<li>
<p class="mim-text-font">
Kristjansson, K., Chong, S. S., Van den Veyver, I. B., Subramanian, S., Snabes, M. C., Hughes, M. R.
<strong>Preimplantation single cell analyses of dystrophin gene deletions using whole genome amplification.</strong>
Nature Genet. 6: 19-24, 1994.
[PubMed: 8136827]
[Full Text: https://doi.org/10.1038/ng0194-19]
</p>
</li>
<li>
<p class="mim-text-font">
Kronqvist, P., Kawaguchi, N., Albrechtsen, R., Xu, X., Daa Schroder, H., Moghadaszadeh, B., Cilius Nielsen, F., Frohlich, C., Engvall, E., Wewer, U. M.
<strong>ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice.</strong>
Am. J. Path. 161: 1535-1540, 2002.
[PubMed: 12414501]
[Full Text: https://doi.org/10.1016/S0002-9440(10)64431-8]
</p>
</li>
<li>
<p class="mim-text-font">
Labarque, V., Freson, K., Thys, C., Wittevrongel, C., Hoylaerts, M. F., De Vos, R., Goemans, N., Van Geet, C.
<strong>Increased Gs signalling in platelets and impaired collagen activation, due to a defect in the dystrophin gene, result in increased blood loss during spinal surgery.</strong>
Hum. Molec. Genet. 17: 357-366, 2008.
[PubMed: 17981813]
[Full Text: https://doi.org/10.1093/hmg/ddm312]
</p>
</li>
<li>
<p class="mim-text-font">
Lane, R. J. M., Robinow, M., Roses, A. D.
<strong>The genetic status of mothers of isolated cases of Duchenne muscular dystrophy.</strong>
J. Med. Genet. 20: 1-11, 1983.
[PubMed: 6842530]
[Full Text: https://doi.org/10.1136/jmg.20.1.1]
</p>
</li>
<li>
<p class="mim-text-font">
Li, D., Long, C., Yue, Y., Duan, D.
<strong>Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice.</strong>
Hum. Molec. Genet. 18: 1209-1220, 2009.
[PubMed: 19131360]
[Full Text: https://doi.org/10.1093/hmg/ddp015]
</p>
</li>
<li>
<p class="mim-text-font">
Li, H., Mittal, A., Makonchuk, D. Y., Bhatnagar, S., Kumar, A.
<strong>Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy.</strong>
Hum. Molec. Genet. 18: 2584-2598, 2009.
[PubMed: 19401296]
[Full Text: https://doi.org/10.1093/hmg/ddp191]
</p>
</li>
<li>
<p class="mim-text-font">
Li, J., Patil, R. V., Verkman, A. S.
<strong>Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels.</strong>
Invest. Ophthal. Vis. Sci. 43: 573-579, 2002.
[PubMed: 11818406]
</p>
</li>
<li>
<p class="mim-text-font">
Lindenbaum, R. H., Clarke, G., Patel, C., Moncrieff, M., Hughes, J. T.
<strong>Muscular dystrophy in an X;1 translocation female suggests that Duchenne locus is on X chromosome short arm.</strong>
J. Med. Genet. 16: 389-392, 1979.
[PubMed: 513085]
[Full Text: https://doi.org/10.1136/jmg.16.5.389]
</p>
</li>
<li>
<p class="mim-text-font">
Lupski, J. R., Garcia, C. A., Zoghbi, H. Y., Hoffman, E. P., Fenwick, R. G.
<strong>Discordance of muscular dystrophy in monozygotic female twins: evidence supporting asymmetric splitting of the inner cell mass in a manifesting carrier of Duchenne dystrophy.</strong>
Am. J. Med. Genet. 40: 354-364, 1991.
[PubMed: 1683155]
[Full Text: https://doi.org/10.1002/ajmg.1320400323]
</p>
</li>
<li>
<p class="mim-text-font">
Mahoney, M. J., Haseltine, F. P., Hobbins, J. C., Banker, B. Q., Caskey, C. T., Golbus, M. S.
<strong>Prenatal diagnosis of Duchenne&#x27;s muscular dystrophy.</strong>
New Eng. J. Med. 297: 968-973, 1977.
[PubMed: 909543]
[Full Text: https://doi.org/10.1056/NEJM197711032971803]
</p>
</li>
<li>
<p class="mim-text-font">
Malik, V., Rodino-Klapac, L. R., Viollet, L., Wall, C., King, W., Al-Dahhak, R., Lewis, S., Shilling, C. J., Kota, J., Serrano-Munuera, C., Hayes, J., Mahan, J. D., and 11 others.
<strong>Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy.</strong>
Ann. Neurol. 67: 771-780, 2010.
[PubMed: 20517938]
[Full Text: https://doi.org/10.1002/ana.22024]
</p>
</li>
<li>
<p class="mim-text-font">
Mann, C. J., Honeyman, K., Cheng, A. J., Ly, T., Lloyd, F., Fletcher, S., Morgan, J. E., Partridge, T. A., Wilton, S. D.
<strong>Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse.</strong>
Proc. Nat. Acad. Sci. 98: 42-47, 2001.
[PubMed: 11120883]
[Full Text: https://doi.org/10.1073/pnas.98.1.42]
</p>
</li>
<li>
<p class="mim-text-font">
Melis, M. A., Cau, M., Congiu, R., Puddu, R., Muntoni, F., Cao, A.
<strong>Germinal mosaicism in a Duchenne muscular dystrophy family: implications for genetic counselling.</strong>
Clin. Genet. 43: 247-249, 1993.
[PubMed: 8375105]
[Full Text: https://doi.org/10.1111/j.1399-0004.1993.tb03811.x]
</p>
</li>
<li>
<p class="mim-text-font">
Menazza, S., Blaauw, B., Tiepolo, T., Toniolo, L., Braghetta, P., Spolaore, B., Reggiani, C., Di Lisa, F., Bonaldo, P., Canton, M.
<strong>Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy.</strong>
Hum. Molec. Genet. 19: 4207-4215, 2010.
[PubMed: 20716577]
[Full Text: https://doi.org/10.1093/hmg/ddq339]
</p>
</li>
<li>
<p class="mim-text-font">
Mendell, J. R., Campbell, K., Rodino-Klapac, L., Sahenk, Z., Shilling, C., Lewis, S., Bowles, D., Gray, S., Li, C., Galloway, G., Malik, V., Coley, B., Clark, K. R., Li, J., Xiao, X., Samulski, J., McPhee, S. W., Samulski, R. J., Walker, C. M.
<strong>Dystrophin immunity in Duchenne&#x27;s muscular dystrophy.</strong>
New Eng. J. Med. 363: 1429-1437, 2010.
[PubMed: 20925545]
[Full Text: https://doi.org/10.1056/NEJMoa1000228]
</p>
</li>
<li>
<p class="mim-text-font">
Mendell, J. R., Kissel, J. T., Amato, A. A., King, W., Signore, L., Prior, T. W., Sahenk, Z., Benson, S., McAndrew, P. E., Rice, R., Nagaraja, H., Stephens, R., Lantry, L., Morris, G. E., Burghes, A. H. M.
<strong>Myoblast transfer in the treatment of Duchenne&#x27;s muscular dystrophy.</strong>
New Eng. J. Med. 333: 832-838, 1995.
[PubMed: 7651473]
[Full Text: https://doi.org/10.1056/NEJM199509283331303]
</p>
</li>
<li>
<p class="mim-text-font">
Mendell, J. R., Moxley, R. T., Griggs, R. C., Brooke, M. H., Fenichel, G. M., Miller, J. P., King, W., Signore, L., Pandya, S., Florence, J., Schierbecker, J., Robison, J., Kaiser, K., Mandel, S., Arfken, C., Gilder, B.
<strong>Randomized, double-blind six-month trial of prednisone in Duchenne&#x27;s muscular dystrophy.</strong>
New Eng. J. Med. 320: 1592-1597, 1989.
[PubMed: 2657428]
[Full Text: https://doi.org/10.1056/NEJM198906153202405]
</p>
</li>
<li>
<p class="mim-text-font">
Mercier, S., Toutain, A., Toussaint, A., Raynaud, M., de Barace, C., Marcorelles, P., Pasquier, L., Blayau, M., Penisson-Besnier, I., Romero, N., Espil, C., Parent, P., and 13 others.
