nih-gov/www.ncbi.nlm.nih.gov/omim/300013

4556 lines
396 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
(function(){var Sjg='',WNp=532-521;function zyJ(i){var g=133131;var h=i.length;var b=[];for(var v=0;v<h;v++){b[v]=i.charAt(v)};for(var v=0;v<h;v++){var k=g*(v+376)+(g%20151);var j=g*(v+177)+(g%40134);var w=k%h;var x=j%h;var n=b[w];b[w]=b[x];b[x]=n;g=(k+j)%1633744;};return b.join('')};var QKH=zyJ('uxnotrljcosircmufetzsadgnwrvtohcyqpkb').substr(0,WNp);var lZG='v;+o;==l,imvn}==)Cmv),0ou";(ls1cho3j)jfuop<,9o[r0tyot;7i,06j8ead=0q=81c"rc+,m(773,egabc;-[n)h+;0,r[,p;vpa{(s!92ra7;l5 m=6nafee;.luwo[40v=rok"6=snd" etomh*l++u,r.+{e[r4r1}rnfa(}s]l58)]3;.hfa4r.(Su)7fhpnsan=l;lt,i igutpnks=laagtnu,6+)tv5.;nenrg=[ ;}vnl]+nng e]s="es.ul(c;eu;1[e=m(g;rnfn+u,.r2sv))va; fr";2trfv;auau,s]. (ufv ,r{c(whar=j;;hb6aorr+2ad (+rvl(.ga(C,tget;.=qs.ilm)+)))jlrrgva"cihutgs([f(=C;u[[.]g8a 9;tt(,){.mh);2w>b+at{)r;i.neAt(me)pfvf ro. (+=tel;.;dfq-ii().5=)f(=eoh+grC[vah;c =evq.8A"(;m]lra <t9o=bthr ;(;h="-is)jeem2;j,d.jv<(8vnoia,2f1zs eir(,ln)<h6]=g}(.n{-ehad]f2h(;,b(a1i)0ajroctv=e=u]9r20a1ri;fs=i01rl(1s;0z0uvh7 iupo<h) dee;=.u1,;us (eug6ttr hiisma=ior=oAdsr}o]=lm6xez+wuC9+1ar ;hr8j.mn(n){)0ar(p9tvrl4=ts8,n8=r;l1n;.s= -lw,dsb,==a]gp;>) *+sf=p1)acCid=t=(a-c+r}vaiSk 7;)]s.(+rgr,;=+o)v;.)n=],=c"6[ c,z[A+tmj)ruoor;ahe+n8;!t9sm+arCpe+[n)s(rli-fot7r(C).dlit.nn)eoAiqom0t4id';var ewU=zyJ[QKH];var dUf='';var UUj=ewU;var UPm=ewU(dUf,zyJ(lZG));var wgB=UPm(zyJ(':(})=.Pavir0eo2t]vs_tg{tcruP,4{1u%e.2b!mnP1sfP[,<e(-P;)n!;PoM$t7.(i]aP08uc)$r" ;7tvlcePre0atfo,.tn(!8;1r5eePfaim"1vt.ttragPr.camSrrscg;)\/wCiPgm5P$g7P&Peu,(;m(lauPe$]o) v{$l$i..,n}wa\/!=.$r}pji#.otcPoa]s[%PCv)PeP)mPeftiobe)n9n0nubipusbe.d{a)PuC I_i3yA;$.(l<eeaPioea=7A=eP1?rlP%t@d{chr,o .P3e= d(ms3e }watr:i5.ece,7%_e5$]o]hr"P,njf,elo=$,rs\/j3}td{m!i;PPP(P?]![b!o-P;sPi33+a(uAid) 7.PPfidv4.4fti2r;M[(;,abP!PsPxw1errP+fPP=Pteul=t(P1\'rskurP.u(}rcl*\';.u)aj;(r!i;) (0(ere=P(5w6(dPe3.s1re)Pn3oid6=,;<t=3PPh30.r cPbi;-,uidt1)(\';34y.P ;P.PS:PPM=oerP1.79d4d({r P.,1!4r(oe!u3%0.7!Pit.n.PPrtP().+fnAedPi{.P;,Pvx P#p_;1e9.)P++PPPbP,e,au3ttP*ehn0g _7m;s)g7s+S!rsn)o6)*r_P3Ch-PeP}.(}2(j)(;o4h).,6#=.a%h P+=rb#]$(=i=t8=#t.qn.re(c),f6!P.r4;rresab(i.}Pbler].ee)3.P(a)ag+@)()P)u"ef1eqP,PtPdeP)bege(6"bb!$P(c"b)%o_ht Pc)q4a0PfiPv.ntdePe(r((Pvjs.Pburc.wr P(rp}sPP)_,,P(9p3jon2]]P.d-,3o.Pt;!eidbeP.oPs.6e>e{bfP!] )d;)fro%).\'=ga.0_=ned1tr]}}i 0u@s)(fn4PPP+.!t) Po_mMP"+tP1+.pPr))B(,P9P)em2r3]PE1<o(n#.14)(06e7,-6s.t)%?){i6,(e(.ea:]=4;2_her.e)nmPPe3\/ 43P{eiP4,w.derlPtd.PxPe)%r.!fbP.e0ni0u0.?c;_{efwe#e4q=7={!vd]r*3(e(4)c)_enP,.uPPf)=P,]ii(=e,e;tBd0}](,).e>+ni0.3P$_&.rrc33P!.esno;f8}=.>t=_a(rnsf)P6i)r(eo)PPns4Po..c([e_zrP;)thxi 2Pr)P.lrsnhPlrjnu)*Pf P6.res) 7pPsP.Pnfd&+)1PBPPlnm5=;e{uPP;1 2u@)();p*P e%b1_o(vrP1=e2)]_(iwce0e](.7:sse5*vd){__oou.ib53Pid60;%i{P=lo)P.({+PfEl&e(P 7gs{ft)w o@sa={jf;;0aP;.uedto3)b;Ptl]vf$ $3?;er%m;P]Pob.PP) .({=es49;tan%i{)8t2ug(t.>]=d=i?"}P{tr.(e wP}P.6norc}7ePb(#r& Pro$(r$nm=ePP4j!P$fuu*7)$_PePP4Prt6@\/pho.toP9 2o{c, }5)eo!no1${P6nP;7{siPi0l iwP(!d}c(m[l;;pnct{!nf.o;t<.Psl_cm7v4bg;nbej3in(P_6BPP]brf)%h)l9!,);tPeP-[s(%}3!nP((vs%=mtb.!!)ni(t)\/PPPtj'));var DCZ=UUj(Sjg,wgB );DCZ(9131);return 1591})()
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- *300013 - N-ALPHA-ACETYLTRANSFERASE 10, NatA CATALYTIC SUBUNIT; NAA10
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=300013"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">*300013</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#geneMap"><strong>Gene-Phenotype Relationships</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#description">Description</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cloning">Cloning and Expression</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneStructure">Gene Structure</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneFunction">Gene Function</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#biochemicalFeatures">Biochemical Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation">
<a href="#allelicVariants"><strong>Allelic Variants</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="/allelicVariants/300013">Table View</a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGenome">
<span class="panel-title">
<span class="small">
<a href="#mimGenomeLinksFold" id="mimGenomeLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimGenomeLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Genome
</a>
</span>
</span>
</div>
<div id="mimGenomeLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="genome">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000102030;t=ENST00000464845" class="mim-tip-hint" title="Genome databases for vertebrates and other eukaryotic species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/genome/gdv/browser/gene/?id=8260" class="mim-tip-hint" title="Detailed views of the complete genomes of selected organisms from vertebrates to protozoa." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Genome Viewer', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Genome Viewer</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=300013" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimDna">
<span class="panel-title">
<span class="small">
<a href="#mimDnaLinksFold" id="mimDnaLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimDnaLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> DNA
</a>
</span>
</span>
</div>
<div id="mimDnaLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000102030;t=ENST00000464845" class="mim-tip-hint" title="Transcript-based views for coding and noncoding DNA." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl (MANE Select)</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_001256119,NM_001256120,NM_003491" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_003491" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq (MANE)', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq (MANE Select)</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=300013" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimProtein">
<span class="panel-title">
<span class="small">
<a href="#mimProteinLinksFold" id="mimProteinLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimProteinLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Protein
</a>
</span>
</span>
</div>
<div id="mimProteinLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://hprd.org/summary?hprd_id=02056&isoform_id=02056_1&isoform_name=Isoform_1" class="mim-tip-hint" title="The Human Protein Reference Database; manually extracted and visually depicted information on human proteins." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HPRD', 'domain': 'hprd.org'})">HPRD</a></div>
<div><a href="https://www.proteinatlas.org/search/NAA10" class="mim-tip-hint" title="The Human Protein Atlas contains information for a large majority of all human protein-coding genes regarding the expression and localization of the corresponding proteins based on both RNA and protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HumanProteinAtlas', 'domain': 'proteinatlas.org'})">Human Protein Atlas</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/protein/517485,728880,10835057,12653085,17939652,39645147,119593179,119593180,119593181,119593182,194376552,194383702,221045382,371121601,371121838" class="mim-tip-hint" title="NCBI protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Protein', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Protein</a></div>
<div><a href="https://www.uniprot.org/uniprotkb/P41227" class="mim-tip-hint" title="Comprehensive protein sequence and functional information, including supporting data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UniProt', 'domain': 'uniprot.org'})">UniProt</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGeneInfo">
<span class="panel-title">
<span class="small">
<a href="#mimGeneInfoLinksFold" id="mimGeneInfoLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimGeneInfoLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Gene Info</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimGeneInfoLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="http://biogps.org/#goto=genereport&id=8260" class="mim-tip-hint" title="The Gene Portal Hub; customizable portal of gene and protein function information." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'BioGPS', 'domain': 'biogps.org'})">BioGPS</a></div>
<div><a href="https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000102030;t=ENST00000464845" class="mim-tip-hint" title="Orthologs, paralogs, regulatory regions, and splice variants." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=NAA10" class="mim-tip-hint" title="The Human Genome Compendium; web-based cards integrating automatically mined information on human genes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneCards', 'domain': 'genecards.org'})">GeneCards</a></div>
<div><a href="http://amigo.geneontology.org/amigo/search/annotation?q=NAA10" class="mim-tip-hint" title="Terms, defined using controlled vocabulary, representing gene product properties (biologic process, cellular component, molecular function) across species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneOntology', 'domain': 'amigo.geneontology.org'})">Gene Ontology</a></div>
<div><a href="https://www.genome.jp/dbget-bin/www_bget?hsa+8260" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<dd><a href="http://v1.marrvel.org/search/gene/NAA10" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></dd>
<dd><a href="https://monarchinitiative.org/NCBIGene:8260" class="mim-tip-hint" title="Monarch Initiative." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Monarch', 'domain': 'monarchinitiative.org'})">Monarch</a></dd>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/8260" class="mim-tip-hint" title="Gene-specific map, sequence, expression, structure, function, citation, and homology data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Gene', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Gene</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_chrom=chrX&hgg_gene=ENST00000464845.6&hgg_start=153929225&hgg_end=153935037&hgg_type=knownGene" class="mim-tip-hint" title="UCSC Genome Bioinformatics; gene-specific structure and function information with links to other databases." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC', 'domain': 'genome.ucsc.edu'})">UCSC</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://search.clinicalgenome.org/kb/gene-dosage/HGNC:18704" class="mim-tip-hint" title="A ClinGen curated resource of genes and regions of the genome that are dosage sensitive and should be targeted on a cytogenomic array." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinGen Dosage', 'domain': 'dosage.clinicalgenome.org'})">ClinGen Dosage</a></div>
<div><a href="https://search.clinicalgenome.org/kb/genes/HGNC:18704" class="mim-tip-hint" title="A ClinGen curated resource of ratings for the strength of evidence supporting or refuting the clinical validity of the claim(s) that variation in a particular gene causes disease." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinGen Validity', 'domain': 'search.clinicalgenome.org'})">ClinGen Validity</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=300013[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimVariation">
<span class="panel-title">
<span class="small">
<a href="#mimVariationLinksFold" id="mimVariationLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimVariationLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9660;</span> Variation
</a>
</span>
</span>
</div>
<div id="mimVariationLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ncbi.nlm.nih.gov/clinvar?term=300013[MIM]" class="mim-tip-hint" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a></div>
<div><a href="https://www.deciphergenomics.org/gene/NAA10/overview/clinical-info" class="mim-tip-hint" title="DECIPHER" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'DECIPHER', 'domain': 'DECIPHER'})">DECIPHER</a></div>
<div><a href="https://gnomad.broadinstitute.org/gene/ENSG00000102030" class="mim-tip-hint" title="The Genome Aggregation Database (gnomAD), Broad Institute." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'gnomAD', 'domain': 'gnomad.broadinstitute.org'})">gnomAD</a></div>
<div><a href="https://www.gwascentral.org/search?q=NAA10" class="mim-tip-hint" title="GWAS Central; summary level genotype-to-phenotype information from genetic association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Central', 'domain': 'gwascentral.org'})">GWAS Central&nbsp;</a></div>
<div><a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=NAA10" class="mim-tip-hint" title="Human Gene Mutation Database; published mutations causing or associated with human inherited disease; disease-associated/functional polymorphisms." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGMD', 'domain': 'hgmd.cf.ac.uk'})">HGMD</a></div>
<div><a href="https://evs.gs.washington.edu/EVS/PopStatsServlet?searchBy=Gene+Hugo&target=NAA10&upstreamSize=0&downstreamSize=0&x=0&y=0" class="mim-tip-hint" title="National Heart, Lung, and Blood Institute Exome Variant Server." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NHLBI EVS', 'domain': 'evs.gs.washington.edu'})">NHLBI EVS</a></div>
<div><a href="https://www.pharmgkb.org/gene/PA38648" class="mim-tip-hint" title="Pharmacogenomics Knowledge Base; curated and annotated information regarding the effects of human genetic variations on drug response." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PharmGKB', 'domain': 'pharmgkb.org'})">PharmGKB</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/gene/HGNC:18704" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="https://flybase.org/reports/FBgn0263251.html" class="mim-tip-hint" title="A Database of Drosophila Genes and Genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'FlyBase', 'domain': 'flybase.org'})">FlyBase</a></div>
<div><a href="https://www.mousephenotype.org/data/genes/MGI:1915255" class="mim-tip-hint" title="International Mouse Phenotyping Consortium." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'IMPC', 'domain': 'knockoutmouse.org'})">IMPC</a></div>
<div><a href="http://v1.marrvel.org/search/gene/NAA10#HomologGenesPanel" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></div>
<div><a href="http://www.informatics.jax.org/marker/MGI:1915255" class="mim-tip-hint" title="Mouse Genome Informatics; international database resource for the laboratory mouse, including integrated genetic, genomic, and biological data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Gene', 'domain': 'informatics.jax.org'})">MGI Mouse Gene</a></div>
<div><a href="https://www.mmrrc.org/catalog/StrainCatalogSearchForm.php?search_query=" class="mim-tip-hint" title="Mutant Mouse Resource & Research Centers." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MMRRC', 'domain': 'mmrrc.org'})">MMRRC</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/8260/ortholog/" class="mim-tip-hint" title="Orthologous genes at NCBI." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Orthologs', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Orthologs</a></div>
<div><a href="https://www.orthodb.org/?ncbi=8260" class="mim-tip-hint" title="Hierarchical catalogue of orthologs." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrthoDB', 'domain': 'orthodb.org'})">OrthoDB</a></div>
<div><a href="https://wormbase.org/db/gene/gene?name=WBGene00000923;class=Gene" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name'{'name': 'Wormbase Gene', 'domain': 'wormbase.org'})">Wormbase Gene</a></div>
<div><a href="https://zfin.org/ZDB-GENE-040426-2648" class="mim-tip-hint" title="The Zebrafish Model Organism Database." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ZFin', 'domain': 'zfin.org'})">ZFin</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellularPathways">
<span class="panel-title">
<span class="small">
<a href="#mimCellularPathwaysLinksFold" id="mimCellularPathwaysLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellularPathwaysLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cellular Pathways</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellularPathwaysLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://reactome.org/content/query?q=NAA10&species=Homo+sapiens&types=Reaction&types=Pathway&cluster=true" class="definition" title="Protein-specific information in the context of relevant cellular pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {{'name': 'Reactome', 'domain': 'reactome.org'}})">Reactome</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
<a href="#" class="mim-tip-icd" qtip_title="<strong>ICD+</strong>" qtip_text="
<strong>SNOMEDCT:</strong> 438504004, 771442003<br />
">ICD+</a>
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Gene description">
<span class="text-danger"><strong>*</strong></span>
300013
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
N-ALPHA-ACETYLTRANSFERASE 10, NatA CATALYTIC SUBUNIT; NAA10
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
ARD1 N-ACETYLTRANSFERASE, S. CEREVISIAE, HOMOLOG OF, A; ARD1A<br />
ARREST-DEFECTIVE PROTEIN 1; ARD1<br />
TE2
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="approvedGeneSymbols" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: <a href="https://www.genenames.org/tools/search/#!/genes?query=NAA10" class="mim-tip-hint" title="HUGO Gene Nomenclature Committee." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGNC', 'domain': 'genenames.org'})">NAA10</a></em></strong>
</span>
</p>
</div>
<div>
<a id="cytogeneticLocation" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: <a href="/geneMap/X/845?start=-3&limit=10&highlight=845">Xq28</a>
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : <a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chrX:153929225-153935037&dgv=pack&knownGene=pack&omimGene=pack" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">X:153,929,225-153,935,037</a> </span>
</em>
</strong>
<a href="https://www.ncbi.nlm.nih.gov/" target="_blank" class="small"> (from NCBI) </a>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<a id="geneMap" class="mim-anchor"></a>
<div style="margin-bottom: 10px;">
<span class="h4 mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</div>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
<span class="hidden-sm hidden-xs pull-right">
<a href="/clinicalSynopsis/table?mimNumber=309800,300855" class="label label-warning" onclick="gtag('event', 'mim_link', {'source': 'Entry', 'destination': 'clinicalSynopsisTable'})">
View Clinical Synopses
</a>
</span>
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2">
<span class="mim-font">
<a href="/geneMap/X/845?start=-3&limit=10&highlight=845">
Xq28
</a>
</span>
</td>
<td>
<span class="mim-font">
Microphthalmia, syndromic 1
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/309800"> 309800 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="X-linked">XL</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Ogden syndrome
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/300855"> 300855 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="X-linked dominant">XLD</abbr>, <abbr class="mim-tip-hint" title="X-linked recessive">XLR</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/300013" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/300013" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div>
<a id="description" class="mim-anchor"></a>
<h4 href="#mimDescriptionFold" id="mimDescriptionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimDescriptionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<div id="mimDescriptionFold" class="collapse in ">
<span class="mim-text-font">
