nih-gov/www.ncbi.nlm.nih.gov/omim/208900

10226 lines
1.1 MiB

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- #208900 - ATAXIA-TELANGIECTASIA; AT
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=208900"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">#208900</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#phenotypeMap"><strong>Phenotype-Gene Relationships</strong></a>
</li>
<li role="presentation">
<a href="/clinicalSynopsis/208900"><strong>Clinical Synopsis</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#description">Description</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalFeatures">Clinical Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#otherFeatures">Other Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#inheritance">Inheritance</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#diagnosis">Diagnosis</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalManagement">Clinical Management</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cytogenetics">Cytogenetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#heterogeneity">Heterogeneity</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#genotypePhenotypeCorrelations">Genotype/Phenotype Correlations</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#pathogenesis">Pathogenesis</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#populationGenetics">Population Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#animalModel">Animal Model</a>
</li>
<li role="presentation">
<a href="#seeAlso"><strong>See Also</strong></a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://clinicaltrials.gov/search?cond=ATAXIA-TELANGIECTASIA" class="mim-tip-hint" title="A registry of federally and privately supported clinical trials conducted in the United States and around the world." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Clinical Trials', 'domain': 'clinicaltrials.gov'})">Clinical Trials</a></div>
<div><a href="#mimEuroGentestFold" id="mimEuroGentestToggle" data-toggle="collapse" class="mim-tip-hint mimTriangleToggle" title="A list of European laboratories that offer genetic testing."><span id="mimEuroGentestToggleTriangle" class="small" style="margin-left: -0.8em;">&#9658;</span>EuroGentest</div>
<div id="mimEuroGentestFold" class="collapse">
<div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=104&Typ=Pat" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Ataxia-telangiectasia&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search_Simple.php?lng=EN&LnkId=22484&Typ=Pat" title="Ataxia-telangiectasia variant" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'EuroGentest', 'domain': 'orpha.net'})">Ataxia-telangiectasia vari…&nbsp;</a></div>
</div>
<div><a href="#mimGeneReviewsFold" id="mimGeneReviewsToggle" data-toggle="collapse" class="mim-tip-hint mimTriangleToggle" title="Expert-authored, peer-reviewed descriptions of inherited disorders including the uses of genetic testing in diagnosis, management, and genetic counseling."><span id="mimGeneReviewsToggleTriangle" class="small" style="margin-left: -0.8em;">&#9658;</span>Gene Reviews</div>
<div id="mimGeneReviewsFold" class="collapse">
<div style="margin-left: 0.5em;"><a href="https://www.ncbi.nlm.nih.gov/books/NBK1138/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Gene Reviews', 'domain': 'ncbi.nlm.nih.gov'})">Hereditary Ataxia Overview</a></div><div style="margin-left: 0.5em;"><a href="https://www.ncbi.nlm.nih.gov/books/NBK26468/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Gene Reviews', 'domain': 'ncbi.nlm.nih.gov'})">Ataxia-Telangiectasia</a></div>
</div>
<div><a href="https://www.diseaseinfosearch.org/x/637" class="mim-tip-hint" title="Network of disease-specific advocacy organizations, universities, private companies, government agencies, and public policy organizations." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Genetic Alliance', 'domain': 'diseaseinfosearch.org'})">Genetic Alliance</a></div>
<div><a href="https://medlineplus.gov/genetics/condition/ataxia-telangiectasia" class="mim-tip-hint" title="Consumer-friendly information about the effects of genetic variation on human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">MedlinePlus Genetics</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=208900[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
<div><a href="#mimOrphanetFold" id="mimOrphanetToggle" data-toggle="collapse" class="mim-tip-hint mimTriangleToggle" title="European reference portal for information on rare diseases and orphan drugs."><span id="mimOrphanetToggleTriangle" class="small" style="margin-left: -0.8em;">&#9658;</span>Orphanet</div>
<div id="mimOrphanetFold" class="collapse">
<div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=100" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Ataxia-telangiectasia</a></div><div style="margin-left: 0.5em;"><a href="https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=370109" title="Ataxia-telangiectasia variant" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrphaNet', 'domain': 'orpha.net'})">Ataxia-telangiectasia vari…</a></div>
</div>
<div><a href="https://www.possumcore.com/nuxeo/nxdoc/default/d69e9327-15f4-4e84-8dfe-0eca420692ee/view_documents?source=omim" class="mim-tip-hint" title="A dysmorphology database of multiple malformations; metabolic, teratogenic, chromosomal, and skeletal syndromes; and their images." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'POSSUM', 'domain': 'possum.net.au'})">POSSUM</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/disease/DOID:12704" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="http://www.informatics.jax.org/disease/208900" class="mim-tip-hint" title="Phenotypes, alleles, and disease models from Mouse Genome Informatics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Phenotype', 'domain': 'informatics.jax.org'})">MGI Mouse Phenotype</a></div>
<div><a href="https://omia.org/OMIA002044/" class="mim-tip-hint" title="Online Mendelian Inheritance in Animals (OMIA) is a database of genes, inherited disorders and traits in 191 animal species (other than human and mouse.)" target="_blank">OMIA</a></div>
<div><a href="https://wormbase.org/resources/disease/DOID:12704" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Wormbase Disease Ontology', 'domain': 'wormbase.org'})">Wormbase Disease Ontology</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellLines">
<span class="panel-title">
<span class="small">
<a href="#mimCellLinesLinksFold" id="mimCellLinesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellLinesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cell Lines</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellLinesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://catalog.coriell.org/Search?q=OmimNum:208900" class="definition" title="Coriell Cell Repositories; cell cultures and DNA derived from cell cultures." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'CCR', 'domain': 'ccr.coriell.org'})">Coriell</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
<a href="#" class="mim-tip-icd" qtip_title="<strong>ICD+</strong>" qtip_text="
<strong>SNOMEDCT:</strong> 68504005<br />
<strong>ORPHA:</strong> 100, 370109<br />
<strong>DO:</strong> 12704<br />
">ICD+</a>
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Phenotype description, molecular basis known">
<span class="text-danger"><strong>#</strong></span>
208900
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
ATAXIA-TELANGIECTASIA; AT
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
AT1<br />
LOUIS-BAR SYNDROME
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
<div>
<a id="includedTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
Other entities represented in this entry:
</span>
</p>
</div>
<div>
<span class="h3 mim-font">
AT, COMPLEMENTATION GROUP A, INCLUDED; ATA, INCLUDED
</span>
</div>
<div>
<span class="h4 mim-font">
AT, COMPLEMENTATION GROUP C, INCLUDED; ATC, INCLUDED<br />
AT, COMPLEMENTATION GROUP D, INCLUDED; ATD, INCLUDED<br />
AT, COMPLEMENTATION GROUP E, INCLUDED; ATE, INCLUDED<br />
ATAXIA-TELANGIECTASIA VARIANT, INCLUDED
</span>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="phenotypeMap" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/11/897?start=-3&limit=10&highlight=897">
11q22.3
</a>
</span>
</td>
<td>
<span class="mim-font">
Ataxia-telangiectasia
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/208900"> 208900 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal recessive">AR</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
ATM
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/607585"> 607585 </a>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group ">
<a href="/clinicalSynopsis/208900" class="btn btn-warning" role="button"> Clinical Synopsis </a>
<button type="button" id="mimPhenotypicSeriesToggle" class="btn btn-warning dropdown-toggle mimSingletonFoldToggle" data-toggle="collapse" href="#mimClinicalSynopsisFold" onclick="ga('send', 'event', 'Unfurl', 'ClinicalSynopsis', 'omim.org')">
<span class="caret"></span>
<span class="sr-only">Toggle Dropdown</span>
</button>
</div>
&nbsp;
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/208900" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/208900" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
<div>
<p />
</div>
<div id="mimClinicalSynopsisFold" class="well well-sm collapse mimSingletonToggleFold">
<div class="small" style="margin: 5px">
<div>
<div>
<span class="h5 mim-font">
<strong> INHERITANCE </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Autosomal recessive <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/258211005" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">258211005</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0441748&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0441748</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000007</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000007</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> GROWTH </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Height </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Short stature <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/422065006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">422065006</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/237836003" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">237836003</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/237837007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">237837007</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/E34.31" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">E34.31</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/R62.52" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">R62.52</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/783.43" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">783.43</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0349588&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0349588</a>, <a href="https://bioportal.bioontology.org/search?q=C0013336&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0013336</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003510" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003510</a>, <a href="https://hpo.jax.org/app/browse/term/HP:0004322" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0004322</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0004322" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0004322</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> HEAD & NECK </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Head </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Sinusitis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/36971009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">36971009</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/J32" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">J32</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0037199&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0037199</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000246" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000246</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000246" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000246</a>]</span><br />
</span>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<em> Eyes </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Telangiectasia, conjunctival <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/231870008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">231870008</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0239105&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0239105</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000524" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000524</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000524" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000524</a>]</span><br /> -
Fixation of gaze nystagmus <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C5542297&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C5542297</a>]</span><br /> -
Strabismus <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/22066006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">22066006</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/H50.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">H50.9</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/H50.40" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">H50.40</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0038379&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0038379</a>, <a href="https://bioportal.bioontology.org/search?q=C2020541&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C2020541</a>, <a href="https://bioportal.bioontology.org/search?q=C1423541&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1423541</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000486" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000486</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000486" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000486</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> RESPIRATORY </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Airways </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Bronchitis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/10509002" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">10509002</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/35301006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">35301006</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/32398004" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">32398004</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/J20" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">J20</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/J40" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">J40</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/J20.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">J20.9</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/490" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">490</a>, <a href="https://purl.bioontology.org/ontology/ICD9CM/466.0" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">466.0</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0149514&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0149514</a>, <a href="https://bioportal.bioontology.org/search?q=C0006277&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0006277</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0012388" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0012388</a>, <a href="https://hpo.jax.org/app/browse/term/HP:0012387" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0012387</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0012387" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0012387</a>]</span><br /> -
Bronchiectasis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/12295008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">12295008</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/J47" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">J47</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/J47.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">J47.9</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/494" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">494</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0006267&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0006267</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002110" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002110</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002110" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002110</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> GENITOURINARY </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Internal Genitalia (Male) </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Hypogonadism <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/48130008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">48130008</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0020619&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0020619</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000135" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000135</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000135" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000135</a>]</span><br /> -
Impaired spermatogenesis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/4529005" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">4529005</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0520933&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0520933</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0008669" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0008669</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0008669" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0008669</a>]</span><br />
</span>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<em> Internal Genitalia (Female) </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Hypogonadism <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/48130008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">48130008</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0020619&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0020619</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000135" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000135</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000135" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000135</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> SKIN, NAILS, & HAIR </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Skin </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Cutaneous telangiectasia <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C5848131&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C5848131</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0034697" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0034697</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0034697" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0034697</a>]</span><br /> -
Cafe-au-lait spots <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/201281002" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">201281002</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/L81.3" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">L81.3</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0221263&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0221263</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000957" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000957</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000957" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000957</a>]</span><br /> -
Progeric skin changes <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859638&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859638</a>]</span><br /> -
Sclerodermatous skin changes <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859639&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859639</a>]</span><br />
</span>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<em> Hair </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Progeric hair changes <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859640&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859640</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> NEUROLOGIC </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Central Nervous System </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Cerebellar cortical degeneration <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859617&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859617</a>]</span><br /> -
Cerebellar ataxia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/85102008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">85102008</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0007758&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0007758</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001251" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001251</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001251" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001251</a>]</span><br /> -
Reduced/absent deep tendon reflexes <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1866934&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1866934</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001315" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001315</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001315" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001315</a>]</span><br /> -
Dysarthric speech <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/8011004" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">8011004</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/438.13" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">438.13</a>, <a href="https://purl.bioontology.org/ontology/ICD9CM/784.51" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">784.51</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0013362&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0013362</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001260" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001260</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001260" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001260</a>]</span><br /> -
Choreoathetosis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/43105007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">43105007</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0085583&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0085583</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001266" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001266</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001266" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001266</a>]</span><br /> -
Dystonia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/15802004" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">15802004</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/G24.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">G24.9</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/G24" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">G24</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0013421&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0013421</a>, <a href="https://bioportal.bioontology.org/search?q=C0393593&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0393593</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001332" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001332</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001332" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001332</a>]</span><br /> -
Myoclonus <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/17450006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">17450006</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/G25.3" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">G25.3</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/333.2" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">333.2</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0027066&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0027066</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001336" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001336</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001336" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001336</a>]</span><br /> -
Tremor <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/26079004" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">26079004</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/R25.1" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">R25.1</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0040822&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0040822</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001337" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001337</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001337" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001337</a>]</span><br /> -
Seizures <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/91175000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">91175000</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0036572&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0036572</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001250" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001250</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001250" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001250</a>]</span><br /> -
Oculomotor abnormalities <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/103252009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">103252009</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0497202&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0497202</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000496" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000496</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000496" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000496</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> ENDOCRINE FEATURES </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Delayed puberty <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/400003000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">400003000</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/123526007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">123526007</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/E30.0" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">E30.0</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0034012&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0034012</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000823" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000823</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000823" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000823</a>]</span><br /> -
Diabetes mellitus <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/73211009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">73211009</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/E08-E13" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">E08-E13</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/250" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">250</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0011849&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0011849</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000819" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000819</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000819" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000819</a>]</span><br /> -
Glucose intolerance <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/267426009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">267426009</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/9414007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">9414007</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/R73.03" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">R73.03</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0271650&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0271650</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001952" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001952</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001952" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001952</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> IMMUNOLOGY </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Thymus hypoplasia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/93297002" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">93297002</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0685891&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0685891</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000778" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000778</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000778" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000778</a>]</span><br /> -
Normal numbers of B cells <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1873504&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1873504</a>]</span><br /> -
Defective B cell differentiation <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859624&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859624</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0005357" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0005357</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0005357" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0005357</a>]</span><br /> -
Lymphocytopenia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/48813009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">48813009</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/D72.810" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">D72.810</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/288.51" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">288.51</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0853986&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0853986</a>, <a href="https://bioportal.bioontology.org/search?q=C0024312&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0024312</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001888" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001888</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001888" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001888</a>]</span><br /> -
Reduced numbers of T cells <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C2931322&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C2931322</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0005403" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0005403</a>]</span><br /> -
Reduced CD4+ T cells <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859626&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859626</a>]</span><br /> -
Increased levels of T cells bearing gamma/delta antigen receptor <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859627&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859627</a>]</span><br /> -
Reduced levels of cells with IgM receptors <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859628&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859628</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> NEOPLASIA </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Non-Hodgkin lymphoma <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/188675007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">188675007</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/1172592001" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">1172592001</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/118601006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">118601006</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/C85.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">C85.9</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C4721532&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C4721532</a>, <a href="https://bioportal.bioontology.org/search?q=C0024305&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0024305</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0012539" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0012539</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0012539" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0012539</a>]</span><br /> -
Leukemia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/93143009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">93143009</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/1162768007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">1162768007</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/C95" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">C95</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/C95.90" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">C95.90</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/C95.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">C95.9</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/208.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">208.9</a>, <a href="https://purl.bioontology.org/ontology/ICD9CM/208" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">208</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0023418&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0023418</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001909" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001909</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001909" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001909</a>]</span><br /> -
Hodgkin lymphoma <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/118599009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">118599009</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/118605002" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">118605002</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/118602004" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">118602004</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/1163005009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">1163005009</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/836277009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">836277009</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/C81.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">C81.9</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/C81" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">C81</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/201.0" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">201.0</a>, <a href="https://purl.bioontology.org/ontology/ICD9CM/201" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">201</a>, <a href="https://purl.bioontology.org/ontology/ICD9CM/201.1" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">201.1</a>, <a href="https://purl.bioontology.org/ontology/ICD9CM/201.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">201.9</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C5557287&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C5557287</a>, <a href="https://bioportal.bioontology.org/search?q=C0019829&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0019829</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0012189" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0012189</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0012189" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0012189</a>]</span><br /> -
Increased risk in heterozygotes <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859622&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859622</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> LABORATORY ABNORMALITIES </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Increased levels of alpha fetoprotein <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0235971&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0235971</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0006254" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0006254</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0006254" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0006254</a>]</span><br /> -
Increased levels of carcinoembryonic antigen <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859630&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859630</a>]</span><br /> -
Reduced IgA levels <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/29260007" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">29260007</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0162538&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0162538</a>, <a href="https://bioportal.bioontology.org/search?q=C0553533&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0553533</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002720" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002720</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002720" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002720</a>]</span><br /> -
Reduced IgE levels <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859632&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859632</a>]</span><br /> -
Reduced IgG levels, particularly the IgG2 subclass <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859633&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859633</a>]</span><br /> -
Monomeric IgM <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859634&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859634</a>]</span><br /> -
Immunoglobulin antibodies present <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859635&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859635</a>]</span><br /> -
CD4+/CD8+ ratio is reversed <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C1859636&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1859636</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> MISCELLANEOUS </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Ataxia becomes evident at the end of the first year of life<br /> -
Telangiectasia become evident between the second and eighth year of life<br /> -
Hypersensitivity to ionizing radiation<br /> -
Variant AT may present with dystonia only<br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> MOLECULAR BASIS </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Caused by mutation in the ATM serine/threonine kinase gene (ATM, <a href="/entry/607585#0001">607585.0001</a>)<br />
</span>
</div>
</div>
</div>
<div class="text-right">
<a href="#mimClinicalSynopsisFold" data-toggle="collapse">&#9650;&nbsp;Close</a>
</div>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4 href="#mimTextFold" id="mimTextToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimTextToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div id="mimTextFold" class="collapse in ">
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because ataxia-telangiectasia (AT) is caused by homozygous or compound heterozygous mutation in the ATM gene (<a href="/entry/607585">607585</a>) on chromosome 11q22.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="description" class="mim-anchor"></a>
<h4 href="#mimDescriptionFold" id="mimDescriptionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimDescriptionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<div id="mimDescriptionFold" class="collapse in ">
<span class="mim-text-font">
<p>Ataxia-telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar ataxia, telangiectases, immune defects, and a predisposition to malignancy. Chromosomal breakage is a feature. AT cells are abnormally sensitive to killing by ionizing radiation (IR), and abnormally resistant to inhibition of DNA synthesis by ionizing radiation. The latter trait has been used to identify complementation groups for the classic form of the disease (<a href="#83" class="mim-tip-reference" title="Jaspers, N. G. J., Gatti, R. A., Baan, C., Linssen, P. C. M. L., Bootsma, D. &lt;strong&gt;Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients.&lt;/strong&gt; Cytogenet. Cell Genet. 49: 259-263, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3248383/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3248383&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000132673&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3248383">Jaspers et al., 1988</a>). At least 4 of these (A, C, D, and E) map to chromosome 11q23 (<a href="#139" class="mim-tip-reference" title="Sanal, O., Wei, S., Foroud, T., Malhotra, U., Concannon, P., Charmley, P., Salser, W., Lange, K., Gatti, R. A. &lt;strong&gt;Further mapping of an ataxia-telangiectasia locus to the chromosome 11q23 region.&lt;/strong&gt; Am. J. Hum. Genet. 47: 860-866, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2220826/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2220826&lt;/a&gt;]" pmid="2220826">Sanal et al., 1990</a>) and are associated with mutations in the ATM gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2220826+3248383" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalFeatures" class="mim-anchor"></a>