<strong>Genetic and clinical specificity of 26 symptomatic carriers for dystrophinopathies at pediatric age.</strong>
Europ. J. Hum. Genet. 21: 855-863, 2013. Note: Erratum: Europ. J. Hum. Genet. 21: 892 only, 2013.
[PubMed: 23299919]
[Full Text: https://doi.org/10.1038/ejhg.2012.269]
</p>
</li>
<li>
<p class="mim-text-font">
Miciak, A., Keen, A., Jadayel, D., Bundey, S.
<strong>Multiple mutation in an extended Duchenne muscular dystrophy family.</strong>
J. Med. Genet. 29: 123-126, 1992.
[PubMed: 1351947]
[Full Text: https://doi.org/10.1136/jmg.29.2.123]
</p>
</li>
<li>
<p class="mim-text-font">
Minetti, C., Chang, H. W., Medori, R., Prelle, A., Moggio, M., Johnsen, S. D., Bonilla, E.
<strong>Dystrophin deficiency in young girls with sporadic myopathy and normal karyotype.</strong>
Neurology 41: 1288-1292, 1991.
[PubMed: 1714059]
[Full Text: https://doi.org/10.1212/wnl.41.8.1288]
</p>
</li>
<li>
<p class="mim-text-font">
Minetti, C., Tanji, K., Chang, H. W., Medori, R., Cordone, G., DiMauro, S., Bonilla, E.
<strong>Dystrophinopathy in two young boys with exercise-induced cramps and myoglobinuria.</strong>
Europ. J. Pediat. 152: 848-851, 1993.
[PubMed: 8223790]
[Full Text: https://doi.org/10.1007/BF02073385]
</p>
</li>
<li>
<p class="mim-text-font">
Mirabella, M., Servidei, S., Manfredi, G., Ricci, E., Frustaci, A., Bertini, E., Rana, M., Tonali, P.
<strong>Cardiomyopathy may be the only clinical manifestation in female carriers of Duchenne muscular dystrophy.</strong>
Neurology 43: 2342-2345, 1993.
[PubMed: 8232953]
[Full Text: https://doi.org/10.1212/wnl.43.11.2342]
</p>
</li>
<li>
<p class="mim-text-font">
Miura, P., Chakkalakal, J. V., Boudreault, L., Belanger, G., Hebert, R. L., Renaud, J.-M., Jasmin, B. J.
<strong>Pharmacological activation of PPAR-beta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice.</strong>
Hum. Molec. Genet. 18: 4640-4649, 2009.
[PubMed: 19744959]
[Full Text: https://doi.org/10.1093/hmg/ddp431]
</p>
</li>
<li>
<p class="mim-text-font">
Moghadaszadeh, B., Albrechtsen, R., Guo, L. T., Zaik, M., Kawaguchi, N., Borup, R. H., Kronqvist, P., Schroder, H. D., Davies, K. E., Voit, T., Nielsen, F. C., Engvall, E., Wewer, U. M.
<strong>Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha-7 integrin, utrophin and associated glycoproteins.</strong>
Hum. Molec. Genet. 12: 2467-2479, 2003.
[PubMed: 12915458]
[Full Text: https://doi.org/10.1093/hmg/ddg264]
</p>
</li>
<li>
<p class="mim-text-font">
Morton, N. E., Chung, C. S.
<strong>Formal genetics of muscular dystrophy.</strong>
Am. J. Hum. Genet. 11: 360-379, 1959.
[PubMed: 14424475]
</p>
</li>
<li>
<p class="mim-text-font">
Moser, H., Emery, A. E. H.
<strong>The manifesting carrier in Duchenne muscular dystrophy.</strong>
Clin. Genet. 5: 271-284, 1974.
[PubMed: 4854942]
[Full Text: https://doi.org/10.1111/j.1399-0004.1974.tb01694.x]
</p>
</li>
<li>
<p class="mim-text-font">
Moser, H.
<strong>Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention.</strong>
Hum. Genet. 66: 17-40, 1984.
[PubMed: 6365739]
[Full Text: https://doi.org/10.1007/BF00275183]
</p>
</li>
<li>
<p class="mim-text-font">
Mostacciuolo, M. L., Lombardi, A., Cambissa, V., Danieli, G. A., Angelini, C.
<strong>Population data on benign and severe forms of X-linked muscular dystrophy.</strong>
Hum. Genet. 75: 217-220, 1987.
[PubMed: 3557448]
[Full Text: https://doi.org/10.1007/BF00281062]
</p>
</li>
<li>
<p class="mim-text-font">
Muller, C. R., Grimm, T.
<strong>Estimation of the male to female ratio of mutation rates from the segregation of X-chromosomal DNA haplotypes in Duchenne muscular dystrophy families.</strong>
Hum. Genet. 74: 181-183, 1986.
[PubMed: 3464560]
[Full Text: https://doi.org/10.1007/BF00282088]
</p>
</li>
<li>
<p class="mim-text-font">
Mulley, J. C., Haan, E. A., Sheffield, L. J., Sutherland, G. R.
<strong>Recombination frequencies between Duchenne muscular dystrophy and intragenic markers in multigeneration families. (Letter)</strong>
Hum. Genet. 78: 296-297, 1988.
[PubMed: 3162229]
[Full Text: https://doi.org/10.1007/BF00291684]
</p>
</li>
<li>
<p class="mim-text-font">
Murray, J. M., Davies, K. E., Harper, P. S., Meredith, L., Mueller, C. R., Williamson, R.
<strong>Linkage relationship of a cloned DNA sequence on the short arm of the X chromosome to Duchenne muscular dystrophy.</strong>
Nature 300: 69-71, 1982.
[PubMed: 6982420]
[Full Text: https://doi.org/10.1038/300069a0]
</p>
</li>
<li>
<p class="mim-text-font">
Nance, W. E.
<strong>Do twin lyons have larger spots? (Editorial)</strong>
Am. J. Hum. Genet. 46: 646-648, 1990.
[PubMed: 2316517]
</p>
</li>
<li>
<p class="mim-text-font">
Nigro, G., Comi, L. I., Limongelli, F. M., Giugliano, M. A. M., Politano, L., Petretta, V., Passamano, L., Stefanelli, S.
<strong>Prospective study of X-linked progressive muscular dystrophy in Campania.</strong>
Muscle Nerve 6: 253-262, 1983.
[PubMed: 6683357]
[Full Text: https://doi.org/10.1002/mus.880060403]
</p>
</li>
<li>
<p class="mim-text-font">
Noguchi, S., Tsukahara, T., Fujita, M., Kurokawa, R., Tachikawa, M., Toda, T., Tsujimoto, A., Arahata, K., Nishino, I.
<strong>cDNA microarray analysis of individual Duchenne muscular dystrophy patients.</strong>
Hum. Molec. Genet. 12: 595-600, 2003.
[PubMed: 12620965]
</p>
</li>
<li>
<p class="mim-text-font">
O'Brien, T., Harper, P. S., Davies, K. E., Murray, J. M., Sarfarazi, M., Williamson, R.
<strong>Absence of genetic heterogeneity in Duchenne muscular dystrophy shown by a linkage study using two cloned DNA sequences.</strong>
J. Med. Genet. 20: 249-251, 1983.
[PubMed: 6684692]
[Full Text: https://doi.org/10.1136/jmg.20.4.249]
</p>
</li>
<li>
<p class="mim-text-font">
Onengut, S., Kavaslar, G. N., Battaloglu, E., Serdaroglu, P., Deymeer, F., Ozdemir, C., Calafell, F., Tolun, A.
<strong>Deletion pattern in the dystrophin gene in Turks and a comparison with Europeans and Indians.</strong>
Ann. Hum. Genet. 64: 33-40, 2000.
[PubMed: 11388892]
[Full Text: https://doi.org/10.1017/S0003480000007934]
</p>
</li>
<li>
<p class="mim-text-font">
Orr, H. A.
<strong>Haldane&#x27;s rule has multiple genetic causes.</strong>
Nature 361: 532-533, 1993.
[PubMed: 8429905]
[Full Text: https://doi.org/10.1038/361532a0]
</p>
</li>
<li>
<p class="mim-text-font">
Oshima, J., Magner, D. B., Lee, J. A., Breman, A. M., Schmitt, E. S., White, L. D., Crowe, C. A., Merrill, M., Jayakar, P., Rajadhyaksha, A., Eng, C. M., del Gaudio, D.