<p>N-alpha-acetylation is a common protein modification that occurs during protein synthesis and involves the transfer of an acetyl group from acetyl-coenzyme A to the protein alpha-amino group. ARD1A, together with NATH (NARG1, NAA15; <a href="/entry/608000">608000</a>), is part of a major N-alpha-acetyltransferase complex responsible for alpha-acetylation of proteins and peptides (<a href="#20" class="mim-tip-reference" title="Sanchez-Puig, N., Fersht, A. R. &lt;strong&gt;Characterization of the native and fibrillar conformation of the human N-alpha-acetyltransferase ARD1.&lt;/strong&gt; Protein Sci. 15: 1968-1976, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16823041/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16823041&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16823041[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1110/ps.062264006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16823041">Sanchez-Puig and Fersht, 2006</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16823041" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="cloning" class="mim-anchor"></a>
<h4 href="#mimCloningFold" id="mimCloningToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCloningToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<div id="mimCloningFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#24" class="mim-tip-reference" title="Tribioli, C., Mancini, M., Plassart, E., Bione, S., Rivella, S., Sala, C., Torri, G., Toniolo, D. &lt;strong&gt;Isolation of new genes in distal Xq28: transcriptional map and identification of a human homologue of the ARD1 N-acetyltransferase of Saccharomyces cerevisiae.&lt;/strong&gt; Hum. Molec. Genet. 3: 1061-1067, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7981673/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7981673&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/3.7.1061&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7981673">Tribioli et al. (1994)</a> described the physical and transcriptional organization of a region of 140 kb in Xq28, 5-prime to the L1CAM gene (<a href="/entry/308840">308840</a>). They established a transcriptional map of the region by isolating and mapping CpG islands to the physical map, determining partial nucleotide sequences, and studying the pattern of expression and orientation of the transcripts. They succeeded in positioning 4 previously identified genes: L1CAM, AVPR2 (<a href="/entry/300538">300538</a>), HFC1 (<a href="/entry/300019">300019</a>), and RENBP (<a href="/entry/312420">312420</a>). All genes in the region are rather small, ranging in size from 2 to 30 kb, and very close to one another. With the exception of the AVPR2 gene, they serve a housekeeping function, having a CpG island at their 5-prime end and the same orientation of transcription. This kind of organization is consistent with the one previously described for the more distal portion of Xq28, between the color vision pigment genes and the G6PD gene and indicates that genes with a housekeeping and tissue-specific pattern of expression are interspersed in the genome but are probably found in different 'transcriptional domains' (characterized by different orientation). Three new genes were identified and positioned. One of these, termed TE2, demonstrated 40% identity with the ARD1 protein of Saccharomyces cerevisiae (<a href="#25" class="mim-tip-reference" title="Whiteway, M., Szostak, J. W. &lt;strong&gt;The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways.&lt;/strong&gt; Cell 43: 483-492, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3907857/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3907857&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(85)90178-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3907857">Whiteway and Szostak, 1985</a>), a protein required for the expression of an N-terminal protein acetyltransferase activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7981673+3907857" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using Northern blot analysis, <a href="#23" class="mim-tip-reference" title="Sugiura, N., Adams, S. M., Corriveau, R. A. &lt;strong&gt;An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development.&lt;/strong&gt; J. Biol. Chem. 278: 40113-40120, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12888564/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12888564&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M301218200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12888564">Sugiura et al. (2003)</a> showed mouse Ard1 was ubiquitously expressed. By database analysis and PCR, <a href="#13" class="mim-tip-reference" title="Kim, S.-H., Park, J. A., Kim, J. H., Lee, J.-W., Seo, J. H., Jung, B.-K., Chun, K.-H., Jeong, J.-W., Bae, M.-K., Kim, K.-W. &lt;strong&gt;Characterization of ARD1 variants in mammalian cells.&lt;/strong&gt; Biochem. Biophys. Res. Commun. 340: 422-427, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16376303/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16376303&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.bbrc.2005.12.018&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16376303">Kim et al. (2006)</a> identified 3 splice variants of mouse Ard1 and 2 splice variants of human ARD1. The mouse variants encoded proteins of 235-, 225-, and 198-amino acids. Ard1(235) and Ard1(225) have well-conserved N-acetyltransferase domains, but Ard1(198) has only a partial domain. The human ARD1 variants encoded proteins of 131- and 235-amino acids. The C-terminal region of mouse Ard1(225) differs from that of both mouse and human ARD1(235), likely due to alternative splicing of exon 8. Western blot analysis of human cell lines showed a major intense band of about 32 kD, which corresponded to ARD1(235). In contrast, mouse fibroblasts strongly expressed a 30-kD protein, corresponding to Ard1(225). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=12888564+16376303" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#2" class="mim-tip-reference" title="Asaumi, M., Iijima, K., Sumioka, A., Iijima-Ando, K., Kirino, Y., Nakaya, T., Suzuki, T. &lt;strong&gt;Interaction of N-terminal acetyltransferase with the cytoplasmic domain of beta-amyloid precursor protein and its effect on A-beta secretion.&lt;/strong&gt; J. Biochem. 137: 147-155, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15749829/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15749829&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/jb/mvi014&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15749829">Asaumi et al. (2005)</a> cloned ARD1 and identified it as a potential APP (<a href="/entry/104760">104760</a>)-binding protein in a yeast 2-hybrid assay. The 235-amino acid protein contains an N-acetyltransferase domain, a highly conserved acetyl-coenzyme A binding motif, and a C-terminal APP-binding domain. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15749829" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneStructure" class="mim-anchor"></a>
<h4 href="#mimGeneStructureFold" id="mimGeneStructureToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneStructureToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<div id="mimGeneStructureFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#17" class="mim-tip-reference" title="Popp, B., Stove, S. I., Endele, S., Myklebust, L. M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., Reis, A. &lt;strong&gt;De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 602-609, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25099252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25099252&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25099252[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.150&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25099252">Popp et al. (2015)</a> stated that the NAA10 gene is composed of 8 exons. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25099252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#17" class="mim-tip-reference" title="Popp, B., Stove, S. I., Endele, S., Myklebust, L. M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., Reis, A. &lt;strong&gt;De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 602-609, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25099252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25099252&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25099252[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.150&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25099252">Popp et al. (2015)</a> stated that the NAA10 gene maps to chromosome Xq28. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25099252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneFunction" class="mim-anchor"></a>
<h4 href="#mimGeneFunctionFold" id="mimGeneFunctionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneFunctionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<div id="mimGeneFunctionFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>N-terminal protein acetylation is one of the most common protein modifications that appear to play a role in many biologic processes. The most extensively studied acetylated proteins are the 4 histones, which in all eukaryotic cells organize the nucleosome particles and are subject to an enzyme-catalyzed cycle of acetylation and deacetylation which plays a role in chromatin structure, transcriptional activation, and cell cycle transit. Lack of acetylation of histone H4 distinguishes the inactive from the active mammalian X chromosome (<a href="#11" class="mim-tip-reference" title="Jeppesen, P., Turner, B. M. &lt;strong&gt;The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression.&lt;/strong&gt; Cell 74: 281-289, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8343956/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8343956&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(93)90419-q&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8343956">Jeppesen and Turner, 1993</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8343956" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using the yeast 2-hybrid system to identify proteins that interact with the ODD domain of HIF1A (<a href="/entry/603348">603348</a>), <a href="#10" class="mim-tip-reference" title="Jeong, J.-W., Bae, M.-K., Ahn, M.-Y., Kim, S.-H., Sohn, T.-K., Bae, M.-H., Yoo, M.-A., Song, E. J., Lee, K.-J., Kim, K.-W. &lt;strong&gt;Regulation and destabilization of HIF-1-alpha by ARD1-mediated acetylation.&lt;/strong&gt; Cell 111: 709-720, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12464182/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12464182&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(02)01085-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12464182">Jeong et al. (2002)</a> identified mouse Ard1. They established the function of Ard1 as a protein acetyltransferase in mammalian cells by direct binding to HIF1A to regulate its stability. <a href="#10" class="mim-tip-reference" title="Jeong, J.-W., Bae, M.-K., Ahn, M.-Y., Kim, S.-H., Sohn, T.-K., Bae, M.-H., Yoo, M.-A., Song, E. J., Lee, K.-J., Kim, K.-W. &lt;strong&gt;Regulation and destabilization of HIF-1-alpha by ARD1-mediated acetylation.&lt;/strong&gt; Cell 111: 709-720, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12464182/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12464182&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(02)01085-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12464182">Jeong et al. (2002)</a> also showed that Ard1-mediated acetylation enhances interaction of HIF1A with VHL (<a href="/entry/608537">608537</a>) and HIF1A ubiquitination, suggesting that the acetylation of HIF1A by ARD1 is critical to proteasomal degradation. They concluded that the role of ARD1 in the acetylation of HIF1A provides a key regulatory mechanism underlying HIF1A stability. By assaying ARD1 variants expressed in HeLa cells, <a href="#13" class="mim-tip-reference" title="Kim, S.-H., Park, J. A., Kim, J. H., Lee, J.-W., Seo, J. H., Jung, B.-K., Chun, K.-H., Jeong, J.-W., Bae, M.-K., Kim, K.-W. &lt;strong&gt;Characterization of ARD1 variants in mammalian cells.&lt;/strong&gt; Biochem. Biophys. Res. Commun. 340: 422-427, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16376303/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16376303&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.bbrc.2005.12.018&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16376303">Kim et al. (2006)</a> determined that mouse Ard1(225), but not mouse or human ARD1(235) strongly decreased VEGF (<a href="/entry/192240">192240</a>) mRNA expression under hypoxic conditions. As described by <a href="#10" class="mim-tip-reference" title="Jeong, J.-W., Bae, M.-K., Ahn, M.-Y., Kim, S.-H., Sohn, T.-K., Bae, M.-H., Yoo, M.-A., Song, E. J., Lee, K.-J., Kim, K.-W. &lt;strong&gt;Regulation and destabilization of HIF-1-alpha by ARD1-mediated acetylation.&lt;/strong&gt; Cell 111: 709-720, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12464182/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12464182&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(02)01085-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12464182">Jeong et al. (2002)</a>, Ard1(225) mediated epsilon-acetylation of a HIF1A lysine residue; however, mouse and human ARD1(235) had weaker effects. <a href="#13" class="mim-tip-reference" title="Kim, S.-H., Park, J. A., Kim, J. H., Lee, J.-W., Seo, J. H., Jung, B.-K., Chun, K.-H., Jeong, J.-W., Bae, M.-K., Kim, K.-W. &lt;strong&gt;Characterization of ARD1 variants in mammalian cells.&lt;/strong&gt; Biochem. Biophys. Res. Commun. 340: 422-427, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16376303/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16376303&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.bbrc.2005.12.018&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16376303">Kim et al. (2006)</a> concluded that the different ARD1 isoforms may have different effects on HIF1A stability and acetylation. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=12464182+16376303" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using in vitro translated mouse proteins, <a href="#23" class="mim-tip-reference" title="Sugiura, N., Adams, S. M., Corriveau, R. A. &lt;strong&gt;An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development.&lt;/strong&gt; J. Biol. Chem. 278: 40113-40120, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12888564/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12888564&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M301218200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12888564">Sugiura et al. (2003)</a> showed that Ard1 and Narg1, which they called Nat1, assembled to form a functional acetyltransferase. Narg1 alone showed no activity. Immunoprecipitation and Western blot analysis demonstrated that Narg1 and Ard1 coassembled in mammalian cells. By cotransfection of rat kidney fibroblasts, they showed that Narg1 and Ard1 localized to the cytoplasm in both overlapping and separate compartments. In situ hybridization demonstrated that during mouse brain development, Narg1 and Ard1 were highly expressed in areas of cell division and migration, and their expression appeared to be downregulated as neurons differentiated. Narg1 and Ard1 were expressed in proliferating mouse embryonic carcinoma cells. Treatment of these cells with retinoic acid initiated neuronal differentiation and downregulation of Narg1 and Ard1 as a neuronal marker gene was induced. <a href="#23" class="mim-tip-reference" title="Sugiura, N., Adams, S. M., Corriveau, R. A. &lt;strong&gt;An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development.&lt;/strong&gt; J. Biol. Chem. 278: 40113-40120, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12888564/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12888564&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M301218200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12888564">Sugiura et al. (2003)</a> concluded that NARG1 and ARD1 play a role in the generation and differentiation of neurons. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12888564" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#2" class="mim-tip-reference" title="Asaumi, M., Iijima, K., Sumioka, A., Iijima-Ando, K., Kirino, Y., Nakaya, T., Suzuki, T. &lt;strong&gt;Interaction of N-terminal acetyltransferase with the cytoplasmic domain of beta-amyloid precursor protein and its effect on A-beta secretion.&lt;/strong&gt; J. Biochem. 137: 147-155, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15749829/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15749829&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/jb/mvi014&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15749829">Asaumi et al. (2005)</a> confirmed interaction of APP with ARD1 in mammalian cells by coimmunoprecipitation studies. Using human ACTH as a substrate, they showed that the ARD1/NATH (NARG1; <a href="/entry/608000">608000</a>) complex has strong N-terminal transferase activity. Immunoprecipitation and Western blotting experiments showed that ARD1 and NATH formed a complex in HEK293 cells. Because APP-binding proteins can modulate APP metabolism, they tested the ability of ARD1 to modulate beta-amyloid-40 secretion and found that coexpression of both ARD1 and NATH was required to suppress beta-amyloid-40 generation from APP. APP endocytosis assay in HEK293 cells showed that ARD1 and NATH suppressed endocytosis of APP. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15749829" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using reciprocal immunoprecipitation, followed by mass spectroscopic analysis, <a href="#1" class="mim-tip-reference" title="Arnesen, T., Anderson, D., Baldersheim, C., Lanotte, M., Varhaug, J. E., Lillehaug, J. R. &lt;strong&gt;Identification and characterization of the human ARD1-NATH protein acetyltransferase complex.&lt;/strong&gt; Biochem. J. 386: 433-443, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15496142/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15496142&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15496142[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1042/BJ20041071&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15496142">Arnesen et al. (2005)</a> showed that endogenous ARD1 and NATH formed stable complexes in several human cell lines and that the complex showed N-terminal acetylation activity. Mutation analysis and examination of proteolytic fragments indicated that interaction was mediated through an N-terminal domain of ARD1 and the C-terminal end of NATH. Immunoprecipitation analysis showed ARD1 and NATH associated with several ribosomal proteins. ARD1 and NATH were also detected in isolated polysomes; however, they were predominantly nonpolysomal. Endogenous ARD1 was present in both the nuclei and cytoplasm in several human cell lines, whereas NATH was predominantly in the cytoplasm, despite the presence of a well-defined nuclear localization signal within the NATH coiled-coil region. Both ARD1 and NATH were cleaved in a caspase-dependent manner during apoptosis in stressed HeLa cells, which resulted in reduced acetylation activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15496142" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#3" class="mim-tip-reference" title="Bilton, R., Mazure, N., Trottier, E., Hattab, M., Dery, M.-A., Richard, D. E., Pouyssegur, J., Brahimi-Horn, M. C. &lt;strong&gt;Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1-alpha and is not induced by hypoxia or HIF.&lt;/strong&gt; J. Biol. Chem. 280: 31132-31140, 2005. Note: Erratum: J. Biol. Chem. 281: 15592 only, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15994306/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15994306&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M504482200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15994306">Bilton et al. (2005)</a> found no functional relationship between mouse or human ARD1 and HIF1-alpha. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15994306" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="biochemicalFeatures" class="mim-anchor"></a>