<h4 href="#mimClinicalFeaturesFold" id="mimClinicalFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<div id="mimClinicalFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Patients present in early childhood with progressive cerebellar ataxia and later develop conjunctival telangiectases, other progressive neurologic degeneration, sinopulmonary infection, and malignancies. Telangiectases typically develop between 3 and 5 years of age. The earlier ataxia can be misdiagnosed as ataxic cerebral palsy before the appearance of oculocutaneous telangiectases. <a href="#60" class="mim-tip-reference" title="Gatti, R. A., Boder, E., Vinters, H. V., Sparkes, R. S., Norman, A., Lange, K. &lt;strong&gt;Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis.&lt;/strong&gt; Medicine 70: 99-117, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2005780/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2005780&lt;/a&gt;]" pmid="2005780">Gatti et al. (1991)</a> contended that oculocutaneous telangiectases eventually occur in all patients, while <a href="#105" class="mim-tip-reference" title="Maserati, E., Ottolini, A., Veggiotti, P., Lanzi, G., Pasquali, F. &lt;strong&gt;Ataxia-without-telangiectasia in two sisters with rearrangements of chromosomes 7 and 14.&lt;/strong&gt; Clin. Genet. 34: 283-287, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3228996/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3228996&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1988.tb02879.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3228996">Maserati et al. (1988)</a> wrote that patients without telangiectases are not uncommon. A characteristic oculomotor apraxia, i.e., difficulty in the initiation of voluntary eye movements, frequently precedes the development of telangiectases. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2005780+3228996" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Gonadal dysfunction in ataxia-telangiectasia was discussed by <a href="#112" class="mim-tip-reference" title="Miller, M. E., Chatten, J. &lt;strong&gt;Ovarian changes in ataxia-telangiectasia.&lt;/strong&gt; Acta Paediat. Scand. 56: 559-561, 1967.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6050359/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6050359&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1651-2227.1967.tb15424.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6050359">Miller and Chatten (1967)</a>, <a href="#200" class="mim-tip-reference" title="Zadik, Z., Levin, S., Prager-Lewin, R., Laron, Z. &lt;strong&gt;Gonadal dysfunction in patients with ataxia telangiectasia.&lt;/strong&gt; Acta Paediat. Scand. 67: 477-479, 1978.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/354315/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;354315&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1651-2227.1978.tb16357.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="354315">Zadik et al. (1978)</a>, and others. <a href="#177" class="mim-tip-reference" title="Thibaut, S., Sass, U., Khoury, A., Simonart, J.-M. &lt;strong&gt;Ataxia-telangiectasia and necrobiosis lipoidica: an explainable association.&lt;/strong&gt; Europ. J. Derm. 4: 509-513, 1994."None>Thibaut et al. (1994)</a> reviewed cases of necrobiosis lipoidica in association with ataxia-telangiectasia. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=354315+6050359" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>According to <a href="#25" class="mim-tip-reference" title="Boder, E. &lt;strong&gt;Ataxia-telangiectasia: an overview. In: Gatti, R. A.; Swift, M.: Ataxia-telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood.&lt;/strong&gt; New York: Alan R. Liss (pub.) 1985. Pp. 1-63."None>Boder (1985)</a>, the oldest known AT patients were a man who died in November 1978 at age 52 years and his sister who died in July 1979 at the age of almost 49 years. The sister was the subject of the report by <a href="#145" class="mim-tip-reference" title="Saxon, A., Stevens, R. H., Golde, D. W. &lt;strong&gt;Helper and suppressor T-lymphocyte leukemia in ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 300: 700-704, 1979.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/310962/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;310962&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM197903293001303&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="310962">Saxon et al. (1979)</a> on T-cell leukemia in AT. The possibility of heteroalleles at the ataxia-telangiectasia loci might be suggested. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=310962" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Neurologic Manifestations</em></strong></p><p>
AT may be the most common syndromic progressive cerebellar ataxia of early childhood. Truncal ataxia precedes appendicular ataxia. Oculomotor apraxia is progressive and opticokinetic nystagmus is absent. Choreoathetosis and/or dystonia occur in 90% of patients and can be severe. Deep tendon reflexes become diminished or absent by age 8 and patients later develop diminished large-fiber sensation. <a href="#60" class="mim-tip-reference" title="Gatti, R. A., Boder, E., Vinters, H. V., Sparkes, R. S., Norman, A., Lange, K. &lt;strong&gt;Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis.&lt;/strong&gt; Medicine 70: 99-117, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2005780/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2005780&lt;/a&gt;]" pmid="2005780">Gatti et al. (1991)</a> pointed out that 'a significant proportion of older patients in their twenties and early thirties develop progressive spinal muscular atrophy, affecting mostly hands and feet, and dystonia.' Interosseous muscular atrophy in the hands in combination with the early-onset dystonic posturing leads to striking combined flexion-extension contractures of the fingers, which they illustrated. Mental retardation is not a feature of AT, although some older patients have a severe loss of short-term memory. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2005780" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Neurologic dysfunction is a clinically invariable feature in homozygotes. <a href="#193" class="mim-tip-reference" title="Woods, C. G., Taylor, A. M. R. &lt;strong&gt;Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals.&lt;/strong&gt; Quart. J. Med. 82: 169-179, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1377828/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1377828&lt;/a&gt;]" pmid="1377828">Woods and Taylor (1992)</a> studied 70 affected persons in the British Isles, 29 females and 41 males with an age range of 2 to 42 years. Most presented by 3 years of age with truncal ataxia. All had ataxia, ocular motor apraxia, an impassive face, and dysarthria, although clinical immune deficiency was present only in 43 of 70 patients. Ocular telangiectases was seen in all but one. All 60 tested showed increased sensitivity to ionizing radiation, 43 of 48 had an elevated alpha-fetoprotein level, and 14 of 21 had an immunoglobulin deficiency. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1377828" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Malignancy</em></strong></p><p>
Patients with AT have a strong predisposition to malignancy. <a href="#72" class="mim-tip-reference" title="Hecht, F., Koler, R. D., Rigas, D. A., Dahnke, G. S., Case, M. P., Tisdale, V., Miller, R. W. &lt;strong&gt;Leukemia and lymphocytes in ataxia-telangiectasia. (Letter)&lt;/strong&gt; Lancet 288: 1193 only, 1966. Note: Originally Volume II."None>Hecht et al. (1966)</a> observed lymphocytic leukemia in patients with AT. A nonleukemic sib and 2 unrelated patients with AT had multiple chromosomal breaks and impaired responsiveness to phytohemagglutinin. This was the first report of chromosomal breakage in AT. Leukemia and chromosomal abnormalities occur in at least 2 other mendelian disorders--Fanconi pancytopenia (FA; <a href="/entry/227650">227650</a>) and Bloom syndrome (BS; <a href="/entry/210900">210900</a>).</p><p><a href="#145" class="mim-tip-reference" title="Saxon, A., Stevens, R. H., Golde, D. W. &lt;strong&gt;Helper and suppressor T-lymphocyte leukemia in ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 300: 700-704, 1979.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/310962/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;310962&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM197903293001303&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="310962">Saxon et al. (1979)</a> demonstrated thymic origin of the neoplastic cells in a 48-year-old woman with AT and chronic lymphatic leukemia. The neoplastic cells had the specific 14q+ translocation and showed both helper and suppressor function, suggesting that the malignant transformation had occurred in an uncommitted T-lymphocyte precursor that was capable of differentiation. This is a situation comparable to chronic myeloid leukemia in which the Philadelphia chromosome occurs in a stem cell progenitor of both polymorphs and megakaryocytes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=310962" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In general, lymphomas in AT patients tend to be of B-cell origin (B-CLL), whereas the leukemias tend to be of the T-CLL type. <a href="#134" class="mim-tip-reference" title="Rosen, F. S., Harris, N. L. &lt;strong&gt;Case records of the Massachusetts General Hospital: a 30-year-old man with ataxia-telangiectasia and dysphagia.&lt;/strong&gt; New Eng. J. Med. 316: 91-100, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3785360/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3785360&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198701083160206&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3785360">Rosen and Harris (1987)</a> discussed the case of a 30-year-old man with AT who developed a malignant lymphoma of B-cell type involving the tonsil and lungs. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3785360" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#67" class="mim-tip-reference" title="Haerer, A. F., Jackson, J. F., Evers, C. G. &lt;strong&gt;Ataxia-telangiectasia with gastric adenocarcinoma.&lt;/strong&gt; JAMA 210: 1884-1887, 1969.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4311128/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4311128&lt;/a&gt;]" pmid="4311128">Haerer et al. (1969)</a> described a black sibship of 12, of whom 5 had ataxia-telangiectasia; 2 of those affected died of mucinous adenocarcinoma of the stomach at ages 21 and 19 years. <a href="#20" class="mim-tip-reference" title="Bigbee, W. L., Langlois, R. G., Swift, M., Jensen, R. H. &lt;strong&gt;Evidence for an elevated frequency of in vivo somatic cell mutations in ataxia telangiectasia.&lt;/strong&gt; Am. J. Hum. Genet. 44: 402-408, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2916583/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2916583&lt;/a&gt;]" pmid="2916583">Bigbee et al. (1989)</a> demonstrated an increased frequency of somatic cell mutation in vivo in individuals with AT. Obligate heterozygotes for the disease did not appear to have a significantly increased frequency of such mutations. The authors speculated that the predisposition to somatic cell mutation may be related to the increased susceptibility to cancer in AT homozygotes. Other solid tumors, including medulloblastomas and gliomas, occur with increased frequency in AT (<a href="#60" class="mim-tip-reference" title="Gatti, R. A., Boder, E., Vinters, H. V., Sparkes, R. S., Norman, A., Lange, K. &lt;strong&gt;Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis.&lt;/strong&gt; Medicine 70: 99-117, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2005780/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2005780&lt;/a&gt;]" pmid="2005780">Gatti et al., 1991</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2005780+2916583+4311128" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Immune Disorders</em></strong></p><p>
Defects of the immune mechanism and hypoplasia of the thymus have been demonstrated. Serum IgG2 or IgA levels are diminished or absent in 80% and 60% of patients, respectively (<a href="#60" class="mim-tip-reference" title="Gatti, R. A., Boder, E., Vinters, H. V., Sparkes, R. S., Norman, A., Lange, K. &lt;strong&gt;Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis.&lt;/strong&gt; Medicine 70: 99-117, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2005780/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2005780&lt;/a&gt;]" pmid="2005780">Gatti et al., 1991</a>). IgE levels can be diminished, IgM levels diminished or normal. Peripheral lymphopenia as well as decreased cellular immunity to intradermally injected test antigens can be seen early in the disorder. Sinopulmonary infections are frequent, but their severity cannot be simply correlated with the degree of immunodeficiency. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2005780" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#33" class="mim-tip-reference" title="Carbonari, M., Cherchi, M., Paganelli, R., Giannini, G., Galli, E., Gaetano, C., Papetti, C., Fiorilli, M. &lt;strong&gt;Relative increase of T cells expressing the gamma/delta rather than the alpha/beta receptor in ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 322: 73-76, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2136770/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2136770&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199001113220201&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2136770">Carbonari et al. (1990)</a> found that patients with AT have more circulating T cells bearing gamma/delta receptors characteristic of immature cells than alpha/beta receptors typical of mature cells. Normal ratios were found in the patients with other immune deficits, except for 1 child with a primary T-cell defect. <a href="#126" class="mim-tip-reference" title="Peterson, R. D. A., Funkhouser, J. D. &lt;strong&gt;Ataxia-telangiectasia: an important clue. (Editorial)&lt;/strong&gt; New Eng. J. Med. 322: 124-125, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2136769/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2136769&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199001113220209&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2136769">Peterson and Funkhouser (1990)</a> proposed that these findings are consistent with a defect in genetic recombination leading to the switch from gamma/delta to alpha/beta. There may also be a defect in DNA ligation or some other aspect of DNA repair. Elucidation of the molecular abnormalities of lymphocytes may demonstrate fundamental molecular mechanisms for cellular differentiation not only of lymphocytes but of other cell systems such as the nervous system. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2136769+2136770" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Variant Ataxia-Telangiectasia (Atypical)</em></strong></p><p>
<a href="#198" class="mim-tip-reference" title="Ying, K. L., Decoteau, W. E. &lt;strong&gt;Cytogenetic anomalies in a patient with ataxia, immune deficiency, and high alpha-fetoprotein in the absence of telangiectasia.&lt;/strong&gt; Cancer Genet. Cytogenet. 4: 311-317, 1981.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6174206/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6174206&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0165-4608(81)90027-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6174206">Ying and Decoteau (1981)</a> described a family in which a brother and sister may have had an allelic (and milder) form of AT. The proband, a 58-year-old male of Saskatchewan Mennonite origin, had spinocerebellar degeneration associated with choreiform movements beginning at about age 10 years. Despite considerable physical handicap, he was able to work as a delivery man in the family store. No telangiectases were found at age 44 (they were carefully sought because of typical AT in a niece) or on later examinations. He showed total absence of IgA in serum and concentrated saliva and low IgE in serum. He was anergic on skin testing. Glucose tolerance was markedly decreased. Serum alpha-fetoprotein was 840 ng per ml (normal, less than 10 ng per ml). Lymphocyte response to phytohemagglutinin was blunted. He died of lymphoma at age 58. He showed cytogenetic abnormalities typical of AT; 4 abnormal clones were identified, all involving chromosome 14 in some way. The proband had 4 brothers and 2 sisters. A brother died of leukemia at age 16. A sister was likewise diagnosed as having spinocerebellar degeneration with choreiform movements at age 46; she died at age 55 of breast cancer. The proband's niece with typical AT had telangiectases of the bulbar conjunctivae and earlobes noted at age 3, when she began to have recurrent and severe sinopulmonary infections. She died at age 20 of staphylococcal pneumonia superimposed on bronchiectasis. The brother and sister who died in their 50s may have been genetic compounds. Their parents denied consanguinity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6174206" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#170" class="mim-tip-reference" title="Taylor, A. M. R., Flude, E., Laher, B., Stacey, M., McKay, E., Watt, J., Green, S. H., Harding, A. E. &lt;strong&gt;Variant forms of ataxia telangiectasia.&lt;/strong&gt; J. Med. Genet. 24: 669-677, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3430541/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3430541&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.24.11.669&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3430541">Taylor et al. (1987)</a> described 3 patients who were atypical in terms of clinical features and cellular features as observed in vitro. One of the patients was a 45-year-old woman with onset of neurologic manifestations in her early twenties. <a href="#105" class="mim-tip-reference" title="Maserati, E., Ottolini, A., Veggiotti, P., Lanzi, G., Pasquali, F. &lt;strong&gt;Ataxia-without-telangiectasia in two sisters with rearrangements of chromosomes 7 and 14.&lt;/strong&gt; Clin. Genet. 34: 283-287, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3228996/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3228996&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1988.tb02879.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3228996">Maserati et al. (1988)</a> described 2 sisters, aged 9 and 11 years, with a progressive neurologic disorder similar to AT, chromosome instability with rearrangements involving chromosomes 7 and 14, but no telangiectases or immunologic anomalies typical of AT. <a href="#31" class="mim-tip-reference" title="Byrne, E., Hallpike, J. F., Manson, J. F., Sutherland, G. R., Thong, Y. H. &lt;strong&gt;Ataxia-without-telangiectasia: progressive multisystem degeneration with IgE deficiency and chromosome instability.&lt;/strong&gt; J. Neurol. Sci. 66: 307-317, 1984.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6597863/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6597863&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0022-510x(84)90019-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6597863">Byrne et al. (1984)</a> reported similar cases of ataxia without telangiectases with selective IgE deficiency but normal IgA and alpha-fetoprotein. <a href="#203" class="mim-tip-reference" title="Ziv, Y., Amiel, A., Jaspers, N. G. J., Berkel, A. I., Shiloh, Y. &lt;strong&gt;Ataxia-telangiectasia: a variant with altered in vitro phenotype of fibroblast cells.&lt;/strong&gt; Mutat. Res. 210: 211-219, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2911253/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2911253&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0027-5107(89)90081-x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2911253">Ziv et al. (1989)</a> described 2 Turkish sibs with an atypically prolonged course and atypical behavior of cultured fibroblasts. See <a href="/entry/208910">208910</a> and <a href="/entry/208920">208920</a> for AT-like syndromes. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2911253+6597863+3228996+3430541" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Rare cases of AT patients with milder manifestations of the clinical or cellular characteristics of the disease have been reported and have been designated 'AT variants.' <a href="#65" class="mim-tip-reference" title="Gilad, S., Chessa, L., Khosravi, R., Russell, P., Galanty, Y., Piane, M., Gatti, R. A., Jorgensen, T. J., Shiloh, Y., Bar-Shira, A. &lt;strong&gt;Genotype-phenotype relationships in ataxia-telangiectasia and variants.&lt;/strong&gt; Am. J. Hum. Genet. 62: 551-561, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9497252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9497252&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/301755&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9497252">Gilad et al. (1998)</a> quantified ATM protein levels in 6 patients with an AT variant and searched their ATM genes for mutations. Cell lines from these patients exhibited considerable variability in radiosensitivity while showing the typical radioresistant DNA synthesis of AT cells. Unlike classic AT patients, however, these patients exhibited 1 to 17% of the normal level of ATM. The underlying genotypes were either homozygous for mutations expected to produce mild phenotypes or compound heterozygous for a mild and a severe mutation. In an attempt to determine whether the AT(Fresno) variation correlated with ATM mutations and levels of ATM protein expression, <a href="#65" class="mim-tip-reference" title="Gilad, S., Chessa, L., Khosravi, R., Russell, P., Galanty, Y., Piane, M., Gatti, R. A., Jorgensen, T. J., Shiloh, Y., Bar-Shira, A. &lt;strong&gt;Genotype-phenotype relationships in ataxia-telangiectasia and variants.&lt;/strong&gt; Am. J. Hum. Genet. 62: 551-561, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9497252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9497252&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/301755&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9497252">Gilad et al. (1998)</a> searched for ATM mutations in a cell line derived from one of the sisters studied by <a href="#44" class="mim-tip-reference" title="Curry, C. J. R., O&#x27;Lague, P., Tsai, J., Hutchison, H. T., Jaspers, N. G. J., Wara, D., Gatti, R. A. &lt;strong&gt;AT-Fresno: a phenotype linking ataxia-telangiectasia with the Nijmegen breakage syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 45: 270-275, 1989. Note: Erratum: Am. J. Hum. Genet. 45: 663 only, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2491181/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2491181&lt;/a&gt;]" pmid="2491181">Curry et al. (1989)</a>. This cell line was found to be devoid of the ATM protein and homozygous for a severe ATM mutation. <a href="#65" class="mim-tip-reference" title="Gilad, S., Chessa, L., Khosravi, R., Russell, P., Galanty, Y., Piane, M., Gatti, R. A., Jorgensen, T. J., Shiloh, Y., Bar-Shira, A. &lt;strong&gt;Genotype-phenotype relationships in ataxia-telangiectasia and variants.&lt;/strong&gt; Am. J. Hum. Genet. 62: 551-561, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9497252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9497252&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/301755&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9497252">Gilad et al. (1998)</a> concluded that certain AT variant phenotypes, including some of those without telangiectasia, represent ATM mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9497252+2491181" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#143" class="mim-tip-reference" title="Saviozzi, S., Saluto, A., Taylor, A. M. R., Last, J. I. L., Trebini, F., Paradiso, M. C., Grosso, E., Funaro, A., Ponzio, G., Migone, N., Brusco, A. &lt;strong&gt;A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA.&lt;/strong&gt; J. Med. Genet. 39: 57-61, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11826028/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11826028&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.39.1.57&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11826028">Saviozzi et al. (2002)</a> noted that milder cases of AT, termed 'AT variants,' comprise a heterogeneous group characterized by later onset of clinical symptoms, slower progression, extended life span compared to most AT patients, and decreased levels of chromosomal instability and cellular radiosensitivity. In these patients, telangiectasia and/or immunodeficiency may be absent, while the neurologic features are present. <a href="#143" class="mim-tip-reference" title="Saviozzi, S., Saluto, A., Taylor, A. M. R., Last, J. I. L., Trebini, F., Paradiso, M. C., Grosso, E., Funaro, A., Ponzio, G., Migone, N., Brusco, A. &lt;strong&gt;A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA.&lt;/strong&gt; J. Med. Genet. 39: 57-61, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11826028/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11826028&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.39.1.57&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11826028">Saviozzi et al. (2002)</a> noted that the genotype of ATM in milder cases of AT is most often compound heterozygosity for a severe mutation together with a mild or leaky mutation, which expresses some ATM protein with residual function. In 2 sisters with variant AT with onset of ataxia at 27 years, polyneuropathy, choreoathetosis, and absence of telangiectasia, immunodeficiency, and cancer, <a href="#143" class="mim-tip-reference" title="Saviozzi, S., Saluto, A., Taylor, A. M. R., Last, J. I. L., Trebini, F., Paradiso, M. C., Grosso, E., Funaro, A., Ponzio, G., Migone, N., Brusco, A. &lt;strong&gt;A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA.&lt;/strong&gt; J. Med. Genet. 39: 57-61, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11826028/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11826028&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.39.1.57&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11826028">Saviozzi et al. (2002)</a> identified compound heterozygosity in the ATM gene for a missense (<a href="/entry/607585#0028">607585.0028</a>) and a frameshift (<a href="/entry/607585#0029">607585.0029</a>) mutation. Western blot analysis showed a low level of ATM protein with residual phosphorylation activity, which the authors suggested contributed to the milder phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11826028" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#75" class="mim-tip-reference" title="Hiel, J. A. P., van Engelen, B. G. M., Weemaes, C. M. R., Broeks, A., Verrips, A., ter Laak, H., Vingerhoets, H. M., van den Heuvel, L. P. W., Lammens, M., Gabreels, F. J. M., Last, J. I., Taylor, A. M. R. &lt;strong&gt;Distal spinal muscular atrophy as a major feature in adult-onset ataxia telangiectasia.&lt;/strong&gt; Neurology 67: 346-349, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16864838/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16864838&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/01.wnl.0000224878.22821.23&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16864838">Hiel et al. (2006)</a> reported 3 brothers and an unrelated woman with late-onset AT. All 4 were ambulatory and ranged in age from 37 to 43 years; unsteady gait developed approximately 10 years earlier. Cerebellar signs were mild, but all had striking distal muscular atrophy and weakness, decreased or absent ankle reflexes, and normal or borderline delayed motor conduction velocities with markedly decreased compound muscle action potentials. Muscle biopsies showed neurogenic changes. The patients had normal sensation and normal sensory studies. Other features included severe resting tremor, slight intention tremor, and mild dysarthria. ATM phosphorylation activity was only slightly decreased, suggesting that other factors were involved in damage to anterior horn neurons. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16864838" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#182" class="mim-tip-reference" title="Verhagen, M. M. M., Abdo, W. F., Willemsen, M. A. A. P., Hogervorst, F. B. L., Smeets, D. F. C. M., Hiel, J. A. P., Brunt, E. R., van Rijn, M. A., Krakauer, D. M., Oldenburg, R. A., Broeks, A., Last, J. I., van&#x27;t Veer, L. J., Tijssen, M. A. J., Dubois, A. M. I., Kremer, H. P. H., Weemaes, C. M. R, Tayloer, A. M. R., van Deuren, M. &lt;strong&gt;Clinical spectrum of ataxia-telangiectasia in adulthood.&lt;/strong&gt; Neurology 73: 430-437, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19535770/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19535770&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/WNL.0b013e3181af33bd&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19535770">Verhagen et al. (2009)</a> provided a retrospective analysis of 13 adult patients with variant AT from 9 families and 6 unrelated patients with classic AT. All patients were from the Netherlands; 2 of the patients with variant AT had been reported by <a href="#75" class="mim-tip-reference" title="Hiel, J. A. P., van Engelen, B. G. M., Weemaes, C. M. R., Broeks, A., Verrips, A., ter Laak, H., Vingerhoets, H. M., van den Heuvel, L. P. W., Lammens, M., Gabreels, F. J. M., Last, J. I., Taylor, A. M. R. &lt;strong&gt;Distal spinal muscular atrophy as a major feature in adult-onset ataxia telangiectasia.&lt;/strong&gt; Neurology 67: 346-349, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16864838/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16864838&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/01.wnl.0000224878.22821.23&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16864838">Hiel et al. (2006)</a>. All patients with classic AT were diagnosed in childhood, presented with ataxic gait, and were wheelchair-bound by age 11 years. Five of the 6 died between ages 21 and 27. Those with variant AT were only correctly diagnosed in adulthood, although 7 presented with slowly progressive chorea-athetosis from early childhood. Five with variant AT presented with resting tremor between age 12 to 34, and the remaining patient with variant AT presented with distal muscle weakness of the lower extremities at age 6. Five patients with variant AT became wheelchair-bound between ages 15 and 43, and 2 had died of malignancy at ages 51 and 23 years, respectively. All variant AT patients had dysarthria by adulthood, 9 had choreoathetosis, 8 had resting tremor, 7 had oculomotor apraxia, and 5 had nystagmus. Eight patients had normal cerebellum on MRI, whereas 4 had cerebellar atrophy. Only 7 of 13 had ocular telangiectasia, but all had increased serum alpha-fetoprotein. Six with variant AT had polyneuropathy. Four developed a malignancy, including ALL, pituitary tumor, and breast cancer. Only 1 had slightly decreased IgG levels. Chromosomal instability was found in 8 variant AT patients tested. Those with the mildest form of the disorder had residual ATM protein expression with kinase activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=16864838+19535770" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#142" class="mim-tip-reference" title="Saunders-Pullman, R., Raymond, D., Stoessl, A. J., Hobson, D., Nakamura, K., Pullman, S., Lefton, D., Okun, M. S., Uitti, R., Sachdev, R., Stanley, K., San Luciano, M., Hagenah, J., Gatti, R., Ozelius, L. J., Bressman, S. B. &lt;strong&gt;Variant ataxia-telangiectasia presenting as primary-appearing dystonia in Canadian Mennonites.&lt;/strong&gt; Neurology 78: 649-657, 2012. Note: Erratum: Neurology 78: 1029 only, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22345219/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22345219&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22345219[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/WNL.0b013e3182494d51&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22345219">Saunders-Pullman et al. (2012)</a> reported 13 patients from 3 Canadian Mennonite families with variant AT due to a homozygous missense mutation in the ATM gene (A2067D; <a href="/entry/607585#0033">607585.0033</a>). The patients had onset of dystonia in the first 2 decades (range, 1-20 years). Dystonia mostly affected the neck, face, tongue, and limbs, and became generalized in 60% of patients. Dysarthria was very common. Additional features in some patients included myoclonus, facial choreiform movements, and irregular tremor. Some patients had clumsy gait, and although none had overt ataxia, 2 patients had ataxia in childhood that spontaneously resolved. None had prominent telangiectases. Postmortem examination showed mild loss of cerebellar Purkinje cells in 1 patient, but cerebellar atrophy was not a prominent finding in any of the patients. Cells from 2 mutation carriers showed increased radiosensitivity and only trace amounts of ATM protein. Heterozygous mutation carriers did not have dystonia. Family history revealed that 2 homozygous mutation carriers in 1 family had died of malignancy in adulthood. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22345219" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#148" class="mim-tip-reference" title="Schon, K., van Os, N. J. H., Oscroft, N., Baxendale, H., Scoffings, D., Ray, J., Suri, M., Whitehouse, W. P., Mehta, P. R., Everett, N., Bottolo, L., van de Warrenburg, B. P., Byrd, P. J., Weemaes, C., Willemsen, M. A., Tishkowitz, M., Taylor, A. M., Hensiek, A. E. &lt;strong&gt;Genotype, extrapyramidal features, and severity of variant ataxia-telangiectasia.&lt;/strong&gt; Ann. Neurol. 85: 170-180, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30549301/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30549301&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30549301[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ana.25394&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30549301">Schon et al. (2019)</a> reported on 57 patients with variant AT (patients with retained ATM kinase activity). Mean age at assessment was 37.5 years. Most (81%) had their first symptoms by age 10 years. Time from symptom onset until diagnosis was more than 10 years in 68% and more than 20 years in one-third of probands. All patients had neurologic involvement. Disease severity was mild in one-third of patients, with 43% still ambulatory 20 years after disease onset. In one-third, neurologic deficit was predominantly cerebellar ataxia, whereas 18% had a pure extrapyramidal presentation. Patients with extrapyramidal presentations had milder neurologic disease severity. Brain MRI performed in 35 patients showed cerebellar atrophy in 29. Conjunctival telangiectasia was seen in 63%. None of the patients had significant respiratory or immunologic complications, but 25% had a history of malignancy of various types. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30549301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Cancer Risk in Heterozygotes</em></strong></p><p>
<a href="#190" class="mim-tip-reference" title="Welshimer, K., Swift, M. &lt;strong&gt;Congenital malformations and developmental disabilities in ataxia-telangiectasia, Fanconi anemia, and xeroderma pigmentosum families.&lt;/strong&gt; Am. J. Hum. Genet. 34: 781-793, 1982.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7124732/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7124732&lt;/a&gt;]" pmid="7124732">Welshimer and Swift (1982)</a> studied families of homozygotes for AT, Fanconi anemia (FA), and xeroderma pigmentosum (XP; see <a href="/entry/278700">278700</a>) to test the hypothesis that heterozygotes may be predisposed to some of the same congenital malformations and developmental disabilities that are common among homozygotes. Among XP relatives, 11 of 1,100 had unexplained mental retardation, whereas only 3 of 1,439 relatives of FA and AT homozygotes showed mental retardation. Four XP relatives but no FA or AT relatives had microcephaly. Idiopathic scoliosis and vertebral anomalies occurred in excess in AT relatives, while genitourinary and distal limb malformations were found in FA families. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7124732" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#168" class="mim-tip-reference" title="Swift, M. &lt;strong&gt;Cancer risk counseling. (Letter)&lt;/strong&gt; Science 210: 1074, 1980.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7444436/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7444436&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.7444436&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7444436">Swift (1980)</a> defended, from the viewpoint of not causing anxiety, the usefulness and safety of cancer risk counseling of heterozygotes for AT. <a href="#167" class="mim-tip-reference" title="Swift, M., Reitnauer, P. J., Morrell, D., Chase, C. L. &lt;strong&gt;Breast and other cancers in families with ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 316: 1289-1294, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3574400/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3574400&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198705213162101&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3574400">Swift et al. (1987)</a> examined the cancer risk of heterozygotes for AT in 128 families, including 4 of Amish ancestry, 110 white non-Amish families, and 14 black families. They measured documented cancer incidence rather than cancer mortality based solely on death certificates and compared the cancer incidence in adult blood relatives of probands directly with that in spouse controls. The incidence rates in AT relatives were significantly elevated over those in spouse controls. In persons heterozygous for AT, the relative risk of cancer was estimated to be 2.3 for men and 3.1 for women. Breast cancer in women was the cancer most clearly associated with heterozygosity for AT. <a href="#167" class="mim-tip-reference" title="Swift, M., Reitnauer, P. J., Morrell, D., Chase, C. L. &lt;strong&gt;Breast and other cancers in families with ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 316: 1289-1294, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3574400/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3574400&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198705213162101&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3574400">Swift et al. (1987)</a> estimated that 8 to 18% of patients with breast cancer in the U.S. white population would be heterozygous for AT. <a href="#128" class="mim-tip-reference" title="Pippard, E. C., Hall, A. J., Barker, D. J. P., Bridges, B. A. &lt;strong&gt;Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain.&lt;/strong&gt; Cancer Res. 48: 2929-2932, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3359449/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3359449&lt;/a&gt;]" pmid="3359449">Pippard et al. (1988)</a> reported an excess of breast cancer deaths in British mothers of AT patients (significant at the 5% level), but no excess mortality from malignant neoplasms in the grandparents. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3359449+7444436+3574400" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#115" class="mim-tip-reference" title="Morrell, D., Chase, C. L., Swift, M. &lt;strong&gt;Cancers in 44 families with ataxia-telangiectasia.&lt;/strong&gt; Cancer Genet. Cytogenet. 50: 119-123, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2253179/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2253179&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0165-4608(90)90245-6&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2253179">Morrell et al. (1990)</a> reported cancer incidence measured retrospectively in 574 close blood relatives of AT patients and 213 spouse controls in 44 previously unreported families. For heterozygous carriers of the AT gene, the relative risk of cancer was estimated to be 6.1 as compared with non-heterozygotes. The most frequent cancer site in the blood relatives was the female breast, with 9 cancers observed. <a href="#60" class="mim-tip-reference" title="Gatti, R. A., Boder, E., Vinters, H. V., Sparkes, R. S., Norman, A., Lange, K. &lt;strong&gt;Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis.&lt;/strong&gt; Medicine 70: 99-117, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2005780/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2005780&lt;/a&gt;]" pmid="2005780">Gatti et al. (1991)</a> provided a review in which they noted the possibly high frequency of breast cancer in AT heterozygotes. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2253179+2005780" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#165" class="mim-tip-reference" title="Swift, M., Morrell, D., Massey, R. B., Chase, C. L. &lt;strong&gt;Incidence of cancer in 161 families affected by ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 325: 1831-1836, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1961222/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1961222&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199112263252602&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1961222">Swift et al. (1991)</a> reported the results of a prospective study of 1,599 adult blood relatives of patients with AT and 821 of their spouses distributed in 161 families. Cancer rates were significantly higher among the blood relatives than in their spouses, specifically in the subgroup of 294 blood relatives who were known to be heterozygous for the AT gene. The estimated risk of cancer of all types among heterozygotes as compared with noncarriers was 3.8 in men and 3.5 in women, and that for breast cancer in carrier women was 5.1. Among the blood relatives, women with breast cancer were more likely to have been exposed to selected sources of ionizing radiation than controls without cancer. Male and female blood relatives also had 3-fold and 2.6-fold excess mortality from all causes, respectively, from the ages of 20 through 59 years. <a href="#165" class="mim-tip-reference" title="Swift, M., Morrell, D., Massey, R. B., Chase, C. L. &lt;strong&gt;Incidence of cancer in 161 families affected by ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 325: 1831-1836, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1961222/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1961222&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199112263252602&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1961222">Swift et al. (1991)</a> suggested that diagnostic or occupational exposure to ionizing radiation increases the risk of breast cancer in women heterozygous for AT. The work of <a href="#165" class="mim-tip-reference" title="Swift, M., Morrell, D., Massey, R. B., Chase, C. L. &lt;strong&gt;Incidence of cancer in 161 families affected by ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 325: 1831-1836, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1961222/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1961222&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199112263252602&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1961222">Swift et al. (1991)</a> on the frequency of breast cancer in AT was critiqued by numerous authors, including <a href="#26" class="mim-tip-reference" title="Bridges, B. A., Arlett, C. F. &lt;strong&gt;Risk of breast cancer in ataxia-telangiectasia. (Letter)&lt;/strong&gt; New Eng. J. Med. 326: 1357-1361, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1304718/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1304718&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199205143262011&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1304718">Bridges and Arlett (1992)</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1961222+1304718" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Since the genes responsible for most cases of AT are located on 11q, <a href="#194" class="mim-tip-reference" title="Wooster, R., Ford, D., Mangion, J., Ponder, B. A. J., Peto, J., Easton, D. F., Stratton, M. R. &lt;strong&gt;Absence of linkage to the ataxia telangiectasia locus in familial breast cancer.&lt;/strong&gt; Hum. Genet. 