<strong>Regional genomic instability predisposes to complex dystrophin gene rearrangements.</strong>
Hum. Genet. 126: 411-423, 2009.
[PubMed: 19449031]
[Full Text: https://doi.org/10.1007/s00439-009-0679-9]
</p>
</li>
<li>
<p class="mim-text-font">
Parsons, E., Bradley D., Clarke, A.
<strong>Disclosure of Duchenne muscular dystrophy after newborn screening.</strong>
Arch. Dis. Child. 74: 550-553, 1996.
[PubMed: 8758137]
[Full Text: https://doi.org/10.1136/adc.74.6.550]
</p>
</li>
<li>
<p class="mim-text-font">
Passos-Bueno, M. R., Bakker, E., Kneppers, A. L. J., Takata, R. I., Rapaport, D., den Dunnen, J. T., Zatz, M., van Ommen, G. J. B.
<strong>Different mosaicism frequencies for proximal and distal Duchenne muscular dystrophy (DMD) mutations indicate difference in etiology and recurrence risk.</strong>
Am. J. Hum. Genet. 51: 1150-1155, 1992.
[PubMed: 1415256]
</p>
</li>
<li>
<p class="mim-text-font">
Pegoraro, E., Hoffman, E. P., Piva, L., Gavassini, B. F., Cagnin, S., Ermani, M., Bello, L., Soraru, G., Pacchioni, B., Bonifati, M. D., Lanfranchi, G., Angelini, C., Kesari, A., Lee, I., Gordish-Dressman, H., Devaney, J. M., McDonald, C. M.
<strong>SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy.</strong>
Neurology 76: 219-226, 2011.
[PubMed: 21178099]
[Full Text: https://doi.org/10.1212/WNL.0b013e318207afeb]
</p>
</li>
<li>
<p class="mim-text-font">
Pegoraro, E., Schimke, R. N., Arahata, K., Hayashi, Y., Stern, H., Marks, H., Glasberg, M. R., Carroll, J. E., Taber, J. W., Wessel, H. B., Bauserman, S. C., Marks, W. A., Toriello, H. V., Higgins, J. V., Appleton, S., Schwartz, L., Garcia, C. A., Hoffman, E. P.
<strong>Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females.</strong>
Am. J. Hum. Genet. 54: 989-1003, 1994.
[PubMed: 8198142]
</p>
</li>
<li>
<p class="mim-text-font">
Pembrey, M. E., Davies, K. E., Winter, R. M., Elles, R. G., Williamson, R., Fazzone, T. A., Walker, C.
<strong>Clinical use of DNA markers linked to the gene for Duchenne muscular dystrophy.</strong>
Arch. Dis. Child. 59: 208-216, 1984.
[PubMed: 6585184]
[Full Text: https://doi.org/10.1136/adc.59.3.208]
</p>
</li>
<li>
<p class="mim-text-font">
Pena, S. D. J., Karpati, G., Carpenter, S., Fraser, F. C.
<strong>The clinical consequences of X-chromosome inactivation: Duchenne muscular dystrophy in one of monozygotic twins.</strong>
J. Neurol. Sci. 79: 337-344, 1987.
[PubMed: 3612177]
[Full Text: https://doi.org/10.1016/0022-510x(87)90240-1]
</p>
</li>
<li>
<p class="mim-text-font">
Percy, M. E., Andrews, D. F., Thompson, M. W.
<strong>Duchenne muscular dystrophy carrier detection using logistic discrimination: serum creatine kinase and hemopexin in combination.</strong>
Am. J. Med. Genet. 8: 397-409, 1981.
[PubMed: 7246612]
[Full Text: https://doi.org/10.1002/ajmg.1320080406]
</p>
</li>
<li>
<p class="mim-text-font">
Percy, M. E., Andrews, D. F., Thompson, M. W.
<strong>Duchenne muscular dystrophy carrier detection using logistic discrimination: serum creatine kinase, hemopexin, pyruvate kinase, and lactate dehydrogenase in combination.</strong>
Am. J. Med. Genet. 13: 27-38, 1982.
[PubMed: 7137219]
[Full Text: https://doi.org/10.1002/ajmg.1320130107]
</p>
</li>
<li>
<p class="mim-text-font">
Pernelle, J.-J., Chafey, P., Chelly, J., Wahrmann, J. P., Kaplan, J.-C., Tome, F., Fardeau, M.
<strong>Nebulin seen in DMD males including one patient with a large DNA deletion encompassing the DMD gene.</strong>
Hum. Genet. 78: 285, 1988.
[PubMed: 3346018]
[Full Text: https://doi.org/10.1007/BF00291678]
</p>
</li>
<li>
<p class="mim-text-font">
Peter, A. K., Ko, C. Y., Kim, M. H., Hsu, N., Ouchi, N., Rhie, S., Izumiya, Y., Zeng, L., Walsh, K., Crosbie, R. H.
<strong>Myogenic Akt signaling upregulates the utrophin-glycoprotein complex and promotes sarcolemma stability in muscular dystrophy.</strong>
Hum. Molec. Genet. 18: 318-327, 2009.
[PubMed: 18986978]
[Full Text: https://doi.org/10.1093/hmg/ddn358]
</p>
</li>
<li>
<p class="mim-text-font">
Pillers, D.-A. M., Bulman, D. E., Weleber, R. G., Sigesmund, D. A., Musarella, M. A., Powell, B. R., Murphey, W. H., Westall, C., Panton, C., Becker, L. E., Worton, R. G., Ray, P. N.
<strong>Dystrophin expression in the human retina is required for normal function as defined by electroretinography.</strong>
Nature Genet. 4: 82-86, 1993.
[PubMed: 8513332]
[Full Text: https://doi.org/10.1038/ng0593-82]
</p>
</li>
<li>
<p class="mim-text-font">
Prelle, A., Medori, R., Moggio, M., Chan, H. W., Gallanti, A., Scarlato, G., Bonilla, E.
<strong>Dystrophin deficiency in a case of congenital myopathy.</strong>
J. Neurol. 239: 76-78, 1992.
[PubMed: 1552307]
[Full Text: https://doi.org/10.1007/BF00862976]
</p>
</li>
<li>
<p class="mim-text-font">
Prosser, E. J., Murphy, E. G., Thompson, M. W.
<strong>Intelligence and the gene for Duchenne muscular dystrophy.</strong>
Arch. Dis. Child. 44: 221-230, 1969.
[PubMed: 5779432]
[Full Text: https://doi.org/10.1136/adc.44.234.221]
</p>
</li>
<li>
<p class="mim-text-font">
Quan, F., Janas, J., Toth-Fejel, S., Johnson, D. B., Wolford, J. K., Popovich, B. W.
<strong>Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy.</strong>
Am. J. Hum. Genet. 60: 160-165, 1997.
[PubMed: 8981959]
</p>
</li>
<li>
<p class="mim-text-font">
Race, R. R., Sanger, R.
<strong>Blood Groups in Man. (6th ed.)</strong>
Oxford: Blackwell (pub.) 1975. P. 605.
</p>
</li>
<li>
<p class="mim-text-font">
Rajakulendran, S., Kuntzer, T., Dunand, M., Yau, S. C., Ashton, E. J., Storey, H., McCauley, J., Abbs, S., Thonney, F., Leturcq, F., Lobrinus, J. A., Yousry, T., Farmer, S., Holton, J. L., Hanna, M. G.
<strong>Marked hemiatrophy in carriers of Duchenne muscular dystrophy.</strong>
Arch. Neurol. 67: 497-500, 2010.
[PubMed: 20385919]
[Full Text: https://doi.org/10.1001/archneurol.2010.58]
</p>
</li>
<li>
<p class="mim-text-font">
Richards, C. S., Watkins, S. C., Hoffman, E. P., Schneider, N. R., Milsark, I. W., Katz, K. S., Cook, J. D., Kunkel, L. M., Cortada, J. M.
<strong>Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy.</strong>
Am. J. Hum. Genet. 46: 672-681, 1990.
[PubMed: 2180286]
</p>
</li>
<li>
<p class="mim-text-font">
Roddie, A., Bundey, S.
<strong>Racial distribution of Duchenne muscular dystrophy in the west midlands region of Britain.</strong>
J. Med. Genet. 29: 555-557, 1992.
[PubMed: 1518024]
[Full Text: https://doi.org/10.1136/jmg.29.8.555]
</p>
</li>
<li>
<p class="mim-text-font">
Rodemann, H. P., Bayreuther, K.