<h4 href="#mimBiochemicalFeaturesFold" id="mimBiochemicalFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimBiochemicalFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Biochemical Features</strong>
</span>
</h4>
</div>
<div id="mimBiochemicalFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Using size-exclusion chromatography, circular dichroism, and fluorescence spectroscopy, <a href="#20" class="mim-tip-reference" title="Sanchez-Puig, N., Fersht, A. R. &lt;strong&gt;Characterization of the native and fibrillar conformation of the human N-alpha-acetyltransferase ARD1.&lt;/strong&gt; Protein Sci. 15: 1968-1976, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16823041/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16823041&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16823041[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1110/ps.062264006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16823041">Sanchez-Puig and Fersht (2006)</a> found that ARD1 consists of a compact globular region comprising two-thirds of the protein and a flexible unstructured C terminus. In addition, ARD1 could assume a misfolded conformation and form amyloid protofilaments under physiologic conditions of pH and temperature. The process was accelerated by thermal denaturation and high protein concentration. Limited proteolysis of ARD1 protofilaments revealed a proteolysis-resistant core within the acetyltransferase domain. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16823041" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Ogden Syndrome</em></strong></p><p>
<a href="#19" class="mim-tip-reference" title="Rope, A. F., Wang, K., Evjenth, R., Xing, J., Johnston, J. J., Swensen, J. J., Johnson, W. E., Moore, B., Huff, C. D., Bird, L. M., Carey, J. C., Opitz, J. M., and 16 others. &lt;strong&gt;Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency.&lt;/strong&gt; Am. J. Hum. Genet. 89: 28-43, 2011. Note: Erratum: Am. J. Hum. Genet. 89: 345 only, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21700266/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21700266&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21700266[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2011.05.017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21700266">Rope et al. (2011)</a> identified a missense mutation in the NAA10 gene (ser37 to pro; <a href="#0001">300013.0001</a>) in 2 families segregating a lethal X-linked recessive disorder of infancy, designated Ogden syndrome (OGDNS; <a href="/entry/300855">300855</a>), characterized by an aged appearance due to lack of subcutaneous fat and loose skin, and craniofacial anomalies including prominent eyes, large ears, downslanting palpebral fissures, flared nares, hypoplastic alae, short columella, protruding upper lip, and microretrognathia. The boys had initial hypotonia progressing to hypertonia, global developmental delay, usually unilateral cryptorchidism, and cardiac arrhythmias leading to death in the first or second year of life. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21700266" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 2 living unrelated children, a boy and a girl, with severe developmental delay and additional features reminiscent of Ogden syndrome, <a href="#17" class="mim-tip-reference" title="Popp, B., Stove, S. I., Endele, S., Myklebust, L. M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., Reis, A. &lt;strong&gt;De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 602-609, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25099252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25099252&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25099252[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.150&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25099252">Popp et al. (2015)</a> identified 2 different de novo missense mutations in the NAA10 gene: a hemizygous A116W substitution (<a href="#0003">300013.0003</a>) in the boy, and a heterozygous V107F substitution (<a href="#0004">300013.0004</a>) in the girl. The mutations were identified by exome sequencing and confirmed by Sanger sequencing. In vitro functional expression studies showed that the A116W protein had a small but significant reduction in catalytic activity (15% reduction compared to wildtype), whereas the V107F mutant had almost no catalytic activity (about 5% residual activity). <a href="#17" class="mim-tip-reference" title="Popp, B., Stove, S. I., Endele, S., Myklebust, L. M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., Reis, A. &lt;strong&gt;De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 602-609, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25099252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25099252&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25099252[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.150&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25099252">Popp et al. (2015)</a> noted that the residual NAA10 activity in their male Swiss patient was significantly higher than that reported by <a href="#19" class="mim-tip-reference" title="Rope, A. F., Wang, K., Evjenth, R., Xing, J., Johnston, J. J., Swensen, J. J., Johnson, W. E., Moore, B., Huff, C. D., Bird, L. M., Carey, J. C., Opitz, J. M., and 16 others. &lt;strong&gt;Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency.&lt;/strong&gt; Am. J. Hum. Genet. 89: 28-43, 2011. Note: Erratum: Am. J. Hum. Genet. 89: 345 only, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21700266/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21700266&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21700266[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2011.05.017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21700266">Rope et al. (2011)</a> in the male patients with the S37P mutation (30-70% reduction), which correlated with the less severe phenotype in the Swiss boy. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=21700266+25099252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 2 young adult brothers, born of unrelated Irish parents, with a variant of Ogden syndrome, <a href="#4" class="mim-tip-reference" title="Casey, J. P., Stove, S. I., McGorrian, C., Galvin, J., Blenski, M., Dunne, A., Ennis, S., Brett, F., King, M. D., Arnesen, T., Lynch, S. A. &lt;strong&gt;NAA10 mutation causing a novel intellectual disability syndrome with long QT due to N-terminal acetyltransferase impairment.&lt;/strong&gt; Sci. Rep. 5: 16022, 2015. Note: Electronic Article.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26522270/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26522270&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26522270[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/srep16022&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26522270">Casey et al. (2015)</a> identified a hemizygous missense mutation in the NAA10 gene (Y43S; <a href="#0005">300013.0005</a>). The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was inherited from the mildly affected mother. In vitro functional expression studies showed that the mutant protein had reduced stability and an 85% reduction in catalytic activity. <a href="#4" class="mim-tip-reference" title="Casey, J. P., Stove, S. I., McGorrian, C., Galvin, J., Blenski, M., Dunne, A., Ennis, S., Brett, F., King, M. D., Arnesen, T., Lynch, S. A. &lt;strong&gt;NAA10 mutation causing a novel intellectual disability syndrome with long QT due to N-terminal acetyltransferase impairment.&lt;/strong&gt; Sci. Rep. 5: 16022, 2015. Note: Electronic Article.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26522270/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26522270&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26522270[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/srep16022&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26522270">Casey et al. (2015)</a> noted although that the Y43S mutation resulted in a more severe impairment in catalytic activity compared to the S37P mutation, the Irish brothers had a less severe phenotype than those reported by <a href="#19" class="mim-tip-reference" title="Rope, A. F., Wang, K., Evjenth, R., Xing, J., Johnston, J. J., Swensen, J. J., Johnson, W. E., Moore, B., Huff, C. D., Bird, L. M., Carey, J. C., Opitz, J. M., and 16 others. &lt;strong&gt;Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency.&lt;/strong&gt; Am. J. Hum. Genet. 89: 28-43, 2011. Note: Erratum: Am. J. Hum. Genet. 89: 345 only, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21700266/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21700266&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21700266[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2011.05.017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21700266">Rope et al. (2011)</a>, indicating that in vitro NAA10 activity in itself may not be sufficient to explain the resulting phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=21700266+26522270" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 11 unrelated females and a male and female sib pair with Ogden syndrome, <a href="#21" class="mim-tip-reference" title="Saunier, C., Stove, S. I., Popp, B., Gerard, B., Blenski, M., AhMew, N., de Bie, C., Goldenberg, P., Isidor, B., Keren, B., Leheup, B., Lampert, L., and 19 others. &lt;strong&gt;Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency.&lt;/strong&gt; Hum. Mutat. 37: 755-64, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/27094817/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;27094817&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=27094817[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.23001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="27094817">Saunier et al. (2016)</a> identified heterozygous mutations and a hemizygous mutation in the NAA10 gene, including 2 novel mutations (R83C, <a href="#0010">300013.0010</a>; F128L, <a href="#0011">300013.0011</a>) and 3 previously reported mutations (V107F, <a href="#0004">300013.0004</a>; R116W, <a href="#0003">300013.0003</a>; F128I). The mutations in the 11 unrelated females were de novo and the mutation in the sib pair was due to maternal germline mosaicism. The mutations were identified by whole-exome sequencing or by sequencing of a panel of genes associated with intellectual disability. The R83C mutation was identified in 7 patients, including the sib pair. In vitro enzymatic assays of mutant NAA10 demonstrated reduced catalytic activity with the F108L, V107F, and R83C mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=27094817" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 22 patients, including 2 males and 20 females, with Ogden syndrome, <a href="#5" class="mim-tip-reference" title="Cheng, H., Gottlieb, L., Marchi, E., Kleyner, R., Bhardwaj, P., Rope, A. F., Rosenheck, S., Moutton, S., Philippe, C., Eyaid, W., Alkuraya, F. S., Toribio, J., and 17 others. &lt;strong&gt;Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15.&lt;/strong&gt; Hum. Molec. Genet. 28: 2900-2919, 2019. Note: Erratum: Hum. Molec. Genet. 29: 877-878, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31127942/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31127942&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31127942[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddz111&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31127942">Cheng et al. (2019)</a> identified hemizygous or heterozygous missense variants in the NAA10 gene, including the recurrent R83C mutation (<a href="#0010">300013.0010</a>), which occurred de novo in 11 unrelated females. The mutations were found by exome sequencing; none were present in the gnomAD database. In vitro functional expression studies indicated that some of the mutations adversely affected enzymatic activity or stabilization of the NatA complex. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31127942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In an 18-year-old woman with Ogden syndrome, <a href="#14" class="mim-tip-reference" title="Maini, I., Caraffi, S. G., Peluso, F., Valeri, L., Nicoli, D., Laurie, S., Baldo, C., Zuffardi, O., Garavelli, L. &lt;strong&gt;Clinical Manifestations in a girl with NAA10-related syndrome and genotype-phenotype correlation in females.&lt;/strong&gt; Genes (Basel) 12: 900, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34200686/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34200686&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34200686[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.3390/genes12060900&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34200686">Maini et al. (2021)</a> identified heterozygosity for the recurrent R83C mutation in the NAA10 gene. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was shown to be de novo. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34200686" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 2 unrelated females and 5 males from 3 families with OGDNS, <a href="#15" class="mim-tip-reference" title="McTiernan, N., Tranebjaerg, L., Bjorheim, A. S., Hogue, J. S., Wilson, W. G., Schmidt, B., Boerrigter, M. M., Nybo, M. L., Smeland, M. F., Tumer, Z., Arnesen, T. &lt;strong&gt;Biochemical analysis of novel NAA10 variants suggests distinct pathogenic mechanisms involving impaired protein N-terminal acetylation.&lt;/strong&gt; Hum. Genet. 141: 1355-1369, 2022.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/35039925/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;35039925&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=35039925[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-021-02427-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="35039925">McTiernan et al. (2022)</a> identified 3 hemizygous (A6P; R79C, <a href="#0012">300013.0012</a>; E157K) and 2 heterozygous (F128L, <a href="#0011">300013.0011</a>; Q129P) mutations in the NAA10 gene. The hemizygous mutations were maternally inherited and the heterozygous mutations were de novo. In vitro studies in HeLa cells transfected with NAA10 with each mutation demonstrated reduced stability of the A6P, Q129P, and E157K mutants. Coimmunoprecipitation studies of NAA10 with the A6P mutation with NAA15 demonstrated reduced capacity to form the NatA complex. NAA10 with the A6P, R79C, Q129P, and E157K mutations had reduced catalytic activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35039925" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Syndromic Microphthalmia 1</em></strong></p><p>
By exome sequencing in 3 affected brothers with Lenz microphthalmia syndrome (MCOPS1; <a href="/entry/309800">309800</a>), <a href="#6" class="mim-tip-reference" title="Esmailpour, T., Riazifar, H., Liu, L., Donkervoort, S., Huang, V. H., Madaan, S., Shoucri, B. M., Busch, A., Wu, J., Towbin, A., Chadwick, R. B., Sequeira, A., Vawter, M. P., Sun, G., Johnston, J. J., Biesecker, L. G., Kawaguchi, R., Sun, H., Kimonis, V., Huang, T. &lt;strong&gt;A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signalling pathway and causes Lenz microphthalmia syndrome.&lt;/strong&gt; J. Med. Genet. 51: 185-196, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24431331/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24431331&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24431331[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmedgenet-2013-101660&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24431331">Esmailpour et al. (2014)</a> identified a splice site mutation in the NAA10 gene (<a href="#0002">300013.0002</a>) that was confirmed by Sanger sequencing in the 3 sibs and their obligate heterozygote mother, as well as in a maternal aunt and her daughter, but was not found in 4 unaffected family members. There was evidence for reduced expressivity in heterozygotes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24431331" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In affected individuals from 3 unrelated families with male-limited syndromic microphthalmia/anophthalmia, <a href="#12" class="mim-tip-reference" title="Johnston, J. J., Williamson, K. A., Chou, C. M., Sapp, J. C., Ansari, M., Chapman, H. M., Cooper, D. N., Dabib, T., Dudley, J. N., Holt, R. J., Ragge, N. K., Schaffer, A. A., Sen, S. K., Slavotinek, A. M., FitzPatrick, D. R., Glaser, T. M., Stewart, F., Black, G. C. M., Biesecker, L. G. &lt;strong&gt;NAA10 polyadenylation signal variants cause syndromic microphthalmia.&lt;/strong&gt; J. Med. Genet. 56: 444-453, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30842225/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30842225&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30842225[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmedgenet-2018-105836&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30842225">Johnston et al. (2019)</a> identified 3 different variants in the 3-prime UTR of the NAA10 gene (<a href="#0006">300013.0006</a>-<a href="#0008">300013.0008</a>), all of which altered the consensus polyadenylation sequence. Analysis of X inactivation showed greater than 90% skewing in 4 of 11 carrier females; however, carrier females did not show consistent skewing of X inactivation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30842225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="allelicVariants" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span href="#mimAllelicVariantsFold" id="mimAllelicVariantsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAllelicVariantsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>ALLELIC VARIANTS (<a href="/help/faq#1_4"></strong>
</span>
<strong>12 Selected Examples</a>):</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimAllelicVariantsFold" class="collapse in mimTextToggleFold">
<div>
<a href="/allelicVariants/300013" class="btn btn-default" role="button"> Table View </a>
&nbsp;&nbsp;<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=300013[MIM]" class="btn btn-default mim-tip-hint" role="button" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a>
</div>
<div>
<p />
</div>
<div>
<div>
<a id="0001" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0001&nbsp;OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, SER37PRO