92: 91-94, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8365732/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8365732&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00216153&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8365732">Wooster et al. (1993)</a> typed 5 DNA markers in the AT region in 16 breast cancer families. They found no evidence for linkage between breast cancer and these markers and concluded that the contribution of AT to familial breast cancer is likely to be minimal. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8365732" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#5" class="mim-tip-reference" title="Athma, P., Rappaport, R., Swift, M. &lt;strong&gt;Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer.&lt;/strong&gt; Cancer Genet. Cytogenet. 92: 130-134, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8976369/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8976369&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0165-4608(96)00328-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8976369">Athma et al. (1996)</a> determined the AT gene carrier status of 776 blood relatives in 99 AT families by tracing the ATM gene in each family through tightly linked flanking DNA markers. There were 33 women with breast cancer who could be genotyped; 25 of these were AT heterozygotes, compared to an expected 14.9. For 21 breast cancers with onset before age 60, the odds ratio was 2.9 and for 12 cases with onset at age 60 or older, the odds ratio was 6.4. Thus, the breast cancer risk for AT heterozygous women is not limited to young women but appeared to be even higher at older ages. <a href="#5" class="mim-tip-reference" title="Athma, P., Rappaport, R., Swift, M. &lt;strong&gt;Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer.&lt;/strong&gt; Cancer Genet. Cytogenet. 92: 130-134, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8976369/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8976369&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0165-4608(96)00328-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8976369">Athma et al. (1996)</a> estimated that, of all breast cancers in the U.S., 6.6% may occur in women who are AT heterozygotes. This proportion is several times greater than the estimated proportion of carriers of BRCA1 mutations (<a href="/entry/113705">113705</a>) in breast cancer cases with onset at any age. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8976369" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The reported increased risk for breast cancer for AT family members has been most evident among younger women, leading to an age-specific relative risk model predicting that 8% of breast cancer in women under age 40 arises in AT carriers, compared with 2% of cases between 40 and 59 years (<a href="#46" class="mim-tip-reference" title="Easton, D. F. &lt;strong&gt;Cancer risks in A-T heterozygotes.&lt;/strong&gt; Int. J. Rad. Biol. 66: S177-S182, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7836845/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7836845&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1080/09553009414552011&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7836845">Easton, 1994</a>). To test this hypothesis, <a href="#53" class="mim-tip-reference" title="FitzGerald, M. G., Bean, J. M., Hedge, S. R., Unsal, H., MacDonald, D. J., Harkin, D. P., Finkelstein, D. M. &lt;strong&gt;Isselbacher, K. J.; Haber, D. A.: Heterozygous ATM mutations do not contribute to early onset of breast cancer.&lt;/strong&gt; Nature Genet. 15: 307-310, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9054948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9054948&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0397-307&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9054948">FitzGerald et al. (1997)</a> undertook a germline mutational analysis of the ATM gene in a population of women with early onset of breast cancer, using a protein truncation (PTT) assay to detect chain-terminating mutations, which account for 90% of mutations identified in children with AT. They detected a heterozygous ATM mutation in 2 of 202 (1%) controls, consistent with the frequency of AT carriers predicted from epidemiologic studies. ATM mutations were present in only 2 of 401 (0.5%) women with early onset of breast cancer (P = 0.6). <a href="#53" class="mim-tip-reference" title="FitzGerald, M. G., Bean, J. M., Hedge, S. R., Unsal, H., MacDonald, D. J., Harkin, D. P., Finkelstein, D. M. &lt;strong&gt;Isselbacher, K. J.; Haber, D. A.: Heterozygous ATM mutations do not contribute to early onset of breast cancer.&lt;/strong&gt; Nature Genet. 15: 307-310, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9054948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9054948&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0397-307&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9054948">FitzGerald et al. (1997)</a> concluded that heterozygous ATM mutations do not confer genetic predisposition to early onset of breast cancer. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9054948+7836845" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The results of <a href="#53" class="mim-tip-reference" title="FitzGerald, M. G., Bean, J. M., Hedge, S. R., Unsal, H., MacDonald, D. J., Harkin, D. P., Finkelstein, D. M. &lt;strong&gt;Isselbacher, K. J.; Haber, D. A.: Heterozygous ATM mutations do not contribute to early onset of breast cancer.&lt;/strong&gt; Nature Genet. 15: 307-310, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9054948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9054948&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0397-307&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9054948">FitzGerald et al. (1997)</a> are discrepant with those of <a href="#5" class="mim-tip-reference" title="Athma, P., Rappaport, R., Swift, M. &lt;strong&gt;Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer.&lt;/strong&gt; Cancer Genet. Cytogenet. 92: 130-134, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8976369/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8976369&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0165-4608(96)00328-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8976369">Athma et al. (1996)</a>, who conducted a study 'from the other direction' by following identified AT mutations through the families of those with clinically recognized AT. Analysis of DNA markers flanking the AT gene allowed them to identify precisely which female relatives with breast cancer carried the AT mutation. On the basis of the genetic relationship between each case and the AT proband, the a priori probability that these 2 share the AT mutation was calculated. This led to an estimated relative risk of 3.8 as compared to noncarriers. This result was similar to that found by <a href="#46" class="mim-tip-reference" title="Easton, D. F. &lt;strong&gt;Cancer risks in A-T heterozygotes.&lt;/strong&gt; Int. J. Rad. Biol. 66: S177-S182, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7836845/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7836845&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1080/09553009414552011&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7836845">Easton (1994)</a>, who reanalyzed the previous studies of breast cancer risk in mothers (and other close relatives) of AT cases. <a href="#21" class="mim-tip-reference" title="Bishop, D. T., Hopper, J. &lt;strong&gt;AT-tributable risks?&lt;/strong&gt; Nature Genet. 15: 226 only, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9054927/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9054927&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0397-226&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9054927">Bishop and Hopper (1997)</a> analyzed these 2 studies and suggested that they may not be discrepant. Indeed, they estimated that the study of <a href="#53" class="mim-tip-reference" title="FitzGerald, M. G., Bean, J. M., Hedge, S. R., Unsal, H., MacDonald, D. J., Harkin, D. P., Finkelstein, D. M. &lt;strong&gt;Isselbacher, K. J.; Haber, D. A.: Heterozygous ATM mutations do not contribute to early onset of breast cancer.&lt;/strong&gt; Nature Genet. 15: 307-310, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9054948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9054948&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng0397-307&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9054948">FitzGerald et al. (1997)</a> yielded an upper limit of the 95% confidence interval for the proportion of early onset breast cancer occurring in AT heterozygotes as 2.4% (assuming that their assay identified 75% of all mutations). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9054948+7836845+9054927+8976369" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a family with multiple cancers, <a href="#15" class="mim-tip-reference" title="Bay, J.-O., Uhrhammer, N., Pernin, D., Presneau, N., Tchirkov, A., Vuillaume, M., Laplace, V., Grancho, M., Verrelle, P., Hall, J., Bignon, Y.-J. &lt;strong&gt;High incidence of cancer in a family segregating a mutation of the ATM gene: possible role of ATM heterozygosity in cancer.&lt;/strong&gt; Hum. Mutat. 14: 485-492, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10571946/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10571946&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/(SICI)1098-1004(199912)14:6&lt;485::AID-HUMU7&gt;3.0.CO;2-T&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10571946">Bay et al. (1999)</a> described heterozygosity for a mutant allele of ATM that caused skipping of exon 61 in the mRNA (<a href="/entry/607585#0020">607585.0020</a>) and was associated with a previously undescribed polymorphism in intron 61. The mutation was inherited by 2 sisters, one of whom developed breast cancer at age 39 years and the second at age 44 years, from their mother, who developed kidney cancer at age 67 years. Studies of irradiated lymphocytes from both sisters revealed elevated numbers of chromatid breaks, typical of AT heterozygotes. In the breast tumor of the older sister, loss of heterozygosity (LOH) was found in the ATM region of 11q23.1, indicating that the normal ATM allele was lost in the breast tumor. LOH was not seen at the BRCA1 (<a href="/entry/113705">113705</a>) or BRCA2 (<a href="/entry/600185">600185</a>) loci. BRCA2 was considered an unlikely cancer-predisposing gene in this family because each sister inherited different chromosomes 13 from each parent. The findings suggested that haploinsufficiency at ATM may promote tumorigenesis, even though LOH at the ATM locus supported a more classic 2-hit tumor suppressor gene model. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10571946" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The finding that ATM heterozygotes have an increased relative risk for breast cancer had been supported by some studies but not confirmed by others. <a href="#28" class="mim-tip-reference" title="Broeks, A., Urbanus, J. H. M., Floore, A. N., Dahler, E. C., Klijn, J. G. M., Rutgers, E. J. Th., Devilee, P., Russell, N. S., van Leeuwen, F. E., van&#x27;t Veer, L. J. &lt;strong&gt;ATM-heterozygous germline mutations contribute to breast cancer-susceptibility.&lt;/strong&gt; Am. J. Hum. Genet. 66: 494-500, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10677309/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10677309&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302746&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10677309">Broeks et al. (2000)</a> analyzed germline mutations of the ATM gene in a group of Dutch patients with breast cancer using normal blood lymphocytes and the protein truncation test followed by genomic sequence analysis. A high percentage of ATM germline mutations was demonstrated among patients with sporadic breast cancer. The 82 patients included in this study had developed breast cancer before the age of 45 years and had survived 5 years or more (mean, 15 years), and in 33 (40%) of the patients a contralateral breast tumor had been diagnosed. Among these patients, 7 (8.5%) had germline mutations of the ATM gene, of which 5 were distinct. One splice site mutation, IVS10-6T-G (<a href="/entry/607585#0021">607585.0021</a>), was detected 3 times in this series. Four heterozygous carriers had bilateral breast cancer. <a href="#28" class="mim-tip-reference" title="Broeks, A., Urbanus, J. H. M., Floore, A. N., Dahler, E. C., Klijn, J. G. M., Rutgers, E. J. Th., Devilee, P., Russell, N. S., van Leeuwen, F. E., van&#x27;t Veer, L. J. &lt;strong&gt;ATM-heterozygous germline mutations contribute to breast cancer-susceptibility.&lt;/strong&gt; Am. J. Hum. Genet. 66: 494-500, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10677309/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10677309&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302746&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10677309">Broeks et al. (2000)</a> concluded that ATM heterozygotes have an approximately 9-fold increased risk of developing a type of breast cancer characterized by frequent bilateral occurrence, early age at onset, and long-term survival. They suggested that the characteristics of this population of patients may explain why such a high frequency was found here and not in other series. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10677309" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#117" class="mim-tip-reference" title="Olsen, J. H., Hahnemann, J. M. D., Borresen-Dale, A.-L., Tretli, S., Kleinerman, R., Sankila, R., Hammarstrom, L., Robsahm, T. E., Kaariainen, H., Bregard, A., Brondum-Nielsen, K., Yuen, J., Tucker, M. &lt;strong&gt;Breast and other cancers in 1445 blood relatives of 75 Nordic patients with ataxia telangiectasia.&lt;/strong&gt; Brit. J. Cancer 93: 260-265, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15942625/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15942625&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.bjc.6602658&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15942625">Olsen et al. (2005)</a> reported on an extended and enlarged follow-up study of cancer incidence in blood relatives of 75 patients with verified AT from 66 Nordic families. When 7 mothers of probands were excluded, no clear relationship was observed between the allocated mutation carrier probability of each family member and the extent of breast cancer risk. They concluded that the increased risk for female breast cancer seen in 66 Nordic AT families appeared to be restricted to women under the age of 55 years and was due mainly to a very high risk in the group of mothers. <a href="#117" class="mim-tip-reference" title="Olsen, J. H., Hahnemann, J. M. D., Borresen-Dale, A.-L., Tretli, S., Kleinerman, R., Sankila, R., Hammarstrom, L., Robsahm, T. E., Kaariainen, H., Bregard, A., Brondum-Nielsen, K., Yuen, J., Tucker, M. &lt;strong&gt;Breast and other cancers in 1445 blood relatives of 75 Nordic patients with ataxia telangiectasia.&lt;/strong&gt; Brit. J. Cancer 93: 260-265, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15942625/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15942625&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.bjc.6602658&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15942625">Olsen et al. (2005)</a> concluded that the findings of breast cancer risk in mothers, but not in other likely mutation carriers, in this and other studies raised questions about the hypothesis of a simple causal relationship with ATM heterozygosity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15942625" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Although the defining characteristic of recessive diseases is the absence of a phenotype in heterozygous carriers, <a href="#188" class="mim-tip-reference" title="Watts, J. A., Morley, M., Burdick, J. T., Fiori, J. L., Ewens, W. J., Spielman, R. S., Cheung, V. G. &lt;strong&gt;Gene expression phenotype in heterozygous carriers of ataxia telangiectasia.&lt;/strong&gt; Am. J. Hum. Genet. 71: 791-800, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12226795/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12226795&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12226795[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/342974&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12226795">Watts et al. (2002)</a> suggested that expression profiling by microarray techniques might reveal subtle manifestations. Individual carriers of AT cannot be identified; as a group, however, carriers of a mutant AT allele have a phenotype that distinguishes them from normal control individuals: increased radiosensitivity and risk of cancer. <a href="#188" class="mim-tip-reference" title="Watts, J. A., Morley, M., Burdick, J. T., Fiori, J. L., Ewens, W. J., Spielman, R. S., Cheung, V. G. &lt;strong&gt;Gene expression phenotype in heterozygous carriers of ataxia telangiectasia.&lt;/strong&gt; Am. J. Hum. Genet. 71: 791-800, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12226795/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12226795&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12226795[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/342974&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12226795">Watts et al. (2002)</a> showed that the phenotype was also detectable, in lymphoblastoid cells from AT carriers, as changes in expression level of many genes. The differences were manifested both in baseline expression levels and in response to ionizing radiation. The findings showed that carriers of the recessive disease may have an 'expression phenotype,' which suggested a new approach to the identification of carriers and enhanced understanding of their increased cancer risk. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12226795" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#131" class="mim-tip-reference" title="Renwick, A., Thompson, D., Seal, S., Kelly, P., Chagtai, T., Ahmed, M., North, B., Jayatilake, H., Barfoot, R., Spanova, K., McGuffog, L., Evans, D. G., Eccles, D., The Breast Cancer Susceptibility Collaboration (UK), Easton, D. F., Stratton, M. R., Rahman, N. &lt;strong&gt;ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles.&lt;/strong&gt; Nature Genet. 38: 873-875, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16832357/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16832357&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng1837&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16832357">Renwick et al. (2006)</a> screened individuals from 443 familial breast cancer pedigrees and 521 controls for ATM sequence variants and identified 12 mutations in affected individuals and 2 in controls (p = 0.0047). Their results demonstrated that ATM mutations that cause ataxia-telangiectasia in biallelic carriers are breast cancer susceptibility alleles in monoallelic carriers, with an estimated relative risk of 2.37 (95% CI = 1.57-3.78, p = 0.0003). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16832357" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="otherFeatures" class="mim-anchor"></a>
<h4 href="#mimOtherFeaturesFold" id="mimOtherFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimOtherFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Other Features</strong>
</span>
</h4>
</div>
<div id="mimOtherFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#184" class="mim-tip-reference" title="Waldmann, T. A., McIntire, K. R. &lt;strong&gt;Serum-alpha-fetoprotein levels in patients with ataxia-telangiectasia.&lt;/strong&gt; Lancet 300: 1112-1115, 1972. Note: Originally Volume II.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4117204/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4117204&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0140-6736(72)92717-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="4117204">Waldmann and McIntire (1972)</a> showed raised alpha-fetoprotein in the blood of patients with AT. This, they felt, suggests immaturity of the liver and is consistent with the view that the primary defect is in tissue differentiation, specifically, a defect in the interaction necessary for differentiation of gut-associated organs such as the thymus and liver. <a href="#81" class="mim-tip-reference" title="Ishiguro, T., Taketa, K., Gatti, R. A. &lt;strong&gt;Tissue of origin of elevated alpha-fetoprotein in ataxia-telangiectasia.&lt;/strong&gt; Dis. Markers 4: 293-297, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2454778/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2454778&lt;/a&gt;]" pmid="2454778">Ishiguro et al. (1986)</a> concluded that the elevated alpha-fetoprotein in patients with AT probably originates in the liver. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2454778+4117204" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>On the circulating monocytes of AT patients, <a href="#11" class="mim-tip-reference" title="Bar, R. S., Levis, W. R., Rechler, M. M., Harrison, L. C., Siebert, C., Podskalny, J., Roth, J., Muggeo, M. &lt;strong&gt;Extreme insulin resistance in ataxia telangiectasia: defect in affinity of insulin receptors.&lt;/strong&gt; New Eng. J. Med. 298: 1164-1171, 1978.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/651946/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;651946&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM197805252982103&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="651946">Bar et al. (1978)</a> demonstrated an 80 to 85% decrease in insulin receptor affinity. This decrease was not observed in the cultured fibroblasts of AT patients or in the monocytes and fibroblasts of relatives of these patients. In addition, they found that whole plasma and immunoglobulin-enriched fractions of plasma from AT patients inhibited the normal binding of insulin to its receptors on cultured human lymphocytes and on human placental membranes. This suggested the presence of antireceptor immunoglobulins. AT and type B acanthosis nigricans have several features in common that suggest the possibility of similar causes for the insulin resistance each demonstrates. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=651946" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#151" class="mim-tip-reference" title="Shaham, M., Becker, Y. &lt;strong&gt;The ataxia telangiectasia clastogenic factor is a low molecular weight peptide.&lt;/strong&gt; Hum. Genet. 58: 422-424, 1981.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7327565/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7327565&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00282828&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7327565">Shaham and Becker (1981)</a> showed that the AT clastogenic (chromosome breaking) factor present in plasma of AT patients and in the culture medium of AT skin fibroblasts is a peptide with a molecular weight in the range of 500 to 1000. No clastogenic activity could be demonstrated in extracts of cultured AT fibroblasts. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7327565" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#114" class="mim-tip-reference" title="Mohamed, R., Pal Singh, S., Kumar, S., Lavin, M. F. &lt;strong&gt;A defect in DNA topoisomerase II activity in ataxia-telangiectasia cells.&lt;/strong&gt; Biochem. Biophys. Res. Commun. 149: 233-238, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2825700/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2825700&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0006-291x(87)91629-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2825700">Mohamed et al. (1987)</a> found marked reduction of topoisomerase II (<a href="/entry/126430">126430</a>) in some but not all AT cell lines. DNA topoisomerases I and II are enzymes that introduce transient single- and double-strand breaks into DNA and thus are capable of interconverting various DNA conformations. The isolation of mutants of the 2 enzymes in yeast and the increased levels of DNA topoisomerase II in cells undergoing DNA synthesis provide evidence for the role of these enzymes in DNA replication and in chromosome segregation and organization. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2825700" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="inheritance" class="mim-anchor"></a>
<h4 href="#mimInheritanceFold" id="mimInheritanceToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimInheritanceToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Inheritance</strong>
</span>
</h4>
</div>
<div id="mimInheritanceFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>In a study of 47 families ascertained throughout the United Kingdom, <a href="#192" class="mim-tip-reference" title="Woods, C. G., Bundey, S. E., Taylor, A. M. R. &lt;strong&gt;Unusual features in the inheritance of ataxia telangiectasia.&lt;/strong&gt; Hum. Genet. 84: 555-562, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2338342/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2338342&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00210809&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2338342">Woods et al. (1990)</a> found a low parental consanguinity rate; no parents were first cousins or more closely related, whereas 10% had been expected. Furthermore, the incidence of the disorder in 79 sibs of index cases was 1 in 7, rather than the expected 1 in 4. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2338342" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="diagnosis" class="mim-anchor"></a>
<h4 href="#mimDiagnosisFold" id="mimDiagnosisToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimDiagnosisToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Diagnosis</strong>
</span>
</h4>
</div>
<div id="mimDiagnosisFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>The presence of early-onset ataxia with oculocutaneous telangiectases permits diagnosis of AT. The clinical diagnosis of AT can be problematic before the appearance of telangiectases. Oculomotor apraxia is a useful aid to early clinical diagnosis. Early-onset cerebellar ataxia and oculomotor apraxia are also typical of X-linked Pelizaeus-Merzbacher disease (<a href="/entry/312080">312080</a>) and can be seen in Joubert syndrome (<a href="/entry/213300">213300</a>). These disorders can be distinguished by leukoencephalopathy in the former, and by profound cerebellar hypoplasia in the latter. See also <a href="/entry/257550">257550</a>. Elevated levels of alpha-fetoprotein (<a href="/entry/126430">126430</a>) and carcinoembryonic antigen are the most useful readily available markers for confirmation of the diagnosis of AT (<a href="#60" class="mim-tip-reference" title="Gatti, R. A., Boder, E., Vinters, H. V., Sparkes, R. S., Norman, A., Lange, K. &lt;strong&gt;Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis.&lt;/strong&gt; Medicine 70: 99-117, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2005780/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2005780&lt;/a&gt;]" pmid="2005780">Gatti et al., 1991</a>). Dysgammaglobulinemia, decreased cellular immune responses, and peripheral lymphopenia are supportive findings but are not invariable. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2005780" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#73" class="mim-tip-reference" title="Henderson, L., Cole, H., Arlett, C., James, S. E., Cole, J., Lehmann, A., Rosenbloom, L., Redmond, T., Meller, S. &lt;strong&gt;Diagnosis of ataxia-telangiectasia by T-lymphocyte cloning assay. (Letter)&lt;/strong&gt; Lancet 326: 1242 only, 1985. Note: Originally Volume II.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2866314/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2866314&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0140-6736(85)90766-4&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2866314">Henderson et al. (1985)</a> devised a rapid diagnostic method based on the hypersensitivity of AT lymphocytes to killing by gamma irradiation. Similar studies in fibroblasts require skin biopsy and a prolonged culture time. <a href="#104" class="mim-tip-reference" title="Llerena, J., Jr., Murer-Orlando, M., McGuire, M., Zahed, L., Sheridan, R. J., Berry, A. C., Bobrow, M. &lt;strong&gt;Spontaneous and induced chromosome breakage in chorionic villus samples: a cytogenetic approach to first trimester prenatal diagnosis of ataxia telangiectasia syndrome.&lt;/strong&gt; J. Med. Genet. 26: 174-178, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2468772/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2468772&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.26.3.174&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2468772">Llerena et al. (1989)</a> concluded that in chorionic villus sampling, gamma radiation is a reliable way of discriminating between unaffected fetuses and those with AT. The reliability of this approach is in question, however. <a href="#121" class="mim-tip-reference" title="Painter, R. B., Young, B. R. &lt;strong&gt;Radiosensitivity in ataxia-telangiectasia: a new explanation.&lt;/strong&gt; Proc. Nat. Acad. Sci. 77: 7315-7317, 1980.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6938978/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6938978&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.77.12.7315&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6938978">Painter and Young (1980)</a> suggested that the radiosensitivity of AT cells may be caused by their failure to respond to DNA damage with a delay in DNA synthesis that could give time for repair to take place. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=6938978+2866314+2468772" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#152" class="mim-tip-reference" title="Shiloh, Y., Parshad, R., Frydman, M., Sanford, K. K., Portnoi, S., Ziv, Y., Jones, G. M. &lt;strong&gt;G(2) chromosomal radiosensitivity in families with ataxia-telangiectasia.&lt;/strong&gt; Hum. Genet. 84: 15-18, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2606472/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2606472&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00210663&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2606472">Shiloh et al. (1989)</a> presented evidence that the extent of chromatid damage induced in the G2 phase of the cell cycle by moderate dosage of x-rays is markedly higher in AT heterozygous cells than in normal controls. They used this as a test of heterozygosity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2606472" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#136" class="mim-tip-reference" title="Rosin, M. P., Ochs, H. D. &lt;strong&gt;In vivo chromosomal instability in ataxia-telangiectasia homozygotes and heterozygotes.&lt;/strong&gt; Hum. Genet. 74: 335-340, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3793095/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3793095&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00280482&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3793095">Rosin and Ochs (1986)</a> applied the exfoliated cell micronucleus test to the question of in vivo chromosomal instability in AT. This test is performed on exfoliated cells from the oral cavity collected by swabbing the mucosa with a moistened tongue depressor and also on urinary bladder cells obtained by centrifugation of freshly voided urine specimens. Micronuclei in these cells result from fragmentation of chromosomes in the dividing cells from the epithelium, resulting in acentric fragments which are excluded from the main nucleus when the cell divides. These fragments form their own membrane and can be identified as extranuclear Feulgen-positive bodies in daughter cells which migrate up through the epithelium to be exfoliated. <a href="#136" class="mim-tip-reference" title="Rosin, M. P., Ochs, H. D. &lt;strong&gt;In vivo chromosomal instability in ataxia-telangiectasia homozygotes and heterozygotes.&lt;/strong&gt; Hum. Genet. 74: 335-340, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3793095/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3793095&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00280482&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3793095">Rosin and Ochs (1986)</a> found that AT homozygotes had a 5- to 14-fold increase in the frequency of exfoliated cell micronuclei. Heterozygotes could be reliably identified by this method (<a href="#135" class="mim-tip-reference" title="Rosin, M. P., Ochs, H. D., Gatti, R. A., Boder, E. &lt;strong&gt;Heterogeneity of chromosomal breakage levels in epithelial tissue of ataxia-telangiectasia homozygotes and heterozygotes.&lt;/strong&gt; Hum. Genet. 83: 133-138, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2777252/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2777252&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00286705&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2777252">Rosin et al., 1989</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2777252+3793095" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using X-radiation with 1 Gy on G2-phase lymphocytes from 7 AT patients, 13 obligate AT heterozygotes, and 14 normal controls, <a href="#173" class="mim-tip-reference" title="Tchirkov, A., Bay, J.-O., Pernin, D., Bignon, Y.-J. Rio, P., Grancho, M., Kwiatkowski, F., Giollant, M., Malet, P., Verrelle, P. &lt;strong&gt;Detection of heterozygous carriers of the ataxia-telangiectasia (ATM) gene by G(2) phase chromosomal radiosensitivity of peripheral blood lymphocytes.&lt;/strong&gt; Hum. Genet. 101: 312-316, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9439660/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9439660&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s004390050634&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9439660">Tchirkov et al. (1997)</a> found that both AT homozygotes and heterozygotes showed significantly increased levels of radiation-induced chromatid damage relative to that of normal controls. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9439660" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Variant Ataxia-Telangiectasia</em></strong></p><p>
<a href="#181" class="mim-tip-reference" title="van Os, N. J. H., Hensiek, A., van Gaalen, J., Taylor, A. M. R., van Deuren, M., Weemaes, C. M. R., Willemsen, M. A. A. P., van de Warrenburg, B. P. C. &lt;strong&gt;Trajectories of motor abnormalities in milder phenotypes of ataxia telangiectasia.&lt;/strong&gt; Neurology 92: e19-e29, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30504431/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30504431&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/WNL.0000000000006700&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30504431">Van Os et al. (2019)</a> reported 14 patients from a Dutch AT cohort who had mild neurologic phenotypes of genetically confirmed AT, and identified reports of 91 patients with mild phenotypes in the literature. Mild phenotypes were defined as those with later onset, without ataxia at presentation or ataxia not being the dominant feature, or with slower progression. The mean diagnostic delay in these patients was 19.6 years. Among the 105 patients, the authors identified 6 neurologic trajectories: (1) childhood-onset extrapyramidal features with cerebellar symptoms developing later (18 patients); (2) childhood-onset cerebellar symptoms with extrapyramidal features developing later (35 patients); (3) childhood- to adolescence-onset dystonia without cerebellar symptoms (23 patients); (4) childhood- to adolescence-onset isolated cerebellar symptoms (22 patients), (5) childhood- to adult-onset prominent muscle weakness (2 patients); and (6) patients with adult-onset extrapyramidal features, with anterior horn cell disease arising later (5 patients). The authors proposed that recognition of these neurologic trajectories in patients with milder forms of AT could lead to reduction of diagnostic delay. Oculocutaneous telangiectases were seen in about 50% of patients. About 30% developed a malignancy; the diagnosis of AT was made after the malignancy diagnosis in 11 patients with cancer (35.5%). Among patients with malignancy, predictors of AT included a young age at malignancy onset combined with neurologic impairment, consanguineous family, a family history for neurologic symptoms with a medical history of cancer, severe radiation-induced skin reactions, or a second malignancy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30504431" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalManagement" class="mim-anchor"></a>
<h4 href="#mimClinicalManagementFold" id="mimClinicalManagementToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalManagementToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<div id="mimClinicalManagementFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Patients with AT and their cultured cells are unusually sensitive to x-ray just as patients and cells with xeroderma pigmentosum are sensitive to ultraviolet. Treatment of malignancy with conventional dosages of radiation can be fatal to AT patients.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="cytogenetics" class="mim-anchor"></a>
<h4 href="#mimCytogeneticsFold" id="mimCytogeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCytogeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cytogenetics</strong>
</span>
</h4>
</div>