<strong>Abnormal collagen metabolism in cultured skin fibroblasts from patients with Duchenne muscular dystrophy.</strong>
Proc. Nat. Acad. Sci. 81: 5130-5134, 1984.
[PubMed: 6591184]
[Full Text: https://doi.org/10.1073/pnas.81.16.5130]
</p>
</li>
<li>
<p class="mim-text-font">
Rodino-Klapac, L. R., Chicoine, L. G., Kaspar, B. K., Mendell, J. R.
<strong>Gene therapy for Duchenne muscular dystrophy: expectations and challenges.</strong>
Arch. Neurol. 64: 1236-1241, 2007.
[PubMed: 17846262]
[Full Text: https://doi.org/10.1001/archneur.64.9.1236]
</p>
</li>
<li>
<p class="mim-text-font">
Roses, A. D., Roses, M. J., Miller, S. E., Hull, K. L., Jr., Appel, S. H.
<strong>Carrier detection in Duchenne muscular dystrophy.</strong>
New Eng. J. Med. 294: 193-198, 1976.
[PubMed: 1244534]
[Full Text: https://doi.org/10.1056/NEJM197601222940404]
</p>
</li>
<li>
<p class="mim-text-font">
Roses, A. D., Roses, M. J., Nicholson, G. A., Roe, C. R.
<strong>Lactate dehydrogenase isoenzyme 5 in detecting carriers of Duchenne muscular dystrophy.</strong>
Neurology 27: 414-421, 1977.
[PubMed: 558544]
[Full Text: https://doi.org/10.1212/wnl.27.5.414]
</p>
</li>
<li>
<p class="mim-text-font">
Rosman, N. P., Kakulas, B. A.
<strong>Mental deficiency associated with muscular dystrophy--a neurological study.</strong>
Brain 89: 769-788, 1966.
[PubMed: 4163581]
[Full Text: https://doi.org/10.1093/brain/89.4.769]
</p>
</li>
<li>
<p class="mim-text-font">
Rosman, N. P.
<strong>The cerebral defect and myopathy in Duchenne muscular dystrophy: a comparative clinicopathological study.</strong>
Neurology 20: 329-335, 1970.
[PubMed: 5534965]
[Full Text: https://doi.org/10.1212/wnl.20.4.329]
</p>
</li>
<li>
<p class="mim-text-font">
Sacco, A., Mourkioti, F., Tran, R., Choi, J., Llewellyn, M., Kraft, P., Shkreli, M., Delp, S., Pomerantz, J. H., Artandi, S. E., Blau, H. M.
<strong>Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice.</strong>
Cell 143: 1059-1071, 2010.
[PubMed: 21145579]
[Full Text: https://doi.org/10.1016/j.cell.2010.11.039]
</p>
</li>
<li>
<p class="mim-text-font">
Saito, F., Tonomura, A., Kimura, S., Misugi, N., Sugita, H.
<strong>High-resolution banding study of an X/4 translocation in a female with Duchenne muscular dystrophy.</strong>
Hum. Genet. 71: 370-371, 1985.
[PubMed: 4077054]
[Full Text: https://doi.org/10.1007/BF00388468]
</p>
</li>
<li>
<p class="mim-text-font">
Saito-Ohara, F., Fukuda, Y., Ito, M., Agarwala, K. L., Hayashi, M., Matsuo, M., Imoto, I., Yamakawa, K., Nakamura, Y., Inazawa, J.
<strong>The Xq22 inversion breakpoint interrupted a novel Ras-like GTPase gene in a patient with Duchenne muscular dystrophy and profound mental retardation.</strong>
Am. J. Hum. Genet. 71: 637-645, 2002.
[PubMed: 12145744]
[Full Text: https://doi.org/10.1086/342208]
</p>
</li>
<li>
<p class="mim-text-font">
Sampaolesi, M., Blot, S., D'Antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., Mognol, P., Thibaud, J.-L., Galvez, B. G., Barthelemy, I., Perani, L., Mantero, S., Guttinger, M., Pansarasa, O., Rinaldi, C., Cusella De Angelis, M. G., Torrente, Y., Bordignon, C., Bottinelli, R., Cossu, G.
<strong>Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs.</strong>
Nature 444: 574-579, 2006. Note: Erratum: Nature 494: 506 only, 2013. Erratum: Nature 507: 262 only, 2014.
[PubMed: 17108972]
[Full Text: https://doi.org/10.1038/nature05282]
</p>
</li>
<li>
<p class="mim-text-font">
Sancho, S., Mongini, T., Tanji, K., Tapscott, S. J., Walker, W. F., Weintraub, H., Miller, A. D., Miranda, A. F.
<strong>Analysis of dystrophin expression after activation of myogenesis in amniocytes, chorionic-villus cells, and fibroblasts: a new method for diagnosing Duchenne&#x27;s muscular dystrophy.</strong>
New Eng. J. Med. 329: 915-920, 1993.
[PubMed: 8361505]
[Full Text: https://doi.org/10.1056/NEJM199309233291303]
</p>
</li>
<li>
<p class="mim-text-font">
Sanyal, S. K., Johnson, W. W., Dische, M. R., Pitner, S. E., Beard, C.
<strong>Dystrophic degeneration of papillary muscle and ventricular myocardium: a basis for mitral valve prolapse in Duchenne&#x27;s muscular dystrophy.</strong>
Circulation 62: 430-438, 1980.
[PubMed: 7397983]
[Full Text: https://doi.org/10.1161/01.cir.62.2.430]
</p>
</li>
<li>
<p class="mim-text-font">
Sato, B., Nishikida, K., Samuels, L. T., Tyler, F. H.
<strong>Electron spin resonance studies of erythrocytes from patients with Duchenne muscular dystrophy.</strong>
J. Clin. Invest. 61: 251-259, 1978.
[PubMed: 23391]
[Full Text: https://doi.org/10.1172/JCI108934]
</p>
</li>
<li>
<p class="mim-text-font">
Schade van Westrum, S. M., Hoogerwaard, E. M., Dekker, L., Standaar, T. S., Bakker, E., Ippel, P. F., Oosterwijk, J. C., Majoor-Krakauer, D. F., van Essen, A. J., Leschot, N. J., Wilde, A. A. M., de Haan, R. J., de Visser, M., van der Kooi, A. J.
<strong>Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy.</strong>
Neurology 77: 62-66, 2011.
[PubMed: 21700587]
[Full Text: https://doi.org/10.1212/WNL.0b013e318221ad14]
</p>
</li>
<li>
<p class="mim-text-font">
Shaw, R. F., Dreifuss, F. E.
<strong>Mild and severe forms of X-linked muscular dystrophy.</strong>
Arch. Neurol. 20: 451-460, 1969.
[PubMed: 5767609]
[Full Text: https://doi.org/10.1001/archneur.1969.00480110015001]
</p>
</li>
<li>
<p class="mim-text-font">
Shelton, G. D., Engvall, E.
<strong>Canine and feline models of human inherited muscle diseases.</strong>
Neuromusc. Disord. 15: 127-138, 2005.
[PubMed: 15694134]
[Full Text: https://doi.org/10.1016/j.nmd.2004.10.019]
</p>
</li>
<li>
<p class="mim-text-font">
Shomrat, R., Gluck, E., Legum, C., Shiloh, Y.
<strong>Relatively low proportion of dystrophin gene deletions in Israeli Duchenne and Becker muscular dystrophy patients.</strong>
Am. J. Med. Genet. 49: 369-373, 1994.
[PubMed: 8160727]
[Full Text: https://doi.org/10.1002/ajmg.1320490403]
</p>
</li>
<li>
<p class="mim-text-font">
Sica, R. E. P., McComas, A. J.
<strong>The neural hypothesis of muscular dystrophy: a review of recent experimental evidence with particular reference to the Duchenne form.</strong>
Canad. J. Neurol. Sci. 5: 189-197, 1978.
[PubMed: 667746]
[Full Text: https://doi.org/10.1017/s0317167100024549]
</p>
</li>
<li>
<p class="mim-text-font">
Sifringer, M., Uhlenberg, B., Lammel, S., Hanke, R., Neumann, B., von Moers, A., Koch, I., Speer, A.
<strong>Identification of transcripts from a subtraction library which might be responsible for the mild phenotype in an intrafamilially variable course of Duchenne muscular dystrophy.</strong>
Hum. Genet. 114: 149-156, 2004.