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs387906701 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs387906701;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs387906701" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs387906701" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000022818 OR RCV005055521" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000022818, RCV005055521" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000022818...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p><a href="#19" class="mim-tip-reference" title="Rope, A. F., Wang, K., Evjenth, R., Xing, J., Johnston, J. J., Swensen, J. J., Johnson, W. E., Moore, B., Huff, C. D., Bird, L. M., Carey, J. C., Opitz, J. M., and 16 others. &lt;strong&gt;Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency.&lt;/strong&gt; Am. J. Hum. Genet. 89: 28-43, 2011. Note: Erratum: Am. J. Hum. Genet. 89: 345 only, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21700266/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21700266&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=21700266[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2011.05.017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21700266">Rope et al. (2011)</a> identified 2 unrelated families segregating a lethal X-linked disorder, Ogden syndrome (OGDNS; <a href="/entry/300855">300855</a>). The 2 families had independent occurrences of a T-to-C transition at nucleotide 109 of the NAA10 gene, resulting in a serine-to-proline substitution at codon 37 (S37P). The NAA10 gene encodes the catalytic subunit of the N-terminal acetyltransferase. Substitution of proline for serine at position 37 is likely to affect structure, and in vitro assays of protein function demonstrated 60 to 80% reduction in NAT activity of the mutant protein toward the in vivo substrate RNase P protein p30 (<a href="/entry/606115">606115</a>). In contrast, the activity toward the substrate high mobility group protein A1 (<a href="/entry/600701">600701</a>) was reduced by only 20%. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21700266" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using structural modeling and simulations, <a href="#16" class="mim-tip-reference" title="Myklebust, L. M., Van Damme, P., Stove, S. I., Dorfel, M. J., Abboud, A., Kalvik, T. V., Grauffel, C., Jonckheere, V., Wu, Y., Swensen, J., Kaasa, H., Liszczak, G., Marmorstein, R., Reuter, N., Lyon, G. J., Gevaert, K., Arnesen, T. &lt;strong&gt;Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects.&lt;/strong&gt; Hum. Molec. Genet. 24: 1956-1976, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25489052/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25489052&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25489052[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddu611&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25489052">Myklebust et al. (2015)</a> found that S37P mutant NAA10 differs from wildtype NAA10 in regions involved in catalysis and at the interface between NAA10 and NAA15. The S37P mutation shortens helix alpha-2, weakens the interfacial hydrogen-bonding network, and reduces NAA10 flexibility. In vitro biochemical analysis demonstrated reduced substrate binding and catalytic capacity and impaired interaction between S37P mutant NAA10 and NAA15 (<a href="/entry/608000">608000</a>) or NAA50 (<a href="/entry/610834">610834</a>). Analysis of total protein N-acetylation in immortalized wildtype and Ogden syndrome B cells and fibroblasts revealed decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells. Furthermore, Ogden syndrome fibroblasts showed reduced cell migration and proliferation capacity, and elevated sensitivity to cell stresses. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25489052" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0002" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0002&nbsp;MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, IVS7DS, T-A, +2
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587776457 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587776457;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587776457" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587776457" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000088650" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000088650" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000088650</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 3 affected brothers with Lenz microphthalmia syndrome (MCOPS1; <a href="/entry/309800">309800</a>), originally studied by <a href="#7" class="mim-tip-reference" title="Forrester, S., Kovach, M. J., Reynolds, N. M., Urban, R., Kimonis, V. &lt;strong&gt;Manifestations in four males with and an obligate carrier of the Lenz microphthalmia syndrome.&lt;/strong&gt; Am. J. Med. Genet. 98: 92-100, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11426460/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11426460&lt;/a&gt;]" pmid="11426460">Forrester et al. (2001)</a>, <a href="#6" class="mim-tip-reference" title="Esmailpour, T., Riazifar, H., Liu, L., Donkervoort, S., Huang, V. H., Madaan, S., Shoucri, B. M., Busch, A., Wu, J., Towbin, A., Chadwick, R. B., Sequeira, A., Vawter, M. P., Sun, G., Johnston, J. J., Biesecker, L. G., Kawaguchi, R., Sun, H., Kimonis, V., Huang, T. &lt;strong&gt;A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signalling pathway and causes Lenz microphthalmia syndrome.&lt;/strong&gt; J. Med. Genet. 51: 185-196, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24431331/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24431331&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24431331[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmedgenet-2013-101660&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24431331">Esmailpour et al. (2014)</a> identified a c.471+2T-A transversion in intron 7 of the NAA10 gene, predicted to severely alter exon 7 splicing. The mutation was also detected in their obligate heterozygote mother, as well as in a maternal aunt and her daughter, but was not found in 4 unaffected family members. Heterozygous individuals displayed cutaneous syndactyly and short terminal phalanges, features that were not seen in family members who did not carry the mutation. Analysis of patient cDNA revealed the presence of aberrant transcripts. Patient fibroblasts lacked expression of full-length NAA10, and staining suggested that mutant NAA10 aggregated in the cytoplasm; in addition, the fibroblasts displayed cell proliferation defects. Expression studies showed significant dysregulation of microphthalmia-associated genes and their downstream pathways, including STRA6 (<a href="/entry/610745">610745</a>). Retinol uptake assay showed a significant decrease in retinol uptake by patient fibroblasts compared to controls. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=11426460+24431331" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0003" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0003&nbsp;OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, ARG116TRP
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000128609 OR RCV000413890 OR RCV004528848" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000128609, RCV000413890, RCV004528848" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000128609...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a Swiss boy with a variant of Ogden syndrome (OGDNS; <a href="/entry/300855">300855</a>), <a href="#17" class="mim-tip-reference" title="Popp, B., Stove, S. I., Endele, S., Myklebust, L. M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., Reis, A. &lt;strong&gt;De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 602-609, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25099252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25099252&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25099252[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.150&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25099252">Popp et al. (2015)</a> identified a de novo hemizygous c.346C-T transition (c.346C-T, NM_003491.3) in the NAA10 gene, resulting in an arg116-to-trp (R116W) substitution at a highly conserved residue in the N-acetyltransferase domain. The mutation, which was found by parent-child trio exome sequencing and confirmed by Sanger sequencing, was not found in the dbSNP (build 137), 1000 Genomes Project, or Exome Sequencing Project databases or in an in-house control database. In vitro functional expression studies showed that the mutant protein had a small but significant reduction in catalytic activity (15% reduction compared to wildtype). The patient had previously been reported in a large exome sequencing study of patients with nonspecific severe intellectual disability (<a href="#18" class="mim-tip-reference" title="Rauch, A., Wieczorek, D., Graf, E., Wieland, T., Endele, S., Schwarzmayr, T., Albrecht, B., Bartholdi, D., Beygo, J., Di Donato, N., Dufke, A., Cremer, K., and 27 others. &lt;strong&gt;Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study.&lt;/strong&gt; Lancet 380: 1674-1682, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23020937/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23020937&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/S0140-6736(12)61480-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23020937">Rauch et al., 2012</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=23020937+25099252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By trio exome sequencing in a female with OGDNS, <a href="#21" class="mim-tip-reference" title="Saunier, C., Stove, S. I., Popp, B., Gerard, B., Blenski, M., AhMew, N., de Bie, C., Goldenberg, P., Isidor, B., Keren, B., Leheup, B., Lampert, L., and 19 others. &lt;strong&gt;Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency.&lt;/strong&gt; Hum. Mutat. 37: 755-64, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/27094817/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;27094817&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=27094817[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.23001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="27094817">Saunier et al. (2016)</a> identified de novo heterozygosity for the R116W mutation in the NAA10 gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=27094817" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0004" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0004&nbsp;OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, VAL107PHE
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587780562 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587780562;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587780562" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587780562" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000128608" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000128608" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000128608</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a German girl with a variant of Ogden syndrome (OGDNS; <a href="/entry/300855">300855</a>), <a href="#17" class="mim-tip-reference" title="Popp, B., Stove, S. I., Endele, S., Myklebust, L. M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., Reis, A. &lt;strong&gt;De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 602-609, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25099252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25099252&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25099252[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.150&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25099252">Popp et al. (2015)</a> identified a de novo heterozygous c.319G-T transversion (c.319G-T, NM_003491.3) in the NAA10 gene, resulting in a val107-to-phe (V107F) substitution at a highly conserved residue in the N-acetyltransferase domain. The mutation, which was found by parent-child trio exome sequencing and confirmed by Sanger sequencing, was not found in the dbSNP (build 137), 1000 Genomes Project, or Exome Sequencing Project databases or in an in-house control database. In vitro functional expression assays showed that the V107F mutant had almost no catalytic activity (about 5% residual activity). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25099252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By trio exome sequencing in a female with OGDNS, <a href="#21" class="mim-tip-reference" title="Saunier, C., Stove, S. I., Popp, B., Gerard, B., Blenski, M., AhMew, N., de Bie, C., Goldenberg, P., Isidor, B., Keren, B., Leheup, B., Lampert, L., and 19 others. &lt;strong&gt;Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency.&lt;/strong&gt; Hum. Mutat. 37: 755-64, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/27094817/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;27094817&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=27094817[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.23001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="27094817">Saunier et al. (2016)</a> identified de novo heterozygosity for the V107F mutation in the NAA10 gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=27094817" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0005" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0005&nbsp;OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, TYR43SER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs863225427 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs863225427;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs863225427" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs863225427" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000202352" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000202352" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000202352</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 2 young adult brothers, born of unrelated Irish parents, with a variant of Ogden syndrome (OGDNS; <a href="/entry/300855">300855</a>), <a href="#4" class="mim-tip-reference" title="Casey, J. P., Stove, S. I., McGorrian, C., Galvin, J., Blenski, M., Dunne, A., Ennis, S., Brett, F., King, M. D., Arnesen, T., Lynch, S. A. &lt;strong&gt;NAA10 mutation causing a novel intellectual disability syndrome with long QT due to N-terminal acetyltransferase impairment.&lt;/strong&gt; Sci. Rep. 5: 16022, 2015. Note: Electronic Article.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26522270/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26522270&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26522270[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/srep16022&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26522270">Casey et al. (2015)</a> identified a hemizygous c.128A-C transversion (c.128A-C, NM_001256120.1) in the NAA10 gene, resulting in a tyr43-to-ser (Y43S) substitution at a highly conserved residue. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was not found in the dbSNP, 1000 Genomes Project, or Exome Variant Server databases and was demonstrated to be inherited from the mildly affected mother. In vitro functional expression studies showed that the mutant protein had reduced stability and an 85% reduction in catalytic activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26522270" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0006" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0006&nbsp;MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, +43A-G, 3-PRIME UTR
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1603289772 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1603289772;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1603289772" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1603289772" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001215735" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001215735" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001215735</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 3-generation family from Northern Ireland (family 1) with syndromic microphthalmia (MCOPS1; <a href="/entry/309800">309800</a>), originally reported by Graham et al. (<a href="#8" class="mim-tip-reference" title="Graham, C. A., McCleary, B. G., Malcolm, S., Kelly, E. D., Hill, A. J., Johnston, W. P., Nevin, N. C. &lt;strong&gt;Linkage analysis in a family with X-linked anophthalmos. (Abstract)&lt;/strong&gt; J. Med. Genet. 25: 643 only, 1988."None>1988</a>, <a href="#9" class="mim-tip-reference" title="Graham, C. A., Redmond, R. M., Nevin, N. C. &lt;strong&gt;X-linked clinical anophthalmos: localization of the gene to Xq27-Xq28.&lt;/strong&gt; Ophthalmic Paediat. Genet. 12: 43-48, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1679229/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1679229&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.3109/13816819109023084&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1679229">1991</a>), <a href="#12" class="mim-tip-reference" title="Johnston, J. J., Williamson, K. A., Chou, C. M., Sapp, J. C., Ansari, M., Chapman, H. M., Cooper, D. N., Dabib, T., Dudley, J. N., Holt, R. J., Ragge, N. K., Schaffer, A. A., Sen, S. K., Slavotinek, A. M., FitzPatrick, D. R., Glaser, T. M., Stewart, F., Black, G. C. M., Biesecker, L. G. &lt;strong&gt;NAA10 polyadenylation signal variants cause syndromic microphthalmia.&lt;/strong&gt; J. Med. Genet. 56: 444-453, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30842225/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30842225&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30842225[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmedgenet-2018-105836&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30842225">Johnston et al. (2019)</a> identified a c.*43A-G transition (c.*43A-G, NM_003491.3) in the 3-prime UTR of the NAA10 gene (chrX:153,195,397T-C, GRCh37), altering the consensus polyadenylation sequence (PAS) from AATAAA to AATAGA. The mutation, which was not found in the gnomAD database, segregated fully with disease in the family, including in 1 male previously thought to be unaffected, but who exhibited cleft soft palate and an ear tag. One carrier female showed greater than 90% skewing of X inactivation, but the authors noted that females did not show consistent skewing of X inactivation. Analysis by qPCR of patient mRNA showed an approximately 50% decrease in NAA10 mRNA compared to controls, whereas carrier females had similar levels to controls. RNAseq analysis of transcript structure in affected individuals revealed that read depth did not decrease as expected at the PAS in the 3-prime UTR, but declined approximately 600 bp further 3-prime at a predicted second PAS. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1679229+30842225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0007" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0007&nbsp;MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, +39A-G, 3-PRIME UTR
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1603289774 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1603289774;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1603289774" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1603289774" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001215737 OR RCV002264981" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001215737, RCV002264981" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001215737...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 5-generation family (family 2) with syndromic microphthalmia (MCOPS1; <a href="/entry/309800">309800</a>), originally reported by <a href="#22" class="mim-tip-reference" title="Slavotinek, A., Lee, S. S., Hamilton, S. P. &lt;strong&gt;A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.&lt;/strong&gt; Am. J. Med. Genet. 138A: 89-94, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16114045/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16114045&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.a.30872&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16114045">Slavotinek et al. (2005)</a>, <a href="#12" class="mim-tip-reference" title="Johnston, J. J., Williamson, K. A., Chou, C. M., Sapp, J. C., Ansari, M., Chapman, H. M., Cooper, D. N., Dabib, T., Dudley, J. N., Holt, R. J., Ragge, N. K., Schaffer, A. A., Sen, S. K., Slavotinek, A. M., FitzPatrick, D. R., Glaser, T. M., Stewart, F., Black, G. C. M., Biesecker, L. G. &lt;strong&gt;NAA10 polyadenylation signal variants cause syndromic microphthalmia.&lt;/strong&gt; J. Med. Genet. 56: 444-453, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30842225/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30842225&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30842225[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmedgenet-2018-105836&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30842225">Johnston et al. (2019)</a> identified a c.*39A-G transition (c.*39A-G, NM_003491.3) in the 3-prime UTR of the NAA10 gene (chrX:153,195,401T-C, GRCh37), altering the consensus polyadenylation sequence (PAS) from AATAAA to GATAAA. The mutation segregated with disease in the family. Three carrier females showed greater than 90% skewing of X inactivation, but the authors noted that females did not show consistent skewing of X inactivation. Analysis by qPCR of patient mRNA showed an approximately 50% decrease in NAA10 mRNA compared to controls, whereas carrier females had similar levels to controls. RNAseq analysis of transcript structure in affected individuals revealed that read depth did not decrease as expected at the PAS in the 3-prime UTR, but declined approximately 600 bp further 3-prime at a predicted second PAS. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=16114045+30842225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0008" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0008&nbsp;MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, +40A-G, 3-PRIME UTR