<div id="mimCytogeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#119" class="mim-tip-reference" title="Oxford, J. M., Harnden, D. G., Parrington, J. M., Delhanty, J. D. A. &lt;strong&gt;Specific chromosome aberrations in ataxia-telangiectasia.&lt;/strong&gt; J. Med. Genet. 12: 251-262, 1975.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1177276/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1177276&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.12.3.251&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1177276">Oxford et al. (1975)</a> found that chromosome 14 was often involved in rearrangements in AT and that band 14q12 was a highly specific exchange point. In addition to the changes in chromosome 14, a pericentric inversion of chromosome 7 is characteristic. <a href="#106" class="mim-tip-reference" title="McCaw, B. K., Hecht, F., Harden, D. G., Teplitz, R. L. &lt;strong&gt;Somatic rearrangement of chromosome 14 in human lymphocytes.&lt;/strong&gt; Proc. Nat. Acad. Sci. 72: 2071-2075, 1975.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1056013/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1056013&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.72.6.2071&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1056013">McCaw et al. (1975)</a> described t(14;14)(q11;q32) translocation in T-cell malignancies of patients with AT. T cells show a t(14;14)q12q32 rearrangement in about 10% of AT patients. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1177276+1056013" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#43" class="mim-tip-reference" title="Croce, C. M., Isobe, M., Palumbo, A., Puck, J., Ming, J., Tweardy, D., Erikson, J., Davis, M., Rovera, G. &lt;strong&gt;Gene for alpha-chain of human T-cell receptor: location on chromosome 14 region involved in T-cell neoplasms.&lt;/strong&gt; Science 227: 1044-1047, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3919442/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3919442&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.3919442&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3919442">Croce et al. (1985)</a> assigned the alpha subunit of the T-cell antigen receptor (TCRA; see <a href="/entry/186880">186880</a>) to the region of one of the common breakpoints in AT (14q11.2) and suggested that the oncogene TCL1 (<a href="/entry/186960">186960</a>) is located in the region of the other breakpoint (14q32.3). It is thought that the TCL1 gene may be activated by chromosome inversion or translocation, either of which results in juxtaposition of the TCL1 gene and the TCRA gene. In AT, circulating lymphocytes show characteristic rearrangements involving the site of the T-cell receptor gamma gene (7p15) (TCRG; see <a href="/entry/186970">186970</a>), T-cell receptor beta genes (7q35) (TCRB; see <a href="/entry/186930">186930</a>), T-cell receptor alpha genes (14q11), and immunoglobulin heavy chain genes (14q32) (IGHG1; <a href="/entry/147100">147100</a>) (<a href="#109" class="mim-tip-reference" title="McFarlin, D. E., Strober, W., Waldmann, T. A. &lt;strong&gt;Ataxia-telangiectasia.&lt;/strong&gt; Medicine 51: 281-314, 1972.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/5033506/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;5033506&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1097/00005792-197207000-00002&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="5033506">McFarlin et al., 1972</a>; <a href="#198" class="mim-tip-reference" title="Ying, K. L., Decoteau, W. E. &lt;strong&gt;Cytogenetic anomalies in a patient with ataxia, immune deficiency, and high alpha-fetoprotein in the absence of telangiectasia.&lt;/strong&gt; Cancer Genet. Cytogenet. 4: 311-317, 1981.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6174206/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6174206&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0165-4608(81)90027-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6174206">Ying and Decoteau, 1981</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=6174206+3919442+5033506" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#6" class="mim-tip-reference" title="Aurias, A., Croquette, M. F., Nuyts, J. P., Griscelli, C., Dutrillaux, B. &lt;strong&gt;New data on clonal anomalies of chromosome 14 in ataxia telangiectasia: tct(14;14) and inv(14).&lt;/strong&gt; Hum. Genet. 72: 22-24, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3943860/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3943860&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00278811&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3943860">Aurias et al. (1986)</a> described a possible 'new' type of chromosome rearrangement, namely, telomere-centromere translocation (tct) followed by double duplication. This type of rearrangement was found between chromosomes 7 and 14 in cases of AT. <a href="#57" class="mim-tip-reference" title="Gatti, R. A., Aurias, A., Griscelli, C., Sparkes, R. S. &lt;strong&gt;Translocations involving chromosomes 2p and 22q in ataxia-telangiectasia.&lt;/strong&gt; Dis. Markers 3: 169-195, 1985."None>Gatti et al. (1985)</a> and <a href="#9" class="mim-tip-reference" title="Aurias, A., Dutrillaux, B. &lt;strong&gt;A possible new type of chromosome rearrangement: telomere-centromere translocation (tct) followed by double duplication.&lt;/strong&gt; Hum. Genet. 72: 25-26, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3943861/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3943861&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00278812&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3943861">Aurias and Dutrillaux (1986)</a> found that the sites of breaks in rearrangements (7p14, 7q35, 14q12, 14qter, 2p11, 2p12, and 22q11-q12) are those where members of the immunoglobulin superfamily are located: IGK, IGH, IGL, TCRA, TCRB, TCRG. The somatic gene rearrangement must precede expression of these genes. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3943861+3943860" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#90" class="mim-tip-reference" title="Kennaugh, A. A., Butterworth, S. V., Hollis, R., Baer, R., Rabbitts, T. H., Taylor, A. M. R. &lt;strong&gt;The chromosome breakpoint at 14q32 in an ataxia telangiectasia t(14;14) T cell clone is different from the 14q32 breakpoint in Burkitts and an inv(14) T cell lymphoma.&lt;/strong&gt; Hum. Genet. 73: 254-259, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3488254/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3488254&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00401239&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3488254">Kennaugh et al. (1986)</a> studied a patient with an inversion of 14q which had been present for many years in T cells. It was found that the breakpoint in 14q32 lay outside the IgH locus and proximal to it. The constant region gene of the T-cell receptor alpha chain (TCRA) locus was translocated to the 14q32 position. <a href="#85" class="mim-tip-reference" title="Johnson, J. P., Gatti, R. A., Sears, T. S., White, R. L. &lt;strong&gt;Inverted duplication of J(H) associated with chromosome 14 translocation and T-cell leukemia in ataxia-telangiectasia.&lt;/strong&gt; Am. J. Hum. Genet. 39: 787-796, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3026175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3026175&lt;/a&gt;]" pmid="3026175">Johnson et al. (1986)</a> found that the 14q32 breakpoint in the 14/14 translocation found in T-CLL cells and in an AT patient occurred within the immunoglobulin gene cluster. The AT patient had the characteristic chromosome 14 tandem translocation in 100% of karyotyped T cells 10 years before her death from T-cell leukemia. (This was the same patient described earlier by <a href="#145" class="mim-tip-reference" title="Saxon, A., Stevens, R. H., Golde, D. W. &lt;strong&gt;Helper and suppressor T-lymphocyte leukemia in ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 300: 700-704, 1979.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/310962/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;310962&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM197903293001303&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="310962">Saxon et al. (1979)</a>.) <a href="#159" class="mim-tip-reference" title="Stern, M.-H., Zhang, F., Griscelli, C., Thomas, G., Aurias, A. &lt;strong&gt;Molecular characterization of different ataxia telangiectasia T-cell clones. I. A common breakpoint at the 14q11.2 band splits the T-cell receptor alpha-chain gene.&lt;/strong&gt; Hum. Genet. 78: 33-36, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3422210/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3422210&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00291230&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3422210">Stern et al. (1988)</a> used in situ chromosomal hybridization to map the TCRA gene in 3 different nonmalignant T-cell clones derived from patients with AT. The constant region was translocated in each clone; the variable region remained in its original position in 2 clones and was deleted in 1 which lost the derivative chromosome 14. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3026175+3422210+3488254+310962" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#159" class="mim-tip-reference" title="Stern, M.-H., Zhang, F., Griscelli, C., Thomas, G., Aurias, A. &lt;strong&gt;Molecular characterization of different ataxia telangiectasia T-cell clones. I. A common breakpoint at the 14q11.2 band splits the T-cell receptor alpha-chain gene.&lt;/strong&gt; Hum. Genet. 78: 33-36, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3422210/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3422210&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00291230&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3422210">Stern et al. (1988)</a> mapped the 14q32.1 recurrent breakpoint of AT clones by in situ hybridization. They found that the breakpoint lay between D14S1 (<a href="/entry/107750">107750</a>) and PI (<a href="/entry/107400">107400</a>). In a t(14;14) clone they found an interstitial duplication including D14S1 and a part of the IGH locus. Studying the chromosomes by R-banding, <a href="#201" class="mim-tip-reference" title="Zhang, F., Stern, M.-H., Thomas, G., Aurias, A. &lt;strong&gt;Molecular characterization of ataxia telangiectasia T cell clones. II. The clonal inv(14) in ataxia telangiectasia differs from the inv(14) in T cell lymphoma.&lt;/strong&gt; Hum. Genet. 78: 316-319, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3258841/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3258841&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00291726&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3258841">Zhang et al. (1988)</a> concluded that the distal breakpoint in the chromosome 14 inversion in an AT clone was different from that in the chromosome 14 inversion in a malignant T-cell line; specifically, in AT, the breakpoint was centromeric to both the immunoglobulin heavy chain locus and the D14S1 anonymous locus (<a href="/entry/107750">107750</a>). They suggested that this finding favors the existence of an unknown oncogene in band 14q32.1. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3422210+3258841" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#137" class="mim-tip-reference" title="Russo, G., Isobe, M., Gatti, R., Finan, J., Batuman, O., Huebner, K., Nowell, P. C., Croce, C. M. &lt;strong&gt;Molecular analysis of a t(14;14) translocation in leukemic T-cells of an ataxia telangiectasia patient.&lt;/strong&gt; Proc. Nat. Acad. Sci. 86: 602-606, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2783489/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2783489&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.86.2.602&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2783489">Russo et al. (1989)</a> presented evidence for a cluster of breakpoints in the 14q32.1 region, the site of the putative oncogene TCL1, in cases of ataxia-telangiectasia with chronic lymphocytic leukemia. The 14q32.1 breakpoint is at least 10,000 kb centromeric to the immunoglobulin heavy chain locus. In a cell line with a translocation t(14;14)(q11;q32) from an AT patient with T-cell chronic lymphocytic leukemia, <a href="#137" class="mim-tip-reference" title="Russo, G., Isobe, M., Gatti, R., Finan, J., Batuman, O., Huebner, K., Nowell, P. C., Croce, C. M. &lt;strong&gt;Molecular analysis of a t(14;14) translocation in leukemic T-cells of an ataxia telangiectasia patient.&lt;/strong&gt; Proc. Nat. Acad. Sci. 86: 602-606, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2783489/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2783489&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.86.2.602&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2783489">Russo et al. (1989)</a> showed that a J(alpha) sequence from the TCRA locus was involved. This was again the patient first reported by <a href="#145" class="mim-tip-reference" title="Saxon, A., Stevens, R. H., Golde, D. W. &lt;strong&gt;Helper and suppressor T-lymphocyte leukemia in ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 300: 700-704, 1979.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/310962/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;310962&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM197903293001303&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="310962">Saxon et al. (1979)</a>. <a href="#79" class="mim-tip-reference" title="Humphreys, M. W., Nevin, N. C., Wooldridge, M. A. W. &lt;strong&gt;Cytogenetic investigations in a family with ataxia telangiectasia.&lt;/strong&gt; Hum. Genet. 83: 79-82, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2767681/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2767681&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00274154&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2767681">Humphreys et al. (1989)</a> found some rearrangements involving chromosomes 7 and 14 at the usual 4 sites associated with AT--7p14, 7q35, 14q12, and 14q32--all sites of T-cell receptor genes. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2767681+2783489+310962" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#92" class="mim-tip-reference" title="Kojis, T. L., Schreck, R. R., Gatti, R. A., Sparkes, R. S. &lt;strong&gt;Tissue specificity of chromosomal rearrangements in ataxia-telangiectasia.&lt;/strong&gt; Hum. Genet. 83: 347-352, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2807275/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2807275&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00291379&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2807275">Kojis et al. (1989)</a> suggested that the very high frequency of lymphocyte-associated rearrangements (LARs) in peripheral blood chromosome preparations is a diagnostic criterion of the disease. They pointed out a striking difference in the types of rearrangements observed in lymphocytes and fibroblasts. LARs are not commonly observed in fibroblasts, despite the increased but random instability of chromosomes from these cells relative to lymphocytes. The region of location of the AT gene, 11q22-q23, is not involved in site-specific rearrangements in either lymphocytes or fibroblasts. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2807275" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#101" class="mim-tip-reference" title="Lipkowitz, S., Stern, M.-H., Kirsch, I. R. &lt;strong&gt;Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasia lymphocytes.&lt;/strong&gt; J. Exp. Med. 172: 409-418, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1695665/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1695665&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.172.2.409&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1695665">Lipkowitz et al. (1990)</a> showed that an abnormal V(D)J recombination, joining V segments of the T-cell receptor gamma gene (<a href="/entry/186970">186970</a>) with J segments of the T-cell receptor beta gene (<a href="/entry/186930">186930</a>), occurs in peripheral blood lymphocytes of AT patients at a frequency 50- to 100-fold higher than normal. This frequency is roughly the same as the increase in the risk for lymphoid malignancy in these individuals. There is also an increase in the frequency of the lymphocyte-specific cytogenetic abnormalities thought to be due to interlocus recombination in non-AT patients with non-Hodgkin lymphoma, further suggesting a relationship between these translocations and lymphoid malignancies. Agriculture workers occupationally exposed to pesticides used in the production and storage of grain have a high frequency of cytogenetic abnormalities in peripheral blood lymphocytes in a pattern reminiscent of those in AT patients. Furthermore, these agriculture workers have an increased risk of developing T- and D-lymphoid malignancies. <a href="#100" class="mim-tip-reference" title="Lipkowitz, S., Garry, V. F., Kirsch, I. R. &lt;strong&gt;Interlocus V-J recombination measures genomic instability in agriculture workers at risk for lymphoid malignancies.&lt;/strong&gt; Proc. Nat. Acad. Sci. 89: 5301-5305, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1608939/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1608939&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.89.12.5301&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1608939">Lipkowitz et al. (1992)</a> used a PCR-based assay developed for the study of AT patients to demonstrate a 10- to 20-fold increased frequency of hybrid antigen-receptor genes in peripheral blood lymphocytes of agriculture workers with chemical exposure. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1695665+1608939" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>By linkage to RFLP markers, <a href="#58" class="mim-tip-reference" title="Gatti, R. A., Berkel, I., Boder, E., Braedt, G., Charmley, P., Concannon, P., Ersoy, R., Foroud, T., Jaspers, N. G. J., Lange, K., Lathrop, G. M., Leppert, M., Nakamura, Y., O&#x27;Connell, P., Paterson, M., Salser, W., Sanal, O., Silver, J., Sparkes, R. S., Susi, E., Weeks, D. E., Wei, S., White, R., Yoder, F. &lt;strong&gt;Localization of an ataxia-telangiectasia gene to chromosome 11q22-23.&lt;/strong&gt; Nature 336: 577-580, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3200306/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3200306&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/336577a0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3200306">Gatti et al. (1988)</a> localized the AT gene to 11q22-q23. They had previously excluded 171 markers, comprising approximately 35% of the genome. The most promising marker in a large Amish pedigree was found to be THY1 (<a href="/entry/188230">188230</a>), which is located at 11q22.3; it showed linkage with maximum lod = 1.8 at theta = 0.00. When data from the other 4 informative group A AT families were added, the maximum lod score rose to 3.63 with no observed recombinants. The maximum lod score for all 31 families studied for linkage of AT to THY1 was 4.34 at theta = 0.10. The large Amish pedigree diagrammed in their Figure 1 is the kindred reported by <a href="#110" class="mim-tip-reference" title="McKusick, V. A., Cross, H. E. &lt;strong&gt;Ataxia-telangiectasia and Swiss-type agammaglobulinemia. Two genetic disorders of the immune mechanism in related Amish sibships.&lt;/strong&gt; JAMA 195: 739-745, 1966.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/5951879/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;5951879&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1001/jama.195.9.739&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="5951879">McKusick and Cross (1966)</a>, <a href="#66" class="mim-tip-reference" title="Ginter, D. N., Tallapragada, R. &lt;strong&gt;Ataxia-telangiectasia.&lt;/strong&gt; Birth Defects Orig. Art. Ser. XI(2): 408-409, 1975."None>Ginter and Tallapragada (1975)</a>, and <a href="#130" class="mim-tip-reference" title="Rary, J. M., Bender, M. A., Kelly, T. E. &lt;strong&gt;A 14/14 marker chromosome lymphocyte clone in ataxia telangiectasis.&lt;/strong&gt; J. Hered. 66: 33-35, 1975.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1141685/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1141685&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/oxfordjournals.jhered.a108569&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1141685">Rary et al. (1975)</a>. By further mapping with a panel of 10 markers, <a href="#139" class="mim-tip-reference" title="Sanal, O., Wei, S., Foroud, T., Malhotra, U., Concannon, P., Charmley, P., Salser, W., Lange, K., Gatti, R. A. &lt;strong&gt;Further mapping of an ataxia-telangiectasia locus to the chromosome 11q23 region.&lt;/strong&gt; Am. J. Hum. Genet. 47: 860-866, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2220826/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2220826&lt;/a&gt;]" pmid="2220826">Sanal et al. (1990)</a> concluded that the AT locus is in band 11q23. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3200306+2220826+1141685+5951879" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The site of the AT1 gene (11q22-q23) is the same as or adjacent to the region occupied by the CD3 (<a href="/entry/186790">186790</a>), THY1, and NCAM (<a href="/entry/116930">116930</a>) genes, all of which are members of the immunoglobulin-gene superfamily and therefore may be subject to the same defect that afflicts the T-cell receptor and immunoglobulin molecules in AT. <a href="#39" class="mim-tip-reference" title="Concannon, P., Malhotra, U., Charmley, P., Reynolds, J., Lange, K., Gatti, R. A. &lt;strong&gt;The ataxia-telangiectasia gene (ATA) on chromosome 11 is distinct from the ETS-1 gene.&lt;/strong&gt; Am. J. Hum. Genet. 46: 789-794, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1969227/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1969227&lt;/a&gt;]" pmid="1969227">Concannon et al. (1990)</a> excluded the AT1 gene from a region extending 15 cM to either side of ETS1 (<a href="/entry/164720">164720</a>), which maps to 11q24. According to <a href="#64" class="mim-tip-reference" title="Gatti, R. A. &lt;strong&gt;Personal Communication.&lt;/strong&gt; Los Angeles, Calif. 6/1990."None>Gatti (1990)</a>, the gene in families from complementation groups A, C, and D, representing approximately 97% of all families, has been mapped to 11q23. Thus, a single gene may exist with various intragenic defects permitting complementation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1969227" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In studies of 35 consecutively obtained families in the British Isles, <a href="#107" class="mim-tip-reference" title="McConville, C. M., Formstone, C. J., Hernandez, D., Thick, J., Taylor, A. M. &lt;strong&gt;Fine mapping of the chromosome 11q22-23 region using PFGE, linkage and haplotype analysis; localization of the gene for ataxia telangiectasia to a 5cM region flanked by NCAM/DRD2 and STMY/CJ52.75, phi 2.22.&lt;/strong&gt; Nucleic Acids Res. 18: 4335-4343, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1975092/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1975092&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/nar/18.15.4335&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1975092">McConville et al. (1990)</a> found support for linkage with THY1 at zero recombination. They found evidence suggesting a second AT locus on 11q, centromeric to the site previously postulated. With 3 exceptions, the families had not been assigned to complementation groups. The series of families included the only group E family described to date. They quoted <a href="#83" class="mim-tip-reference" title="Jaspers, N. G. J., Gatti, R. A., Baan, C., Linssen, P. C. M. L., Bootsma, D. &lt;strong&gt;Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients.&lt;/strong&gt; Cytogenet. Cell Genet. 49: 259-263, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3248383/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3248383&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000132673&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3248383">Jaspers et al. (1988)</a> as giving the proportion of group A, group C, and group D cases as approximately 56%, 28%, and 14%, respectively. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1975092+3248383" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By linkage studies in a Jewish-Moroccan family with AT of the group C type, <a href="#205" class="mim-tip-reference" title="Ziv, Y., Rotman, G., Frydman, M., Dagan, J., Cohen, T., Foroud, T., Gatti, R. A., Shiloh, Y. &lt;strong&gt;The ATC (ataxia-telangiectasia complementation group C) locus localizes to 11q22-q23.&lt;/strong&gt; Genomics 9: 373-375, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1672297/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1672297&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0888-7543(91)90268-j&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1672297">Ziv et al. (1991)</a> found that the disorder was linked to the same region (11q22-q23) as found in group A families. <a href="#107" class="mim-tip-reference" title="McConville, C. M., Formstone, C. J., Hernandez, D., Thick, J., Taylor, A. M. &lt;strong&gt;Fine mapping of the chromosome 11q22-23 region using PFGE, linkage and haplotype analysis; localization of the gene for ataxia telangiectasia to a 5cM region flanked by NCAM/DRD2 and STMY/CJ52.75, phi 2.22.&lt;/strong&gt; Nucleic Acids Res. 18: 4335-4343, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1975092/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1975092&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/nar/18.15.4335&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1975092">McConville et al. (1990)</a> located the AT1 gene to a 5-cM region in 11q22-q23, flanked by NCAM and DRD2 (<a href="/entry/126450">126450</a>) on one side and STMY1 (<a href="/entry/185250">185250</a>) on the other. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1975092+1672297" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>On the basis of an 18-point map of the 11q23 region of 11q, derived from linkage analysis of 40 CEPH families, <a href="#55" class="mim-tip-reference" title="Foroud, T., Wei, S., Ziv, Y., Sobel, E., Lange, E., Chao, A., Goradia, T., Huo, Y., Tolun, A., Chessa, L., Charmley, P., Sanal, O., Salman, N., Julier, C., Concannon, P., McConville, C., Taylor, A. M. R., Shiloh, Y., Lange, K., Gatti, R. A. &lt;strong&gt;Localization of an ataxia-telangiectasia locus to a 3-cM interval on chromosome 11q23: linkage analysis of 111 families by an international consortium.&lt;/strong&gt; Am. J. Hum. Genet. 49: 1263-1279, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1746555/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1746555&lt;/a&gt;]" pmid="1746555">Foroud et al. (1991)</a> analyzed 111 AT families from Turkey, Israel, England, Italy, and the United States, localizing the gene to an 8-cM sex-averaged interval between the markers STMY1 and D11S132/NCAM. <a href="#204" class="mim-tip-reference" title="Ziv, Y., Frydman, M., Lange, E., Zelnik, N., Rotman, G., Julier, C., Jaspers, N. G. J., Dagan, Y., Abeliovicz, D., Dar, H., Borochowitz, Z., Lathrop, M., Gatti, R. A., Shiloh, Y. &lt;strong&gt;Ataxia-telangiectasia: linkage analysis in highly inbred Arab and Druze families and differentiation from an ataxia-microcephaly-cataract syndrome.&lt;/strong&gt; Hum. Genet. 88: 619-626, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1551665/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1551665&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF02265285&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1551665">Ziv et al. (1992)</a> obtained results from linkage study indicating that the ATA gene in 3 large Arab families was located in 11q23. However, in a Druze family unassigned to a specific complementation group, several recombinants between AT and the same markers were observed. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1551665+1746555" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#156" class="mim-tip-reference" title="Sobel, E., Lange, E., Jaspers, N. G. J., Chessa, L., Sanal, O., Shiloh, Y., Taylor, A. M. R., Weemaes, C. M. A., Lange, K., Gatti, R. A. &lt;strong&gt;Ataxia-telangiectasia: linkage evidence for genetic heterogeneity. (Letter)&lt;/strong&gt; Am. J. Hum. Genet. 50: 1343-1348, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1598915/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1598915&lt;/a&gt;]" pmid="1598915">Sobel et al. (1992)</a> pointed to linkage evidence suggesting that there are 2 AT loci on 11q and that group D AT may be located distal to the site of groups A and C in the 11q23 region. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1598915" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In linkage studies of 14 Turkish families, 12 of which were consanguineous, <a href="#138" class="mim-tip-reference" title="Sanal, O., Lange, E., Telatar, M., Sobel, E., Salazar-Novak, J., Ersoy, F., Morrison, A., Concannon, P., Tolun, A., Gatti, R. A. &lt;strong&gt;Ataxia-telangiectasia: linkage analysis of chromosome 11q22-23 markers in Turkish families.&lt;/strong&gt; FASEB J. 6: 2848-2852, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1634048/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1634048&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1096/fasebj.6.10.1634048&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1634048">Sanal et al. (1992)</a> obtained results indicating that the most likely location for a single AT locus is within a 6-cM sex-averaged interval defined by STMY and the marker CJ77. However, it appeared that there are at least 2 distinct AT loci (ATA and ATD) at 11q22-q23, with perhaps a third locus, ATC, located very near the ATA gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1634048" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#74" class="mim-tip-reference" title="Hernandez, D., McConville, C. M., Stacey, M., Woods, C. G., Brown, M. M., Shutt, P., Rysiecki, G., Taylor, A. M. R. &lt;strong&gt;A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 11q22-23.&lt;/strong&gt; J. Med. Genet. 30: 135-140, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8445618/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8445618&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.30.2.135&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8445618">Hernandez et al. (1993)</a> described a large inbred family in which 2 adult cousins had AT with a somewhat milder clinical course than usual. Since genetic linkage analysis did 'not provide any evidence that the gene for AT in this family is located at 11q22-23,' further locus heterogeneity was suggested. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8445618" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 2 families clinically diagnosed with AT and previously reported by <a href="#74" class="mim-tip-reference" title="Hernandez, D., McConville, C. M., Stacey, M., Woods, C. G., Brown, M. M., Shutt, P., Rysiecki, G., Taylor, A. M. R. &lt;strong&gt;A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 11q22-23.&lt;/strong&gt; J. Med. Genet. 30: 135-140, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8445618/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8445618&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.30.2.135&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8445618">Hernandez et al. (1993)</a> and <a href="#91" class="mim-tip-reference" title="Klein, C., Wenning, G. K., Quinn, N. P., Marsden, C. D. &lt;strong&gt;Ataxia without telangiectasia masquerading as benign hereditary chorea.&lt;/strong&gt; Mov. Disord. 11: 217-220, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8684395/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8684395&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/mds.870110217&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8684395">Klein et al. (1996)</a>, respectively, <a href="#161" class="mim-tip-reference" title="Stewart, G. S., Maser, R. S., Stankovic, T., Bressan, D. A., Kaplan, M. I., Jaspers, N. G. J., Raams, A., Byrd, P. J., Petrini, J. H. J., Taylor, A. M. R. &lt;strong&gt;The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder.&lt;/strong&gt; Cell 99: 577-587, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10612394/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10612394&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)81547-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10612394">Stewart et al. (1999)</a> identified mutations in the MRE11A gene (<a href="/entry/600814">600814</a>). Consistent with the clinical outcome of these mutations, cells established from the affected individuals within the 2 families exhibited many of the features characteristic of both AT and Nijmegen breakage syndrome (<a href="/entry/251260">251260</a>), including chromosomal instability, increased sensitivity to ionizing radiation, defective induction of stress-activated signal transduction pathways, and radioresistant DNA synthesis. The authors designated the disorder ATLD, for AT-like disorder (<a href="/entry/604391">604391</a>). Because the MRE11A gene maps to 11q21 and the ATM gene maps to 11q23, <a href="#161" class="mim-tip-reference" title="Stewart, G. S., Maser, R. S., Stankovic, T., Bressan, D. A., Kaplan, M. I., Jaspers, N. G. J., Raams, A., Byrd, P. J., Petrini, J. H. J., Taylor, A. M. R. &lt;strong&gt;The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder.&lt;/strong&gt; Cell 99: 577-587, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10612394/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10612394&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)81547-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10612394">Stewart et al. (1999)</a> concluded that only a very detailed linkage analysis would separate ATLD from AT purely on the basis of genetic data. Assuming that the mutation rate is proportional to the length of the coding sequences of the 2 genes, they suggested that approximately 6% of AT cases might be expected to have MRE11A mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=10612394+8445618+8684395" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#61" class="mim-tip-reference" title="Gatti, R. A., Peterson, K. L., Novak, J., Chen, X., Yang-Chen, L., Liang, T., Lange, E., Lange, K. &lt;strong&gt;Prenatal genotyping of ataxia-telangiectasia. (Letter)&lt;/strong&gt; Lancet 342: 376 only, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8101622/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8101622&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0140-6736(93)91525-q&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8101622">Gatti et al. (1993)</a> reported prenatal genotyping in this disorder. They pointed out that although at least 5 complementation groups have been defined, linkage studies of more than 160 families from various parts of the world have failed to show linkage heterogeneity. All but 2 families were linked to a 6-cM (sex-averaged) region at 11q22.3 defined by the markers STMY1 and D11S385. A further analysis of 50 British families narrowed the localization to a 4-cM (sex-averaged) region defined by D11S611 and D11S535. The demonstrated complementation groups may represent different intragenic mutations or separate ataxia-telangiectasia genes clustered within the 11q22.3 region, neither of which would challenge the validity of linkage or haplotyping studies. A possible reinterpretation of the complementation data is that the radiosensitivity of AT fibroblasts can be complemented by many genes besides the AT gene or genes. <a href="#61" class="mim-tip-reference" title="Gatti, R. A., Peterson, K. L., Novak, J., Chen, X., Yang-Chen, L., Liang, T., Lange, E., Lange, K. &lt;strong&gt;Prenatal genotyping of ataxia-telangiectasia. (Letter)&lt;/strong&gt; Lancet 342: 376 only, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8101622/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8101622&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0140-6736(93)91525-q&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8101622">Gatti et al. (1993)</a> used the flanking markers to show that the haplotypes in a fetus were identical to those in a previously born affected child. The parents chose to continue the pregnancy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8101622" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="heterogeneity" class="mim-anchor"></a>
<h4 href="#mimHeterogeneityFold" id="mimHeterogeneityToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimHeterogeneityToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Heterogeneity</strong>
</span>
</h4>
</div>
<div id="mimHeterogeneityFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Complementation Groups</em></strong></p><p>
On the basis of complementation studies of DNA repair in cultured fibroblasts, <a href="#122" class="mim-tip-reference" title="Paterson, M. C., Smith, B. P., Knight, P. A., Anderson, A. K. &lt;strong&gt;Ataxia telangiectasia: an inherited human disease involving radiosensitivity, malignancy and defective DNA repair. In: Castellani, A. (ed.): Research in Photobiology.&lt;/strong&gt; New York: Plenum (pub.) 1977. Pp. 207-218."None>Paterson et al. (1977)</a> suggested the existence of 2 distinct types of ataxia-telangiectasia. By genetic complementation analysis, <a href="#82" class="mim-tip-reference" title="Jaspers, N. G. J., Bootsma, D. &lt;strong&gt;Genetic heterogeneity in ataxia-telangiectasia studied by cell fusion.&lt;/strong&gt; Proc. Nat. Acad. Sci. 79: 2641-2644, 1982.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6953420/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6953420&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.79.8.2641&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6953420">Jaspers and Bootsma (1982)</a> concluded that extensive genetic heterogeneity exists in AT. Their method involved cell fusion and was based on the observation that the rate of DNA synthesis is inhibited by x-rays to a lesser extent in AT cells than in normal cells. At least 5 complementation groups have been identified (<a href="#116" class="mim-tip-reference" title="Murnane, J. P., Painter, R. B. &lt;strong&gt;Complementation of the effects in DNA synthesis in irradiated and unirradiated ataxia-telangiectasia cells.&lt;/strong&gt; Proc. Nat. Acad. Sci. 79: 1960-1963, 1982.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6952246/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6952246&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.79.6.1960&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6952246">Murnane and Painter, 1982</a>; <a href="#82" class="mim-tip-reference" title="Jaspers, N. G. J., Bootsma, D. &lt;strong&gt;Genetic heterogeneity in ataxia-telangiectasia studied by cell fusion.&lt;/strong&gt; Proc. Nat. Acad. Sci. 79: 2641-2644, 1982.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6953420/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6953420&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.79.8.2641&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6953420">Jaspers and Bootsma, 1982</a>). Heterogeneity in AT has also been indicated by the clinical work of <a href="#52" class="mim-tip-reference" title="Fiorilli, M., Businco, L., Pandolfi, F., Paganelli, R., Russo, G., Aiuti, F. &lt;strong&gt;Heterogeneity of immunological abnormalities in ataxia-telangiectasia.&lt;/strong&gt; J. Clin. Immun. 3: 135-141, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6222062/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6222062&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF00915484&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6222062">Fiorilli et al. (1983)</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=6222062+6953420+6952246" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#83" class="mim-tip-reference" title="Jaspers, N. G. J., Gatti, R. A., Baan, C., Linssen, P. C. M. L., Bootsma, D. &lt;strong&gt;Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients.&lt;/strong&gt; Cytogenet. Cell Genet. 49: 259-263, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3248383/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3248383&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000132673&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3248383">Jaspers et al. (1988)</a> reported the results of complementation studies on fibroblast strains from 50 patients with AT or Nijmegen breakage syndrome (NBS; <a href="/entry/251260">251260</a>), using the radioresistant DNA replication characteristic as a marker. Six different genetic complementation groups were identified. Four of these, called AB, C, D, and E (of which AB is the largest), represented patients with clinical signs of AT. (According to <a href="#64" class="mim-tip-reference" title="Gatti, R. A. &lt;strong&gt;Personal Communication.&lt;/strong&gt; Los Angeles, Calif. 6/1990."None>Gatti (1990)</a>, the frequencies of these 4 groups are approximately 55%, 28%, 14%, and 3%, respectively.) Patients having NBS fell into 2 groups, designated V1 and V2. A patient with clinical symptoms of both AT and NBS was found in group V1, indicating that the 2 disorders are closely related (<a href="#44" class="mim-tip-reference" title="Curry, C. J. R., O&#x27;Lague, P., Tsai, J., Hutchison, H. T., Jaspers, N. G. J., Wara, D., Gatti, R. A. &lt;strong&gt;AT-Fresno: a phenotype linking ataxia-telangiectasia with the Nijmegen breakage syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 45: 270-275, 1989. Note: Erratum: Am. J. Hum. Genet. 45: 663 only, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2491181/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2491181&lt;/a&gt;]" pmid="2491181">Curry et al., 1989</a>). No group-specific patterns of clinical characteristics or ethnic origin were apparent among the AT cases. In addition to the radiosensitive ATs, a separate category of patients was found, characterized by a relatively mild clinical course and weak radiosensitivity. <a href="#83" class="mim-tip-reference" title="Jaspers, N. G. J., Gatti, R. A., Baan, C., Linssen, P. C. M. L., Bootsma, D. &lt;strong&gt;Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients.&lt;/strong&gt; Cytogenet. Cell Genet. 49: 259-263, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3248383/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3248383&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000132673&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3248383">Jaspers et al. (1988)</a> concluded that a defect in 1 of at least 6 different genes may underlie inherited radiosensitivity in humans. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2491181+3248383" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#44" class="mim-tip-reference" title="Curry, C. J. R., O&#x27;Lague, P., Tsai, J., Hutchison, H. T., Jaspers, N. G. J., Wara, D., Gatti, R. A. &lt;strong&gt;AT-Fresno: a phenotype linking ataxia-telangiectasia with the Nijmegen breakage syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 45: 270-275, 1989. Note: Erratum: Am. J. Hum. Genet. 45: 663 only, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2491181/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2491181&lt;/a&gt;]" pmid="2491181">Curry et al. (1989)</a> used the designation AT(Fresno) (<a href="/entry/607585#0014">607585.0014</a>) for the V1 disorder in twin girls who had clinical features combining those of ataxia-telangiectasia and the Nijmegen breakage syndrome. Complementation studies with Sendai virus-mediated fusion of fibroblast cell lines showed complementation with AT groups A, C, and E but not with the cell line from a patient with the Nijmegen breakage syndrome. <a href="#74" class="mim-tip-reference" title="Hernandez, D., McConville, C. M., Stacey, M., Woods, C. G., Brown, M. M., Shutt, P., Rysiecki, G., Taylor, A. M. R. &lt;strong&gt;A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 11q22-23.&lt;/strong&gt; J. Med. Genet. 30: 135-140, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8445618/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8445618&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.30.2.135&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8445618">Hernandez et al. (1993)</a> cited evidence for the existence of 4 complementation groups: AB, C, D, and E. Loci for AB, C, and D have been identified on 11q. However, <a href="#94" class="mim-tip-reference" title="Komatsu, K., Matsuura, S., Tauchi, H., Endo, S., Kodama, S., Smeets, D., Weemaes, C., Oshimura, M. &lt;strong&gt;The gene for Nijmegen breakage syndrome (V2) is not located on chromosome 11. (Letter)&lt;/strong&gt; Am. J. Hum. Genet. 58: 885-888, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8644753/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8644753&lt;/a&gt;]" pmid="8644753">Komatsu et al. (1996)</a> could demonstrate that the gene for the V2 form of Nijmegen breakage syndrome is not located on chromosome 11. They found that cells from a patient with this form were highly sensitive to radiation and that the sensitivity was unchanged after the transfer of an extra copy of normal chromosome 11. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2491181+8445618+8644753" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#58" class="mim-tip-reference" title="Gatti, R. A., Berkel, I., Boder, E., Braedt, G., Charmley, P., Concannon, P., Ersoy, R., Foroud, T., Jaspers, N. G. J., Lange, K., Lathrop, G. M., Leppert, M., Nakamura, Y., O&#x27;Connell, P., Paterson, M., Salser, W., Sanal, O., Silver, J., Sparkes, R. S., Susi, E., Weeks, D. E., Wei, S., White, R., Yoder, F. &lt;strong&gt;Localization of an ataxia-telangiectasia gene to chromosome 11q22-23.&lt;/strong&gt; Nature 336: 577-580, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3200306/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3200306&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/336577a0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3200306">Gatti et al. (1988)</a> noted the existence of at least 4 clinically indistinguishable complementation groups (A, C, D, and E) among 80 affected individuals (<a href="#84" class="mim-tip-reference" title="Jaspers, N. G. J., Painter, R. B., Paterson, M. C., Kidson, C., Inoue, T. &lt;strong&gt;Complementation analysis of ataxia-telangiectasia. In: Gatti, R. A.; Swift, M.: Ataxia-telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood.&lt;/strong&gt; New York: Alan R. Liss (pub.) 1985. Pp. 147-162."None>Jaspers et al., 1985</a>; <a href="#83" class="mim-tip-reference" title="Jaspers, N. G. J., Gatti, R. A., Baan, C., Linssen, P. C. M. L., Bootsma, D. &lt;strong&gt;Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients.&lt;/strong&gt; Cytogenet. Cell Genet. 49: 259-263, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3248383/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3248383&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000132673&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3248383">Jaspers et al., 1988</a>). The Amish pedigree represents group A. This locus was designated ATA (HGM9). Since the Thy-1 glycoproteins are major cell surface constituents of rodent thymocytes and neurons (<a href="#179" class="mim-tip-reference" title="Tse, A. G. D., Barclay, A. N., Watts, A., Williams, A. F. &lt;strong&gt;A glycophospholipid tail at the carboxyl terminus of the Thy-1 glycoprotein of neurons and thymocytes.&lt;/strong&gt; Science 230: 1003-1008, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2865810/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2865810&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.2865810&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2865810">Tse et al., 1985</a>), the question might be raised as to whether mutation in the THY1 gene is the basis of AT. The fact that recombination was found between THY1 and AT in the overall study may indicate that AT is not due to a defect in THY1 or it may mean that complementation group A is caused by mutation in THY1 but a mutation at another site is responsible for other forms of the disorder. When genetic linkage data from group C families are pooled, it appears that group C also may be linked to 11q22-q23 (<a href="#63" class="mim-tip-reference" title="Gatti, R. A. &lt;strong&gt;Personal Communication.&lt;/strong&gt; Los Angeles, Calif. 6/13/1989."None>Gatti, 1989</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3200306+2865810+3248383" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The group D defect is correctable by transfer of chromosome 11 into an SV40-transformed fibroblast cell line (<a href="#93" class="mim-tip-reference" title="Komatsu, K., Kodama, S., Okumura, Y., Koi, M., Oshimura, M. &lt;strong&gt;Restoration of radiation resistance in ataxia-telangiectasia cells by the introduction of normal human chromosome 11.&lt;/strong&gt; Mutat. Res. 235: 59-63, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2155385/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2155385&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0921-8777(90)90058-d&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2155385">Komatsu et al., 1990</a>). <a href="#47" class="mim-tip-reference" title="Ejima, Y., Oshimura, M., Sasaki, M. S. &lt;strong&gt;Establishment of a novel immortalized cell line from ataxia-telangiectasia fibroblasts and its use for the chromosomal assignment of radiosensitivity gene.&lt;/strong&gt; Int. J. Radiat. Biol. 58: 989-997, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1978855/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1978855&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1080/09553009014552301&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1978855">Ejima et al. (1990)</a> corrected the radiosensitivity of a group D fibroblast line by introducing an 11q fragment into these cells. <a href="#98" class="mim-tip-reference" title="Lambert, C., Schultz, R. A., Smith, M., Wagner-McPherson, C., McDaniel, L. D., Donlon, T., Stanbridge, E. J., Friedberg, E. C. &lt;strong&gt;Functional complementation of ataxia-telangiectasia group D (AT-D) cells by microcell-mediated chromosome transfer and mapping of the AT-D locus to the region 11q22-23.&lt;/strong&gt; Proc. Nat. Acad. Sci. 88: 5907-5911, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2062869/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2062869&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.88.13.5907&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2062869">Lambert et al. (1991)</a> showed by microcell-mediated chromosome transfer that immortalized AT cells from complementation group D were corrected by genetic material from region 11q22-q23. A deoxyribophosphodiesterase deficiency has been identified in cells from group E patients. Together, groups A and C encompass about 85% of AT patients. Genetic linkage studies should also clarify whether AT variant families are linked to chromosome 11q22-q23 or to group D or E defects. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1978855+2062869+2155385" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#144" class="mim-tip-reference" title="Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D. A., Smith, S., Uziel, T., Sfez, S., Ashkenazi, M., Pecker, I., and 18 others. &lt;strong&gt;A single ataxia telangiectasia gene with a product similar to PI-3 kinase.&lt;/strong&gt; Science 268: 1749-1753, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7792600/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7792600&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.7792600&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7792600">Savitsky et al. (1995)</a> identified mutations in the ATM gene in ataxia-telangiectasia cases of complementation groups A, C, D, and E and in 4 other patients in whom the complementation group was not determined (see, e.g., <a href="/entry/607585#0001">607585.0001</a>). Thus it appears that the complementation that is observed is intragenic and that all AT patients have mutations in a single gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7792600" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#38" class="mim-tip-reference" title="Concannon, P., Gatti, R. A. &lt;strong&gt;Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia.&lt;/strong&gt; Hum. Mutat. 10: 100-107, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9259193/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9259193&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/(SICI)1098-1004(1997)10:2&lt;100::AID-HUMU2&gt;3.0.CO;2-O&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9259193">Concannon and Gatti (1997)</a> discussed the genetic heterogeneity in AT and provided an update of mutations in the ATM gene. They noted that most AT patients from nonconsanguineous families were compound heterozygotes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9259193" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Mutation detection at the ATM locus is difficult because of the large size of the gene (66 exons), the fact that mutations are located throughout the gene with no hotspots, and the difficulty of distinguishing mutations from polymorphisms. <a href="#30" class="mim-tip-reference" title="Buzin, C. H., Gatti, R. A., Nguyen, V. Q., Wen, C. Y., Mitui, M., Sanal, O., Chen, J. S., Nozari, G., Mengos, A., Li, X., Fujimura, F., Sommer, S. S. &lt;strong&gt;Comprehensive scanning of the ATM gene with DOVAM-S.&lt;/strong&gt; Hum. Mutat. 21: 123-131, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12552559/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12552559&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.10158&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12552559">Buzin et al. (2003)</a> used a method called DOVAM-S (Detection of Virtually All Mutations by SSCP), a robotically-enhanced, multiplexed scanning method that is a highly sensitive modification of SSCP. They studied 43 unrelated patients and 4 obligate carriers. The results of this complete scan showed that 86% of causative ATM mutations were truncating and 14% were missense. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12552559" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>See MOLECULAR GENETICS section in <a href="/entry/607585">607585</a>.</p><p><strong><em>Variant Ataxia Telangiectasia</em></strong></p><p>