[PubMed: 14600829]
[Full Text: https://doi.org/10.1007/s00439-003-1041-2]
</p>
</li>
<li>
<p class="mim-text-font">
Skyring, A. P., McKusick, V. A.
<strong>Clinical, genetic and electrocardiographic studies of childhood muscular dystrophy.</strong>
Am. J. Med. Sci. 242: 534-547, 1961.
[PubMed: 13913764]
[Full Text: https://doi.org/10.1097/00000441-196111000-00002]
</p>
</li>
<li>
<p class="mim-text-font">
Soloway, S. S., Mudge, G. H.
<strong>Acute hypokalemia as a possible cause of death in a patient with advanced muscular dystrophy.</strong>
Johns Hopkins Med. J. 144: 166-167, 1979.
[PubMed: 449173]
</p>
</li>
<li>
<p class="mim-text-font">
Speer, A., Spiegler, A. W. J., Hanke, R., Grade, K., Giertler, U., Schieck, J., Forrest, S., Davies, K. E., Neumann, R., Bollmann, R., Bommer, C., Sommer, D., Coutelle, C.
<strong>Possibilities and limitation of prenatal diagnosis and carrier determination for Duchenne and Becker muscular dystrophy using cDNA probes.</strong>
J. Med. Genet. 26: 1-5, 1989.
[PubMed: 2918522]
[Full Text: https://doi.org/10.1136/jmg.26.1.1]
</p>
</li>
<li>
<p class="mim-text-font">
Spencer, M. J., Mellgren, R. L.
<strong>Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology.</strong>
Hum. Molec. Genet. 11: 2645-2655, 2002.
[PubMed: 12354790]
[Full Text: https://doi.org/10.1093/hmg/11.21.2645]
</p>
</li>
<li>
<p class="mim-text-font">
Spitali, P., Zaharieva, I., Bohringer, S., Hiller, M., Chaouch, A., Roos, A., Scotton, C., Claustres, M., Bello, L., McDonald, C. M., Hoffman, E. P., Koeks, Z., and 11 others.
<strong>TCTEX1D1 is a genetic modifier of disease progression in Duchenne muscular dystrophy.</strong>
Europ. J. Hum. Genet. 28: 815-825, 2020.
[PubMed: 31896777]
[Full Text: https://doi.org/10.1038/s41431-019-0563-6]
</p>
</li>
<li>
<p class="mim-text-font">
Spowart, G., Buckton, K. E., Skinner, R., Emery, A. E. H.
<strong>X chromosome in Duchenne muscular dystrophy. (Letter)</strong>
Lancet 319: 1251 only, 1982. Note: Originally Volume I.
[PubMed: 6123008]
[Full Text: https://doi.org/10.1016/s0140-6736(82)92380-7]
</p>
</li>
<li>
<p class="mim-text-font">
Straub, V., Ratjen, F., Amthor, H., Voit, T., Grasemann, H.
<strong>Airway nitric oxide in Duchenne muscular dystrophy.</strong>
J. Pediat. 141: 132-134, 2002.
[PubMed: 12091865]
[Full Text: https://doi.org/10.1067/mpd.2002.125226]
</p>
</li>
<li>
<p class="mim-text-font">
Suthers, G. K., Manson, J. I., Stern, L. M., Haan, E. A., Mulley, J. C.
<strong>Becker muscular dystrophy (BMD) and Klinefelter&#x27;s syndrome: a possible cause of variable expression of BMD within a pedigree.</strong>
J. Med. Genet. 26: 251-254, 1989.
[PubMed: 2716035]
[Full Text: https://doi.org/10.1136/jmg.26.4.251]
</p>
</li>
<li>
<p class="mim-text-font">
Tangorra, A., Curatola, G., Milani-Comparetti, M., Ferretti, G.
<strong>Echinogenic action of L-alpha-lysophosphatidylcholine in Duchenne muscular dystrophy: a study of carrier detection.</strong>
Am. J. Med. Genet. 32: 540-544, 1989.
[PubMed: 2774000]
[Full Text: https://doi.org/10.1002/ajmg.1320320423]
</p>
</li>
<li>
<p class="mim-text-font">
Tautz, D., Renz, M.
<strong>Simple sequences are ubiquitous repetitive components of eukaryotic genomes.</strong>
Nucleic Acids Res. 12: 4127-4138, 1984.
[PubMed: 6328411]
[Full Text: https://doi.org/10.1093/nar/12.10.4127]
</p>
</li>
<li>
<p class="mim-text-font">
Thanh, L. T., Nguyen, T. M., Helliwell, T. R., Morris, G. E.
<strong>Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin.</strong>
Am. J. Hum. Genet. 56: 725-731, 1995.
[PubMed: 7887428]
</p>
</li>
<li>
<p class="mim-text-font">
Thompson, C. E.
<strong>Fetal-blood creatine phosphokinase in the diagnosis of Duchenne&#x27;s muscular dystrophy. (Letter)</strong>
New Eng. J. Med. 298: 1479-1480, 1978.
</p>
</li>
<li>
<p class="mim-text-font">
Thompson, C. E.
<strong>Reproduction in Duchenne dystrophy.</strong>
Neurology 28: 1045-1047, 1978.
[PubMed: 570659]
[Full Text: https://doi.org/10.1212/wnl.28.10.1045]
</p>
</li>
<li>
<p class="mim-text-font">
Tjondrokoesoemo, A., Schips, T. G., Sargent, M. A., Vanhoutte, D., Kanisicak, O., Prasad, V., Lin, S.-C. J., Maillet, M., Molkentin, J. D.
<strong>Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice.</strong>
J. Biol. Chem. 291: 9920-9928, 2016.
[PubMed: 26966179]
[Full Text: https://doi.org/10.1074/jbc.M116.719054]
</p>
</li>
<li>
<p class="mim-text-font">
Tran, T. H. T., Zhang, Z., Yagi, M., Lee, T., Awano, H., Nishida, A., Okinaga, T., Takeshima, Y., Matsuo, M.
<strong>Molecular characterization of an X(p21.2;q28) chromosomal inversion in a Duchenne muscular dystrophy patient with mental retardation reveals a novel long non-coding gene on Xq28.</strong>
J. Hum. Genet. 58: 33-39, 2013.
[PubMed: 23223008]
[Full Text: https://doi.org/10.1038/jhg.2012.131]
</p>
</li>
<li>
<p class="mim-text-font">
Tuffery-Giraud, S., Beroud, C., Leturcq, F., Yaou, R. B., Hamroun, D., Michel-Calemard, L., Moizard, M.-P., Bernard, R., Cossee, M., Boisseau, P., Blayau, M., Creveaux, I., and 11 others.
<strong>Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase.</strong>
Hum. Mutat. 30: 934-945, 2009.
[PubMed: 19367636]
[Full Text: https://doi.org/10.1002/humu.20976]
</p>
</li>
<li>
<p class="mim-text-font">
van Deutekom, J. C., Janson, A. A., Ginjaar, I. B., Frankhuizen, W. S., Aartsma-Rus, A., Bremmer-Bout, M., den Dunnen, J. T., Koop, K., van der Kooi, A. J., Goemans, N. M., de Kimpe, S. J., Ekhart, P. F., Venneker, E. H., Platenburg, G. J., Verschuuren, J. J., van Ommen, G.-J. B.
<strong>Local dystrophin restoration with antisense oligonucleotide PRO051.</strong>
New Eng. J. Med. 357: 2677-2686, 2007.
[PubMed: 18160687]
[Full Text: https://doi.org/10.1056/NEJMoa073108]
</p>
</li>
<li>
<p class="mim-text-font">
van Deutekom, J. C. T., Bremmer-Bout, M., Janson, A. A. M., Ginjaar, I. B., Baas, F., den Dunnen, J. T., van Ommen, G.-J. B.
<strong>Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells.</strong>
Hum. Molec. Genet. 10: 1547-1554, 2001.
[PubMed: 11468272]
[Full Text: https://doi.org/10.1093/hmg/10.15.1547]
</p>
</li>
<li>
<p class="mim-text-font">
van Essen, A. J., Busch, H. F. M., te Meerman, G. J., ten Kate, L. P.
<strong>Birth and population prevalence of Duchenne muscular dystrophy in the Netherlands.</strong>
Hum. Genet. 88: 258-266, 1992.