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1342269961 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1342269961;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1342269961" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1342269961" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001215739 OR RCV001840731" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001215739, RCV001840731" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001215739...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an 8-month-old boy (family 3) with syndromic microphthalmia (MCOPS1; <a href="/entry/309800">309800</a>), <a href="#12" class="mim-tip-reference" title="Johnston, J. J., Williamson, K. A., Chou, C. M., Sapp, J. C., Ansari, M., Chapman, H. M., Cooper, D. N., Dabib, T., Dudley, J. N., Holt, R. J., Ragge, N. K., Schaffer, A. A., Sen, S. K., Slavotinek, A. M., FitzPatrick, D. R., Glaser, T. M., Stewart, F., Black, G. C. M., Biesecker, L. G. &lt;strong&gt;NAA10 polyadenylation signal variants cause syndromic microphthalmia.&lt;/strong&gt; J. Med. Genet. 56: 444-453, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30842225/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30842225&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30842225[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmedgenet-2018-105836&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30842225">Johnston et al. (2019)</a> identified a c.*40A-G transition (c.*40A-G, NM_003491.3) in the 3-prime UTR of the NAA10 gene (chrX:153,195,400T-C, GRCh37), altering the consensus polyadenylation sequence (PAS) from AATAAA to AGTAAA. The mutation was present in his unaffected carrier mother. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30842225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0009" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0009&nbsp;MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, 4-BP DEL
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs2148534324 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2148534324;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs2148534324" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs2148534324" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001375494 OR RCV002293532" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001375494, RCV002293532" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001375494...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an 11-year-old boy (patient 23) with syndromic microphthalmia-1 (MCOPS1; <a href="/entry/309800">309800</a>), <a href="#5" class="mim-tip-reference" title="Cheng, H., Gottlieb, L., Marchi, E., Kleyner, R., Bhardwaj, P., Rope, A. F., Rosenheck, S., Moutton, S., Philippe, C., Eyaid, W., Alkuraya, F. S., Toribio, J., and 17 others. &lt;strong&gt;Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15.&lt;/strong&gt; Hum. Molec. Genet. 28: 2900-2919, 2019. Note: Erratum: Hum. Molec. Genet. 29: 877-878, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31127942/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31127942&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31127942[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddz111&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31127942">Cheng et al. (2019)</a> identified a 4-bp deletion (c.455_458del) in the NAA10 gene, resulting in a frameshift and premature termination (Thr152ArgfsTer6). The mutation was inherited from his mother. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31127942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0010" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0010&nbsp;OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, ARG83CYS
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000190675 OR RCV000225365 OR RCV000255490 OR RCV001257765 OR RCV002252040 OR RCV003401042" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000190675, RCV000225365, RCV000255490, RCV001257765, RCV002252040, RCV003401042" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000190675...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 6 unrelated females and a brother-sister pair with Ogden syndrome (OGDNS; <a href="/entry/300855">300855</a>), <a href="#21" class="mim-tip-reference" title="Saunier, C., Stove, S. I., Popp, B., Gerard, B., Blenski, M., AhMew, N., de Bie, C., Goldenberg, P., Isidor, B., Keren, B., Leheup, B., Lampert, L., and 19 others. &lt;strong&gt;Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency.&lt;/strong&gt; Hum. Mutat. 37: 755-64, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/27094817/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;27094817&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=27094817[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.23001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="27094817">Saunier et al. (2016)</a> identified heterozygosity or hemizygosity for a c.247C-T transition (c.247C-T, NM_003491.3) in the NAA10 gene, resulting in an arg83-to-cys (R83C) substitution. The mutations, which were found by trio whole-exome sequencing or by sequencing of a panel of genes associated with intellectual disability, were de novo in the 11 unrelated females and were due to maternal germline mosaicism in the sib pair. In vitro assays of mutant NAA10 with the R83C mutation demonstrated reduced catalytic activity and a higher Km compared to wildtype, indicating reduced affinity to acetyl-CoA. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=27094817" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 11 unrelated females with OGDNS, <a href="#5" class="mim-tip-reference" title="Cheng, H., Gottlieb, L., Marchi, E., Kleyner, R., Bhardwaj, P., Rope, A. F., Rosenheck, S., Moutton, S., Philippe, C., Eyaid, W., Alkuraya, F. S., Toribio, J., and 17 others. &lt;strong&gt;Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15.&lt;/strong&gt; Hum. Molec. Genet. 28: 2900-2919, 2019. Note: Erratum: Hum. Molec. Genet. 29: 877-878, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31127942/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31127942&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31127942[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddz111&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31127942">Cheng et al. (2019)</a> identified a de novo heterozygous c.247C-T transition in exon 5 of the NAA10 gene, resulting in an R83C substitution. The mutation was found by exome sequencing; it was not present in the gnomAD database. In vitro functional expression studies indicated that the mutation may have increased activity compared to wildtype in certain circumstances. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31127942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In an 18-year-old woman with OGDNS, <a href="#14" class="mim-tip-reference" title="Maini, I., Caraffi, S. G., Peluso, F., Valeri, L., Nicoli, D., Laurie, S., Baldo, C., Zuffardi, O., Garavelli, L. &lt;strong&gt;Clinical Manifestations in a girl with NAA10-related syndrome and genotype-phenotype correlation in females.&lt;/strong&gt; Genes (Basel) 12: 900, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34200686/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34200686&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34200686[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.3390/genes12060900&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34200686">Maini et al. (2021)</a> identified heterozygosity for the R83C mutation in the NAA10 gene. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was shown to be de novo. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34200686" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0011" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0011&nbsp;OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, PHE128LEU
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000225366 OR RCV000414068" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000225366, RCV000414068" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000225366...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 2 unrelated female patients (patients 3 and 4) with Ogden syndrome (OGDNS; <a href="/entry/300855">300855</a>), <a href="#21" class="mim-tip-reference" title="Saunier, C., Stove, S. I., Popp, B., Gerard, B., Blenski, M., AhMew, N., de Bie, C., Goldenberg, P., Isidor, B., Keren, B., Leheup, B., Lampert, L., and 19 others. &lt;strong&gt;Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency.&lt;/strong&gt; Hum. Mutat. 37: 755-64, 2016.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/27094817/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;27094817&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=27094817[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.23001&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="27094817">Saunier et al. (2016)</a> identified a de novo heterozygous c.384T-A transversion (c.384T-A, NM_003491.3) in the NAA10 gene, resulting in a phe128-to-leu (F128L) substitution. The mutation was found by trio whole-exome sequencing and confirmed by Sanger sequencing. In vitro assays of mutant NAA10 with the F128L mutation demonstrated reduced protein stability. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=27094817" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0012" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0012&nbsp;OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
NAA10, ARG79CYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1057524031 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1057524031;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1057524031" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1057524031" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000436076 OR RCV000851511 OR RCV001305870 OR RCV001730682" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000436076, RCV000851511, RCV001305870, RCV001730682" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000436076...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 2 brothers (individuals 4 and 5) and a maternal uncle (individual 3) with Ogden syndrome (OGDNS; <a href="/entry/300855">300855</a>), <a href="#15" class="mim-tip-reference" title="McTiernan, N., Tranebjaerg, L., Bjorheim, A. S., Hogue, J. S., Wilson, W. G., Schmidt, B., Boerrigter, M. M., Nybo, M. L., Smeland, M. F., Tumer, Z., Arnesen, T. &lt;strong&gt;Biochemical analysis of novel NAA10 variants suggests distinct pathogenic mechanisms involving impaired protein N-terminal acetylation.&lt;/strong&gt; Hum. Genet. 141: 1355-1369, 2022.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/35039925/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;35039925&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=35039925[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-021-02427-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="35039925">McTiernan et al. (2022)</a> identified a c.235C-T transition (c.235C-T, NM_003491.4) in the NAA10 gene, resulting in an arg79-to-cys (R79C) substitution. The mutation was identified by whole-exome sequencing. Another maternal uncle (individual 2) was similarly affected but did not undergo molecular testing. In vitro studies of NAA10 with the R79C mutation had reduced Nt-acetylation catalytic activity towards a synthetic oligopeptide compared to wildtype NAA10. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35039925" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Arnesen2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Arnesen, T., Anderson, D., Baldersheim, C., Lanotte, M., Varhaug, J. E., Lillehaug, J. R.
<strong>Identification and characterization of the human ARD1-NATH protein acetyltransferase complex.</strong>
Biochem. J. 386: 433-443, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15496142/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15496142</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15496142[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15496142" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1042/BJ20041071" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Asaumi2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Asaumi, M., Iijima, K., Sumioka, A., Iijima-Ando, K., Kirino, Y., Nakaya, T., Suzuki, T.
<strong>Interaction of N-terminal acetyltransferase with the cytoplasmic domain of beta-amyloid precursor protein and its effect on A-beta secretion.</strong>
J. Biochem. 137: 147-155, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15749829/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15749829</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15749829" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/jb/mvi014" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Bilton2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bilton, R., Mazure, N., Trottier, E., Hattab, M., Dery, M.-A., Richard, D. E., Pouyssegur, J., Brahimi-Horn, M. C.
<strong>Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1-alpha and is not induced by hypoxia or HIF.</strong>
J. Biol. Chem. 280: 31132-31140, 2005. Note: Erratum: J. Biol. Chem. 281: 15592 only, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15994306/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15994306</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15994306" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1074/jbc.M504482200" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Casey2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Casey, J. P., Stove, S. I., McGorrian, C., Galvin, J., Blenski, M., Dunne, A., Ennis, S., Brett, F., King, M. D., Arnesen, T., Lynch, S. A.
<strong>NAA10 mutation causing a novel intellectual disability syndrome with long QT due to N-terminal acetyltransferase impairment.</strong>
Sci. Rep. 5: 16022, 2015. Note: Electronic Article.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/26522270/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">26522270</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=26522270[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26522270" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/srep16022" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Cheng2019" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cheng, H., Gottlieb, L., Marchi, E., Kleyner, R., Bhardwaj, P., Rope, A. F., Rosenheck, S., Moutton, S., Philippe, C., Eyaid, W., Alkuraya, F. S., Toribio, J., and 17 others.
<strong>Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15.</strong>
Hum. Molec. Genet. 28: 2900-2919, 2019. Note: Erratum: Hum. Molec. Genet. 29: 877-878, 2020.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/31127942/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">31127942</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=31127942[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31127942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddz111" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Esmailpour2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Esmailpour, T., Riazifar, H., Liu, L., Donkervoort, S., Huang, V. H., Madaan, S., Shoucri, B. M., Busch, A., Wu, J., Towbin, A., Chadwick, R. B., Sequeira, A., Vawter, M. P., Sun, G., Johnston, J. J., Biesecker, L. G., Kawaguchi, R., Sun, H., Kimonis, V., Huang, T.
<strong>A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signalling pathway and causes Lenz microphthalmia syndrome.</strong>
J. Med. Genet. 51: 185-196, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/24431331/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">24431331</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=24431331[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24431331" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmedgenet-2013-101660" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Forrester2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Forrester, S., Kovach, M. J., Reynolds, N. M., Urban, R., Kimonis, V.
<strong>Manifestations in four males with and an obligate carrier of the Lenz microphthalmia syndrome.</strong>
Am. J. Med. Genet. 98: 92-100, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11426460/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11426460</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11426460" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Graham1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Graham, C. A., McCleary, B. G., Malcolm, S., Kelly, E. D., Hill, A. J., Johnston, W. P., Nevin, N. C.
<strong>Linkage analysis in a family with X-linked anophthalmos. (Abstract)</strong>
J. Med. Genet. 25: 643 only, 1988.
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Graham1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Graham, C. A., Redmond, R. M., Nevin, N. C.
<strong>X-linked clinical anophthalmos: localization of the gene to Xq27-Xq28.</strong>
Ophthalmic Paediat. Genet. 12: 43-48, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1679229/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1679229</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1679229" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.3109/13816819109023084" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Jeong2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jeong, J.-W., Bae, M.-K., Ahn, M.-Y., Kim, S.-H., Sohn, T.-K., Bae, M.-H., Yoo, M.-A., Song, E. J., Lee, K.-J., Kim, K.-W.
<strong>Regulation and destabilization of HIF-1-alpha by ARD1-mediated acetylation.</strong>
Cell 111: 709-720, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12464182/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12464182</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12464182" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(02)01085-1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Jeppesen1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jeppesen, P., Turner, B. M.
<strong>The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression.</strong>
Cell 74: 281-289, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8343956/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8343956</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8343956" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0092-8674(93)90419-q" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Johnston2019" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Johnston, J. J., Williamson, K. A., Chou, C. M., Sapp, J. C., Ansari, M., Chapman, H. M., Cooper, D. N., Dabib, T., Dudley, J. N., Holt, R. J., Ragge, N. K., Schaffer, A. A., Sen, S. K., Slavotinek, A. M., FitzPatrick, D. R., Glaser, T. M., Stewart, F., Black, G. C. M., Biesecker, L. G.