<a href="#148" class="mim-tip-reference" title="Schon, K., van Os, N. J. H., Oscroft, N., Baxendale, H., Scoffings, D., Ray, J., Suri, M., Whitehouse, W. P., Mehta, P. R., Everett, N., Bottolo, L., van de Warrenburg, B. P., Byrd, P. J., Weemaes, C., Willemsen, M. A., Tishkowitz, M., Taylor, A. M., Hensiek, A. E. &lt;strong&gt;Genotype, extrapyramidal features, and severity of variant ataxia-telangiectasia.&lt;/strong&gt; Ann. Neurol. 85: 170-180, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30549301/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30549301&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30549301[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ana.25394&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30549301">Schon et al. (2019)</a> reported on 57 patients with variant AT (patients with retained ATM kinase activity). Using Sanger sequencing of PCR-amplified ATM exon sequences, mutations in the ATM gene were identified in 111 of 114 alleles. Patients were classified into 4 groups based on the mutations causing the retained kinase activity: (1) patients with leaky splice site mutations; (2) patients with missense mutations; (3) patients with mutations that affected the initiator methionine codon; and (4) patients with one confirmed mutation and one that had not been identified or fully characterized. Lymphoblastoid cell lines were derived from patient blood and were used to test ATM expression and activity. Patients with absent or just detectable ATM kinase activity had more severe disease. When compared to leaky splice site mutations, missense mutations were associated with milder neurologic disease severity, but with a higher risk of malignancy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30549301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#181" class="mim-tip-reference" title="van Os, N. J. H., Hensiek, A., van Gaalen, J., Taylor, A. M. R., van Deuren, M., Weemaes, C. M. R., Willemsen, M. A. A. P., van de Warrenburg, B. P. C. &lt;strong&gt;Trajectories of motor abnormalities in milder phenotypes of ataxia telangiectasia.&lt;/strong&gt; Neurology 92: e19-e29, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30504431/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30504431&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1212/WNL.0000000000006700&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30504431">Van Os et al. (2019)</a> reported 14 patients from a Dutch AT cohort who had mild neurologic phenotypes of genetically confirmed AT and identified reports of 91 patients with mild phenotypes in the literature. Among those 105 patients (210 alleles), mutations in the ATM gene were identified in 202 alleles, including 119 missense, 37 splice site, 30 frameshift, and 12 nonsense mutations, along with 3 deletions and 1 duplication. Four mutations occurred relatively frequently, with the remaining 71 mutations occurring fewer than 6 times. ATM protein was detectable in 54 of 62 patients (87.1%) studied. ATM kinase activity was present in 42 of 48 patients (87.5%) tested. Eight patients had no detectable ATM protein and/or no ATM kinase activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30504431" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="genotypePhenotypeCorrelations" class="mim-anchor"></a>
<h4 href="#mimGenotypePhenotypeCorrelationsFold" id="mimGenotypePhenotypeCorrelationsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGenotypePhenotypeCorrelationsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<div id="mimGenotypePhenotypeCorrelationsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#180" class="mim-tip-reference" title="van Os, N. J. H., Chessa, L., Weemaes, C. M. R., van Deuren, M., Fievet, A., van Gaalen, J., Mahlaoui, N., Roeleveld, N., Schrader, C., Schindler, D., Taylor, A. M. R., Van de Warrenburg, B. P. C., Dork, T., Willemsen, M. A. A. P. &lt;strong&gt;Genotype-phenotype correlations in ataxia telangiectasia patients with ATM c.3576G-A and c.8147T-C mutations.&lt;/strong&gt; J. Med. Genet. 56: 308-316, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30819809/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30819809&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmedgenet-2018-105635&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30819809">Van Os et al. (2019)</a> compared the phenotype of 35 patients with AT and homozygosity or compound heterozygosity for the c.3576G-A (<a href="/entry/607585#0018">607585.0018</a>) mutation in the ATM gene or 24 patients with AT and compound heterozygosity for the c.8417T-C mutation in the ATM gene to 51 patients with classic AT. Patients with the c.3576G-A mutation had a milder phenotype, including prolonged survival and lower susceptibility to malignancy, respiratory disease, and immunodeficiency, compared to classic AT patients. Patients with the c.8417T-C mutation had a later onset of disease, fewer telangiectases, lower susceptibility to malignancy, respiratory disease, and immunodeficiency, later onset of wheelchair use, and slower progression of neurologic disease compared to classic AT patients. The c.8417T-C mutation was associated with residual cellular ATM kinase activity, which may explain the associated milder phenotype. The c.3576G-A mutation was not clearly associated with retained ATM kinase activity, and the reason for the associated milder phenotype was unclear. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30819809" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="pathogenesis" class="mim-anchor"></a>
<h4 href="#mimPathogenesisFold" id="mimPathogenesisToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimPathogenesisToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Pathogenesis</strong>
</span>
</h4>
</div>
<div id="mimPathogenesisFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Using 2 recombination vectors to study recombination in AT and control human fibroblast lines, <a href="#111" class="mim-tip-reference" title="Meyn, M. S. &lt;strong&gt;High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia.&lt;/strong&gt; Science 260: 1327-1330, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8493577/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8493577&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.8493577&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8493577">Meyn (1993)</a> found that the spontaneous intrachromosomal recombination rates were 30 to 200 times higher in AT fibroblast lines than in normal cells, whereas extrachromosomal recombination frequencies were near normal. Increased recombination is thus a component of genetic instability in AT and may contribute to the cancer risk. Other evidence of in vitro and in vivo genomic instability includes increased frequencies of translocations and other chromosomal aberrations in lymphocytes and fibroblasts, micronucleus formation in epithelial cells, and loss of heterozygosity in erythrocytes. Hyperrecombination is a specific feature of the AT phenotype rather than a genetic consequence of defective DNA repair because a xeroderma pigmentosum cell line exhibited normal spontaneous recombination rates. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8493577" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>At least 2 stages in the cell cycle are regulated in response to DNA damage, the G1-S and the G2-M transitions (<a href="#71" class="mim-tip-reference" title="Hartwell, L. &lt;strong&gt;Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells.&lt;/strong&gt; Cell 71: 543-546, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1423612/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1423612&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(92)90586-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1423612">Hartwell, 1992</a>). These transitions serve as checkpoints at which cells delay progress through the cell cycle to allow repair of damage before entering either S-phase, when damage would be perpetuated, or M-phase, when breaks would result in the loss of genomic material. Checkpoints are thought to consist of surveillance mechanisms that can detect DNA damage, signal transduction pathways that transmit and amplify the signal to the replication or segregation machinery, and possibly repair activities. Both the G1-S and G2-M checkpoints are known to be under genetic control, since there are mutants that abolish the arrest or delay occurring in normal cells in response to DNA damage. <a href="#120" class="mim-tip-reference" title="Painter, R. B., Cramer, P., Howard, R., Young, B. R. &lt;strong&gt;Two forms of inhibition of DNA replicon initiation in human cells. In: Harris, C. C.; Cerutti, P. C.: Mechanisms of Chemical Carcinogenesis.&lt;/strong&gt; New York: Alan R. Liss (pub.) 1982. Pp. 383-386."None>Painter et al. (1982)</a> showed that the G1-S checkpoint is abolished in cells from AT patients. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1423612" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#89" class="mim-tip-reference" title="Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., Fornace, A. J., Jr. &lt;strong&gt;A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.&lt;/strong&gt; Cell 71: 587-597, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1423616/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1423616&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(92)90593-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1423616">Kastan et al. (1992)</a> provided strong evidence that the tumor-suppressor protein p53 (<a href="/entry/191170">191170</a>) is necessary for the G1-S checkpoint. They found that the AT gene(s) is upstream of the p53 gene in a pathway that activates the G1-S checkpoint. p53 levels increase 3- to 5-fold by a posttranscriptional mechanism after gamma-irradiation, coincident with a delay of the G1-S transition (<a href="#88" class="mim-tip-reference" title="Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., Craig, R. W. &lt;strong&gt;Participation of p53 protein in the cellular response to DNA damage.&lt;/strong&gt; Cancer Res. 51: 6304-6311, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1933891/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1933891&lt;/a&gt;]" pmid="1933891">Kastan et al., 1991</a>); the induction of p53 does not occur in AT cells (<a href="#89" class="mim-tip-reference" title="Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., Fornace, A. J., Jr. &lt;strong&gt;A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.&lt;/strong&gt; Cell 71: 587-597, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1423616/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1423616&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(92)90593-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1423616">Kastan et al., 1992</a>). Induction by ionizing radiation of the GADD45 gene (<a href="/entry/126335">126335</a>), an induction that is also defective in AT cells, is dependent on wildtype p53 function (<a href="#89" class="mim-tip-reference" title="Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., Fornace, A. J., Jr. &lt;strong&gt;A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.&lt;/strong&gt; Cell 71: 587-597, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1423616/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1423616&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(92)90593-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1423616">Kastan et al., 1992</a>). Thus, <a href="#89" class="mim-tip-reference" title="Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., Fornace, A. J., Jr. &lt;strong&gt;A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.&lt;/strong&gt; Cell 71: 587-597, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1423616/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1423616&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(92)90593-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1423616">Kastan et al. (1992)</a> identified 3 participants--AT gene(s), p53, and GADD45--in a signal transduction pathway that controls cell cycle arrest following DNA damage. Abnormalities in this pathway probably contribute to tumor development. <a href="#89" class="mim-tip-reference" title="Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., Fornace, A. J., Jr. &lt;strong&gt;A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.&lt;/strong&gt; Cell 71: 587-597, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1423616/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1423616&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(92)90593-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1423616">Kastan et al. (1992)</a> pointed out that lymphoid malignancies are the most common tumor seen both in AT patients and in p53-deficient mice. Lymphoid cells normally experience DNA strand breaks during gene rearrangements. The G1 checkpoint may be important in the avoidance of errors in that process. Breast cancer and other nonlymphoid cancers are increased in individuals heterozygous for germline mutations of either p53 (e.g., the Li-Fraumeni syndrome; <a href="/entry/191170#0001">191170.0001</a>) or the AT gene(s) (Swift et al. (<a href="#167" class="mim-tip-reference" title="Swift, M., Reitnauer, P. J., Morrell, D., Chase, C. L. &lt;strong&gt;Breast and other cancers in families with ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 316: 1289-1294, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3574400/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3574400&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198705213162101&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3574400">1987</a>, <a href="#165" class="mim-tip-reference" title="Swift, M., Morrell, D., Massey, R. B., Chase, C. L. &lt;strong&gt;Incidence of cancer in 161 families affected by ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 325: 1831-1836, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1961222/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1961222&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199112263252602&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1961222">1991</a>)). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1961222+1933891+1423616+3574400" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>P53 is a sequence-specific DNA-binding transcription factor that induces cell cycle arrest or apoptosis in response to genotoxic stress. Activation of p53 by DNA-damaging agents is critical for eliminating cells with damaged genomic DNA and underlies the apoptotic response of human cancers treated with ionizing radiation and radiomimetic drugs. Both the levels of p53 protein and its affinity for specific DNA sequences increase in response to genotoxic stress. In vitro, the affinity of p53 for DNA is regulated by its carboxyl terminus. <a href="#187" class="mim-tip-reference" title="Waterman, M. J. F., Stavridi, E. S., Waterman, J. L. F., Halazonetis, T. D. &lt;strong&gt;ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins.&lt;/strong&gt; Nature Genet. 19: 175-178, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9620776/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9620776&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/542&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9620776">Waterman et al. (1998)</a> therefore examined whether this region of p53 is targeted by DNA-damage signaling pathways in vivo. In nonirradiated cells, serines 376 and 378 of p53 were phosphorylated. IR led to dephosphorylation of ser376, creating a consensus binding site for 14-3-3 proteins (<a href="/entry/113508">113508</a>) and leading to association of p53 with 14-3-3. In turn, this increased the affinity of p53 for sequence-specific DNA. Consistent with the lack of p53 activation by ionizing radiation in AT, neither ser376 dephosphorylation nor the interaction of p53 with 14-3-3 proteins occurred in AT cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9620776" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#29" class="mim-tip-reference" title="Brown, K. D., Barlow, C., Wynshaw-Boris, A. &lt;strong&gt;Multiple ATM-dependent pathways: an explanation for pleiotropy. (Editorial)&lt;/strong&gt; Am. J. Hum. Genet. 64: 46-50, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9915942/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9915942&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302223&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9915942">Brown et al. (1999)</a> reviewed studies identifying direct downstream targets of ATM and providing clues about the biologic function of these interactions. They placed the findings in the context of the pleiotropic phenotype displayed by patients with ataxia-telangiectasia and by Atm-deficient mice. The identified targets include ABL (<a href="/entry/189980">189980</a>), replication protein A (<a href="/entry/179835">179835</a>), p53, and beta-adaptin (see <a href="/entry/600157">600157</a>). Since these targets are located in the nucleus and in the cytoplasm, the ATM protein is most likely involved in several distinct signaling pathways. In the thymus, p53 is phosphorylated directly by ATM after ionizing radiation, probably in the nucleus, leading to transcriptional activation of p21 and consequential cell cycle arrest. In the absence of ATM, this pathway is disrupted, and this defect perhaps results in the immunodeficiency and abnormal cellular responses to IR seen in patients with AT. Furthermore, the infertility noted in both AT patients and Atm-deficient mice is due to abnormal meiotic progression and subsequent germ-cell degeneration, a phenotype that is partially corrected by concomitant loss of p53 and p21 function. ATM interactions with beta-adaptin in the cytoplasm might mediate axonal transport and vesicle trafficking in the central nervous system and so account for the neuronal dysfunction and eventual neurodegeneration seen in ataxia-telangiectasia. Thus, the phenotypic pleiotropy of ataxia-telangiectasia results from the fact that different tissues express different ATM targets and perhaps also express a different complement of ATM family members whose functions may overlap with those of ATM and partially replace ATM. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9915942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#87" class="mim-tip-reference" title="Jung, M., Zhang, Y., Lee, S., Dritschilo, A. &lt;strong&gt;Correction of radiation sensitivity in ataxia telangiectasia cells by a truncated I-kappa-B-alpha.&lt;/strong&gt; Science 268: 1619-1621, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7777860/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7777860&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.7777860&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7777860">Jung et al. (1995)</a> isolated cDNA that corrected the radiation sensitivity and DNA synthesis defects in fibroblasts from an AT1 group D patient by expression cloning, and showed that the cDNA encoded NFKBI, a truncated form of I-kappa-B (<a href="/entry/164008">164008</a>), which is an inhibitor of NFKB1, the nuclear factor kappa-B transcriptional activator (<a href="/entry/164011">164011</a>). The parental AT1 fibroblast expressed large amounts of the NFKBI transcript and showed constitutive activation of NFKB1. The AT1 fibroblast transfected with the truncated NFKBI expressed normal amounts of the NFKBI transcript and showed regulated activation of NFKB1. Since the NFKBI gene is located on chromosome 14 and not chromosome 11, it is probably not the site of the primary defect; <a href="#87" class="mim-tip-reference" title="Jung, M., Zhang, Y., Lee, S., Dritschilo, A. &lt;strong&gt;Correction of radiation sensitivity in ataxia telangiectasia cells by a truncated I-kappa-B-alpha.&lt;/strong&gt; Science 268: 1619-1621, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7777860/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7777860&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.7777860&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7777860">Jung et al. (1995)</a> hypothesized that its contribution to the ataxia-telangiectasia phenotype may work downstream of the gene representing the primary defect. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7777860" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#150" class="mim-tip-reference" title="Shackelford, R. E., Innes, C. L., Sieber, S. O., Heinloth, A. N., Leadon, S. A., Paules, R. S. &lt;strong&gt;The ataxia telangiectasia gene product is required for oxidative stress-induced G1 and G2 checkpoint function in human fibroblasts.&lt;/strong&gt; J. Biol. Chem. 276: 21951-21959, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11290740/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11290740&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M011303200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11290740">Shackelford et al. (2001)</a> investigated the possibility that the AT phenotype is a consequence, at least in part, of an inability to respond appropriately to oxidative damage. In comparison to normal human fibroblasts, AT dermal fibroblasts exhibited increased sensitivity to t-butyl hydroperoxide toxicity. These cells failed to show G1 to G2 phase checkpoint functions or to induce p53 in response to oxidative challenge. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11290740" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In an analysis of expression phenotypes among AT carriers, AT patients, and noncarrier controls, <a href="#155" class="mim-tip-reference" title="Smirnov, D. A., Cheung, V. G. &lt;strong&gt;ATM gene mutations result in both recessive and dominant expression phenotypes of genes and microRNAs.&lt;/strong&gt; Am. J. Hum. Genet. 83: 243-253, 2008. Note: Erratum: Am. J. Hum. Genet. 83: 657 only, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18674748/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18674748&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18674748[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2008.07.003&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18674748">Smirnov and Cheung (2008)</a> uncovered a regulatory pathway in which ATM regulates expression of TNFSF4 (<a href="/entry/603594">603594</a>) through MIRN125B (see <a href="/entry/610104">610104</a>). In AT carriers and AT patients, this pathway is disrupted. As a result, the level of MIRN125B is lower and the level of its target gene, TNFSF4, is higher than in noncarriers. A decreased level of MIRN125B is associated with breast cancer, and an elevated level of TNFSF4 is associated with atherosclerosis. Thus, <a href="#155" class="mim-tip-reference" title="Smirnov, D. A., Cheung, V. G. &lt;strong&gt;ATM gene mutations result in both recessive and dominant expression phenotypes of genes and microRNAs.&lt;/strong&gt; Am. J. Hum. Genet. 83: 243-253, 2008. Note: Erratum: Am. J. Hum. Genet. 83: 657 only, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18674748/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18674748&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18674748[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2008.07.003&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18674748">Smirnov and Cheung (2008)</a> concluded that their findings provided a mechanistic suggestion for the increased risk of breast cancer and heart disease in AT carriers. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18674748" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#80" class="mim-tip-reference" title="Iourov, I. Y., Vorsanova, S. G., Liehr, T., Kolotii, A. D., Yurov, Y. B. &lt;strong&gt;Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain.&lt;/strong&gt; Hum. Molec. Genet. 18: 2656-2669, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19414482/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19414482&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp207&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19414482">Iourov et al. (2009)</a> observed a 2- to 3-fold increase of stochastic aneuploidy affecting different chromosomes in the cerebellum and the cerebrum of the AT brain. Degenerating cerebellum in AT demonstrated a 5- to 20-fold increase of nonrandom DNA double-strand breaks and aneuploidy affecting chromosomes 14 and, to a lesser extent, chromosomes 7 and X. Novel recurrent chromosome hotspots associated with cerebellar degeneration were mapped to chromosome 14q12 containing the 2 candidate genes FOXG1B (<a href="/entry/164874">164874</a>) and NOVA1 (<a href="/entry/602157">602157</a>). <a href="#80" class="mim-tip-reference" title="Iourov, I. Y., Vorsanova, S. G., Liehr, T., Kolotii, A. D., Yurov, Y. B. &lt;strong&gt;Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain.&lt;/strong&gt; Hum. Molec. Genet. 18: 2656-2669, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19414482/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19414482&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp207&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19414482">Iourov et al. (2009)</a> hypothesized that the existence of nonrandom breaks disrupting specific chromosomal loci in neural cells with DNA repair deficiency is evidence for programmed somatic rearrangements of the neuronal genome. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19414482" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="populationGenetics" class="mim-anchor"></a>
<h4 href="#mimPopulationGeneticsFold" id="mimPopulationGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimPopulationGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Population Genetics</strong>
</span>
</h4>
</div>
<div id="mimPopulationGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>On the basis of a 'vigorous case finding' in the United States in 2 time periods, <a href="#164" class="mim-tip-reference" title="Swift, M., Morrell, D., Cromartie, E., Chamberlin, A. R., Skolnick, M. H., Bishop, D. T. &lt;strong&gt;The incidence and gene frequency of ataxia-telangiectasia in the United States.&lt;/strong&gt; Am. J. Hum. Genet. 39: 573-583, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3788973/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3788973&lt;/a&gt;]" pmid="3788973">Swift et al. (1986)</a> estimated the incidence and gene frequency of AT. The highest observed incidence was in the state of Michigan for the period 1965 to 1969 when white AT patients were born at the rate of 11.3 per million births. Based on the incidence data, the minimum frequency of a single hypothetical AT gene in the U.S. white population was estimated to be 0.0017. Pedigree analysis, which estimates the gene frequency from the proportion of affected close blood relatives of homozygous probands, estimated the most likely gene frequency to be 0.007 on the assumption that AT is a single homogeneous genetic syndrome. Given that complementation analysis has demonstrated genetic heterogeneity in AT, the AT heterozygote frequency might fall between 0.68% and 7.7%, with 2.8% being a likely estimate. In the West Midlands of England, the birth frequency of AT was estimated to be about 1 in 300,000. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3788973" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#158" class="mim-tip-reference" title="Stankovic, T., Kidd, A. M. J., Sutcliffe, A., McGuire, G. M., Robinson, P., Weber, P., Bedenham, T., Bradwell, A. R., Easton, D. F., Lennox, G. G., Haites, N., Byrd, P. J., Taylor, A. M. R. &lt;strong&gt;ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer.&lt;/strong&gt; Am. J. Hum. Genet. 62: 334-345, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9463314/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9463314&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/301706&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9463314">Stankovic et al. (1998)</a> reported the spectrum of 59 ATM mutations observed in AT patients in the British Isles. Of the 51 ATM mutations identified in families native to the British Isles, 11 were founder mutations, and 2 of these 11 conferred a milder clinical phenotype with respect to both cerebellar degeneration and cellular features. In 2 AT families, a 7271T-G mutation of the ATM gene appeared to be associated with an increased risk of breast cancer in both homozygotes and heterozygotes, although there was a less severe AT phenotype in terms of the degree of cerebellar degeneration. This mutation was associated with expression of full-length ATM protein at a level comparable to that in unaffected individuals. In addition, <a href="#158" class="mim-tip-reference" title="Stankovic, T., Kidd, A. M. J., Sutcliffe, A., McGuire, G. M., Robinson, P., Weber, P., Bedenham, T., Bradwell, A. R., Easton, D. F., Lennox, G. G., Haites, N., Byrd, P. J., Taylor, A. M. R. &lt;strong&gt;ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer.&lt;/strong&gt; Am. J. Hum. Genet. 62: 334-345, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9463314/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9463314&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/301706&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9463314">Stankovic et al. (1998)</a> studied 18 AT patients, in 15 families, who developed leukemia, lymphoma, preleukemic T-cell proliferation, or Hodgkin lymphoma, mostly in childhood. A wide variety of ATM mutation types, including missense mutations and in-frame deletions, were seen in this group of patients. The authors showed that 25% of all AT patients carried in-frame deletions or missense mutations, many of which were also associated with expression of mutant ATM protein. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9463314" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#48" class="mim-tip-reference" title="Ejima, Y., Sasaki, M. S. &lt;strong&gt;Mutations of the ATM gene detected in Japanese ataxia-telangiectasia patients: possible preponderance of the two founder mutations 4612del165 and 7883del5.&lt;/strong&gt; Hum. Genet. 102: 403-408, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9600235/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9600235&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s004390050712&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9600235">Ejima and Sasaki (1998)</a> studied 8 unrelated Japanese families with ataxia-telangiectasia for mutations in the ATM gene. Six different mutations were found on 12 of the 16 alleles examined. Two mutations, 4612del165 (<a href="/entry/607585#0014">607585.0014</a>) and 7883del5, were found more frequently than the others; 7 of 16 (44%) of the mutant alleles had 1 of these 2 mutations. Microsatellite genotyping demonstrated that a common haplotype was shared by the mutant alleles for both common mutations. The authors suggested that the 2 founder mutations may be predominant among Japanese ATM mutant alleles. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9600235" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#175" class="mim-tip-reference" title="Telatar, M., Wang, Z., Castellvi-Bel, S., Tai, L.-Q., Sheikhavandi, S., Regueiro, J. R., Porras, O., Gatti, R. A. &lt;strong&gt;A model for ATM heterozygote identification in a large population: four founder-effect ATM mutations identify most of Costa Rican patients with ataxia telangiectasia.&lt;/strong&gt; Molec. Genet. Metab. 64: 36-43, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9682216/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9682216&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/mgme.1998.2693&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9682216">Telatar et al. (1998)</a> found that 4 mutations accounted for 86 to 93% of 41 Costa Rican AT patients studied. They suggested that the Costa Rican population might be useful for analyzing the role of ATM heterozygosity in cancer. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9682216" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#141" class="mim-tip-reference" title="Sasaki, T., Tian, H., Kukita, Y., Inazuka, M., Tahira, T., Imai, T., Yamauchi, M., Saito, T., Hori, T., Hashimoto-Tamaoki, T., Komatsu, K., Nikaido, O., Hayashi, K. &lt;strong&gt;ATM mutations in patients with ataxia telangiectasia screened by a hierarchical strategy.&lt;/strong&gt; Hum. Mutat. 12: 186-195, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9711876/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9711876&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/(SICI)1098-1004(1998)12:3&lt;186::AID-HUMU6&gt;3.0.CO;2-F&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9711876">Sasaki et al. (1998)</a> presented the results of a mutation screen in 14 unrelated AT patients, most of them Japanese. They used a hierarchical strategy in which they extensively analyzed the entire coding region of the cDNA. In the first stage, point mutations were sought by PCR-SSCP in short patches. In the second and third stages, the products of medium- and long-patch PCR, each covering the entire region, were examined by agarose gel electrophoresis to search for length changes. They found a total of 15 mutations (including 12 new) and 4 polymorphisms. Abnormal splicing of ATM was frequent among Japanese, and no hotspot was obvious, suggesting no strong founder effects in that ethnic group. Eleven patients carried either 1 homozygous or 2 compound heterozygous mutations, 1 patient carried only 1 detectable heterozygous mutation, and no mutation was found in 2 patients. Overall, mutations were found in at least 75% of the different ATM alleles examined. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9711876" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#140" class="mim-tip-reference" title="Sandoval, N., Platzer, M., Rosenthal, A., Dork, T., Bendix, R., Skawran, B., Stuhrmann, M., Wegner, R.-D., Sperling, K., Banin, S., Shiloh, Y., Baumer, A., Bernthaler, U., Sennefelder, H., Brohm, M., Weber, B. H. F., Schindler, D. &lt;strong&gt;Characterization of ATM gene mutations in 66 ataxia telangiectasia families.&lt;/strong&gt; Hum. Molec. Genet. 8: 69-79, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9887333/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9887333&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/8.1.69&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9887333">Sandoval et al. (1999)</a> investigated the mutation spectrum of the ATM gene in a cohort of AT patients living in Germany. They amplified and sequenced all 66 exons and the flanking untranslated regions from genomic DNA of 66 unrelated AT patients. They identified 46 different ATM mutations and 26 sequence polymorphisms and variants scattered throughout the gene; 34 mutations had not previously been described in other populations. Seven mutations occurred in more than 1 family, but none of these accounted for more than 5 alleles in the patient group. Most of the mutations were truncating, which confirmed that the absence of full-length ATM protein is the most common molecular basis of AT. Transcript analyses demonstrated single exon skipping as the consequence of most splice site substitutions, but a more complex pattern was observed for 2 mutations. In 4 cases, immunoblot studies of cell lines carrying ATM missense substitutions or in-frame deletions detected residual ATM protein. One of these mutations, a valine deletion proximal to the kinase domain (<a href="/entry/607585#0017">607585.0017</a>), resulted in ATM protein levels more than 20% of normal in an AT lymphoblastoid cell line. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9887333" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#34" class="mim-tip-reference" title="Castellvi-Bel, S., Sheikhavandi, S., Telatar, M., Tai, L.-Q., Hwang, M., Wang, Z., Yang, Z., Cheng, R., Gatti, R. A. &lt;strong&gt;New mutations, polymorphisms, and rare variants in the ATM gene detected by a novel SSCP strategy.&lt;/strong&gt; Hum. Mutat. 14: 156-162, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10425038/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10425038&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/(SICI)1098-1004(1999)14:2&lt;156::AID-HUMU7&gt;3.0.CO;2-E&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10425038">Castellvi-Bel et al. (1999)</a> used SSCP analysis to screen the ATM gene in 92 AT patients from different populations. Of 177 expected mutations, approximately 70% were identified using this technique. Thirty-five new mutations and 34 new intragenic polymorphisms or rare variants were described. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10425038" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#97" class="mim-tip-reference" title="Laake, K., Jansen, L., Hahnemann, J. M., Brondum-Nielsen, K., Lonnqvist, T., Kaariainen, H., Sankila, R., Lahdesmaki, A., Hammarstrom, L., Yuen, J., Tretli, S., Heiberg, A., Olsen, J. H., Tucker, M., Kleinerman, R., Borresen-Dale, A.