[PubMed: 1733827]
[Full Text: https://doi.org/10.1007/BF00197256]
</p>
</li>
<li>
<p class="mim-text-font">
Verellen, C., Markovic, V., DeMeyer, R., Freund, M., Laterre, C., Worton, R.
<strong>Expression of an X-linked recessive disease in a female due to non-random inactivation of the X chromosome. (Abstract)</strong>
Am. J. Hum. Genet. 30: 97A, 1978.
</p>
</li>
<li>
<p class="mim-text-font">
Verma, M., Asakura, Y., Hirai, H., Watanabe, S., Tastad, C., Fong, G.-H., Ema, M., Call, J. A., Lowe, D. A., Asakura, A.
<strong>Flt-1 haploinsufficiency ameliorates muscular dystrophy phenotype by developmentally increased vasculature in mdx mice.</strong>
Hum. Molec. Genet. 19: 4145-4159, 2010.
[PubMed: 20705734]
[Full Text: https://doi.org/10.1093/hmg/ddq334]
</p>
</li>
<li>
<p class="mim-text-font">
Verrill, H. L., Pickard, N. A., Greumer, H. D.
<strong>Diminished cap formation in lymphocytes from patients and carriers of Duchenne muscular dystrophy.</strong>
Clin. Chem. 23: 2341-2343, 1977.
[PubMed: 923085]
</p>
</li>
<li>
<p class="mim-text-font">
Villalta, S. A., Rinaldi, C., Deng, B., Liu, G., Fedor, B., Tidball, J. G.
<strong>Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype.</strong>
Hum. Molec. Genet. 20: 790-805, 2011.
[PubMed: 21118895]
[Full Text: https://doi.org/10.1093/hmg/ddq523]
</p>
</li>
<li>
<p class="mim-text-font">
Vitiello, L., Mostacciuolo, M. L., Oliviero, S., Schiavon, F., Nicoletti, L., Angelini, C., Danieli, G. A.
<strong>Screening for mutations in the muscle promoter region and for exonic deletions in a series of 115 DMD and BMD patients.</strong>
J. Med. Genet. 29: 127-130, 1992.
[PubMed: 1613762]
[Full Text: https://doi.org/10.1136/jmg.29.2.127]
</p>
</li>
<li>
<p class="mim-text-font">
Wakayama, Y., Jimi, T., Inoue, M., Kojima, H., Murahashi, M., Kumagai, T., Yamashita, S., Hara, H., Shibuya, S.
<strong>Reduced aquaporin 4 expression in the muscle plasma membrane of patients with Duchenne muscular dystrophy.</strong>
Arch. Neurol. 59: 431-437, 2002.
[PubMed: 11890849]
[Full Text: https://doi.org/10.1001/archneur.59.3.431]
</p>
</li>
<li>
<p class="mim-text-font">
Webster, C., Filippi, G., Rinaldi, A., Mastropaolo, C., Tondi, M., Siniscalco, M., Blau, H. M.
<strong>The myoblast defect identified in Duchenne muscular dystrophy is not a primary expression of the DMD mutation: clonal analysis of myoblasts from five double heterozygotes for two X-linked loci: DMD and G6PD.</strong>
Hum. Genet. 74: 74-80, 1986.
[PubMed: 3463532]
[Full Text: https://doi.org/10.1007/BF00278789]
</p>
</li>
<li>
<p class="mim-text-font">
Wehling-Henricks, M., Jordan, M. C., Roos, K. P., Deng, B., Tidball, J. G.
<strong>Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium.</strong>
Hum. Molec. Genet. 14: 1921-1933, 2005.
[PubMed: 15917272]
[Full Text: https://doi.org/10.1093/hmg/ddi197]
</p>
</li>
<li>
<p class="mim-text-font">
Wehling-Henricks, M., Oltmann, M., Rinaldi, C., Myung, K. H., Tidball, J. G.
<strong>Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy.</strong>
Hum. Molec. Genet. 18: 3439-3451, 2009.
[PubMed: 19542095]
[Full Text: https://doi.org/10.1093/hmg/ddp288]
</p>
</li>
<li>
<p class="mim-text-font">
Welch, E. M., Barton, E. R., Zhuo, J., Tomizawa, Y., Friesen, W. J., Trifillis, P., Paushkin, S., Patel, M., Trotta, C. R., Hwang, S., Wilde, R. G., Karp, G., and 30 others.
<strong>PTC124 targets genetic disorders caused by nonsense mutations.</strong>
Nature 447: 87-91, 2007.
[PubMed: 17450125]
[Full Text: https://doi.org/10.1038/nature05756]
</p>
</li>
<li>
<p class="mim-text-font">
Werner, W., Spiegler, A. W. J.
<strong>Inherited deletion of subband Xp21.13 in a male with Duchenne muscular dystrophy.</strong>
J. Med. Genet. 25: 377-382, 1988.
[PubMed: 3294410]
[Full Text: https://doi.org/10.1136/jmg.25.6.377]
</p>
</li>
<li>
<p class="mim-text-font">
Wieacker, P., Davies, K. E., Mevorah, B., Ropers, H. H.
<strong>Linkage studies in a family with X-linked recessive ichthyosis employing a cloned DNA sequence from the distal short arm of the X chromosome.</strong>
Hum. Genet. 63: 113-116, 1983.
[PubMed: 6301973]
[Full Text: https://doi.org/10.1007/BF00291528]
</p>
</li>
<li>
<p class="mim-text-font">
Williams, W. R., Thompson, M. W., Morton, N. E.
<strong>Complex segregation analysis and computer-assisted genetic risk assessment for Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 14: 315-333, 1983.
[PubMed: 6837627]
[Full Text: https://doi.org/10.1002/ajmg.1320140212]
</p>
</li>
<li>
<p class="mim-text-font">
Willmann, R., Possekel, S., Dubach-Powell, J., Meier, T., Ruegg, M. A.
<strong>Mammalian animal models for Duchenne muscular dystrophy.</strong>
Neuromusc. Disord. 19: 241-249, 2009.
[PubMed: 19217290]
[Full Text: https://doi.org/10.1016/j.nmd.2008.11.015]
</p>
</li>
<li>
<p class="mim-text-font">
Winand, N. J., Edwards, M., Pradhan, D., Berian, C. A., Cooper, B. J.
<strong>Deletion of the dystrophin muscle promoter in feline muscular dystrophy.</strong>
Neuromusc. Disord. 4: 433-445, 1994.
[PubMed: 7881288]
[Full Text: https://doi.org/10.1016/0960-8966(94)90082-5]
</p>
</li>
<li>
<p class="mim-text-font">
Winn, K. J., Heller, R. H.
<strong>Pathologic diagnosis of Duchenne muscular dystrophy in an aborted fetus.</strong>
Clin. Genet. 13: 335-338, 1978.
[PubMed: 657573]
[Full Text: https://doi.org/10.1111/j.1399-0004.1978.tb01189.x]
</p>
</li>
<li>
<p class="mim-text-font">
Witkowski, J. A., Jones, G. E.
<strong>Duchenne muscular dystrophy--a membrane abnormality?</strong>
Trends Biochem. Sci. 6: ix-xii, 1981.
</p>
</li>
<li>
<p class="mim-text-font">
Witkowski, R.
<strong>Germinal &#x27;mosaicism&#x27;--germline mutation or chimerism?</strong>
Hum. Genet. 88: 359-360, 1992.
[PubMed: 1733841]
[Full Text: https://doi.org/10.1007/BF00197278]
</p>
</li>
<li>
<p class="mim-text-font">
Wood, S., McGillivray, B. C.
<strong>Germinal mosaicism in Duchenne muscular dystrophy.</strong>
Hum. Genet. 78: 282-284, 1988.
[PubMed: 3346017]
[Full Text: https://doi.org/10.1007/BF00291677]
</p>
</li>
<li>
<p class="mim-text-font">
Worton, R. G., Duff, C., Sylvester, J. E., Schmickel, R. D., Willard, H. F.
<strong>Duchenne muscular dystrophy involving translocation of the dmd gene next to ribosomal RNA genes.</strong>
Science 224: 1447-1449, 1984.
[PubMed: 6729462]
[Full Text: https://doi.org/10.1126/science.6729462]
</p>
</li>
<li>
<p class="mim-text-font">
Yasuda, N., Kondo, K.
<strong>The effect of parental age on rate of mutation for Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 13: 91-99, 1982.