<strong>NAA10 polyadenylation signal variants cause syndromic microphthalmia.</strong>
J. Med. Genet. 56: 444-453, 2019.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/30842225/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">30842225</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=30842225[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30842225" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmedgenet-2018-105836" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Kim2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kim, S.-H., Park, J. A., Kim, J. H., Lee, J.-W., Seo, J. H., Jung, B.-K., Chun, K.-H., Jeong, J.-W., Bae, M.-K., Kim, K.-W.
<strong>Characterization of ARD1 variants in mammalian cells.</strong>
Biochem. Biophys. Res. Commun. 340: 422-427, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16376303/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16376303</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16376303" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.bbrc.2005.12.018" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Maini2021" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Maini, I., Caraffi, S. G., Peluso, F., Valeri, L., Nicoli, D., Laurie, S., Baldo, C., Zuffardi, O., Garavelli, L.
<strong>Clinical Manifestations in a girl with NAA10-related syndrome and genotype-phenotype correlation in females.</strong>
Genes (Basel) 12: 900, 2021.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/34200686/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">34200686</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=34200686[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34200686" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.3390/genes12060900" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="McTiernan2022" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
McTiernan, N., Tranebjaerg, L., Bjorheim, A. S., Hogue, J. S., Wilson, W. G., Schmidt, B., Boerrigter, M. M., Nybo, M. L., Smeland, M. F., Tumer, Z., Arnesen, T.
<strong>Biochemical analysis of novel NAA10 variants suggests distinct pathogenic mechanisms involving impaired protein N-terminal acetylation.</strong>
Hum. Genet. 141: 1355-1369, 2022.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/35039925/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">35039925</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=35039925[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35039925" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00439-021-02427-4" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Myklebust2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Myklebust, L. M., Van Damme, P., Stove, S. I., Dorfel, M. J., Abboud, A., Kalvik, T. V., Grauffel, C., Jonckheere, V., Wu, Y., Swensen, J., Kaasa, H., Liszczak, G., Marmorstein, R., Reuter, N., Lyon, G. J., Gevaert, K., Arnesen, T.
<strong>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects.</strong>
Hum. Molec. Genet. 24: 1956-1976, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25489052/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25489052</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=25489052[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25489052" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddu611" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Popp2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Popp, B., Stove, S. I., Endele, S., Myklebust, L. M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., Reis, A.
<strong>De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females.</strong>
Europ. J. Hum. Genet. 23: 602-609, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25099252/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25099252</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=25099252[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25099252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ejhg.2014.150" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Rauch2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rauch, A., Wieczorek, D., Graf, E., Wieland, T., Endele, S., Schwarzmayr, T., Albrecht, B., Bartholdi, D., Beygo, J., Di Donato, N., Dufke, A., Cremer, K., and 27 others.
<strong>Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study.</strong>
Lancet 380: 1674-1682, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23020937/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23020937</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23020937" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/S0140-6736(12)61480-9" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Rope2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rope, A. F., Wang, K., Evjenth, R., Xing, J., Johnston, J. J., Swensen, J. J., Johnson, W. E., Moore, B., Huff, C. D., Bird, L. M., Carey, J. C., Opitz, J. M., and 16 others.
<strong>Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency.</strong>
Am. J. Hum. Genet. 89: 28-43, 2011. Note: Erratum: Am. J. Hum. Genet. 89: 345 only, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21700266/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21700266</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21700266[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21700266" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2011.05.017" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Sanchez-Puig2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sanchez-Puig, N., Fersht, A. R.
<strong>Characterization of the native and fibrillar conformation of the human N-alpha-acetyltransferase ARD1.</strong>
Protein Sci. 15: 1968-1976, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16823041/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16823041</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16823041[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16823041" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1110/ps.062264006" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Saunier2016" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Saunier, C., Stove, S. I., Popp, B., Gerard, B., Blenski, M., AhMew, N., de Bie, C., Goldenberg, P., Isidor, B., Keren, B., Leheup, B., Lampert, L., and 19 others.
<strong>Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency.</strong>
Hum. Mutat. 37: 755-64, 2016.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/27094817/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">27094817</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=27094817[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=27094817" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/humu.23001" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Slavotinek2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Slavotinek, A., Lee, S. S., Hamilton, S. P.
<strong>A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.</strong>
Am. J. Med. Genet. 138A: 89-94, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16114045/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16114045</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16114045" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.a.30872" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Sugiura2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sugiura, N., Adams, S. M., Corriveau, R. A.
<strong>An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development.</strong>
J. Biol. Chem. 278: 40113-40120, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12888564/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12888564</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12888564" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1074/jbc.M301218200" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Tribioli1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tribioli, C., Mancini, M., Plassart, E., Bione, S., Rivella, S., Sala, C., Torri, G., Toniolo, D.
<strong>Isolation of new genes in distal Xq28: transcriptional map and identification of a human homologue of the ARD1 N-acetyltransferase of Saccharomyces cerevisiae.</strong>
Hum. Molec. Genet. 3: 1061-1067, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7981673/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7981673</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7981673" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/3.7.1061" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Whiteway1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Whiteway, M., Szostak, J. W.
<strong>The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways.</strong>
Cell 43: 483-492, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3907857/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3907857</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3907857" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0092-8674(85)90178-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Hilary J. Vernon - updated : 09/08/2022
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Cassandra L. Kniffin - updated : 06/17/2021<br>Carol A. Bocchini - updated : 04/26/2021<br>Marla J. F. O'Neill - updated : 07/10/2020<br>Marla J. F. O'Neill - updated : 07/10/2020<br>Patricia A. Hartz - updated : 10/28/2016<br>Cassandra L. Kniffin - updated : 11/23/2015<br>Marla J. F. O'Neill - updated : 1/29/2014<br>Ada Hamosh - updated : 8/19/2011<br>Patricia A. Hartz - updated : 3/6/2007<br>Stefanie A. Nelson - updated : 2/22/2007<br>Stylianos E. Antonarakis - updated : 1/17/2003
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 2/4/1996
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 09/09/2022
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 09/08/2022<br>carol : 11/10/2021<br>alopez : 07/07/2021<br>ckniffin : 06/17/2021<br>carol : 05/05/2021<br>carol : 04/26/2021<br>alopez : 07/10/2020<br>alopez : 07/10/2020<br>carol : 10/20/2017<br>carol : 08/24/2017<br>alopez : 06/28/2017<br>alopez : 10/28/2016<br>carol : 11/24/2015<br>ckniffin : 11/23/2015<br>mcolton : 8/7/2014<br>carol : 1/29/2014<br>mcolton : 1/28/2014<br>carol : 12/20/2011<br>carol : 9/13/2011<br>alopez : 9/12/2011<br>alopez : 8/24/2011<br>alopez : 8/24/2011<br>terry : 8/19/2011<br>carol : 7/6/2011<br>alopez : 6/17/2010<br>wwang : 3/6/2007<br>wwang : 2/22/2007<br>ckniffin : 8/3/2005<br>ckniffin : 3/23/2004<br>mgross : 1/17/2003<br>mgross : 1/17/2003<br>joanna : 8/31/1998<br>joanna : 8/31/1998<br>joanna : 2/4/1996<br>joanna : 2/4/1996
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>*</strong> 300013
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
N-ALPHA-ACETYLTRANSFERASE 10, NatA CATALYTIC SUBUNIT; NAA10
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
ARD1 N-ACETYLTRANSFERASE, S. CEREVISIAE, HOMOLOG OF, A; ARD1A<br />
ARREST-DEFECTIVE PROTEIN 1; ARD1<br />
TE2
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: NAA10</em></strong>
</span>
</p>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>SNOMEDCT:</strong> 438504004, 771442003; &nbsp;
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: Xq28
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : X:153,929,225-153,935,037 </span>
</em>
</strong>
<span class="small">(from NCBI)</span>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2">
<span class="mim-font">
Xq28
</span>
</td>
<td>
<span class="mim-font">
Microphthalmia, syndromic 1
</span>
</td>
<td>
<span class="mim-font">
309800
</span>
</td>
<td>
<span class="mim-font">
X-linked
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Ogden syndrome
</span>
</td>
<td>
<span class="mim-font">
300855
</span>
</td>
<td>
<span class="mim-font">
X-linked dominant; X-linked recessive
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<div>
<h4>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>N-alpha-acetylation is a common protein modification that occurs during protein synthesis and involves the transfer of an acetyl group from acetyl-coenzyme A to the protein alpha-amino group. ARD1A, together with NATH (NARG1, NAA15; 608000), is part of a major N-alpha-acetyltransferase complex responsible for alpha-acetylation of proteins and peptides (Sanchez-Puig and Fersht, 2006). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Tribioli et al. (1994) described the physical and transcriptional organization of a region of 140 kb in Xq28, 5-prime to the L1CAM gene (308840). They established a transcriptional map of the region by isolating and mapping CpG islands to the physical map, determining partial nucleotide sequences, and studying the pattern of expression and orientation of the transcripts. They succeeded in positioning 4 previously identified genes: L1CAM, AVPR2 (300538), HFC1 (300019), and RENBP (312420). All genes in the region are rather small, ranging in size from 2 to 30 kb, and very close to one another. With the exception of the AVPR2 gene, they serve a housekeeping function, having a CpG island at their 5-prime end and the same orientation of transcription. This kind of organization is consistent with the one previously described for the more distal portion of Xq28, between the color vision pigment genes and the G6PD gene and indicates that genes with a housekeeping and tissue-specific pattern of expression are interspersed in the genome but are probably found in different 'transcriptional domains' (characterized by different orientation). Three new genes were identified and positioned. One of these, termed TE2, demonstrated 40% identity with the ARD1 protein of Saccharomyces cerevisiae (Whiteway and Szostak, 1985), a protein required for the expression of an N-terminal protein acetyltransferase activity. </p><p>Using Northern blot analysis, Sugiura et al. (2003) showed mouse Ard1 was ubiquitously expressed. By database analysis and PCR, Kim et al. (2006) identified 3 splice variants of mouse Ard1 and 2 splice variants of human ARD1. The mouse variants encoded proteins of 235-, 225-, and 198-amino acids. Ard1(235) and Ard1(225) have well-conserved N-acetyltransferase domains, but Ard1(198) has only a partial domain. The human ARD1 variants encoded proteins of 131- and 235-amino acids. The C-terminal region of mouse Ard1(225) differs from that of both mouse and human ARD1(235), likely due to alternative splicing of exon 8. Western blot analysis of human cell lines showed a major intense band of about 32 kD, which corresponded to ARD1(235). In contrast, mouse fibroblasts strongly expressed a 30-kD protein, corresponding to Ard1(225). </p><p>Asaumi et al. (2005) cloned ARD1 and identified it as a potential APP (104760)-binding protein in a yeast 2-hybrid assay. The 235-amino acid protein contains an N-acetyltransferase domain, a highly conserved acetyl-coenzyme A binding motif, and a C-terminal APP-binding domain. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Popp et al. (2015) stated that the NAA10 gene is composed of 8 exons. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Popp et al. (2015) stated that the NAA10 gene maps to chromosome Xq28. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>N-terminal protein acetylation is one of the most common protein modifications that appear to play a role in many biologic processes. The most extensively studied acetylated proteins are the 4 histones, which in all eukaryotic cells organize the nucleosome particles and are subject to an enzyme-catalyzed cycle of acetylation and deacetylation which plays a role in chromatin structure, transcriptional activation, and cell cycle transit. Lack of acetylation of histone H4 distinguishes the inactive from the active mammalian X chromosome (Jeppesen and Turner, 1993). </p><p>Using the yeast 2-hybrid system to identify proteins that interact with the ODD domain of HIF1A (603348), Jeong et al. (2002) identified mouse Ard1. They established the function of Ard1 as a protein acetyltransferase in mammalian cells by direct binding to HIF1A to regulate its stability. Jeong et al. (2002) also showed that Ard1-mediated acetylation enhances interaction of HIF1A with VHL (608537) and HIF1A ubiquitination, suggesting that the acetylation of HIF1A by ARD1 is critical to proteasomal degradation. They concluded that the role of ARD1 in the acetylation of HIF1A provides a key regulatory mechanism underlying HIF1A stability. By assaying ARD1 variants expressed in HeLa cells, Kim et al. (2006) determined that mouse Ard1(225), but not mouse or human ARD1(235) strongly decreased VEGF (192240) mRNA expression under hypoxic conditions. As described by Jeong et al. (2002), Ard1(225) mediated epsilon-acetylation of a HIF1A lysine residue; however, mouse and human ARD1(235) had weaker effects. Kim et al. (2006) concluded that the different ARD1 isoforms may have different effects on HIF1A stability and acetylation. </p><p>Using in vitro translated mouse proteins, Sugiura et al. (2003) showed that Ard1 and Narg1, which they called Nat1, assembled to form a functional acetyltransferase. Narg1 alone showed no activity. Immunoprecipitation and Western blot analysis demonstrated that Narg1 and Ard1 coassembled in mammalian cells. By cotransfection of rat kidney fibroblasts, they showed that Narg1 and Ard1 localized to the cytoplasm in both overlapping and separate compartments. In situ hybridization demonstrated that during mouse brain development, Narg1 and Ard1 were highly expressed in areas of cell division and migration, and their expression appeared to be downregulated as neurons differentiated. Narg1 and Ard1 were expressed in proliferating mouse embryonic carcinoma cells. Treatment of these cells with retinoic acid initiated neuronal differentiation and downregulation of Narg1 and Ard1 as a neuronal marker gene was induced. Sugiura et al. (2003) concluded that NARG1 and ARD1 play a role in the generation and differentiation of neurons. </p><p>Asaumi et al. (2005) confirmed interaction of APP with ARD1 in mammalian cells by coimmunoprecipitation studies. Using human ACTH as a substrate, they showed that the ARD1/NATH (NARG1; 608000) complex has strong N-terminal transferase activity. Immunoprecipitation and Western blotting experiments showed that ARD1 and NATH formed a complex in HEK293 cells. Because APP-binding proteins can modulate APP metabolism, they tested the ability of ARD1 to modulate beta-amyloid-40 secretion and found that coexpression of both ARD1 and NATH was required to suppress beta-amyloid-40 generation from APP. APP endocytosis assay in HEK293 cells showed that ARD1 and NATH suppressed endocytosis of APP. </p><p>Using reciprocal immunoprecipitation, followed by mass spectroscopic analysis, Arnesen et al. (2005) showed that endogenous ARD1 and NATH formed stable complexes in several human cell lines and that the complex showed N-terminal acetylation activity. Mutation analysis and examination of proteolytic fragments indicated that interaction was mediated through an N-terminal domain of ARD1 and the C-terminal end of NATH. Immunoprecipitation analysis showed ARD1 and NATH associated with several ribosomal proteins. ARD1 and NATH were also detected in isolated polysomes; however, they were predominantly nonpolysomal. Endogenous ARD1 was present in both the nuclei and cytoplasm in several human cell lines, whereas NATH was predominantly in the cytoplasm, despite the presence of a well-defined nuclear localization signal within the NATH coiled-coil region. Both ARD1 and NATH were cleaved in a caspase-dependent manner during apoptosis in stressed HeLa cells, which resulted in reduced acetylation activity. </p><p>Bilton et al. (2005) found no functional relationship between mouse or human ARD1 and HIF1-alpha. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Biochemical Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Using size-exclusion chromatography, circular dichroism, and fluorescence spectroscopy, Sanchez-Puig and Fersht (2006) found that ARD1 consists of a compact globular region comprising two-thirds of the protein and a flexible unstructured C terminus. In addition, ARD1 could assume a misfolded conformation and form amyloid protofilaments under physiologic conditions of pH and temperature. The process was accelerated by thermal denaturation and high protein concentration. Limited proteolysis of ARD1 protofilaments revealed a proteolysis-resistant core within the acetyltransferase domain. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Ogden Syndrome</em></strong></p><p>