-L. &lt;strong&gt;Characterization of ATM mutations in 41 Nordic families with ataxia telangiectasia.&lt;/strong&gt; Hum. Mutat. 16: 232-246, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10980530/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10980530&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/1098-1004(200009)16:3&lt;232::AID-HUMU6&gt;3.0.CO;2-L&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10980530">Laake et al. (2000)</a> screened 41 AT families from Denmark, Finland, Norway, and Sweden for ATM mutations. They were able to characterize 67 of the 82 disease-causing alleles. Of the 37 separate mutations detected, 25 had not previously been reported. In 28 of the probands, mutations were found in both alleles; in 11 of the probands only 1 mutated allele was detected; and in 2 Finnish probands, no mutations were detected. One-third of the probands (13) were homozygous, whereas the majority of the probands (26) were compound heterozygous with at least 1 identified allele. Ten alleles were found more than once; 1 Norwegian founder mutation, 3245delATCinsTGAT (<a href="/entry/607585#0016">607585.0016</a>), an insertion/deletion mutation, constituted 57% of the Norwegian alleles. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10980530" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Due to the large size of the ATM gene and the existence of over 400 mutations, identifying mutations in patients with ataxia-telangiectasia is labor intensive. <a href="#32" class="mim-tip-reference" title="Campbell, C., Mitui, M., Eng, L., Coutinho, G., Thorstenson, Y., Gatti, R. A. &lt;strong&gt;ATM mutations on distinct SNP and STR haplotypes in ataxia-telangiectasia patients of differing ethnicities reveal ancestral founder effects.&lt;/strong&gt; Hum. Mutat. 21: 80-85, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12497634/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12497634&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.10156&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12497634">Campbell et al. (2003)</a> compared the single-nucleotide polymorphism (SNP) and short tandem repeat (STR) haplotypes of AT patients from varying ethnicities who were carrying common ATM mutations. They used SSCP to determine SNP haplotypes. To their surprise, all of the most common ATM mutations in their large multiethnic cohort were associated with specific SNP haplotypes, whereas the STR haplotypes varied, suggesting that ATM mutations predate STR haplotypes but not SNP haplotypes. They concluded that these frequently observed ATM mutations are not hotspots, but have occurred only once and spread with time to different ethnic populations. More generally, a combination of SNP and STR haplotyping could be used as a screening strategy for identifying mutations in other large genes by first determining the ancestral SNP and STR haplotypes in order to identify specific founder mutations. <a href="#32" class="mim-tip-reference" title="Campbell, C., Mitui, M., Eng, L., Coutinho, G., Thorstenson, Y., Gatti, R. A. &lt;strong&gt;ATM mutations on distinct SNP and STR haplotypes in ataxia-telangiectasia patients of differing ethnicities reveal ancestral founder effects.&lt;/strong&gt; Hum. Mutat. 21: 80-85, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12497634/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12497634&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.10156&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12497634">Campbell et al. (2003)</a> estimated that this approach will identify approximately 30% of mutations in AT patients across all ethnic groups. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12497634" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a mutation screen of 24 Polish AT families, <a href="#113" class="mim-tip-reference" title="Mitui, M., Bernatowska, E., Pietrucha, B., Piotrowska-Jastrzebska, J., Eng, L., Nahas, S., Teraoka, S., Sholty, G., Purayidom, A., Concannon, P., Gatti, R. A. &lt;strong&gt;ATM gene founder haplotypes and associated mutations in Polish families with ataxia-telangiectasia.&lt;/strong&gt; Ann. Hum. Genet. 69: 657-664, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16266405/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16266405&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1529-8817.2005.00199.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16266405">Mitui et al. (2005)</a> found that 3 founder mutations accounted for 58% of the alleles. They identified 44 (92%) of the expected 48 mutations: 69% were nonsense mutations, 23% caused aberrant splicing, and 5% were missense mutations. Four mutations had not been previously described. Two of the Polish mutations had been observed previously in Amish and Mennonite AT patients; this was considered compatible with historical records. Shared mutations had the same SNP and STR haplotypes, indicating common ancestries. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16266405" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 17 patients from 16 Russian families with AT, <a href="#163" class="mim-tip-reference" title="Suspitsin, E., Sokolenko, A., Bizin, I., Tumakova, A., Guseva, M., Sokolova, N., Vakhlyarskaya, S., Kondratenko, I., Imyanitov, E. &lt;strong&gt;ATM mutation spectrum in Russian children with ataxia-telangiectasia.&lt;/strong&gt; Europ. J. Med. Genet. 63: 103630, 2020. Note: Electronic Article.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30772474/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30772474&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ejmg.2019.02.003&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30772474">Suspitsin et al. (2020)</a> found that the most frequent mutation, identified in 11 of 15 Slavic patients, was E1978X, an allele that was initially found in North American Mennonite families (<a href="#174" class="mim-tip-reference" title="Telatar, M., Teraoka, S., Wang, Z., Chun, H. H., Liang, T., Castellvi-Bel, S., Udar, N., Borresen-Dale, A. L., Chessa, L., Bernatowska-Matuszkiewicz, E., Porras, O., Watanabe, M., Junker, A., Concannon, P., Gatti, R. A. &lt;strong&gt;Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations.&lt;/strong&gt; Am. J. Hum. Genet. 62: 86-97, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9443866/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9443866&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/301673&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9443866">Telatar et al., 1998</a>). The authors noted that Mennonites resided in Russia until the end of the 19th century when they were forced to leave the country owing to implementation of compulsory military service, which was incompatible with their religious beliefs. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=30772474+9443866" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#4" class="mim-tip-reference" title="Anheim, M., Fleury, M., Monga, B., Laugel, V., Chaigne, D., Rodier, G., Ginglinger, E., Boulay, C., Courtois, S., Drouot, N., Fritsch, M., Delaunoy, J. P., Stoppa-Lyonnet, D., Tranchant, C., Koenig, M. &lt;strong&gt;Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management.&lt;/strong&gt; Neurogenetics 11: 1-12, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19440741/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19440741&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s10048-009-0196-y&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19440741">Anheim et al. (2010)</a> found that AT was the third most common form of autosomal recessive cerebellar ataxia in a cohort of 102 patients evaluated in Alsace, France. Of 57 patients in whom a molecular diagnosis could be determined, 4 were affected with AT. The authors estimated the prevalence of AT to be 1 in 450,000 in this region. FRDA was the most common diagnosis, found in 36 of 57 patients, and AOA2 (<a href="/entry/606002">606002</a>) was the second most common diagnosis, found in 7 patients. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19440741" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>See monographs edited by <a href="#27" class="mim-tip-reference" title="Bridges, B. A., Harnden, D. G. &lt;strong&gt;Ataxia-telangiectasia: A Cellular and Molecular Link between Cancer, Neuropathology, and Immune Deficiency.&lt;/strong&gt; New York: John Wiley (pub.) 1982."None>Bridges and Harnden (1982)</a> and <a href="#62" class="mim-tip-reference" title="Gatti, R. A., Swift, M. &lt;strong&gt;Ataxia-telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood.&lt;/strong&gt; New York: Alan R. Liss (pub.) 1985."None>Gatti and Swift (1985)</a> for a perspective on the development of this disorder.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="animalModel" class="mim-anchor"></a>
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#14" class="mim-tip-reference" title="Barlow, C., Hirotsune, S., Paylor, R., Liyanage, M., Eckhaus, M., Collins, F., Shiloh, Y., Crawley, J. N., Ried, T., Tagle, D., Wynshaw-Boris, A. &lt;strong&gt;Atm-deficient mice: a paradigm of ataxia telangiectasia.&lt;/strong&gt; Cell 86: 159-171, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8689683/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8689683&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)80086-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8689683">Barlow et al. (1996)</a> created a murine model of ataxia-telangiectasia by disrupting the Atm locus via gene targeting. Mice homozygous for the disrupted Atm allele displayed growth retardation, neurologic dysfunction, male and female infertility secondary to the absence of mature gametes, defects in T lymphocyte maturation, and extreme sensitivity to gamma-irradiation. Most of the animals developed malignant thymic lymphomas between 2 and 4 months of age. Several chromosomal anomalies were detected in one of these tumors. Fibroblasts from these mice grew slowly and exhibited abnormal radiation-induced G1 checkpoint function. Atm-disrupted mice recapitulated the ataxia-telangiectasia phenotype in humans. The authors noted that humans also show incomplete sexual maturation in ATM (<a href="#24" class="mim-tip-reference" title="Boder, E. &lt;strong&gt;Ataxia-telangiectasia: some historic, clinical and pathologic observations. In: Bergsma, D. (ed.): Immunodeficiency in Man and Animals.&lt;/strong&gt; New York: National Foundation-March of Dimes (pub.) 1975. Pp. 255-300."None>Boder, 1975</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8689683" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#49" class="mim-tip-reference" title="Elson, A., Wang, Y., Daugherty, C. J., Morton, C. C., Zhou, F., Campos-Torres, J., Leder, P. &lt;strong&gt;Pleiotropic defects in ataxia-telangiectasia protein-deficient mice.&lt;/strong&gt; Proc. Nat. Acad. Sci. 93: 13084-13089, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8917548/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8917548&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=8917548[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.93.23.13084&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8917548">Elson et al. (1996)</a> generated a mouse model for ataxia-telangiectasia using gene targeting to generate mice that did not express the Atm protein. Atm-deficient mice were retarded in growth, did not produce mature sperm, and exhibited severe defects in T-cell maturation while going on to develop thymomas. Atm-deficient fibroblasts grew poorly in culture and displayed a high level of double-stranded chromosome breaks. Atm-deficient thymocytes underwent spontaneous apoptosis in vitro significantly more often than controls. Atm-deficient mice then exhibited many of the same symptoms found in ataxia-telangiectasia patients and in cells derived from them. Furthermore, <a href="#49" class="mim-tip-reference" title="Elson, A., Wang, Y., Daugherty, C. J., Morton, C. C., Zhou, F., Campos-Torres, J., Leder, P. &lt;strong&gt;Pleiotropic defects in ataxia-telangiectasia protein-deficient mice.&lt;/strong&gt; Proc. Nat. Acad. Sci. 93: 13084-13089, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8917548/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8917548&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=8917548[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.93.23.13084&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8917548">Elson et al. (1996)</a> demonstrated that the Atm protein exists as 2 discrete molecular species, and that loss of 1 or both of these can lead to the development of the disease. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8917548" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#197" class="mim-tip-reference" title="Xu, Y., Baltimore, D. &lt;strong&gt;Dual roles of ATM in the cellular response to radiation and in cell growth control.&lt;/strong&gt; Genes Dev. 10: 2401-2410, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8843193/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8843193&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.10.19.2401&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8843193">Xu and Baltimore (1996)</a> disrupted the mouse ATM gene by homologous recombination. <a href="#196" class="mim-tip-reference" title="Xu, Y., Ashley, T, Brainerd, E. E., Bronson, R. T., Meyn, M. S., Baltimore, D. &lt;strong&gt;Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma.&lt;/strong&gt; Genes Dev. 10: 2411-2422, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8843194/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8843194&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.10.19.2411&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8843194">Xu et al. (1996)</a> reported that Atm -/- mice are viable, growth-retarded, and infertile. The infertility results from meiotic failure, as meiosis is arrested at the zygotene/pachytene stage of prophase I as a result of abnormal chromosomal synapsis and subsequent chromosome fragmentation. The cerebella of Atm -/- mice appear normal by histologic examination, and the mice have no gross behavioral abnormalities. Atm -/- mice exhibit multiple immune defects similar to those of AT patients, and most develop thymic lymphomas at 3 to 4 months of age and die of the tumors by 4 months. <a href="#197" class="mim-tip-reference" title="Xu, Y., Baltimore, D. &lt;strong&gt;Dual roles of ATM in the cellular response to radiation and in cell growth control.&lt;/strong&gt; Genes Dev. 10: 2401-2410, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8843193/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8843193&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1101/gad.10.19.2401&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8843193">Xu and Baltimore (1996)</a> showed that mouse Atm -/- cells are hypersensitive to gamma irradiation and defective in cell cycle arrest following radiation, and Atm -/- thymocytes are more resistant to apoptosis induced by gamma radiation than normal thymocytes. They also provide direct evidence that ATM acts as an upregulator of p53. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8843194+8843193" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Ataxia-telangiectasia is characterized by markedly increased sensitivity to ionizing radiation. Ionizing radiation oxidizes macromolecules and causes tissue damage through the generation of reactive oxygen species (ROS). <a href="#12" class="mim-tip-reference" title="Barlow, C., Dennery, P. A., Shigenaga, M. K., Smith, M. A., Morrow, J. D., Roberts, L. J., II, Wynshaw-Boris, A., Levine, R. L. &lt;strong&gt;Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs.&lt;/strong&gt; Proc. Nat. Acad. Sci. 96: 9915-9919, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10449794/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10449794&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10449794[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.96.17.9915&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10449794">Barlow et al. (1999)</a> therefore hypothesized that AT is due to oxidative damage resulting from loss of function of the ATM gene product. To assess this hypothesis, they employed an animal model of AT, i.e., the mouse with a disrupted Atm gene. They showed that organs that develop pathologic changes in the Atm-deficient mice are targets of oxidative damage, and that cerebellar Purkinje cells are particularly affected. They suggested that these observations provide a mechanistic basis for the AT phenotype and lay a rational foundation for therapeutic intervention. <a href="#13" class="mim-tip-reference" title="Barlow, C., Eckhaus, M. A., Schaffer, A. A., Wynshaw-Boris, A. &lt;strong&gt;Atm haploinsufficiency results in increased sensitivity to sublethal doses of ionizing radiation in mice.&lt;/strong&gt; Nature Genet. 21: 359-360, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10192382/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10192382&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/7684&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10192382">Barlow et al. (1999)</a> exposed Atm +/+ and Atm +/- littermates to a sublethal dose, 4 Gy (400 Rad) of ionizing radiation. The Atm +/- mice had premature graying and decreased life expectancy (median survival 99 weeks vs 71 weeks in wildtype and heterozygous mice, respectively, P = 0.0042). Tumors and infections of similar type were found in all autopsied animals, regardless of genotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=10449794+10192382" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#195" class="mim-tip-reference" title="Worgul, B. V., Smilenov, L., Brenner, D. J., Junk, A., Zhou, W., Hall, E. J. &lt;strong&gt;Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts.&lt;/strong&gt; Proc. Nat. Acad. Sci. 99: 9836-9839, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12119422/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12119422&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12119422[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.162349699&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12119422">Worgul et al. (2002)</a> noted that in vitro studies have shown that cells from individuals homozygous for AT are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene may be slightly more radiosensitive in vitro, it remained to be determined whether their greater susceptibility translated into an increased sensitivity for late effects in vivo, although there was a suggestion that radiotherapy patients heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. <a href="#195" class="mim-tip-reference" title="Worgul, B. V., Smilenov, L., Brenner, D. J., Junk, A., Zhou, W., Hall, E. J. &lt;strong&gt;Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts.&lt;/strong&gt; Proc. Nat. Acad. Sci. 99: 9836-9839, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12119422/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12119422&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12119422[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.162349699&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12119422">Worgul et al. (2002)</a> chose cataract formation in the lens as a means of assaying the effects of ATM deficiency in a late-responding tissue. One eye each of wildtype, Atm heterozygous, and Atm homozygous knockout mice was exposed to various levels of x-rays. Cataract development in the mice of all 3 groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Cataracts appeared earlier in heterozygous versus wildtype mice. The data suggested that ATM heterozygotes in the human population may also be radiosensitive. <a href="#195" class="mim-tip-reference" title="Worgul, B. V., Smilenov, L., Brenner, D. J., Junk, A., Zhou, W., Hall, E. J. &lt;strong&gt;Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts.&lt;/strong&gt; Proc. Nat. Acad. Sci. 99: 9836-9839, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12119422/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12119422&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12119422[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.162349699&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12119422">Worgul et al. (2002)</a> proposed that this information may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12119422" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#191" class="mim-tip-reference" title="Wong, K.-K., Maser, R. S., Bachoo, R. M., Menon, J., Carrasco, D. R., Gu, Y., Alt, F. W., DePinho, R. A. &lt;strong&gt;Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing.&lt;/strong&gt; Nature 421: 643-648, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12540856/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12540856&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature01385&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12540856">Wong et al. (2003)</a> examined the impact of Atm deficiency as a function of progressive telomere attrition at both the cellular and whole-organism level in mice doubly null for Atm and Terc. These compound mutants showed increased telomere erosion and genomic instability, yet they experienced a substantial elimination of T-cell lymphomas associated with Atm deficiency. A generalized proliferation defect was evident in all cell types and tissues examined, and this defect extended to tissue stem/progenitor cell compartments, thereby providing a basis for progressive multiorgan system compromise, accelerated aging, and premature death. <a href="#191" class="mim-tip-reference" title="Wong, K.-K., Maser, R. S., Bachoo, R. M., Menon, J., Carrasco, D. R., Gu, Y., Alt, F. W., DePinho, R. A. &lt;strong&gt;Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing.&lt;/strong&gt; Nature 421: 643-648, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12540856/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12540856&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature01385&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12540856">Wong et al. (2003)</a> showed that Atm deficiency and telomere dysfunction act together to impair cellular and whole-organism viability, thus supporting the view that aspects of ataxia-telangiectasia pathophysiology are linked to the functional state of telomeres and its adverse effects on stem/progenitor cell reserves. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12540856" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#202" class="mim-tip-reference" title="Ziv, S., Brenner, O., Amariglio, N., Smorodinsky, N. I., Galron, R., Carrion, D. V., Zhang, W., Sharma, G. G., Pandita, R. K., Agarwal, M., Elkon, R., Katzin, N., Bar-Am, I., Pandita, T. K., Kucherlapati, R., Rechavi, G., Shiloh, Y., Barzilai, A. &lt;strong&gt;Impaired genomic stability and increased oxidative stress exacerbate different tissues of ataxia-telangiectasia.&lt;/strong&gt; Hum. Molec. Genet. 14: 2929-2943, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16150740/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16150740&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddi324&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16150740">Ziv et al. (2005)</a> augmented specific features of AT by generating mouse strains that combined Atm deficiency with dysfunction of other proteins. Increasing oxidative stress by combining deficiencies in Atm and superoxide dismutase-1 (SOD1; <a href="/entry/147450">147450</a>) exacerbated growth retardation and markedly reduced the mean survival time following ionizing radiation. In contrast, increasing genomic instability by combining deficiencies of Atm and the mismatch repair protein Mlh1 (<a href="/entry/120436">120436</a>) caused a moderate increase in radiation sensitivity and dramatic increase in aggressive lymphomas, compared with the Atm-knockout mice. Atm, Mlh1, or Mlh1/Atm single or double heterozygosity did not significantly affect the life span of the various genotypes. The genomic region on mouse chromosome 15 containing c-Myc (<a href="/entry/190080">190080</a>) was commonly amplified in tumors, and elevated levels of the c-Myc protein were subsequently observed in the tumors. <a href="#202" class="mim-tip-reference" title="Ziv, S., Brenner, O., Amariglio, N., Smorodinsky, N. I., Galron, R., Carrion, D. V., Zhang, W., Sharma, G. G., Pandita, R. K., Agarwal, M., Elkon, R., Katzin, N., Bar-Am, I., Pandita, T. K., Kucherlapati, R., Rechavi, G., Shiloh, Y., Barzilai, A. &lt;strong&gt;Impaired genomic stability and increased oxidative stress exacerbate different tissues of ataxia-telangiectasia.&lt;/strong&gt; Hum. Molec. Genet. 14: 2929-2943, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16150740/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16150740&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddi324&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16150740">Ziv et al. (2005)</a> suggested that impaired genomic instability may be an important contributing factor to cancer predisposition in AT, whereas oxidative stress may be more important in the radiation sensitivity and growth retardation facets of this disease. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16150740" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>(See also ANIMAL MODEL in <a href="/entry/607585">607585</a>).</p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="seeAlso" class="mim-anchor"></a>
<h4 href="#mimSeeAlsoFold" id="mimSeeAlsoToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimSeeAlsoToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>See Also:</strong>
</span>
</h4>
<div id="mimSeeAlsoFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<a href="#Al1980" class="mim-tip-reference" title="Al Saadi, A., Palutke, M., Krishna Kumar, G. &lt;strong&gt;Evolution of chromosomal abnormalities in sequential cytogenetic studies of ataxia telangiectasia.&lt;/strong&gt; Hum. Genet. 55: 23-29, 1980.">Al Saadi et al. (1980)</a>; <a href="#Ammann1969" class="mim-tip-reference" title="Ammann, A. J., Cain, W. A., Ishizaka, K., Hong, R., Good, R. A. &lt;strong&gt;Immunoglobulin E deficiency in ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 281: 469-472, 1969.">Ammann et al. (1969)</a>; <a href="#Amromin1979" class="mim-tip-reference" title="Amromin, G. D., Boder, E., Teplitz, R. &lt;strong&gt;Ataxia-telangiectasia with a 32-year survival: a clinicopathological report.&lt;/strong&gt; J. Neuropath. Exp. Neurol. 38: 621-643, 1979.">Amromin et al. (1979)</a>; <a href="#Aurias1980" class="mim-tip-reference" title="Aurias, A., Dutrillaux, B., Buriot, D., Lejeune, J. &lt;strong&gt;High frequencies of inversions and translocations of chromosomes 7 and 14 in ataxia-telangiectasia.&lt;/strong&gt; Mutat. Res. 69: 369-374, 1980.">Aurias et al. (1980)</a>; <a href="#Aurias1983" class="mim-tip-reference" title="Aurias, A., Dutrillaux, B., Griscelli, C. &lt;strong&gt;Tandem translocation t(14;14) in isolated and clonal cells in ataxia telangiectasia are different.&lt;/strong&gt; Hum. Genet. 63: 320-322, 1983.">Aurias et al. (1983)</a>; <a href="#Aurias1986" class="mim-tip-reference" title="Aurias, A., Dutrillaux, B. &lt;strong&gt;Probable involvement of immunoglobulin superfamily genes in most recurrent chromosomal rearrangements from ataxia telangiectasia.&lt;/strong&gt; Hum. Genet. 72: 210-214, 1986.">Aurias and Dutrillaux
(1986)</a>; <a href="#Becker1989" class="mim-tip-reference" title="Becker, Y., Tabor, E., Asher, Y. &lt;strong&gt;Ataxia-telangiectasia fibroblasts have less fibronectin mRNA than control cells but have the same levels of integrin and beta-actin mRNA.&lt;/strong&gt; Hum. Genet. 81: 165-170, 1989.">Becker et al. (1989)</a>; <a href="#Bender1985" class="mim-tip-reference" title="Bender, M. A., Rary, J. M., Kale, R. P. &lt;strong&gt;G(2) chromosomal radiosensitivity in ataxia telangiectasia lymphocytes.&lt;/strong&gt; Mutat. Res. 152: 39-47, 1985.">Bender et al. (1985)</a>; <a href="#Bender1985" class="mim-tip-reference" title="Bender, M. A., Rary, J. M., Kale, R. P. &lt;strong&gt;G(2) chromosomal radiosensitivity in ataxia telangiectasia lymphocytes.&lt;/strong&gt; Mutat. Res. 152: 39-47, 1985.">Bender et al.
(1985)</a>; <a href="#Bernstein1981" class="mim-tip-reference" title="Bernstein, R., Pinto, M., Jenkins, T. &lt;strong&gt;Ataxia telangiectasia with evolution of monosomy 14 and emergence of Hodgkin&#x27;s disease.&lt;/strong&gt; Cancer Genet. Cytogenet. 4: 31-37, 1981.">Bernstein et al. (1981)</a>; <a href="#Bochkov1974" class="mim-tip-reference" title="Bochkov, N. P., Lopukhin, Y. M., Kuleshov, N. P., Kovalchuk, L. V. &lt;strong&gt;Cytogenetic study of patients with ataxia-telangiectasia.&lt;/strong&gt; Humangenetik 24: 115-128, 1974.">Bochkov et al. (1974)</a>; <a href="#Boder1958" class="mim-tip-reference" title="Boder, E., Sedgwick, R. P. &lt;strong&gt;Ataxia-telangiectasia: a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection.&lt;/strong&gt; Pediatrics 21: 526-554, 1958.">Boder and
Sedgwick (1958)</a>; <a href="#Chen1984" class="mim-tip-reference" title="Chen, P., Imray, F. P., Kidson, C. &lt;strong&gt;Gene dosage and complementation analysis of ataxia telangiectasia lymphoblastoid cell lines assayed by induced chromosome aberrations.&lt;/strong&gt; Mutat. Res. 129: 165-172, 1984.">Chen et al. (1984)</a>; <a href="#Cohen1979" class="mim-tip-reference" title="Cohen, M. M., Sagi, M., Ben-Zur, Z., Schaap, T., Voss, R., Kohn, G., Ben-Bassat, H. &lt;strong&gt;Ataxia telangiectasia: chromosomal stability in continuous lymphoblastoid cell lines.&lt;/strong&gt; Cytogenet. Cell Genet. 23: 44-52, 1979.">Cohen et al. (1979)</a>; <a href="#Cohen1975" class="mim-tip-reference" title="Cohen, M. M., Shaham, M., Dagan, J., Shmueli, E., Kohn, G. &lt;strong&gt;Cytogenetic investigations in families with ataxia-telangiectasia.&lt;/strong&gt; Cytogenet. Cell Genet. 15: 338-356, 1975.">Cohen et
al. (1975)</a>; <a href="#Cooper1988" class="mim-tip-reference" title="Cooper, D. N., Youssoufian, H. &lt;strong&gt;The CpG dinucleotide and human genetic disease.&lt;/strong&gt; Hum. Genet. 78: 151-155, 1988.">Cooper and Youssoufian (1988)</a>; <a href="#Cornforth1985" class="mim-tip-reference" title="Cornforth, M. N., Bedford, J. S. &lt;strong&gt;On the nature of a defect in cells from individuals with ataxia-telangiectasia.&lt;/strong&gt; Science 227: 1589-1591, 1985.">Cornforth and Bedford
(1985)</a>; <a href="#Cox1978" class="mim-tip-reference" title="Cox, R., Hosking, G. P., Wilson, J. &lt;strong&gt;Ataxia telangiectasia: evaluation of radiosensitivity in cultured skin fibroblasts as a diagnostic test.&lt;/strong&gt; Arch. Dis. Child. 53: 386-390, 1978.">Cox et al. (1978)</a>; <a href="#De1976" class="mim-tip-reference" title="De Leon, G. A., Grover, W. D., Huff, D. S. &lt;strong&gt;Neuropathologic changes in ataxia-telangiectasia.&lt;/strong&gt; Neurology 26: 947-951, 1976.">De Leon et al. (1976)</a>; <a href="#Feigin1970" class="mim-tip-reference" title="Feigin, R. D., Vietti, T. J., Wyatt, R. G., Kaufman, D. G., Smith, C. H. &lt;strong&gt;Ataxia telangiectasia with granulocytopenia.&lt;/strong&gt; J. Pediat. 77: 431-438, 1970.">Feigin et al.
(1970)</a>; <a href="#Fiorilli1985" class="mim-tip-reference" title="Fiorilli, M., Antonelli, A., Russo, G., Crescenzi, M., Carbonari, M., Petrinelli, P. &lt;strong&gt;Variant of ataxia-telangiectasia with low-level radiosensitivity.&lt;/strong&gt; Hum. Genet. 70: 274-277, 1985.">Fiorilli et al. (1985)</a>; <a href="#Ford1981" class="mim-tip-reference" title="Ford, M. D., Lavin, M. F. &lt;strong&gt;Ataxia telangiectasia: an anomaly in DNA replication after irradiation.&lt;/strong&gt; Nucleic Acids Res. 9: 1395-1404, 1981.">Ford and Lavin (1981)</a>; <a href="#Frais1979" class="mim-tip-reference" title="Frais, M. A. &lt;strong&gt;Gastric adenocarcinoma due to ataxia-telangiectasia (Louis-Bar syndrome).&lt;/strong&gt; J. Med. Genet. 16: 160-161, 1979.">Frais (1979)</a>; <a href="#Gatti1982" class="mim-tip-reference" title="Gatti, R. A., Bick, M., Tam, C. F., Medici, M. A., Oxelius, V.-A., Holland, M., Goldstein, A. L., Boder, E. &lt;strong&gt;Ataxia-telangiectasia: a multiparameter analysis of eight families.&lt;/strong&gt; Clin. Immun. Immunopath. 23: 501-516, 1982.">Gatti et al. (1982)</a>; <a href="#Hagberg1970" class="mim-tip-reference" title="Hagberg, A., Hansson, O., Liden, S., Nilsson, K. &lt;strong&gt;Familial ataxic diplegia with deficient cellular immunity: a new clinical entity.&lt;/strong&gt; Acta Paediat. Scand. 59: 545-550, 1970.">Hagberg et al. (1970)</a>; <a href="#Hansen1977" class="mim-tip-reference" title="Hansen, R. L., Marx, J. J., Ptacek, L. J., Roberts, R. C. &lt;strong&gt;Immunological studies on an aberrant form of ataxia-telangiectasia.&lt;/strong&gt; Am. J. Dis. Child. 131: 518-521, 1977.">Hansen et al. (1977)</a>; <a href="#Harnden1974" class="mim-tip-reference" title="Harnden, D. G. &lt;strong&gt;Ataxia-telangiectasia syndrome: cytogenetic and cancer aspects. In: German, J.: Chromosomes and Cancer.&lt;/strong&gt; New York: Wiley (pub.) 1974. Pp. 619-636.">Harnden (1974)</a>; <a href="#Hoar1976" class="mim-tip-reference" title="Hoar, D. I., Sargent, P. &lt;strong&gt;Chemical mutagen hypersensitivity in ataxia-telangiectasia.&lt;/strong&gt; Nature 261: 590-592, 1976.">Hoar and Sargent (1976)</a>; <a href="#Hodge1980" class="mim-tip-reference" title="Hodge, S. E., Berkel, A. I., Gatti, R. A., Boder, E., Spence, M. A. &lt;strong&gt;Ataxia-telangiectasia and xeroderma pigmentosum: no evidence of linkage to HLA.&lt;/strong&gt; Tissue Antigens 15: 313-317, 1980.">Hodge et al. (1980)</a>; <a href="#Huang1981" class="mim-tip-reference" title="Huang, P. C., Sheridan, R. B., III. &lt;strong&gt;Genetic and biochemical studies with ataxia telangiectasia.&lt;/strong&gt; Hum. Genet. 59: 1-9, 1981.">Huang
and Sheridan (1981)</a>; <a href="#Johnson1985" class="mim-tip-reference" title="Johnson, J. P., White, R. L., Gatti, R. A. &lt;strong&gt;Rearrangement of J(H) genes in a patient with ataxia telangiectasia, chromosome 14 translocation, and T-cell leukemia. (Abstract)&lt;/strong&gt; Am. J. Hum. Genet. 37: A100, 1985.">Johnson et al. (1985)</a>; <a href="#Korein1961" class="mim-tip-reference" title="Korein, J., Steinman, P. A., Senz, E. H. &lt;strong&gt;Ataxia-telangiectasia: report of a case and review of the literature.&lt;/strong&gt; Arch. Neurol. 4: 272-280, 1961.">Korein et al. (1961)</a>; <a href="#Krishna1979" class="mim-tip-reference" title="Krishna Kumar, G., Al Saadi, A., Yang, S. S., McCaughey, R. S. &lt;strong&gt;Ataxia-telangiectasia and hepatocellular carcinoma.&lt;/strong&gt; Am. J. Med. Sci. 278: 157-160, 1979.">Krishna Kumar et al. (1979)</a>; <a href="#Levin1971" class="mim-tip-reference" title="Levin, S., Perlov, S. &lt;strong&gt;Ataxia-telangiectasia in Israel, with observations on its relationship to malignant disease.&lt;/strong&gt; Isr. J. Med. Sci. 7: 1535-1541, 1971.">Levin and Perlov (1971)</a>; <a href="#Lisker1970" class="mim-tip-reference" title="Lisker, R., Cobo, A. &lt;strong&gt;Chromosome breakage in ataxia-telangiectasia. (Letter)&lt;/strong&gt; Lancet 295: 618 only, 1970. Note: Originally Volume I.">Lisker and Cobo
(1970)</a>; <a href="#Littlefield1981" class="mim-tip-reference" title="Littlefield, L. G., Colyer, S. P., Joiner, E. E., DuFrain, R. J., Frome, E., Cohen, M. M. &lt;strong&gt;Chromosomal radiation sensitivity in ataxia telangiectasia long-term lymphoblastoid cell lines.&lt;/strong&gt; Cytogenet. Cell Genet. 31: 203-213, 1981.">Littlefield et al. (1981)</a>; <a href="#McConville1990" class="mim-tip-reference" title="McConville, C. M., Woods, C. G., Farrall, M., Metcalfe, J. A., Taylor, A. M. R. &lt;strong&gt;Analysis of 7 polymorphic markers at chromosome 11q22-23 in 35 ataxia telangiectasia families; further evidence of linkage.&lt;/strong&gt; Hum. Genet. 85: 215-220, 1990.">McConville et al. (1990)</a>; <a href="#Oxelius1982" class="mim-tip-reference" title="Oxelius, V.-A., Berkel, A. I., Hanson, L. A. &lt;strong&gt;IgG2 deficiency in ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 306: 515-517, 1982.">Oxelius
et al. (1982)</a>; <a href="#Paterson1976" class="mim-tip-reference" title="Paterson, M. C., Smith, B. P., Lohman, P. H. M., Anderson, A. K., Fishman, L. &lt;strong&gt;Defective excision repair of gamma-ray-damaged DNA in human (ataxia-telangiectasia) fibroblasts.&lt;/strong&gt; Nature 260: 444-447, 1976.">Paterson et al. (1976)</a>; <a href="#Paterson1979" class="mim-tip-reference" title="Paterson, M. C., Smith, P. J. &lt;strong&gt;Ataxia telangiectasia: an inherited human disorder involving hypersensitivity to ionizing radiation and related DNA-damaging chemicals.&lt;/strong&gt; Annu. Rev. Genet. 13: 291-318, 1979.">Paterson and Smith (1979)</a>; <a href="#Peterson1989" class="mim-tip-reference" title="Peterson, R. D. A., Funkhouser, J. D. &lt;strong&gt;Speculations on ataxia-telangiectasia: defective regulation of the immunoglobulin gene superfamily.&lt;/strong&gt; Immun. Today 10: 313-315, 1989.">Peterson and Funkhouser (1989)</a>; <a href="#Peterson1964" class="mim-tip-reference" title="Peterson, R. D. A., Kelly, W. D., Good, R. A. &lt;strong&gt;Ataxia-telangiectasia: its association with a defective thymus, immunological-deficiency disease, and malignancy.&lt;/strong&gt; Lancet 283: 1189-1193, 1964. Note: Originally Volume I.">Peterson et al. (1964)</a>; <a href="#Rary1974" class="mim-tip-reference" title="Rary, J. M., Bender, M. A., Kelly, T. E. &lt;strong&gt;Cytogenetic studies of ataxia-telangiectasia. (Abstract)&lt;/strong&gt; Am. J. Hum. Genet. 26: 70, 1974.">Rary et al.
(1974)</a>; <a href="#Reye1960" class="mim-tip-reference" title="Reye, C., Mosman, N. S. W. &lt;strong&gt;Ataxia-telangiectasia.&lt;/strong&gt; Am. J. Dis. Child. 99: 238-247, 1960.">Reye and Mosman (1960)</a>; <a href="#Richkind1982" class="mim-tip-reference" title="Richkind, K. E., Boder, E., Teplitz, R. L. &lt;strong&gt;Fetal proteins in ataxia-telangiectasia.&lt;/strong&gt; JAMA 248: 1346-1347, 1982.">Richkind et al. (1982)</a>; <a href="#Schalch1970" class="mim-tip-reference" title="Schalch, D. S., McFarlin, D. E., Barlow, M. H. &lt;strong&gt;An unusual form of diabetes mellitus in ataxia-telangiectasia.&lt;/strong&gt; New Eng. J. Med. 282: 1396-1402, 1970.">Schalch et
al. (1970)</a>; <a href="#Scheres1980" class="mim-tip-reference" title="Scheres, J. M. J. C., Hustinx, T. W. J., Weemaes, C. M. R. &lt;strong&gt;Chromosome 7 in ataxia-telangiectasia.&lt;/strong&gt; J. Pediat. 97: 440-441, 1980.">Scheres et al. (1980)</a>; <a href="#Sedgwick1972" class="mim-tip-reference" title="Sedgwick, R. P., Boder, E. &lt;strong&gt;Ataxia-telangiectasia. In: Vinken, P. J.; Bruyn, G. W. (eds.): Handbook of Clinical Neurology. Vol. 14.&lt;/strong&gt; Amsterdam: North-Holland Publishing Co. (pub.) 1972. Pp. 267-339.">Sedgwick and Boder (1972)</a>; <a href="#Shultz1982" class="mim-tip-reference" title="Shultz, L. D., Sweet, H. O., Davisson, M. T., Coman, D. R. &lt;strong&gt;&#x27;Wasted,&#x27; a new mutant of the mouse with abnormalities characteristic of ataxia telangiectasia.&lt;/strong&gt; Nature 297: 402-404, 1982.">Shultz
et al. (1982)</a>; <a href="#Shuster1966" class="mim-tip-reference" title="Shuster, J., Hart, Z., Stimson, C. W., Brough, A. J., Poulik, M. D. &lt;strong&gt;Ataxia-telangiectasia with cerebellar tumor.&lt;/strong&gt; Pediatrics 37: 776-786, 1966.">Shuster et al. (1966)</a>; <a href="#Sourander1966" class="mim-tip-reference" title="Sourander, P., Bonnevier, J. O., Olsson, Y. &lt;strong&gt;A case of ataxia-telangiectasia with lesions in the spinal cord.&lt;/strong&gt; Acta Neurol. Scand. 42: 354-366, 1966.">Sourander et al. (1966)</a>; <a href="#Stern1988" class="mim-tip-reference" title="Stern, M.-H., Zhang, F., Thomas, G., Griscelli, C., Aurias, A. &lt;strong&gt;Molecular characterization of ataxia telangiectasia T cell clones. III. Mapping the 14q32.1 distal breakpoint.&lt;/strong&gt; Hum. Genet. 81: 18-22, 1988.">Stern
et al. (1988)</a>; <a href="#Sugimoto1982" class="mim-tip-reference" title="Sugimoto, T., Kidowaki, T., Sawada, T., Ohtsuka-Urano, T., Kusunoki, T. &lt;strong&gt;Ataxia-telangiectasia associated with non-T, non-B cell acute lymphocytic leukemia.&lt;/strong&gt; Acta Paediat. Scand. 71: 509-510, 1982.">Sugimoto et al. (1982)</a>; <a href="#Swift1976" class="mim-tip-reference" title="Swift, M. R., Sholman, L., Perry, M., Chase, C. &lt;strong&gt;Malignant neoplasms in the families of patients with ataxia-telangiectasia.&lt;/strong&gt; Cancer Res. 36: 209-215, 1976.">Swift et al. (1976)</a>; <a href="#Tadjoedin1965" class="mim-tip-reference" title="Tadjoedin, M. K., Fraser, F. C. &lt;strong&gt;Heredity of ataxia-telangiectasia (Louis-Bar syndrome).&lt;/strong&gt; Am. J. Dis. Child. 110: 64-68, 1965.">Tadjoedin
and Fraser (1965)</a>; <a href="#Taylor1975" class="mim-tip-reference" title="Taylor, A. M. R., Harnden, D. G., Arlett, C. F., Harcourt, S. A., Lehmann, A. R., Stevens, S., Bridges, B. A. &lt;strong&gt;Ataxia-telangiectasia: a human mutation with abnormal radiation sensitivity.&lt;/strong&gt; Nature 258: 427-429, 1975.">Taylor et al. (1975)</a>; <a href="#Taylor1976" class="mim-tip-reference" title="Taylor, A. M. R., Metcalfe, J. A., Oxford, J. M., Harnden, D. G. &lt;strong&gt;Is chromatid-type damage in ataxia-telangiectasia after irradiation at G(0) a consequence of defective repair?&lt;/strong&gt; Nature 260: 441-443, 1976.">Taylor et al. (1976)</a>; <a href="#Teplitz1978" class="mim-tip-reference" title="Teplitz, R. L. &lt;strong&gt;Ataxia-telangiectasia.&lt;/strong&gt; Arch. Neurol. 35: 553-554, 1978.">Teplitz (1978)</a>; <a href="#Toledano1980" class="mim-tip-reference" title="Toledano, S. R., Lange, B. J. &lt;strong&gt;Ataxia-telangiectasia and acute lymphoblastic leukemia.&lt;/strong&gt; Cancer 45: 1675-1678, 1980.">Toledano and Lange (1980)</a>; <a href="#Vincent1975" class="mim-tip-reference" title="Vincent, R. A., Jr., Sheridan, R. B., III, Huang, P. C. &lt;strong&gt;DNA strand breakage repair in ataxia-telangiectasia fibroblast-like cells.&lt;/strong&gt; Mutat. Res. 33: 357-366, 1975.">Vincent et al. (1975)</a>; <a href="#Waldmann1983" class="mim-tip-reference" title="Waldmann, T. A., Misiti, J., Nelson, D. L., Kraemer, K. H. &lt;strong&gt;Ataxia-telangiectasia: a multisystem hereditary disease with immunodeficiency, impaired organ maturation, x-ray hypersensitivity, and a high incidence of neoplasia.&lt;/strong&gt; Ann. Intern. Med. 99: 367-379, 1983.">Waldmann et al. (1983)</a>; <a href="#Watanabe1977" class="mim-tip-reference" title="Watanabe, A., Hanazono, H., Sogawa, H., Takaya, H. &lt;strong&gt;Stomach cancer in a 14-year-old-boy with ataxia-telangiectasia.&lt;/strong&gt; Tohoku J. Exp. Med. 121: 127-131, 1977.">Watanabe et al. (1977)</a>; <a href="#Weinstein1985" class="mim-tip-reference" title="Weinstein, S., Scottolini, A. G., Loo, S. Y. T., Caldwell, P. C., Bhagavan, N. V. &lt;strong&gt;Ataxia telangiectasia with hepatocellular carcinoma in a 15-year-old girl and studies of her kindred.&lt;/strong&gt; Arch. Path. Lab. Med. 109: 1000-1004, 1985.">Weinstein et al.