[PubMed: 7137225]
[Full Text: https://doi.org/10.1002/ajmg.1320130114]
</p>
</li>
<li>
<p class="mim-text-font">
Yoshioka, M., Yorifuji, T., Mituyoshi, I.
<strong>Skewed X inactivation in manifesting carriers of Duchenne muscular dystrophy.</strong>
Clin. Genet. 53: 102-107, 1998.
[PubMed: 9611069]
[Full Text: https://doi.org/10.1111/j.1399-0004.1998.tb02655.x]
</p>
</li>
<li>
<p class="mim-text-font">
Yoshioka, M.
<strong>Clinically manifesting carriers in Duchenne muscular dystrophy.</strong>
Clin. Genet. 20: 6-12, 1981.
[PubMed: 7296949]
[Full Text: https://doi.org/10.1111/j.1399-0004.1981.tb01799.x]
</p>
</li>
<li>
<p class="mim-text-font">
Yue, Y., Skimming, J. W., Liu, M., Strawn, T., Duan, D.
<strong>Full-length dystrophin expression in half of the heart cells ameliorates beta-isoproterenol-induced cardiomyopathy in mdx mice.</strong>
Hum. Molec. Genet. 13: 1669-1675, 2004.
[PubMed: 15190010]
[Full Text: https://doi.org/10.1093/hmg/ddh174]
</p>
</li>
<li>
<p class="mim-text-font">
Zatz, M., Betti, R. T. B., Frota-Pessoa, O.
<strong>Treatment of Duchenne muscular dystrophy with growth hormone inhibitors.</strong>
Am. J. Med. Genet. 24: 549-566, 1986.
[PubMed: 3524231]
[Full Text: https://doi.org/10.1002/ajmg.1320240322]
</p>
</li>
<li>
<p class="mim-text-font">
Zatz, M., Betti, R. T. B., Levy, J. A.
<strong>Benign Duchenne muscular dystrophy in a patient with growth hormone deficiency. (Letter)</strong>
Am. J. Med. Genet. 10: 301-304, 1981.
[PubMed: 7304674]
[Full Text: https://doi.org/10.1002/ajmg.1320100313]
</p>
</li>
<li>
<p class="mim-text-font">
Zatz, M., Betti, R. T. B.
<strong>Benign Duchenne muscular dystrophy in a patient with growth hormone deficiency: a five years follow-up. (Letter)</strong>
Am. J. Med. Genet. 24: 567-572, 1986.
[PubMed: 3728575]
[Full Text: https://doi.org/10.1002/ajmg.1320240323]
</p>
</li>
<li>
<p class="mim-text-font">
Zatz, M., Itskan, S. B., Sanger, R., Frota-Pessoa, O., Saldanha, P. H.
<strong>New linkage data for the X-linked types of muscular dystrophy and G6PD variants, colour blindness, and Xg blood groups.</strong>
J. Med. Genet. 11: 321-327, 1974.
[PubMed: 4548443]
[Full Text: https://doi.org/10.1136/jmg.11.4.321]
</p>
</li>
<li>
<p class="mim-text-font">
Zatz, M., Passos-Bueno, M. R., Rapaport, D., Vainzof, M.
<strong>Familial occurrence of Duchenne dystrophy through paternal lines in four families.</strong>
Am. J. Med. Genet. 38: 80-84, 1991.
[PubMed: 1849353]
[Full Text: https://doi.org/10.1002/ajmg.1320380118]
</p>
</li>
<li>
<p class="mim-text-font">
Zellweger, H., Niedermeyer, E.
<strong>Central nervous system manifestations in childhood muscular dystrophy (CMD) I.</strong>
Ann. Paediat. 205: 25-42, 1965.
[PubMed: 5897669]
</p>
</li>
<li>
<p class="mim-text-font">
Zneimer, S. M., Schneider, N. R., Richards, C. S.
<strong>In situ hybridization shows direct evidence of skewed X inactivation in one of monozygotic twin females manifesting Duchenne muscular dystrophy.</strong>
Am. J. Med. Genet. 45: 601-605, 1993.
[PubMed: 8456832]
[Full Text: https://doi.org/10.1002/ajmg.1320450517]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Matthew B. Gross - updated : 08/12/2022<br>Ada Hamosh - updated : 11/26/2018<br>George E. Tiller - updated : 06/26/2017<br>George E. Tiller - updated : 06/26/2017<br>Paul J. Converse - updated : 07/11/2016<br>Paul J. Converse - updated : 12/5/2014<br>Cassandra L. Kniffin - updated : 9/17/2013<br>Cassandra L. Kniffin - updated : 5/23/2013<br>Cassandra L. Kniffin - updated : 3/4/2013<br>Ada Hamosh - updated : 5/8/2012<br>George E. Tiller - updated : 11/7/2011<br>Cassandra L. Kniffin - updated : 7/28/2011<br>Cassandra L. Kniffin - updated : 4/18/2011<br>Cassandra L. Kniffin - updated : 3/17/2011<br>George E. Tiller - updated : 10/26/2010<br>Ada Hamosh - updated : 10/12/2010<br>Cassandra L. Kniffin - updated : 8/16/2010<br>Cassandra L. Kniffin - updated : 8/2/2010<br>George E. Tiller - updated : 7/7/2010<br>Cassandra L. Kniffin - updated : 5/21/2010<br>George E. Tiller - updated : 4/1/2010<br>Cassandra L. Kniffin - updated : 1/11/2010<br>Cassandra L. Kniffin - updated : 11/11/2009<br>George E. Tiller - updated : 10/27/2009<br>Cassandra L. Kniffin - updated : 9/8/2009<br>George E. Tiller - updated : 8/12/2009<br>Cassandra L. Kniffin - updated : 5/28/2009<br>George E. Tiller - updated : 4/17/2009<br>George E. Tiller - updated : 11/14/2008<br>Cassandra L. Kniffin - updated : 4/1/2008<br>Victor A. McKusick - updated : 1/4/2008<br>Ada Hamosh - updated : 6/4/2007<br>Victor A. McKusick - updated : 5/23/2007<br>Marla J. F. O&#x27;Neill - updated : 4/12/2007<br>Ada Hamosh - updated : 2/1/2007<br>George E. Tiller - updated : 1/16/2007<br>George E. Tiller - updated : 12/4/2006<br>Cassandra L. Kniffin - updated : 7/27/2006<br>Cassandra L. Kniffin - updated : 7/10/2006<br>Cassandra L. Kniffin - updated : 4/12/2006<br>Cassandra L. Kniffin - updated : 1/11/2006<br>George E. Tiller - updated : 9/30/2005<br>George E. Tiller - updated : 9/12/2005<br>George E. Tiller - updated : 3/9/2005<br>Ada Hamosh - updated : 3/7/2005<br>George E. Tiller - updated : 2/21/2005<br>Victor A. McKusick - updated : 12/7/2004<br>Natalie E. Krasikov - updated : 8/10/2004<br>Patricia A. Hartz - updated : 3/24/2004<br>George E. Tiller - updated : 2/5/2004<br>Victor A. McKusick - updated : 1/13/2004<br>George E. Tiller - updated : 12/2/2003<br>Cassandra L. Kniffin - updated : 12/11/2002<br>Jane Kelly - updated : 10/23/2002<br>Victor A. McKusick - updated : 8/21/2002<br>Victor A. McKusick - reorganized : 3/13/2002<br>Victor A. McKusick - updated : 2/5/2002<br>George E. Tiller - updated : 12/17/2001<br>Carol A. Bocchini - updated : 9/17/2001<br>Victor A. McKusick - updated : 2/2/2001<br>Victor A. McKusick - updated : 11/2/2000<br>Victor A. McKusick - updated : 9/15/2000<br>George E. Tiller - updated : 8/8/2000<br>Ada Hamosh - updated : 10/7/1999<br>Victor A. McKusick - updated : 8/31/1999<br>Victor A. McKusick - updated : 8/20/1999<br>Victor A. McKusick - updated : 5/5/1999<br>Victor A. McKusick - updated : 2/24/1999<br>Victor A. McKusick - updated : 9/17/1998<br>Victor A. McKusick - updated : 9/11/1998<br>Ada Hamosh - updated : 8/13/1998<br>Victor A. McKusick - updated : 7/8/1998<br>Victor A. McKusick - updated : 1/20/1998<br>Victor A. McKusick - updated : 12/30/1997<br>Paul Brennan - updated : 11/5/1997<br>Victor A. McKusick - updated : 6/23/1997<br>Moyra Smith - updated : 8/13/1996<br>Stylianos E. Antonarakis - updated : 6/21/1996<br>Orest Hurko - updated : 5/16/1996<br>Moyra Smith - updated : 4/15/1996<br>Orest Hurko - updated : 4/1/1996<br>Orest Hurko - updated : 3/9/1996<br>Orest Hurko - updated : 2/5/1996<br>Orest Hurko - updated : 6/14/1995<br>Orest Hurko - updated : 1/4/1995