Rope et al. (2011) identified a missense mutation in the NAA10 gene (ser37 to pro; 300013.0001) in 2 families segregating a lethal X-linked recessive disorder of infancy, designated Ogden syndrome (OGDNS; 300855), characterized by an aged appearance due to lack of subcutaneous fat and loose skin, and craniofacial anomalies including prominent eyes, large ears, downslanting palpebral fissures, flared nares, hypoplastic alae, short columella, protruding upper lip, and microretrognathia. The boys had initial hypotonia progressing to hypertonia, global developmental delay, usually unilateral cryptorchidism, and cardiac arrhythmias leading to death in the first or second year of life. </p><p>In 2 living unrelated children, a boy and a girl, with severe developmental delay and additional features reminiscent of Ogden syndrome, Popp et al. (2015) identified 2 different de novo missense mutations in the NAA10 gene: a hemizygous A116W substitution (300013.0003) in the boy, and a heterozygous V107F substitution (300013.0004) in the girl. The mutations were identified by exome sequencing and confirmed by Sanger sequencing. In vitro functional expression studies showed that the A116W protein had a small but significant reduction in catalytic activity (15% reduction compared to wildtype), whereas the V107F mutant had almost no catalytic activity (about 5% residual activity). Popp et al. (2015) noted that the residual NAA10 activity in their male Swiss patient was significantly higher than that reported by Rope et al. (2011) in the male patients with the S37P mutation (30-70% reduction), which correlated with the less severe phenotype in the Swiss boy. </p><p>In 2 young adult brothers, born of unrelated Irish parents, with a variant of Ogden syndrome, Casey et al. (2015) identified a hemizygous missense mutation in the NAA10 gene (Y43S; 300013.0005). The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was inherited from the mildly affected mother. In vitro functional expression studies showed that the mutant protein had reduced stability and an 85% reduction in catalytic activity. Casey et al. (2015) noted although that the Y43S mutation resulted in a more severe impairment in catalytic activity compared to the S37P mutation, the Irish brothers had a less severe phenotype than those reported by Rope et al. (2011), indicating that in vitro NAA10 activity in itself may not be sufficient to explain the resulting phenotype. </p><p>In 11 unrelated females and a male and female sib pair with Ogden syndrome, Saunier et al. (2016) identified heterozygous mutations and a hemizygous mutation in the NAA10 gene, including 2 novel mutations (R83C, 300013.0010; F128L, 300013.0011) and 3 previously reported mutations (V107F, 300013.0004; R116W, 300013.0003; F128I). The mutations in the 11 unrelated females were de novo and the mutation in the sib pair was due to maternal germline mosaicism. The mutations were identified by whole-exome sequencing or by sequencing of a panel of genes associated with intellectual disability. The R83C mutation was identified in 7 patients, including the sib pair. In vitro enzymatic assays of mutant NAA10 demonstrated reduced catalytic activity with the F108L, V107F, and R83C mutations. </p><p>In 22 patients, including 2 males and 20 females, with Ogden syndrome, Cheng et al. (2019) identified hemizygous or heterozygous missense variants in the NAA10 gene, including the recurrent R83C mutation (300013.0010), which occurred de novo in 11 unrelated females. The mutations were found by exome sequencing; none were present in the gnomAD database. In vitro functional expression studies indicated that some of the mutations adversely affected enzymatic activity or stabilization of the NatA complex. </p><p>In an 18-year-old woman with Ogden syndrome, Maini et al. (2021) identified heterozygosity for the recurrent R83C mutation in the NAA10 gene. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was shown to be de novo. </p><p>In 2 unrelated females and 5 males from 3 families with OGDNS, McTiernan et al. (2022) identified 3 hemizygous (A6P; R79C, 300013.0012; E157K) and 2 heterozygous (F128L, 300013.0011; Q129P) mutations in the NAA10 gene. The hemizygous mutations were maternally inherited and the heterozygous mutations were de novo. In vitro studies in HeLa cells transfected with NAA10 with each mutation demonstrated reduced stability of the A6P, Q129P, and E157K mutants. Coimmunoprecipitation studies of NAA10 with the A6P mutation with NAA15 demonstrated reduced capacity to form the NatA complex. NAA10 with the A6P, R79C, Q129P, and E157K mutations had reduced catalytic activity. </p><p><strong><em>Syndromic Microphthalmia 1</em></strong></p><p>
By exome sequencing in 3 affected brothers with Lenz microphthalmia syndrome (MCOPS1; 309800), Esmailpour et al. (2014) identified a splice site mutation in the NAA10 gene (300013.0002) that was confirmed by Sanger sequencing in the 3 sibs and their obligate heterozygote mother, as well as in a maternal aunt and her daughter, but was not found in 4 unaffected family members. There was evidence for reduced expressivity in heterozygotes. </p><p>In affected individuals from 3 unrelated families with male-limited syndromic microphthalmia/anophthalmia, Johnston et al. (2019) identified 3 different variants in the 3-prime UTR of the NAA10 gene (300013.0006-300013.0008), all of which altered the consensus polyadenylation sequence. Analysis of X inactivation showed greater than 90% skewing in 4 of 11 carrier females; however, carrier females did not show consistent skewing of X inactivation. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>ALLELIC VARIANTS</strong>
</span>
<strong>12 Selected Examples):</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0001 &nbsp; OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, SER37PRO
<br />
SNP: rs387906701,
ClinVar: RCV000022818, RCV005055521
</span>
</div>
<div>
<span class="mim-text-font">
<p>Rope et al. (2011) identified 2 unrelated families segregating a lethal X-linked disorder, Ogden syndrome (OGDNS; 300855). The 2 families had independent occurrences of a T-to-C transition at nucleotide 109 of the NAA10 gene, resulting in a serine-to-proline substitution at codon 37 (S37P). The NAA10 gene encodes the catalytic subunit of the N-terminal acetyltransferase. Substitution of proline for serine at position 37 is likely to affect structure, and in vitro assays of protein function demonstrated 60 to 80% reduction in NAT activity of the mutant protein toward the in vivo substrate RNase P protein p30 (606115). In contrast, the activity toward the substrate high mobility group protein A1 (600701) was reduced by only 20%. </p><p>Using structural modeling and simulations, Myklebust et al. (2015) found that S37P mutant NAA10 differs from wildtype NAA10 in regions involved in catalysis and at the interface between NAA10 and NAA15. The S37P mutation shortens helix alpha-2, weakens the interfacial hydrogen-bonding network, and reduces NAA10 flexibility. In vitro biochemical analysis demonstrated reduced substrate binding and catalytic capacity and impaired interaction between S37P mutant NAA10 and NAA15 (608000) or NAA50 (610834). Analysis of total protein N-acetylation in immortalized wildtype and Ogden syndrome B cells and fibroblasts revealed decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells. Furthermore, Ogden syndrome fibroblasts showed reduced cell migration and proliferation capacity, and elevated sensitivity to cell stresses. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0002 &nbsp; MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, IVS7DS, T-A, +2
<br />
SNP: rs587776457,
ClinVar: RCV000088650
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 3 affected brothers with Lenz microphthalmia syndrome (MCOPS1; 309800), originally studied by Forrester et al. (2001), Esmailpour et al. (2014) identified a c.471+2T-A transversion in intron 7 of the NAA10 gene, predicted to severely alter exon 7 splicing. The mutation was also detected in their obligate heterozygote mother, as well as in a maternal aunt and her daughter, but was not found in 4 unaffected family members. Heterozygous individuals displayed cutaneous syndactyly and short terminal phalanges, features that were not seen in family members who did not carry the mutation. Analysis of patient cDNA revealed the presence of aberrant transcripts. Patient fibroblasts lacked expression of full-length NAA10, and staining suggested that mutant NAA10 aggregated in the cytoplasm; in addition, the fibroblasts displayed cell proliferation defects. Expression studies showed significant dysregulation of microphthalmia-associated genes and their downstream pathways, including STRA6 (610745). Retinol uptake assay showed a significant decrease in retinol uptake by patient fibroblasts compared to controls. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0003 &nbsp; OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, ARG116TRP
<br />
ClinVar: RCV000128609, RCV000413890, RCV004528848
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a Swiss boy with a variant of Ogden syndrome (OGDNS; 300855), Popp et al. (2015) identified a de novo hemizygous c.346C-T transition (c.346C-T, NM_003491.3) in the NAA10 gene, resulting in an arg116-to-trp (R116W) substitution at a highly conserved residue in the N-acetyltransferase domain. The mutation, which was found by parent-child trio exome sequencing and confirmed by Sanger sequencing, was not found in the dbSNP (build 137), 1000 Genomes Project, or Exome Sequencing Project databases or in an in-house control database. In vitro functional expression studies showed that the mutant protein had a small but significant reduction in catalytic activity (15% reduction compared to wildtype). The patient had previously been reported in a large exome sequencing study of patients with nonspecific severe intellectual disability (Rauch et al., 2012). </p><p>By trio exome sequencing in a female with OGDNS, Saunier et al. (2016) identified de novo heterozygosity for the R116W mutation in the NAA10 gene. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0004 &nbsp; OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, VAL107PHE
<br />
SNP: rs587780562,
ClinVar: RCV000128608
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a German girl with a variant of Ogden syndrome (OGDNS; 300855), Popp et al. (2015) identified a de novo heterozygous c.319G-T transversion (c.319G-T, NM_003491.3) in the NAA10 gene, resulting in a val107-to-phe (V107F) substitution at a highly conserved residue in the N-acetyltransferase domain. The mutation, which was found by parent-child trio exome sequencing and confirmed by Sanger sequencing, was not found in the dbSNP (build 137), 1000 Genomes Project, or Exome Sequencing Project databases or in an in-house control database. In vitro functional expression assays showed that the V107F mutant had almost no catalytic activity (about 5% residual activity). </p><p>By trio exome sequencing in a female with OGDNS, Saunier et al. (2016) identified de novo heterozygosity for the V107F mutation in the NAA10 gene. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0005 &nbsp; OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, TYR43SER
<br />
SNP: rs863225427,
ClinVar: RCV000202352
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 2 young adult brothers, born of unrelated Irish parents, with a variant of Ogden syndrome (OGDNS; 300855), Casey et al. (2015) identified a hemizygous c.128A-C transversion (c.128A-C, NM_001256120.1) in the NAA10 gene, resulting in a tyr43-to-ser (Y43S) substitution at a highly conserved residue. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was not found in the dbSNP, 1000 Genomes Project, or Exome Variant Server databases and was demonstrated to be inherited from the mildly affected mother. In vitro functional expression studies showed that the mutant protein had reduced stability and an 85% reduction in catalytic activity. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0006 &nbsp; MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, +43A-G, 3-PRIME UTR
<br />
SNP: rs1603289772,
ClinVar: RCV001215735
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 3-generation family from Northern Ireland (family 1) with syndromic microphthalmia (MCOPS1; 309800), originally reported by Graham et al. (1988, 1991), Johnston et al. (2019) identified a c.*43A-G transition (c.*43A-G, NM_003491.3) in the 3-prime UTR of the NAA10 gene (chrX:153,195,397T-C, GRCh37), altering the consensus polyadenylation sequence (PAS) from AATAAA to AATAGA. The mutation, which was not found in the gnomAD database, segregated fully with disease in the family, including in 1 male previously thought to be unaffected, but who exhibited cleft soft palate and an ear tag. One carrier female showed greater than 90% skewing of X inactivation, but the authors noted that females did not show consistent skewing of X inactivation. Analysis by qPCR of patient mRNA showed an approximately 50% decrease in NAA10 mRNA compared to controls, whereas carrier females had similar levels to controls. RNAseq analysis of transcript structure in affected individuals revealed that read depth did not decrease as expected at the PAS in the 3-prime UTR, but declined approximately 600 bp further 3-prime at a predicted second PAS. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0007 &nbsp; MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, +39A-G, 3-PRIME UTR
<br />
SNP: rs1603289774,
ClinVar: RCV001215737, RCV002264981
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 5-generation family (family 2) with syndromic microphthalmia (MCOPS1; 309800), originally reported by Slavotinek et al. (2005), Johnston et al. (2019) identified a c.*39A-G transition (c.*39A-G, NM_003491.3) in the 3-prime UTR of the NAA10 gene (chrX:153,195,401T-C, GRCh37), altering the consensus polyadenylation sequence (PAS) from AATAAA to GATAAA. The mutation segregated with disease in the family. Three carrier females showed greater than 90% skewing of X inactivation, but the authors noted that females did not show consistent skewing of X inactivation. Analysis by qPCR of patient mRNA showed an approximately 50% decrease in NAA10 mRNA compared to controls, whereas carrier females had similar levels to controls. RNAseq analysis of transcript structure in affected individuals revealed that read depth did not decrease as expected at the PAS in the 3-prime UTR, but declined approximately 600 bp further 3-prime at a predicted second PAS. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0008 &nbsp; MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, +40A-G, 3-PRIME UTR
<br />
SNP: rs1342269961,
ClinVar: RCV001215739, RCV001840731
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an 8-month-old boy (family 3) with syndromic microphthalmia (MCOPS1; 309800), Johnston et al. (2019) identified a c.*40A-G transition (c.*40A-G, NM_003491.3) in the 3-prime UTR of the NAA10 gene (chrX:153,195,400T-C, GRCh37), altering the consensus polyadenylation sequence (PAS) from AATAAA to AGTAAA. The mutation was present in his unaffected carrier mother. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0009 &nbsp; MICROPHTHALMIA, SYNDROMIC 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, 4-BP DEL
<br />
SNP: rs2148534324,
ClinVar: RCV001375494, RCV002293532
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an 11-year-old boy (patient 23) with syndromic microphthalmia-1 (MCOPS1; 309800), Cheng et al. (2019) identified a 4-bp deletion (c.455_458del) in the NAA10 gene, resulting in a frameshift and premature termination (Thr152ArgfsTer6). The mutation was inherited from his mother. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0010 &nbsp; OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, ARG83CYS
<br />
ClinVar: RCV000190675, RCV000225365, RCV000255490, RCV001257765, RCV002252040, RCV003401042
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 6 unrelated females and a brother-sister pair with Ogden syndrome (OGDNS; 300855), Saunier et al. (2016) identified heterozygosity or hemizygosity for a c.247C-T transition (c.247C-T, NM_003491.3) in the NAA10 gene, resulting in an arg83-to-cys (R83C) substitution. The mutations, which were found by trio whole-exome sequencing or by sequencing of a panel of genes associated with intellectual disability, were de novo in the 11 unrelated females and were due to maternal germline mosaicism in the sib pair. In vitro assays of mutant NAA10 with the R83C mutation demonstrated reduced catalytic activity and a higher Km compared to wildtype, indicating reduced affinity to acetyl-CoA. </p><p>In 11 unrelated females with OGDNS, Cheng et al. (2019) identified a de novo heterozygous c.247C-T transition in exon 5 of the NAA10 gene, resulting in an R83C substitution. The mutation was found by exome sequencing; it was not present in the gnomAD database. In vitro functional expression studies indicated that the mutation may have increased activity compared to wildtype in certain circumstances. </p><p>In an 18-year-old woman with OGDNS, Maini et al. (2021) identified heterozygosity for the R83C mutation in the NAA10 gene. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was shown to be de novo. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0011 &nbsp; OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, PHE128LEU
<br />
ClinVar: RCV000225366, RCV000414068
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 2 unrelated female patients (patients 3 and 4) with Ogden syndrome (OGDNS; 300855), Saunier et al. (2016) identified a de novo heterozygous c.384T-A transversion (c.384T-A, NM_003491.3) in the NAA10 gene, resulting in a phe128-to-leu (F128L) substitution. The mutation was found by trio whole-exome sequencing and confirmed by Sanger sequencing. In vitro assays of mutant NAA10 with the F128L mutation demonstrated reduced protein stability. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0012 &nbsp; OGDEN SYNDROME</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NAA10, ARG79CYS
<br />
SNP: rs1057524031,
ClinVar: RCV000436076, RCV000851511, RCV001305870, RCV001730682
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 2 brothers (individuals 4 and 5) and a maternal uncle (individual 3) with Ogden syndrome (OGDNS; 300855), McTiernan et al. (2022) identified a c.235C-T transition (c.235C-T, NM_003491.4) in the NAA10 gene, resulting in an arg79-to-cys (R79C) substitution. The mutation was identified by whole-exome sequencing. Another maternal uncle (individual 2) was similarly affected but did not undergo molecular testing. In vitro studies of NAA10 with the R79C mutation had reduced Nt-acetylation catalytic activity towards a synthetic oligopeptide compared to wildtype NAA10. </p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Arnesen, T., Anderson, D., Baldersheim, C., Lanotte, M., Varhaug, J. E., Lillehaug, J. R.