(1985)</a>; <a href="#Yount1982" class="mim-tip-reference" title="Yount, W. J. &lt;strong&gt;IgG2 deficiency and ataxia-telangiectasia. (Editorial)&lt;/strong&gt; New Eng. J. Med. 306: 541-543, 1982.">Yount (1982)</a>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Al Saadi1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Al Saadi, A., Palutke, M., Krishna Kumar, G.
<strong>Evolution of chromosomal abnormalities in sequential cytogenetic studies of ataxia telangiectasia.</strong>
Hum. Genet. 55: 23-29, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7450753/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7450753</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7450753" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00329122" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Ammann1969" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ammann, A. J., Cain, W. A., Ishizaka, K., Hong, R., Good, R. A.
<strong>Immunoglobulin E deficiency in ataxia-telangiectasia.</strong>
New Eng. J. Med. 281: 469-472, 1969.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4183711/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4183711</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4183711" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM196908282810904" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Amromin1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Amromin, G. D., Boder, E., Teplitz, R.
<strong>Ataxia-telangiectasia with a 32-year survival: a clinicopathological report.</strong>
J. Neuropath. Exp. Neurol. 38: 621-643, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/533861/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">533861</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=533861" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/00005072-197911000-00007" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Anheim2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Anheim, M., Fleury, M., Monga, B., Laugel, V., Chaigne, D., Rodier, G., Ginglinger, E., Boulay, C., Courtois, S., Drouot, N., Fritsch, M., Delaunoy, J. P., Stoppa-Lyonnet, D., Tranchant, C., Koenig, M.
<strong>Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management.</strong>
Neurogenetics 11: 1-12, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19440741/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19440741</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19440741" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s10048-009-0196-y" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Athma1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Athma, P., Rappaport, R., Swift, M.
<strong>Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer.</strong>
Cancer Genet. Cytogenet. 92: 130-134, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8976369/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8976369</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8976369" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0165-4608(96)00328-7" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Aurias1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aurias, A., Croquette, M. F., Nuyts, J. P., Griscelli, C., Dutrillaux, B.
<strong>New data on clonal anomalies of chromosome 14 in ataxia telangiectasia: tct(14;14) and inv(14).</strong>
Hum. Genet. 72: 22-24, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3943860/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3943860</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3943860" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00278811" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Aurias1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aurias, A., Dutrillaux, B., Buriot, D., Lejeune, J.
<strong>High frequencies of inversions and translocations of chromosomes 7 and 14 in ataxia-telangiectasia.</strong>
Mutat. Res. 69: 369-374, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7360152/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7360152</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7360152" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0027-5107(80)90101-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Aurias1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aurias, A., Dutrillaux, B., Griscelli, C.
<strong>Tandem translocation t(14;14) in isolated and clonal cells in ataxia telangiectasia are different.</strong>
Hum. Genet. 63: 320-322, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6862436/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6862436</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6862436" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00274754" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Aurias1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aurias, A., Dutrillaux, B.
<strong>A possible new type of chromosome rearrangement: telomere-centromere translocation (tct) followed by double duplication.</strong>
Hum. Genet. 72: 25-26, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3943861/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3943861</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3943861" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00278812" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Aurias1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aurias, A., Dutrillaux, B.
<strong>Probable involvement of immunoglobulin superfamily genes in most recurrent chromosomal rearrangements from ataxia telangiectasia.</strong>
Hum. Genet. 72: 210-214, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3456975/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3456975</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3456975" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00291879" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Bar1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bar, R. S., Levis, W. R., Rechler, M. M., Harrison, L. C., Siebert, C., Podskalny, J., Roth, J., Muggeo, M.
<strong>Extreme insulin resistance in ataxia telangiectasia: defect in affinity of insulin receptors.</strong>
New Eng. J. Med. 298: 1164-1171, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/651946/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">651946</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=651946" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM197805252982103" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Barlow1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Barlow, C., Dennery, P. A., Shigenaga, M. K., Smith, M. A., Morrow, J. D., Roberts, L. J., II, Wynshaw-Boris, A., Levine, R. L.
<strong>Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs.</strong>
Proc. Nat. Acad. Sci. 96: 9915-9919, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10449794/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10449794</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=10449794[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10449794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.96.17.9915" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Barlow1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Barlow, C., Eckhaus, M. A., Schaffer, A. A., Wynshaw-Boris, A.
<strong>Atm haploinsufficiency results in increased sensitivity to sublethal doses of ionizing radiation in mice.</strong>
Nature Genet. 21: 359-360, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10192382/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10192382</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10192382" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/7684" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Barlow1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Barlow, C., Hirotsune, S., Paylor, R., Liyanage, M., Eckhaus, M., Collins, F., Shiloh, Y., Crawley, J. N., Ried, T., Tagle, D., Wynshaw-Boris, A.
<strong>Atm-deficient mice: a paradigm of ataxia telangiectasia.</strong>
Cell 86: 159-171, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8689683/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8689683</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8689683" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)80086-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Bay1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bay, J.-O., Uhrhammer, N., Pernin, D., Presneau, N., Tchirkov, A., Vuillaume, M., Laplace, V., Grancho, M., Verrelle, P., Hall, J., Bignon, Y.-J.
<strong>High incidence of cancer in a family segregating a mutation of the ATM gene: possible role of ATM heterozygosity in cancer.</strong>
Hum. Mutat. 14: 485-492, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10571946/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10571946</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10571946" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/(SICI)1098-1004(199912)14:6&lt;485::AID-HUMU7&gt;3.0.CO;2-T" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Becker1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Becker, Y., Tabor, E., Asher, Y.
<strong>Ataxia-telangiectasia fibroblasts have less fibronectin mRNA than control cells but have the same levels of integrin and beta-actin mRNA.</strong>
Hum. Genet. 81: 165-170, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2783578/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2783578</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2783578" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00293895" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Bender1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bender, M. A., Rary, J. M., Kale, R. P.
<strong>G(0) chromosomal radiosensitivity in ataxia telangiectasia lymphocytes.</strong>
Mutat. Res. 150: 277-282, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4000160/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4000160</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4000160" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0027-5107(85)90123-x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Bender1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bender, M. A., Rary, J. M., Kale, R. P.
<strong>G(2) chromosomal radiosensitivity in ataxia telangiectasia lymphocytes.</strong>
Mutat. Res. 152: 39-47, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4047083/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4047083</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4047083" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0027-5107(85)90044-2" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Bernstein1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bernstein, R., Pinto, M., Jenkins, T.
<strong>Ataxia telangiectasia with evolution of monosomy 14 and emergence of Hodgkin's disease.</strong>
Cancer Genet. Cytogenet. 4: 31-37, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7284988/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7284988</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7284988" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0165-4608(81)90005-4" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Bigbee1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bigbee, W. L., Langlois, R. G., Swift, M., Jensen, R. H.
<strong>Evidence for an elevated frequency of in vivo somatic cell mutations in ataxia telangiectasia.</strong>
Am. J. Hum. Genet. 44: 402-408, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2916583/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2916583</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2916583" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Bishop1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bishop, D. T., Hopper, J.
<strong>AT-tributable risks?</strong>
Nature Genet. 15: 226 only, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9054927/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9054927</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9054927" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng0397-226" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Bochkov1974" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bochkov, N. P., Lopukhin, Y. M., Kuleshov, N. P., Kovalchuk, L. V.
<strong>Cytogenetic study of patients with ataxia-telangiectasia.</strong>
Humangenetik 24: 115-128, 1974.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4430492/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4430492</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4430492" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00283768" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Boder1958" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Boder, E., Sedgwick, R. P.
<strong>Ataxia-telangiectasia: a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection.</strong>
Pediatrics 21: 526-554, 1958.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/13542097/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">13542097</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=13542097" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Boder1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Boder, E.
<strong>Ataxia-telangiectasia: some historic, clinical and pathologic observations. In: Bergsma, D. (ed.): Immunodeficiency in Man and Animals.</strong>
New York: National Foundation-March of Dimes (pub.) 1975. Pp. 255-300.
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Boder1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Boder, E.
<strong>Ataxia-telangiectasia: an overview. In: Gatti, R. A.; Swift, M.: Ataxia-telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood.</strong>
New York: Alan R. Liss (pub.) 1985. Pp. 1-63.
</p>
</div>
</li>
<li>
<a id="26" class="mim-anchor"></a>
<a id="Bridges1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bridges, B. A., Arlett, C. F.
<strong>Risk of breast cancer in ataxia-telangiectasia. (Letter)</strong>
New Eng. J. Med. 326: 1357-1361, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1304718/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1304718</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1304718" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM199205143262011" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="27" class="mim-anchor"></a>
<a id="Bridges1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bridges, B. A., Harnden, D. G.
<strong>Ataxia-telangiectasia: A Cellular and Molecular Link between Cancer, Neuropathology, and Immune Deficiency.</strong>
New York: John Wiley (pub.) 1982.
</p>
</div>
</li>
<li>
<a id="28" class="mim-anchor"></a>
<a id="Broeks2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Broeks, A., Urbanus, J. H. M., Floore, A. N., Dahler, E. C., Klijn, J. G. M., Rutgers, E. J. Th., Devilee, P., Russell, N. S., van Leeuwen, F. E., van't Veer, L. J.
<strong>ATM-heterozygous germline mutations contribute to breast cancer-susceptibility.</strong>
Am. J. Hum. Genet. 66: 494-500, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10677309/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10677309</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10677309" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/302746" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="29" class="mim-anchor"></a>
<a id="Brown1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Brown, K. D., Barlow, C., Wynshaw-Boris, A.
<strong>Multiple ATM-dependent pathways: an explanation for pleiotropy. (Editorial)</strong>
Am. J. Hum. Genet. 64: 46-50, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9915942/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9915942</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9915942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/302223" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="30" class="mim-anchor"></a>
<a id="Buzin2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Buzin, C. H., Gatti, R. A., Nguyen, V. Q., Wen, C. Y., Mitui, M., Sanal, O., Chen, J. S., Nozari, G., Mengos, A., Li, X., Fujimura, F., Sommer, S. S.
<strong>Comprehensive scanning of the ATM gene with DOVAM-S.</strong>
Hum. Mutat. 21: 123-131, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12552559/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12552559</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12552559" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/humu.10158" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="31" class="mim-anchor"></a>
<a id="Byrne1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Byrne, E., Hallpike, J. F., Manson, J. F., Sutherland, G. R., Thong, Y. H.
<strong>Ataxia-without-telangiectasia: progressive multisystem degeneration with IgE deficiency and chromosome instability.</strong>
J. Neurol. Sci. 66: 307-317, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6597863/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6597863</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6597863" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0022-510x(84)90019-4" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="32" class="mim-anchor"></a>
<a id="Campbell2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Campbell, C., Mitui, M., Eng, L., Coutinho, G., Thorstenson, Y., Gatti, R. A.
<strong>ATM mutations on distinct SNP and STR haplotypes in ataxia-telangiectasia patients of differing ethnicities reveal ancestral founder effects.</strong>
Hum. Mutat. 21: 80-85, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12497634/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12497634</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12497634" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/humu.10156" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="33" class="mim-anchor"></a>
<a id="Carbonari1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Carbonari, M., Cherchi, M., Paganelli, R., Giannini, G., Galli, E., Gaetano, C., Papetti, C., Fiorilli, M.
<strong>Relative increase of T cells expressing the gamma/delta rather than the alpha/beta receptor in ataxia-telangiectasia.</strong>
New Eng. J. Med. 322: 73-76, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2136770/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2136770</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2136770" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM199001113220201" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="34" class="mim-anchor"></a>
<a id="Castellvi-Bel1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Castellvi-Bel, S., Sheikhavandi, S., Telatar, M., Tai, L.-Q., Hwang, M., Wang, Z., Yang, Z., Cheng, R., Gatti, R. A.
<strong>New mutations, polymorphisms, and rare variants in the ATM gene detected by a novel SSCP strategy.</strong>
Hum. Mutat. 14: 156-162, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10425038/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10425038</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10425038" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/(SICI)1098-1004(1999)14:2&lt;156::AID-HUMU7&gt;3.0.CO;2-E" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="35" class="mim-anchor"></a>
<a id="Chen1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Chen, P., Imray, F. P., Kidson, C.
<strong>Gene dosage and complementation analysis of ataxia telangiectasia lymphoblastoid cell lines assayed by induced chromosome aberrations.</strong>
Mutat. Res. 129: 165-172, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6504056/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6504056</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6504056" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0027-5107(84)90149-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="36" class="mim-anchor"></a>
<a id="Cohen1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cohen, M. M., Sagi, M., Ben-Zur, Z., Schaap, T., Voss, R., Kohn, G., Ben-Bassat, H.
<strong>Ataxia telangiectasia: chromosomal stability in continuous lymphoblastoid cell lines.</strong>
Cytogenet. Cell Genet. 23: 44-52, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/761484/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">761484</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=761484" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1159/000131301" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="37" class="mim-anchor"></a>
<a id="Cohen1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cohen, M. M., Shaham, M., Dagan, J., Shmueli, E., Kohn, G.
<strong>Cytogenetic investigations in families with ataxia-telangiectasia.</strong>
Cytogenet. Cell Genet. 15: 338-356, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1222588/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1222588</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1222588" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1159/000130530" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="38" class="mim-anchor"></a>
<a id="Concannon1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Concannon, P., Gatti, R. A.
<strong>Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia.</strong>
Hum. Mutat. 10: 100-107, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9259193/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9259193</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9259193" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/(SICI)1098-1004(1997)10:2&lt;100::AID-HUMU2&gt;3.0.CO;2-O" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="39" class="mim-anchor"></a>
<a id="Concannon1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Concannon, P., Malhotra, U., Charmley, P., Reynolds, J., Lange, K., Gatti, R. A.
<strong>The ataxia-telangiectasia gene (ATA) on chromosome 11 is distinct from the ETS-1 gene.</strong>
Am. J. Hum. Genet. 46: 789-794, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1969227/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1969227</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1969227" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="40" class="mim-anchor"></a>
<a id="Cooper1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cooper, D. N., Youssoufian, H.
<strong>The CpG dinucleotide and human genetic disease.</strong>
Hum. Genet. 78: 151-155, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3338800/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3338800</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3338800" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00278187" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="41" class="mim-anchor"></a>
<a id="Cornforth1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cornforth, M. N., Bedford, J. S.
<strong>On the nature of a defect in cells from individuals with ataxia-telangiectasia.</strong>
Science 227: 1589-1591, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3975628/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3975628</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3975628" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.3975628" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="42" class="mim-anchor"></a>
<a id="Cox1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cox, R., Hosking, G. P., Wilson, J.
<strong>Ataxia telangiectasia: evaluation of radiosensitivity in cultured skin fibroblasts as a diagnostic test.</strong>
Arch. Dis. Child. 53: 386-390, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/666352/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">666352</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=666352" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/adc.53.5.386" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="43" class="mim-anchor"></a>
<a id="Croce1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Croce, C. M., Isobe, M., Palumbo, A., Puck, J., Ming, J., Tweardy, D., Erikson, J., Davis, M., Rovera, G.
<strong>Gene for alpha-chain of human T-cell receptor: location on chromosome 14 region involved in T-cell neoplasms.</strong>
Science 227: 1044-1047, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3919442/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3919442</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3919442" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.3919442" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="44" class="mim-anchor"></a>
<a id="Curry1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Curry, C. J. R., O'Lague, P., Tsai, J., Hutchison, H. T., Jaspers, N. G. J., Wara, D., Gatti, R. A.
<strong>AT-Fresno: a phenotype linking ataxia-telangiectasia with the Nijmegen breakage syndrome.</strong>
Am. J. Hum. Genet. 45: 270-275, 1989. Note: Erratum: Am. J. Hum. Genet. 45: 663 only, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2491181/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2491181</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2491181" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="45" class="mim-anchor"></a>
<a id="De Leon1976" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
De Leon, G. A., Grover, W. D., Huff, D. S.
<strong>Neuropathologic changes in ataxia-telangiectasia.</strong>
Neurology 26: 947-951, 1976.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/986586/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">986586</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=986586" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/wnl.26.10.947" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="46" class="mim-anchor"></a>
<a id="Easton1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Easton, D. F.
<strong>Cancer risks in A-T heterozygotes.</strong>
Int. J. Rad. Biol. 66: S177-S182, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7836845/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7836845</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7836845" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1080/09553009414552011" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="47" class="mim-anchor"></a>
<a id="Ejima1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ejima, Y., Oshimura, M., Sasaki, M. S.
<strong>Establishment of a novel immortalized cell line from ataxia-telangiectasia fibroblasts and its use for the chromosomal assignment of radiosensitivity gene.</strong>
Int. J. Radiat. Biol. 58: 989-997, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1978855/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1978855</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1978855" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1080/09553009014552301" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="48" class="mim-anchor"></a>
<a id="Ejima1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ejima, Y., Sasaki, M. S.
<strong>Mutations of the ATM gene detected in Japanese ataxia-telangiectasia patients: possible preponderance of the two founder mutations 4612del165 and 7883del5.</strong>
Hum. Genet. 102: 403-408, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9600235/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9600235</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9600235" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s004390050712" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="49" class="mim-anchor"></a>
<a id="Elson1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Elson, A., Wang, Y., Daugherty, C. J., Morton, C. C., Zhou, F., Campos-Torres, J., Leder, P.
<strong>Pleiotropic defects in ataxia-telangiectasia protein-deficient mice.</strong>
Proc. Nat. Acad. Sci. 93: 13084-13089, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8917548/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8917548</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=8917548[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8917548" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.93.23.13084" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="50" class="mim-anchor"></a>
<a id="Feigin1970" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Feigin, R. D., Vietti, T. J., Wyatt, R. G., Kaufman, D. G., Smith, C. H.
<strong>Ataxia telangiectasia with granulocytopenia.</strong>
J. Pediat. 77: 431-438, 1970.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4925908/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4925908</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4925908" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0022-3476(70)80011-7" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="51" class="mim-anchor"></a>
<a id="Fiorilli1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fiorilli, M., Antonelli, A., Russo, G., Crescenzi, M., Carbonari, M., Petrinelli, P.
<strong>Variant of ataxia-telangiectasia with low-level radiosensitivity.</strong>
Hum. Genet. 70: 274-277, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2410349/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2410349</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2410349" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00273456" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="52" class="mim-anchor"></a>
<a id="Fiorilli1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fiorilli, M., Businco, L., Pandolfi, F., Paganelli, R., Russo, G., Aiuti, F.
<strong>Heterogeneity of immunological abnormalities in ataxia-telangiectasia.</strong>
J. Clin. Immun. 3: 135-141, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6222062/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6222062</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6222062" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00915484" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="53" class="mim-anchor"></a>
<a id="FitzGerald1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
FitzGerald, M. G., Bean, J. M., Hedge, S. R., Unsal, H., MacDonald, D. J., Harkin, D. P., Finkelstein, D. M.
<strong>Isselbacher, K. J.; Haber, D. A.: Heterozygous ATM mutations do not contribute to early onset of breast cancer.</strong>
Nature Genet. 15: 307-310, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9054948/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9054948</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9054948" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng0397-307" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="54" class="mim-anchor"></a>
<a id="Ford1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ford, M. D., Lavin, M. F.
<strong>Ataxia telangiectasia: an anomaly in DNA replication after irradiation.</strong>
Nucleic Acids Res. 9: 1395-1404, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7232219/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7232219</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7232219" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/nar/9.6.1395" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="55" class="mim-anchor"></a>
<a id="Foroud1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Foroud, T., Wei, S., Ziv, Y., Sobel, E., Lange, E., Chao, A., Goradia, T., Huo, Y., Tolun, A., Chessa, L., Charmley, P., Sanal, O., Salman, N., Julier, C., Concannon, P., McConville, C., Taylor, A. M. R., Shiloh, Y., Lange, K., Gatti, R. A.
<strong>Localization of an ataxia-telangiectasia locus to a 3-cM interval on chromosome 11q23: linkage analysis of 111 families by an international consortium.</strong>
Am. J. Hum. Genet. 49: 1263-1279, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1746555/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1746555</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1746555" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="56" class="mim-anchor"></a>
<a id="Frais1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Frais, M. A.
<strong>Gastric adenocarcinoma due to ataxia-telangiectasia (Louis-Bar syndrome).</strong>
J. Med. Genet. 16: 160-161, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/458837/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">458837</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=458837" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.16.2.160" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="57" class="mim-anchor"></a>
<a id="Gatti1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gatti, R. A., Aurias, A., Griscelli, C., Sparkes, R. S.
<strong>Translocations involving chromosomes 2p and 22q in ataxia-telangiectasia.</strong>
Dis. Markers 3: 169-195, 1985.
</p>
</div>
</li>
<li>
<a id="58" class="mim-anchor"></a>
<a id="Gatti1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gatti, R. A., Berkel, I., Boder, E., Braedt, G., Charmley, P., Concannon, P., Ersoy, R., Foroud, T., Jaspers, N. G. J., Lange, K., Lathrop, G. M., Leppert, M., Nakamura, Y., O'Connell, P., Paterson, M., Salser, W., Sanal, O., Silver, J., Sparkes, R. S., Susi, E., Weeks, D. E., Wei, S., White, R., Yoder, F.
<strong>Localization of an ataxia-telangiectasia gene to chromosome 11q22-23.</strong>
Nature 336: 577-580, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3200306/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3200306</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3200306" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/336577a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="59" class="mim-anchor"></a>
<a id="Gatti1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gatti, R. A., Bick, M., Tam, C. F., Medici, M. A., Oxelius, V.-A., Holland, M., Goldstein, A. L., Boder, E.
<strong>Ataxia-telangiectasia: a multiparameter analysis of eight families.</strong>
Clin. Immun. Immunopath. 23: 501-516, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6213343/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6213343</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6213343" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0090-1229(82)90134-9" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="60" class="mim-anchor"></a>
<a id="Gatti1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gatti, R. A., Boder, E., Vinters, H. V., Sparkes, R. S., Norman, A., Lange, K.
<strong>Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis.</strong>
Medicine 70: 99-117, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2005780/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2005780</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2005780" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="61" class="mim-anchor"></a>
<a id="Gatti1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gatti, R. A., Peterson, K. L., Novak, J., Chen, X., Yang-Chen, L., Liang, T., Lange, E., Lange, K.
<strong>Prenatal genotyping of ataxia-telangiectasia. (Letter)</strong>
Lancet 342: 376 only, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8101622/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8101622</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8101622" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0140-6736(93)91525-q" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="62" class="mim-anchor"></a>
<a id="Gatti1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gatti, R. A., Swift, M.
<strong>Ataxia-telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood.</strong>
New York: Alan R. Liss (pub.) 1985.
</p>
</div>
</li>
<li>
<a id="63" class="mim-anchor"></a>
<a id="Gatti1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gatti, R. A.
<strong>Personal Communication.</strong>
Los Angeles, Calif. 6/13/1989.
</p>
</div>
</li>
<li>
<a id="64" class="mim-anchor"></a>
<a id="Gatti1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gatti, R. A.
<strong>Personal Communication.</strong>
Los Angeles, Calif. 6/1990.
</p>
</div>
</li>
<li>
<a id="65" class="mim-anchor"></a>
<a id="Gilad1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gilad, S., Chessa, L., Khosravi, R., Russell, P., Galanty, Y., Piane, M., Gatti, R. A., Jorgensen, T. J., Shiloh, Y., Bar-Shira, A.
<strong>Genotype-phenotype relationships in ataxia-telangiectasia and variants.</strong>
Am. J. Hum. Genet. 62: 551-561, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9497252/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9497252</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9497252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/301755" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="66" class="mim-anchor"></a>
<a id="Ginter1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ginter, D. N., Tallapragada, R.
<strong>Ataxia-telangiectasia.</strong>
Birth Defects Orig. Art. Ser. XI(2): 408-409, 1975.
</p>
</div>
</li>
<li>
<a id="67" class="mim-anchor"></a>
<a id="Haerer1969" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Haerer, A. F., Jackson, J. F., Evers, C. G.
<strong>Ataxia-telangiectasia with gastric adenocarcinoma.</strong>
JAMA 210: 1884-1887, 1969.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4311128/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4311128</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4311128" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="68" class="mim-anchor"></a>
<a id="Hagberg1970" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hagberg, A., Hansson, O., Liden, S., Nilsson, K.
<strong>Familial ataxic diplegia with deficient cellular immunity: a new clinical entity.</strong>
Acta Paediat. Scand. 59: 545-550, 1970.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5455521/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5455521</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5455521" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1651-2227.1970.tb16806.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="69" class="mim-anchor"></a>
<a id="Hansen1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hansen, R. L., Marx, J. J., Ptacek, L. J., Roberts, R. C.
<strong>Immunological studies on an aberrant form of ataxia-telangiectasia.</strong>
Am. J. Dis. Child. 131: 518-521, 1977.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/857652/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">857652</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=857652" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/archpedi.1977.02120180032004" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="70" class="mim-anchor"></a>
<a id="Harnden1974" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Harnden, D. G.
<strong>Ataxia-telangiectasia syndrome: cytogenetic and cancer aspects. In: German, J.: Chromosomes and Cancer.</strong>
New York: Wiley (pub.) 1974. Pp. 619-636.
</p>
</div>
</li>
<li>
<a id="71" class="mim-anchor"></a>
<a id="Hartwell1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hartwell, L.
<strong>Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells.</strong>
Cell 71: 543-546, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1423612/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1423612</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1423612" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0092-8674(92)90586-2" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="72" class="mim-anchor"></a>
<a id="Hecht1966" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hecht, F., Koler, R. D., Rigas, D. A., Dahnke, G. S., Case, M. P., Tisdale, V., Miller, R. W.
<strong>Leukemia and lymphocytes in ataxia-telangiectasia. (Letter)</strong>
Lancet 288: 1193 only, 1966. Note: Originally Volume II.
</p>
</div>
</li>
<li>
<a id="73" class="mim-anchor"></a>
<a id="Henderson1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Henderson, L., Cole, H., Arlett, C., James, S. E., Cole, J., Lehmann, A., Rosenbloom, L., Redmond, T., Meller, S.
<strong>Diagnosis of ataxia-telangiectasia by T-lymphocyte cloning assay. (Letter)</strong>
Lancet 326: 1242 only, 1985. Note: Originally Volume II.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2866314/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2866314</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2866314" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0140-6736(85)90766-4" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="74" class="mim-anchor"></a>
<a id="Hernandez1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hernandez, D., McConville, C. M., Stacey, M., Woods, C. G., Brown, M. M., Shutt, P., Rysiecki, G., Taylor, A. M. R.
<strong>A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 11q22-23.</strong>
J. Med. Genet. 30: 135-140, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8445618/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8445618</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8445618" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.30.2.135" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="75" class="mim-anchor"></a>
<a id="Hiel2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hiel, J. A. P., van Engelen, B. G. M., Weemaes, C. M. R., Broeks, A., Verrips, A., ter Laak, H., Vingerhoets, H. M., van den Heuvel, L. P. W., Lammens, M., Gabreels, F. J. M., Last, J. I., Taylor, A. M. R.
<strong>Distal spinal muscular atrophy as a major feature in adult-onset ataxia telangiectasia.</strong>
Neurology 67: 346-349, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16864838/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16864838</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16864838" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/01.wnl.0000224878.22821.23" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="76" class="mim-anchor"></a>
<a id="Hoar1976" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hoar, D. I., Sargent, P.
<strong>Chemical mutagen hypersensitivity in ataxia-telangiectasia.</strong>
Nature 261: 590-592, 1976.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/180416/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">180416</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=180416" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/261590a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="77" class="mim-anchor"></a>
<a id="Hodge1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hodge, S. E., Berkel, A. I., Gatti, R. A., Boder, E., Spence, M. A.
<strong>Ataxia-telangiectasia and xeroderma pigmentosum: no evidence of linkage to HLA.</strong>
Tissue Antigens 15: 313-317, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7466773/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7466773</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7466773" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0039.1980.tb00922.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="78" class="mim-anchor"></a>
<a id="Huang1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Huang, P. C., Sheridan, R. B., III.
<strong>Genetic and biochemical studies with ataxia telangiectasia.</strong>
Hum. Genet. 59: 1-9, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10819014/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10819014</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10819014" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00278846" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="79" class="mim-anchor"></a>
<a id="Humphreys1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Humphreys, M. W., Nevin, N. C., Wooldridge, M. A. W.
<strong>Cytogenetic investigations in a family with ataxia telangiectasia.</strong>
Hum. Genet. 83: 79-82, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2767681/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2767681</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2767681" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00274154" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="80" class="mim-anchor"></a>
<a id="Iourov2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Iourov, I. Y., Vorsanova, S. G., Liehr, T., Kolotii, A. D., Yurov, Y. B.
<strong>Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain.</strong>
Hum. Molec. Genet. 18: 2656-2669, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19414482/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19414482</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19414482" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddp207" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="81" class="mim-anchor"></a>
<a id="Ishiguro1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ishiguro, T., Taketa, K., Gatti, R. A.
<strong>Tissue of origin of elevated alpha-fetoprotein in ataxia-telangiectasia.</strong>
Dis. Markers 4: 293-297, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2454778/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2454778</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2454778" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="82" class="mim-anchor"></a>
<a id="Jaspers1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jaspers, N. G. J., Bootsma, D.
<strong>Genetic heterogeneity in ataxia-telangiectasia studied by cell fusion.</strong>
Proc. Nat. Acad. Sci. 79: 2641-2644, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6953420/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6953420</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6953420" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.79.8.2641" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="83" class="mim-anchor"></a>
<a id="Jaspers1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jaspers, N. G. J., Gatti, R. A., Baan, C., Linssen, P. C. M. L., Bootsma, D.
<strong>Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients.</strong>
Cytogenet. Cell Genet. 49: 259-263, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3248383/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3248383</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3248383" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1159/000132673" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="84" class="mim-anchor"></a>
<a id="Jaspers1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jaspers, N. G. J., Painter, R. B., Paterson, M. C., Kidson, C., Inoue, T.
<strong>Complementation analysis of ataxia-telangiectasia. In: Gatti, R. A.; Swift, M.: Ataxia-telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood.</strong>
New York: Alan R. Liss (pub.) 1985. Pp. 147-162.
</p>
</div>
</li>
<li>
<a id="85" class="mim-anchor"></a>
<a id="Johnson1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Johnson, J. P., Gatti, R. A., Sears, T. S., White, R. L.
<strong>Inverted duplication of J(H) associated with chromosome 14 translocation and T-cell leukemia in ataxia-telangiectasia.</strong>
Am. J. Hum. Genet. 39: 787-796, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3026175/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3026175</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3026175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="86" class="mim-anchor"></a>
<a id="Johnson1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Johnson, J. P., White, R. L., Gatti, R. A.
<strong>Rearrangement of J(H) genes in a patient with ataxia telangiectasia, chromosome 14 translocation, and T-cell leukemia. (Abstract)</strong>
Am. J. Hum. Genet. 37: A100, 1985.
</p>
</div>
</li>
<li>
<a id="87" class="mim-anchor"></a>
<a id="Jung1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jung, M., Zhang, Y., Lee, S., Dritschilo, A.