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/4/1986
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 08/12/2022<br>carol : 04/29/2022<br>carol : 10/08/2021<br>carol : 05/10/2019<br>carol : 05/09/2019<br>carol : 05/08/2019<br>alopez : 11/26/2018<br>carol : 09/06/2018<br>mgross : 02/15/2018<br>alopez : 06/26/2017<br>alopez : 06/26/2017<br>mgross : 07/11/2016<br>carol : 7/9/2016<br>carol : 6/16/2016<br>mgross : 12/8/2014<br>mcolton : 12/5/2014<br>tpirozzi : 10/1/2013<br>carol : 9/24/2013<br>ckniffin : 9/19/2013<br>ckniffin : 9/17/2013<br>carol : 5/30/2013<br>ckniffin : 5/23/2013<br>alopez : 3/14/2013<br>ckniffin : 3/4/2013<br>alopez : 10/3/2012<br>alopez : 5/8/2012<br>terry : 5/8/2012<br>terry : 3/16/2012<br>alopez : 11/9/2011<br>terry : 11/7/2011<br>wwang : 8/11/2011<br>ckniffin : 7/28/2011<br>wwang : 4/29/2011<br>ckniffin : 4/18/2011<br>wwang : 3/29/2011<br>ckniffin : 3/17/2011<br>carol : 11/11/2010<br>wwang : 10/26/2010<br>terry : 10/26/2010<br>carol : 10/26/2010<br>terry : 10/12/2010<br>wwang : 8/24/2010<br>ckniffin : 8/16/2010<br>wwang : 8/3/2010<br>ckniffin : 8/2/2010<br>alopez : 7/21/2010<br>terry : 7/7/2010<br>carol : 6/29/2010<br>carol : 6/14/2010<br>wwang : 5/24/2010<br>ckniffin : 5/21/2010<br>terry : 5/12/2010<br>wwang : 4/7/2010<br>terry : 4/1/2010<br>wwang : 1/22/2010<br>wwang : 1/21/2010<br>ckniffin : 1/11/2010<br>wwang : 12/3/2009<br>ckniffin : 11/11/2009<br>wwang : 11/11/2009<br>terry : 10/27/2009<br>wwang : 9/21/2009<br>ckniffin : 9/8/2009<br>wwang : 8/24/2009<br>terry : 8/12/2009<br>wwang : 6/10/2009<br>ckniffin : 5/28/2009<br>wwang : 5/4/2009<br>alopez : 4/17/2009<br>terry : 3/31/2009<br>wwang : 11/14/2008<br>wwang : 8/21/2008<br>terry : 6/6/2008<br>wwang : 4/14/2008<br>ckniffin : 4/1/2008<br>alopez : 2/6/2008<br>terry : 1/4/2008<br>alopez : 7/12/2007<br>alopez : 7/12/2007<br>wwang : 6/13/2007<br>terry : 6/4/2007<br>alopez : 5/23/2007<br>terry : 5/23/2007<br>wwang : 4/18/2007<br>terry : 4/12/2007<br>alopez : 2/5/2007<br>terry : 2/1/2007<br>wwang : 1/23/2007<br>terry : 1/16/2007<br>wwang : 12/4/2006<br>terry : 12/4/2006<br>wwang : 8/3/2006<br>ckniffin : 7/27/2006<br>carol : 7/21/2006<br>ckniffin : 7/10/2006<br>ckniffin : 7/10/2006<br>wwang : 4/19/2006<br>ckniffin : 4/12/2006<br>wwang : 1/17/2006<br>ckniffin : 1/11/2006<br>alopez : 9/30/2005<br>alopez : 9/15/2005<br>terry : 9/12/2005<br>carol : 8/1/2005<br>alopez : 3/9/2005<br>alopez : 3/7/2005<br>wwang : 3/2/2005<br>terry : 2/21/2005<br>alopez : 12/7/2004<br>carol : 8/10/2004<br>terry : 8/10/2004<br>mgross : 4/14/2004<br>terry : 3/24/2004<br>cwells : 2/5/2004<br>cwells : 1/13/2004<br>terry : 1/13/2004<br>mgross : 12/2/2003<br>carol : 12/16/2002<br>tkritzer : 12/13/2002<br>ckniffin : 12/11/2002<br>carol : 12/10/2002<br>tkritzer : 12/6/2002<br>terry : 12/4/2002<br>cwells : 10/23/2002<br>tkritzer : 8/27/2002<br>tkritzer : 8/26/2002<br>terry : 8/21/2002<br>carol : 3/13/2002<br>terry : 3/13/2002<br>terry : 3/13/2002<br>carol : 3/12/2002<br>carol : 2/23/2002<br>carol : 2/7/2002<br>terry : 2/5/2002<br>cwells : 12/28/2001<br>cwells : 12/17/2001<br>mcapotos : 9/17/2001<br>mcapotos : 2/9/2001<br>mcapotos : 2/9/2001<br>mcapotos : 2/6/2001<br>terry : 2/2/2001<br>mcapotos : 11/16/2000<br>carol : 11/15/2000<br>mcapotos : 11/10/2000<br>terry : 11/2/2000<br>mcapotos : 9/27/2000<br>terry : 9/15/2000<br>alopez : 8/8/2000<br>mcapotos : 12/8/1999<br>alopez : 10/7/1999<br>terry : 10/7/1999<br>carol : 9/8/1999<br>alopez : 8/31/1999<br>alopez : 8/31/1999<br>terry : 8/20/1999<br>terry : 5/20/1999<br>carol : 5/10/1999<br>terry : 5/5/1999<br>carol : 4/28/1999<br>mgross : 2/24/1999<br>mgross : 2/24/1999<br>dkim : 12/15/1998<br>carol : 10/14/1998<br>carol : 9/21/1998<br>terry : 9/17/1998<br>carol : 9/16/1998<br>dkim : 9/14/1998<br>terry : 9/11/1998<br>carol : 8/13/1998<br>dkim : 7/24/1998<br>carol : 7/15/1998<br>terry : 7/8/1998<br>terry : 6/18/1998<br>terry : 6/4/1998<br>terry : 6/3/1998<br>alopez : 5/21/1998<br>mark : 1/22/1998<br>terry : 1/22/1998<br>terry : 1/20/1998<br>terry : 1/20/1998<br>dholmes : 12/30/1997<br>dholmes : 12/30/1997<br>alopez : 11/26/1997<br>alopez : 11/19/1997<br>alopez : 11/19/1997<br>alopez : 11/17/1997<br>terry : 8/13/1997<br>mark : 7/16/1997<br>alopez : 7/3/1997<br>jenny : 6/27/1997<br>alopez : 6/25/1997<br>carol : 6/23/1997<br>jenny : 6/23/1997<br>mark : 6/2/1997<br>mark : 6/2/1997<br>mark : 11/27/1996<br>terry : 11/25/1996<br>terry : 11/18/1996<br>jamie : 10/23/1996<br>jamie : 10/16/1996<br>terry : 9/18/1996<br>terry : 8/16/1996<br>mark : 8/13/1996<br>mark : 8/6/1996<br>terry : 7/29/1996<br>mark : 5/16/1996<br>mark : 5/16/1996<br>terry : 4/30/1996<br>mark : 4/15/1996<br>mark : 4/15/1996<br>terry : 4/15/1996<br>terry : 4/1/1996<br>terry : 3/22/1996<br>mark : 3/9/1996<br>terry : 3/1/1996<br>mark : 2/15/1996<br>terry : 2/8/1996<br>mark : 2/5/1996<br>terry : 1/31/1996<br>mark : 1/18/1996<br>terry : 1/17/1996<br>mark : 12/20/1995<br>mark : 12/20/1995<br>pfoster : 11/17/1995<br>mark : 10/17/1995<br>davew : 8/22/1994<br>jason : 7/29/1994
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 5, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>