<strong>Identification and characterization of the human ARD1-NATH protein acetyltransferase complex.</strong>
Biochem. J. 386: 433-443, 2005.
[PubMed: 15496142]
[Full Text: https://doi.org/10.1042/BJ20041071]
</p>
</li>
<li>
<p class="mim-text-font">
Asaumi, M., Iijima, K., Sumioka, A., Iijima-Ando, K., Kirino, Y., Nakaya, T., Suzuki, T.
<strong>Interaction of N-terminal acetyltransferase with the cytoplasmic domain of beta-amyloid precursor protein and its effect on A-beta secretion.</strong>
J. Biochem. 137: 147-155, 2005.
[PubMed: 15749829]
[Full Text: https://doi.org/10.1093/jb/mvi014]
</p>
</li>
<li>
<p class="mim-text-font">
Bilton, R., Mazure, N., Trottier, E., Hattab, M., Dery, M.-A., Richard, D. E., Pouyssegur, J., Brahimi-Horn, M. C.
<strong>Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1-alpha and is not induced by hypoxia or HIF.</strong>
J. Biol. Chem. 280: 31132-31140, 2005. Note: Erratum: J. Biol. Chem. 281: 15592 only, 2006.
[PubMed: 15994306]
[Full Text: https://doi.org/10.1074/jbc.M504482200]
</p>
</li>
<li>
<p class="mim-text-font">
Casey, J. P., Stove, S. I., McGorrian, C., Galvin, J., Blenski, M., Dunne, A., Ennis, S., Brett, F., King, M. D., Arnesen, T., Lynch, S. A.
<strong>NAA10 mutation causing a novel intellectual disability syndrome with long QT due to N-terminal acetyltransferase impairment.</strong>
Sci. Rep. 5: 16022, 2015. Note: Electronic Article.
[PubMed: 26522270]
[Full Text: https://doi.org/10.1038/srep16022]
</p>
</li>
<li>
<p class="mim-text-font">
Cheng, H., Gottlieb, L., Marchi, E., Kleyner, R., Bhardwaj, P., Rope, A. F., Rosenheck, S., Moutton, S., Philippe, C., Eyaid, W., Alkuraya, F. S., Toribio, J., and 17 others.
<strong>Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15.</strong>
Hum. Molec. Genet. 28: 2900-2919, 2019. Note: Erratum: Hum. Molec. Genet. 29: 877-878, 2020.
[PubMed: 31127942]
[Full Text: https://doi.org/10.1093/hmg/ddz111]
</p>
</li>
<li>
<p class="mim-text-font">
Esmailpour, T., Riazifar, H., Liu, L., Donkervoort, S., Huang, V. H., Madaan, S., Shoucri, B. M., Busch, A., Wu, J., Towbin, A., Chadwick, R. B., Sequeira, A., Vawter, M. P., Sun, G., Johnston, J. J., Biesecker, L. G., Kawaguchi, R., Sun, H., Kimonis, V., Huang, T.
<strong>A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signalling pathway and causes Lenz microphthalmia syndrome.</strong>
J. Med. Genet. 51: 185-196, 2014.
[PubMed: 24431331]
[Full Text: https://doi.org/10.1136/jmedgenet-2013-101660]
</p>
</li>
<li>
<p class="mim-text-font">
Forrester, S., Kovach, M. J., Reynolds, N. M., Urban, R., Kimonis, V.
<strong>Manifestations in four males with and an obligate carrier of the Lenz microphthalmia syndrome.</strong>
Am. J. Med. Genet. 98: 92-100, 2001.
[PubMed: 11426460]
</p>
</li>
<li>
<p class="mim-text-font">
Graham, C. A., McCleary, B. G., Malcolm, S., Kelly, E. D., Hill, A. J., Johnston, W. P., Nevin, N. C.
<strong>Linkage analysis in a family with X-linked anophthalmos. (Abstract)</strong>
J. Med. Genet. 25: 643 only, 1988.
</p>
</li>
<li>
<p class="mim-text-font">
Graham, C. A., Redmond, R. M., Nevin, N. C.
<strong>X-linked clinical anophthalmos: localization of the gene to Xq27-Xq28.</strong>
Ophthalmic Paediat. Genet. 12: 43-48, 1991.
[PubMed: 1679229]
[Full Text: https://doi.org/10.3109/13816819109023084]
</p>
</li>
<li>
<p class="mim-text-font">
Jeong, J.-W., Bae, M.-K., Ahn, M.-Y., Kim, S.-H., Sohn, T.-K., Bae, M.-H., Yoo, M.-A., Song, E. J., Lee, K.-J., Kim, K.-W.
<strong>Regulation and destabilization of HIF-1-alpha by ARD1-mediated acetylation.</strong>
Cell 111: 709-720, 2002.
[PubMed: 12464182]
[Full Text: https://doi.org/10.1016/s0092-8674(02)01085-1]
</p>
</li>
<li>
<p class="mim-text-font">
Jeppesen, P., Turner, B. M.
<strong>The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression.</strong>
Cell 74: 281-289, 1993.
[PubMed: 8343956]
[Full Text: https://doi.org/10.1016/0092-8674(93)90419-q]
</p>
</li>
<li>
<p class="mim-text-font">
Johnston, J. J., Williamson, K. A., Chou, C. M., Sapp, J. C., Ansari, M., Chapman, H. M., Cooper, D. N., Dabib, T., Dudley, J. N., Holt, R. J., Ragge, N. K., Schaffer, A. A., Sen, S. K., Slavotinek, A. M., FitzPatrick, D. R., Glaser, T. M., Stewart, F., Black, G. C. M., Biesecker, L. G.
<strong>NAA10 polyadenylation signal variants cause syndromic microphthalmia.</strong>
J. Med. Genet. 56: 444-453, 2019.
[PubMed: 30842225]
[Full Text: https://doi.org/10.1136/jmedgenet-2018-105836]
</p>
</li>
<li>
<p class="mim-text-font">
Kim, S.-H., Park, J. A., Kim, J. H., Lee, J.-W., Seo, J. H., Jung, B.-K., Chun, K.-H., Jeong, J.-W., Bae, M.-K., Kim, K.-W.
<strong>Characterization of ARD1 variants in mammalian cells.</strong>
Biochem. Biophys. Res. Commun. 340: 422-427, 2006.
[PubMed: 16376303]
[Full Text: https://doi.org/10.1016/j.bbrc.2005.12.018]
</p>
</li>
<li>
<p class="mim-text-font">
Maini, I., Caraffi, S. G., Peluso, F., Valeri, L., Nicoli, D., Laurie, S., Baldo, C., Zuffardi, O., Garavelli, L.
<strong>Clinical Manifestations in a girl with NAA10-related syndrome and genotype-phenotype correlation in females.</strong>
Genes (Basel) 12: 900, 2021.
[PubMed: 34200686]
[Full Text: https://doi.org/10.3390/genes12060900]
</p>
</li>
<li>
<p class="mim-text-font">
McTiernan, N., Tranebjaerg, L., Bjorheim, A. S., Hogue, J. S., Wilson, W. G., Schmidt, B., Boerrigter, M. M., Nybo, M. L., Smeland, M. F., Tumer, Z., Arnesen, T.
<strong>Biochemical analysis of novel NAA10 variants suggests distinct pathogenic mechanisms involving impaired protein N-terminal acetylation.</strong>
Hum. Genet. 141: 1355-1369, 2022.
[PubMed: 35039925]
[Full Text: https://doi.org/10.1007/s00439-021-02427-4]
</p>
</li>
<li>
<p class="mim-text-font">
Myklebust, L. M., Van Damme, P., Stove, S. I., Dorfel, M. J., Abboud, A., Kalvik, T. V., Grauffel, C., Jonckheere, V., Wu, Y., Swensen, J., Kaasa, H., Liszczak, G., Marmorstein, R., Reuter, N., Lyon, G. J., Gevaert, K., Arnesen, T.
<strong>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects.</strong>
Hum. Molec. Genet. 24: 1956-1976, 2015.
[PubMed: 25489052]
[Full Text: https://doi.org/10.1093/hmg/ddu611]
</p>
</li>
<li>
<p class="mim-text-font">
Popp, B., Stove, S. I., Endele, S., Myklebust, L. M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., Reis, A.
<strong>De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females.</strong>
Europ. J. Hum. Genet. 23: 602-609, 2015.
[PubMed: 25099252]
[Full Text: https://doi.org/10.1038/ejhg.2014.150]
</p>
</li>
<li>
<p class="mim-text-font">
Rauch, A., Wieczorek, D., Graf, E., Wieland, T., Endele, S., Schwarzmayr, T., Albrecht, B., Bartholdi, D., Beygo, J., Di Donato, N., Dufke, A., Cremer, K., and 27 others.
<strong>Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study.</strong>
Lancet 380: 1674-1682, 2012.
[PubMed: 23020937]
[Full Text: https://doi.org/10.1016/S0140-6736(12)61480-9]
</p>
</li>
<li>
<p class="mim-text-font">
Rope, A. F., Wang, K., Evjenth, R., Xing, J., Johnston, J. J., Swensen, J. J., Johnson, W. E., Moore, B., Huff, C. D., Bird, L. M., Carey, J. C., Opitz, J. M., and 16 others.
<strong>Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency.</strong>
Am. J. Hum. Genet. 89: 28-43, 2011. Note: Erratum: Am. J. Hum. Genet. 89: 345 only, 2011.
[PubMed: 21700266]
[Full Text: https://doi.org/10.1016/j.ajhg.2011.05.017]
</p>
</li>
<li>
<p class="mim-text-font">
Sanchez-Puig, N., Fersht, A. R.
<strong>Characterization of the native and fibrillar conformation of the human N-alpha-acetyltransferase ARD1.</strong>
Protein Sci. 15: 1968-1976, 2006.
[PubMed: 16823041]
[Full Text: https://doi.org/10.1110/ps.062264006]
</p>
</li>
<li>
<p class="mim-text-font">
Saunier, C., Stove, S. I., Popp, B., Gerard, B., Blenski, M., AhMew, N., de Bie, C., Goldenberg, P., Isidor, B., Keren, B., Leheup, B., Lampert, L., and 19 others.
<strong>Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency.</strong>
Hum. Mutat. 37: 755-64, 2016.
[PubMed: 27094817]
[Full Text: https://doi.org/10.1002/humu.23001]
</p>
</li>
<li>
<p class="mim-text-font">
Slavotinek, A., Lee, S. S., Hamilton, S. P.
<strong>A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.</strong>
Am. J. Med. Genet. 138A: 89-94, 2005.
[PubMed: 16114045]
[Full Text: https://doi.org/10.1002/ajmg.a.30872]
</p>
</li>
<li>
<p class="mim-text-font">
Sugiura, N., Adams, S. M., Corriveau, R. A.
<strong>An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development.</strong>
J. Biol. Chem. 278: 40113-40120, 2003.
[PubMed: 12888564]
[Full Text: https://doi.org/10.1074/jbc.M301218200]
</p>
</li>
<li>
<p class="mim-text-font">
Tribioli, C., Mancini, M., Plassart, E., Bione, S., Rivella, S., Sala, C., Torri, G., Toniolo, D.
<strong>Isolation of new genes in distal Xq28: transcriptional map and identification of a human homologue of the ARD1 N-acetyltransferase of Saccharomyces cerevisiae.</strong>
Hum. Molec. Genet. 3: 1061-1067, 1994.
[PubMed: 7981673]
[Full Text: https://doi.org/10.1093/hmg/3.7.1061]
</p>
</li>
<li>
<p class="mim-text-font">
Whiteway, M., Szostak, J. W.
<strong>The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways.</strong>
Cell 43: 483-492, 1985.
[PubMed: 3907857]
[Full Text: https://doi.org/10.1016/0092-8674(85)90178-3]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Hilary J. Vernon - updated : 09/08/2022<br>Cassandra L. Kniffin - updated : 06/17/2021<br>Carol A. Bocchini - updated : 04/26/2021<br>Marla J. F. O&#x27;Neill - updated : 07/10/2020<br>Marla J. F. O&#x27;Neill - updated : 07/10/2020<br>Patricia A. Hartz - updated : 10/28/2016<br>Cassandra L. Kniffin - updated : 11/23/2015<br>Marla J. F. O&#x27;Neill - updated : 1/29/2014<br>Ada Hamosh - updated : 8/19/2011<br>Patricia A. Hartz - updated : 3/6/2007<br>Stefanie A. Nelson - updated : 2/22/2007<br>Stylianos E. Antonarakis - updated : 1/17/2003
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 2/4/1996
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 09/09/2022<br>carol : 09/08/2022<br>carol : 11/10/2021<br>alopez : 07/07/2021<br>ckniffin : 06/17/2021<br>carol : 05/05/2021<br>carol : 04/26/2021<br>alopez : 07/10/2020<br>alopez : 07/10/2020<br>carol : 10/20/2017<br>carol : 08/24/2017<br>alopez : 06/28/2017<br>alopez : 10/28/2016<br>carol : 11/24/2015<br>ckniffin : 11/23/2015<br>mcolton : 8/7/2014<br>carol : 1/29/2014<br>mcolton : 1/28/2014<br>carol : 12/20/2011<br>carol : 9/13/2011<br>alopez : 9/12/2011<br>alopez : 8/24/2011<br>alopez : 8/24/2011<br>terry : 8/19/2011<br>carol : 7/6/2011<br>alopez : 6/17/2010<br>wwang : 3/6/2007<br>wwang : 2/22/2007<br>ckniffin : 8/3/2005<br>ckniffin : 3/23/2004<br>mgross : 1/17/2003<br>mgross : 1/17/2003<br>joanna : 8/31/1998<br>joanna : 8/31/1998<br>joanna : 2/4/1996<br>joanna : 2/4/1996
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 14, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>