<strong>Correction of radiation sensitivity in ataxia telangiectasia cells by a truncated I-kappa-B-alpha.</strong>
Science 268: 1619-1621, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7777860/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7777860</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7777860" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.7777860" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="88" class="mim-anchor"></a>
<a id="Kastan1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., Craig, R. W.
<strong>Participation of p53 protein in the cellular response to DNA damage.</strong>
Cancer Res. 51: 6304-6311, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1933891/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1933891</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1933891" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="89" class="mim-anchor"></a>
<a id="Kastan1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., Fornace, A. J., Jr.
<strong>A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.</strong>
Cell 71: 587-597, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1423616/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1423616</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1423616" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0092-8674(92)90593-2" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="90" class="mim-anchor"></a>
<a id="Kennaugh1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kennaugh, A. A., Butterworth, S. V., Hollis, R., Baer, R., Rabbitts, T. H., Taylor, A. M. R.
<strong>The chromosome breakpoint at 14q32 in an ataxia telangiectasia t(14;14) T cell clone is different from the 14q32 breakpoint in Burkitts and an inv(14) T cell lymphoma.</strong>
Hum. Genet. 73: 254-259, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3488254/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3488254</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3488254" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00401239" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="91" class="mim-anchor"></a>
<a id="Klein1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Klein, C., Wenning, G. K., Quinn, N. P., Marsden, C. D.
<strong>Ataxia without telangiectasia masquerading as benign hereditary chorea.</strong>
Mov. Disord. 11: 217-220, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8684395/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8684395</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8684395" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/mds.870110217" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="92" class="mim-anchor"></a>
<a id="Kojis1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kojis, T. L., Schreck, R. R., Gatti, R. A., Sparkes, R. S.
<strong>Tissue specificity of chromosomal rearrangements in ataxia-telangiectasia.</strong>
Hum. Genet. 83: 347-352, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2807275/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2807275</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2807275" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00291379" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="93" class="mim-anchor"></a>
<a id="Komatsu1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Komatsu, K., Kodama, S., Okumura, Y., Koi, M., Oshimura, M.
<strong>Restoration of radiation resistance in ataxia-telangiectasia cells by the introduction of normal human chromosome 11.</strong>
Mutat. Res. 235: 59-63, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2155385/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2155385</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2155385" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0921-8777(90)90058-d" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="94" class="mim-anchor"></a>
<a id="Komatsu1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Komatsu, K., Matsuura, S., Tauchi, H., Endo, S., Kodama, S., Smeets, D., Weemaes, C., Oshimura, M.
<strong>The gene for Nijmegen breakage syndrome (V2) is not located on chromosome 11. (Letter)</strong>
Am. J. Hum. Genet. 58: 885-888, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8644753/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8644753</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8644753" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="95" class="mim-anchor"></a>
<a id="Korein1961" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Korein, J., Steinman, P. A., Senz, E. H.
<strong>Ataxia-telangiectasia: report of a case and review of the literature.</strong>
Arch. Neurol. 4: 272-280, 1961.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/13753133/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">13753133</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=13753133" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/archneur.1961.00450090038006" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="96" class="mim-anchor"></a>
<a id="Krishna Kumar1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Krishna Kumar, G., Al Saadi, A., Yang, S. S., McCaughey, R. S.
<strong>Ataxia-telangiectasia and hepatocellular carcinoma.</strong>
Am. J. Med. Sci. 278: 157-160, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/92892/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">92892</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=92892" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/00000441-197909000-00008" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="97" class="mim-anchor"></a>
<a id="Laake2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Laake, K., Jansen, L., Hahnemann, J. M., Brondum-Nielsen, K., Lonnqvist, T., Kaariainen, H., Sankila, R., Lahdesmaki, A., Hammarstrom, L., Yuen, J., Tretli, S., Heiberg, A., Olsen, J. H., Tucker, M., Kleinerman, R., Borresen-Dale, A.-L.
<strong>Characterization of ATM mutations in 41 Nordic families with ataxia telangiectasia.</strong>
Hum. Mutat. 16: 232-246, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10980530/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10980530</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10980530" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/1098-1004(200009)16:3&lt;232::AID-HUMU6&gt;3.0.CO;2-L" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="98" class="mim-anchor"></a>
<a id="Lambert1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lambert, C., Schultz, R. A., Smith, M., Wagner-McPherson, C., McDaniel, L. D., Donlon, T., Stanbridge, E. J., Friedberg, E. C.
<strong>Functional complementation of ataxia-telangiectasia group D (AT-D) cells by microcell-mediated chromosome transfer and mapping of the AT-D locus to the region 11q22-23.</strong>
Proc. Nat. Acad. Sci. 88: 5907-5911, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2062869/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2062869</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2062869" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.88.13.5907" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="99" class="mim-anchor"></a>
<a id="Levin1971" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Levin, S., Perlov, S.
<strong>Ataxia-telangiectasia in Israel, with observations on its relationship to malignant disease.</strong>
Isr. J. Med. Sci. 7: 1535-1541, 1971.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5291441/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5291441</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5291441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="100" class="mim-anchor"></a>
<a id="Lipkowitz1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lipkowitz, S., Garry, V. F., Kirsch, I. R.
<strong>Interlocus V-J recombination measures genomic instability in agriculture workers at risk for lymphoid malignancies.</strong>
Proc. Nat. Acad. Sci. 89: 5301-5305, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1608939/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1608939</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1608939" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.89.12.5301" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="101" class="mim-anchor"></a>
<a id="Lipkowitz1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lipkowitz, S., Stern, M.-H., Kirsch, I. R.
<strong>Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasia lymphocytes.</strong>
J. Exp. Med. 172: 409-418, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1695665/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1695665</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1695665" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1084/jem.172.2.409" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="102" class="mim-anchor"></a>
<a id="Lisker1970" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lisker, R., Cobo, A.
<strong>Chromosome breakage in ataxia-telangiectasia. (Letter)</strong>
Lancet 295: 618 only, 1970. Note: Originally Volume I.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4190570/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4190570</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4190570" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0140-6736(70)91657-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="103" class="mim-anchor"></a>
<a id="Littlefield1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Littlefield, L. G., Colyer, S. P., Joiner, E. E., DuFrain, R. J., Frome, E., Cohen, M. M.
<strong>Chromosomal radiation sensitivity in ataxia telangiectasia long-term lymphoblastoid cell lines.</strong>
Cytogenet. Cell Genet. 31: 203-213, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6978798/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6978798</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6978798" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1159/000131650" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="104" class="mim-anchor"></a>
<a id="Llerena1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Llerena, J., Jr., Murer-Orlando, M., McGuire, M., Zahed, L., Sheridan, R. J., Berry, A. C., Bobrow, M.
<strong>Spontaneous and induced chromosome breakage in chorionic villus samples: a cytogenetic approach to first trimester prenatal diagnosis of ataxia telangiectasia syndrome.</strong>
J. Med. Genet. 26: 174-178, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2468772/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2468772</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2468772" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.26.3.174" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="105" class="mim-anchor"></a>
<a id="Maserati1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Maserati, E., Ottolini, A., Veggiotti, P., Lanzi, G., Pasquali, F.
<strong>Ataxia-without-telangiectasia in two sisters with rearrangements of chromosomes 7 and 14.</strong>
Clin. Genet. 34: 283-287, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3228996/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3228996</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3228996" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1988.tb02879.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="106" class="mim-anchor"></a>
<a id="McCaw1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
McCaw, B. K., Hecht, F., Harden, D. G., Teplitz, R. L.
<strong>Somatic rearrangement of chromosome 14 in human lymphocytes.</strong>
Proc. Nat. Acad. Sci. 72: 2071-2075, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1056013/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1056013</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1056013" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.72.6.2071" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="107" class="mim-anchor"></a>
<a id="McConville1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
McConville, C. M., Formstone, C. J., Hernandez, D., Thick, J., Taylor, A. M.
<strong>Fine mapping of the chromosome 11q22-23 region using PFGE, linkage and haplotype analysis; localization of the gene for ataxia telangiectasia to a 5cM region flanked by NCAM/DRD2 and STMY/CJ52.75, phi 2.22.</strong>
Nucleic Acids Res. 18: 4335-4343, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1975092/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1975092</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1975092" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/nar/18.15.4335" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="108" class="mim-anchor"></a>
<a id="McConville1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
McConville, C. M., Woods, C. G., Farrall, M., Metcalfe, J. A., Taylor, A. M. R.
<strong>Analysis of 7 polymorphic markers at chromosome 11q22-23 in 35 ataxia telangiectasia families; further evidence of linkage.</strong>
Hum. Genet. 85: 215-220, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2370052/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2370052</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2370052" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00193199" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="109" class="mim-anchor"></a>
<a id="McFarlin1972" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
McFarlin, D. E., Strober, W., Waldmann, T. A.
<strong>Ataxia-telangiectasia.</strong>
Medicine 51: 281-314, 1972.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5033506/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5033506</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5033506" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/00005792-197207000-00002" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="110" class="mim-anchor"></a>
<a id="McKusick1966" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
McKusick, V. A., Cross, H. E.
<strong>Ataxia-telangiectasia and Swiss-type agammaglobulinemia. Two genetic disorders of the immune mechanism in related Amish sibships.</strong>
JAMA 195: 739-745, 1966.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5951879/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5951879</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5951879" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/jama.195.9.739" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="111" class="mim-anchor"></a>
<a id="Meyn1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Meyn, M. S.
<strong>High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia.</strong>
Science 260: 1327-1330, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8493577/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8493577</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8493577" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.8493577" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="112" class="mim-anchor"></a>
<a id="Miller1967" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Miller, M. E., Chatten, J.
<strong>Ovarian changes in ataxia-telangiectasia.</strong>
Acta Paediat. Scand. 56: 559-561, 1967.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6050359/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6050359</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6050359" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1651-2227.1967.tb15424.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="113" class="mim-anchor"></a>
<a id="Mitui2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mitui, M., Bernatowska, E., Pietrucha, B., Piotrowska-Jastrzebska, J., Eng, L., Nahas, S., Teraoka, S., Sholty, G., Purayidom, A., Concannon, P., Gatti, R. A.
<strong>ATM gene founder haplotypes and associated mutations in Polish families with ataxia-telangiectasia.</strong>
Ann. Hum. Genet. 69: 657-664, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16266405/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16266405</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16266405" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1529-8817.2005.00199.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="114" class="mim-anchor"></a>
<a id="Mohamed1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mohamed, R., Pal Singh, S., Kumar, S., Lavin, M. F.
<strong>A defect in DNA topoisomerase II activity in ataxia-telangiectasia cells.</strong>
Biochem. Biophys. Res. Commun. 149: 233-238, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2825700/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2825700</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2825700" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0006-291x(87)91629-9" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="115" class="mim-anchor"></a>
<a id="Morrell1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Morrell, D., Chase, C. L., Swift, M.
<strong>Cancers in 44 families with ataxia-telangiectasia.</strong>
Cancer Genet. Cytogenet. 50: 119-123, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2253179/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2253179</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2253179" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0165-4608(90)90245-6" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="116" class="mim-anchor"></a>
<a id="Murnane1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Murnane, J. P., Painter, R. B.
<strong>Complementation of the effects in DNA synthesis in irradiated and unirradiated ataxia-telangiectasia cells.</strong>
Proc. Nat. Acad. Sci. 79: 1960-1963, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6952246/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6952246</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6952246" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.79.6.1960" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="117" class="mim-anchor"></a>
<a id="Olsen2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Olsen, J. H., Hahnemann, J. M. D., Borresen-Dale, A.-L., Tretli, S., Kleinerman, R., Sankila, R., Hammarstrom, L., Robsahm, T. E., Kaariainen, H., Bregard, A., Brondum-Nielsen, K., Yuen, J., Tucker, M.
<strong>Breast and other cancers in 1445 blood relatives of 75 Nordic patients with ataxia telangiectasia.</strong>
Brit. J. Cancer 93: 260-265, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15942625/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15942625</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15942625" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.bjc.6602658" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="118" class="mim-anchor"></a>
<a id="Oxelius1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Oxelius, V.-A., Berkel, A. I., Hanson, L. A.
<strong>IgG2 deficiency in ataxia-telangiectasia.</strong>
New Eng. J. Med. 306: 515-517, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7057859/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7057859</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7057859" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM198203043060905" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="119" class="mim-anchor"></a>
<a id="Oxford1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Oxford, J. M., Harnden, D. G., Parrington, J. M., Delhanty, J. D. A.
<strong>Specific chromosome aberrations in ataxia-telangiectasia.</strong>
J. Med. Genet. 12: 251-262, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1177276/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1177276</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1177276" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.12.3.251" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="120" class="mim-anchor"></a>
<a id="Painter1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Painter, R. B., Cramer, P., Howard, R., Young, B. R.
<strong>Two forms of inhibition of DNA replicon initiation in human cells. In: Harris, C. C.; Cerutti, P. C.: Mechanisms of Chemical Carcinogenesis.</strong>
New York: Alan R. Liss (pub.) 1982. Pp. 383-386.
</p>
</div>
</li>
<li>
<a id="121" class="mim-anchor"></a>
<a id="Painter1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Painter, R. B., Young, B. R.
<strong>Radiosensitivity in ataxia-telangiectasia: a new explanation.</strong>
Proc. Nat. Acad. Sci. 77: 7315-7317, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6938978/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6938978</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6938978" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.77.12.7315" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="122" class="mim-anchor"></a>
<a id="Paterson1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Paterson, M. C., Smith, B. P., Knight, P. A., Anderson, A. K.
<strong>Ataxia telangiectasia: an inherited human disease involving radiosensitivity, malignancy and defective DNA repair. In: Castellani, A. (ed.): Research in Photobiology.</strong>
New York: Plenum (pub.) 1977. Pp. 207-218.
</p>
</div>
</li>
<li>
<a id="123" class="mim-anchor"></a>
<a id="Paterson1976" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Paterson, M. C., Smith, B. P., Lohman, P. H. M., Anderson, A. K., Fishman, L.
<strong>Defective excision repair of gamma-ray-damaged DNA in human (ataxia-telangiectasia) fibroblasts.</strong>
Nature 260: 444-447, 1976.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1256588/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1256588</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1256588" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/260444a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="124" class="mim-anchor"></a>
<a id="Paterson1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Paterson, M. C., Smith, P. J.
<strong>Ataxia telangiectasia: an inherited human disorder involving hypersensitivity to ionizing radiation and related DNA-damaging chemicals.</strong>
Annu. Rev. Genet. 13: 291-318, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/395894/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">395894</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=395894" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1146/annurev.ge.13.120179.001451" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="125" class="mim-anchor"></a>
<a id="Peterson1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Peterson, R. D. A., Funkhouser, J. D.
<strong>Speculations on ataxia-telangiectasia: defective regulation of the immunoglobulin gene superfamily.</strong>
Immun. Today 10: 313-315, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2686680/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2686680</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2686680" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0167-5699(89)90087-X" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="126" class="mim-anchor"></a>
<a id="Peterson1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Peterson, R. D. A., Funkhouser, J. D.
<strong>Ataxia-telangiectasia: an important clue. (Editorial)</strong>
New Eng. J. Med. 322: 124-125, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2136769/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2136769</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2136769" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM199001113220209" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="127" class="mim-anchor"></a>
<a id="Peterson1964" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Peterson, R. D. A., Kelly, W. D., Good, R. A.
<strong>Ataxia-telangiectasia: its association with a defective thymus, immunological-deficiency disease, and malignancy.</strong>
Lancet 283: 1189-1193, 1964. Note: Originally Volume I.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14132657/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14132657</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14132657" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0140-6736(64)91209-7" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="128" class="mim-anchor"></a>
<a id="Pippard1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pippard, E. C., Hall, A. J., Barker, D. J. P., Bridges, B. A.
<strong>Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain.</strong>
Cancer Res. 48: 2929-2932, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3359449/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3359449</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3359449" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="129" class="mim-anchor"></a>
<a id="Rary1974" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rary, J. M., Bender, M. A., Kelly, T. E.
<strong>Cytogenetic studies of ataxia-telangiectasia. (Abstract)</strong>
Am. J. Hum. Genet. 26: 70, 1974.
</p>
</div>
</li>
<li>
<a id="130" class="mim-anchor"></a>
<a id="Rary1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rary, J. M., Bender, M. A., Kelly, T. E.
<strong>A 14/14 marker chromosome lymphocyte clone in ataxia telangiectasis.</strong>
J. Hered. 66: 33-35, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1141685/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1141685</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1141685" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/oxfordjournals.jhered.a108569" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="131" class="mim-anchor"></a>
<a id="Renwick2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Renwick, A., Thompson, D., Seal, S., Kelly, P., Chagtai, T., Ahmed, M., North, B., Jayatilake, H., Barfoot, R., Spanova, K., McGuffog, L., Evans, D. G., Eccles, D., The Breast Cancer Susceptibility Collaboration (UK), Easton, D. F., Stratton, M. R., Rahman, N.
<strong>ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles.</strong>
Nature Genet. 38: 873-875, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16832357/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16832357</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16832357" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng1837" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="132" class="mim-anchor"></a>
<a id="Reye1960" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Reye, C., Mosman, N. S. W.
<strong>Ataxia-telangiectasia.</strong>
Am. J. Dis. Child. 99: 238-247, 1960.
</p>
</div>
</li>
<li>
<a id="133" class="mim-anchor"></a>
<a id="Richkind1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Richkind, K. E., Boder, E., Teplitz, R. L.
<strong>Fetal proteins in ataxia-telangiectasia.</strong>
JAMA 248: 1346-1347, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6180190/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6180190</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6180190" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="134" class="mim-anchor"></a>
<a id="Rosen1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rosen, F. S., Harris, N. L.
<strong>Case records of the Massachusetts General Hospital: a 30-year-old man with ataxia-telangiectasia and dysphagia.</strong>
New Eng. J. Med. 316: 91-100, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3785360/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3785360</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3785360" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM198701083160206" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="135" class="mim-anchor"></a>
<a id="Rosin1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rosin, M. P., Ochs, H. D., Gatti, R. A., Boder, E.
<strong>Heterogeneity of chromosomal breakage levels in epithelial tissue of ataxia-telangiectasia homozygotes and heterozygotes.</strong>
Hum. Genet. 83: 133-138, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2777252/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2777252</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2777252" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00286705" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="136" class="mim-anchor"></a>
<a id="Rosin1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rosin, M. P., Ochs, H. D.
<strong>In vivo chromosomal instability in ataxia-telangiectasia homozygotes and heterozygotes.</strong>
Hum. Genet. 74: 335-340, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3793095/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3793095</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3793095" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00280482" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="137" class="mim-anchor"></a>
<a id="Russo1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Russo, G., Isobe, M., Gatti, R., Finan, J., Batuman, O., Huebner, K., Nowell, P. C., Croce, C. M.
<strong>Molecular analysis of a t(14;14) translocation in leukemic T-cells of an ataxia telangiectasia patient.</strong>
Proc. Nat. Acad. Sci. 86: 602-606, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2783489/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2783489</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2783489" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.86.2.602" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="138" class="mim-anchor"></a>
<a id="Sanal1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sanal, O., Lange, E., Telatar, M., Sobel, E., Salazar-Novak, J., Ersoy, F., Morrison, A., Concannon, P., Tolun, A., Gatti, R. A.
<strong>Ataxia-telangiectasia: linkage analysis of chromosome 11q22-23 markers in Turkish families.</strong>
FASEB J. 6: 2848-2852, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1634048/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1634048</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1634048" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1096/fasebj.6.10.1634048" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="139" class="mim-anchor"></a>
<a id="Sanal1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sanal, O., Wei, S., Foroud, T., Malhotra, U., Concannon, P., Charmley, P., Salser, W., Lange, K., Gatti, R. A.
<strong>Further mapping of an ataxia-telangiectasia locus to the chromosome 11q23 region.</strong>
Am. J. Hum. Genet. 47: 860-866, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2220826/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2220826</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2220826" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="140" class="mim-anchor"></a>
<a id="Sandoval1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sandoval, N., Platzer, M., Rosenthal, A., Dork, T., Bendix, R., Skawran, B., Stuhrmann, M., Wegner, R.-D., Sperling, K., Banin, S., Shiloh, Y., Baumer, A., Bernthaler, U., Sennefelder, H., Brohm, M., Weber, B. H. F., Schindler, D.
<strong>Characterization of ATM gene mutations in 66 ataxia telangiectasia families.</strong>
Hum. Molec. Genet. 8: 69-79, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9887333/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9887333</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9887333" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/8.1.69" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="141" class="mim-anchor"></a>
<a id="Sasaki1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sasaki, T., Tian, H., Kukita, Y., Inazuka, M., Tahira, T., Imai, T., Yamauchi, M., Saito, T., Hori, T., Hashimoto-Tamaoki, T., Komatsu, K., Nikaido, O., Hayashi, K.
<strong>ATM mutations in patients with ataxia telangiectasia screened by a hierarchical strategy.</strong>
Hum. Mutat. 12: 186-195, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9711876/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9711876</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9711876" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/(SICI)1098-1004(1998)12:3&lt;186::AID-HUMU6&gt;3.0.CO;2-F" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="142" class="mim-anchor"></a>
<a id="Saunders-Pullman2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Saunders-Pullman, R., Raymond, D., Stoessl, A. J., Hobson, D., Nakamura, K., Pullman, S., Lefton, D., Okun, M. S., Uitti, R., Sachdev, R., Stanley, K., San Luciano, M., Hagenah, J., Gatti, R., Ozelius, L. J., Bressman, S. B.
<strong>Variant ataxia-telangiectasia presenting as primary-appearing dystonia in Canadian Mennonites.</strong>
Neurology 78: 649-657, 2012. Note: Erratum: Neurology 78: 1029 only, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22345219/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22345219</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22345219[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22345219" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/WNL.0b013e3182494d51" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="143" class="mim-anchor"></a>
<a id="Saviozzi2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Saviozzi, S., Saluto, A., Taylor, A. M. R., Last, J. I. L., Trebini, F., Paradiso, M. C., Grosso, E., Funaro, A., Ponzio, G., Migone, N., Brusco, A.
<strong>A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA.</strong>
J. Med. Genet. 39: 57-61, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11826028/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11826028</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11826028" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.39.1.57" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="144" class="mim-anchor"></a>
<a id="Savitsky1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D. A., Smith, S., Uziel, T., Sfez, S., Ashkenazi, M., Pecker, I., and 18 others.
<strong>A single ataxia telangiectasia gene with a product similar to PI-3 kinase.</strong>
Science 268: 1749-1753, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7792600/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7792600</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7792600" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.7792600" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="145" class="mim-anchor"></a>
<a id="Saxon1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Saxon, A., Stevens, R. H., Golde, D. W.
<strong>Helper and suppressor T-lymphocyte leukemia in ataxia-telangiectasia.</strong>
New Eng. J. Med. 300: 700-704, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/310962/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">310962</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=310962" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM197903293001303" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="146" class="mim-anchor"></a>
<a id="Schalch1970" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Schalch, D. S., McFarlin, D. E., Barlow, M. H.
<strong>An unusual form of diabetes mellitus in ataxia-telangiectasia.</strong>
New Eng. J. Med. 282: 1396-1402, 1970.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4192270/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4192270</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4192270" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM197006182822503" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="147" class="mim-anchor"></a>
<a id="Scheres1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Scheres, J. M. J. C., Hustinx, T. W. J., Weemaes, C. M. R.
<strong>Chromosome 7 in ataxia-telangiectasia.</strong>
J. Pediat. 97: 440-441, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7411307/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7411307</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7411307" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0022-3476(80)80200-9" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="148" class="mim-anchor"></a>
<a id="Schon2019" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Schon, K., van Os, N. J. H., Oscroft, N., Baxendale, H., Scoffings, D., Ray, J., Suri, M., Whitehouse, W. P., Mehta, P. R., Everett, N., Bottolo, L., van de Warrenburg, B. P., Byrd, P. J., Weemaes, C., Willemsen, M. A., Tishkowitz, M., Taylor, A. M., Hensiek, A. E.
<strong>Genotype, extrapyramidal features, and severity of variant ataxia-telangiectasia.</strong>
Ann. Neurol. 85: 170-180, 2019.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/30549301/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">30549301</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=30549301[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30549301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ana.25394" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="149" class="mim-anchor"></a>
<a id="Sedgwick1972" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sedgwick, R. P., Boder, E.
<strong>Ataxia-telangiectasia. In: Vinken, P. J.; Bruyn, G. W. (eds.): Handbook of Clinical Neurology. Vol. 14.</strong>
Amsterdam: North-Holland Publishing Co. (pub.) 1972. Pp. 267-339.
</p>
</div>
</li>
<li>
<a id="150" class="mim-anchor"></a>
<a id="Shackelford2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shackelford, R. E., Innes, C. L., Sieber, S. O., Heinloth, A. N., Leadon, S. A., Paules, R. S.
<strong>The ataxia telangiectasia gene product is required for oxidative stress-induced G1 and G2 checkpoint function in human fibroblasts.</strong>
J. Biol. Chem. 276: 21951-21959, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11290740/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11290740</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11290740" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1074/jbc.M011303200" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="151" class="mim-anchor"></a>
<a id="Shaham1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shaham, M., Becker, Y.
<strong>The ataxia telangiectasia clastogenic factor is a low molecular weight peptide.</strong>
Hum. Genet. 58: 422-424, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7327565/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7327565</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7327565" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00282828" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="152" class="mim-anchor"></a>
<a id="Shiloh1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shiloh, Y., Parshad, R., Frydman, M., Sanford, K. K., Portnoi, S., Ziv, Y., Jones, G. M.
<strong>G(2) chromosomal radiosensitivity in families with ataxia-telangiectasia.</strong>
Hum. Genet. 84: 15-18, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2606472/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2606472</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2606472" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00210663" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="153" class="mim-anchor"></a>
<a id="Shultz1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shultz, L. D., Sweet, H. O., Davisson, M. T., Coman, D. R.
<strong>'Wasted,' a new mutant of the mouse with abnormalities characteristic of ataxia telangiectasia.</strong>
Nature 297: 402-404, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7078649/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7078649</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7078649" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/297402a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="154" class="mim-anchor"></a>
<a id="Shuster1966" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shuster, J., Hart, Z., Stimson, C. W., Brough, A. J., Poulik, M. D.
<strong>Ataxia-telangiectasia with cerebellar tumor.</strong>
Pediatrics 37: 776-786, 1966.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5326774/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5326774</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5326774" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="155" class="mim-anchor"></a>
<a id="Smirnov2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Smirnov, D. A., Cheung, V. G.
<strong>ATM gene mutations result in both recessive and dominant expression phenotypes of genes and microRNAs.</strong>
Am. J. Hum. Genet. 83: 243-253, 2008. Note: Erratum: Am. J. Hum. Genet. 83: 657 only, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18674748/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18674748</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18674748[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18674748" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2008.07.003" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="156" class="mim-anchor"></a>
<a id="Sobel1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sobel, E., Lange, E., Jaspers, N. G. J., Chessa, L., Sanal, O., Shiloh, Y., Taylor, A. M. R., Weemaes, C. M. A., Lange, K., Gatti, R. A.
<strong>Ataxia-telangiectasia: linkage evidence for genetic heterogeneity. (Letter)</strong>
Am. J. Hum. Genet. 50: 1343-1348, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1598915/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1598915</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1598915" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="157" class="mim-anchor"></a>
<a id="Sourander1966" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sourander, P., Bonnevier, J. O., Olsson, Y.
<strong>A case of ataxia-telangiectasia with lesions in the spinal cord.</strong>
Acta Neurol. Scand. 42: 354-366, 1966.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5935908/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5935908</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5935908" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1600-0404.1966.tb01187.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="158" class="mim-anchor"></a>
<a id="Stankovic1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Stankovic, T., Kidd, A. M. J., Sutcliffe, A., McGuire, G. M., Robinson, P., Weber, P., Bedenham, T., Bradwell, A. R., Easton, D. F., Lennox, G. G., Haites, N., Byrd, P. J., Taylor, A. M. R.
<strong>ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer.</strong>
Am. J. Hum. Genet. 62: 334-345, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9463314/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9463314</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9463314" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/301706" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="159" class="mim-anchor"></a>
<a id="Stern1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Stern, M.-H., Zhang, F., Griscelli, C., Thomas, G., Aurias, A.
<strong>Molecular characterization of different ataxia telangiectasia T-cell clones. I. A common breakpoint at the 14q11.2 band splits the T-cell receptor alpha-chain gene.</strong>
Hum. Genet. 78: 33-36, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3422210/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3422210</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3422210" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00291230" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="160" class="mim-anchor"></a>
<a id="Stern1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Stern, M.-H., Zhang, F., Thomas, G., Griscelli, C., Aurias, A.
<strong>Molecular characterization of ataxia telangiectasia T cell clones. III. Mapping the 14q32.1 distal breakpoint.</strong>
Hum. Genet. 81: 18-22, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3264259/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3264259</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3264259" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00283722" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="161" class="mim-anchor"></a>
<a id="Stewart1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Stewart, G. S., Maser, R. S., Stankovic, T., Bressan, D. A., Kaplan, M. I., Jaspers, N. G. J., Raams, A., Byrd, P. J., Petrini, J. H. J., Taylor, A. M. R.
<strong>The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder.</strong>
Cell 99: 577-587, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10612394/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10612394</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10612394" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)81547-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="162" class="mim-anchor"></a>
<a id="Sugimoto1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sugimoto, T., Kidowaki, T., Sawada, T., Ohtsuka-Urano, T., Kusunoki, T.
<strong>Ataxia-telangiectasia associated with non-T, non-B cell acute lymphocytic leukemia.</strong>
Acta Paediat. Scand. 71: 509-510, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6958175/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6958175</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6958175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1651-2227.1982.tb09462.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="163" class="mim-anchor"></a>
<a id="Suspitsin2020" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Suspitsin, E., Sokolenko, A., Bizin, I., Tumakova, A., Guseva, M., Sokolova, N., Vakhlyarskaya, S., Kondratenko, I., Imyanitov, E.
<strong>ATM mutation spectrum in Russian children with ataxia-telangiectasia.</strong>
Europ. J. Med. Genet. 63: 103630, 2020. Note: Electronic Article.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/30772474/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">30772474</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30772474" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ejmg.2019.02.003" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="164" class="mim-anchor"></a>
<a id="Swift1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Swift, M., Morrell, D., Cromartie, E., Chamberlin, A. R., Skolnick, M. H., Bishop, D. T.
<strong>The incidence and gene frequency of ataxia-telangiectasia in the United States.</strong>
Am. J. Hum. Genet. 39: 573-583, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3788973/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3788973</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3788973" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="165" class="mim-anchor"></a>
<a id="Swift1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Swift, M., Morrell, D., Massey, R. B., Chase, C. L.
<strong>Incidence of cancer in 161 families affected by ataxia-telangiectasia.</strong>
New Eng. J. Med. 325: 1831-1836, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1961222/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1961222</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1961222" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM199112263252602" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="166" class="mim-anchor"></a>
<a id="Swift1976" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Swift, M. R., Sholman, L., Perry, M., Chase, C.
<strong>Malignant neoplasms in the families of patients with ataxia-telangiectasia.</strong>
Cancer Res. 36: 209-215, 1976.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1248000/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1248000</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1248000" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="167" class="mim-anchor"></a>
<a id="Swift1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Swift, M., Reitnauer, P. J., Morrell, D., Chase, C. L.
<strong>Breast and other cancers in families with ataxia-telangiectasia.</strong>
New Eng. J. Med. 316: 1289-1294, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3574400/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3574400</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3574400" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM198705213162101" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="168" class="mim-anchor"></a>
<a id="Swift1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Swift, M.
<strong>Cancer risk counseling. (Letter)</strong>
Science 210: 1074, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7444436/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7444436</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7444436" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.7444436" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="169" class="mim-anchor"></a>
<a id="Tadjoedin1965" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tadjoedin, M. K., Fraser, F. C.
<strong>Heredity of ataxia-telangiectasia (Louis-Bar syndrome).</strong>
Am. J. Dis. Child. 110: 64-68, 1965.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14308125/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14308125</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14308125" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/archpedi.1965.02090030070009" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="170" class="mim-anchor"></a>
<a id="Taylor1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Taylor, A. M. R., Flude, E., Laher, B., Stacey, M., McKay, E., Watt, J., Green, S. H., Harding, A. E.
<strong>Variant forms of ataxia telangiectasia.</strong>
J. Med. Genet. 24: 669-677, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3430541/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3430541</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3430541" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.24.11.669" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="171" class="mim-anchor"></a>
<a id="Taylor1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Taylor, A. M. R., Harnden, D. G., Arlett, C. F., Harcourt, S. A., Lehmann, A. R., Stevens, S., Bridges, B. A.
<strong>Ataxia-telangiectasia: a human mutation with abnormal radiation sensitivity.</strong>
Nature 258: 427-429, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1196376/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1196376</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1196376" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/258427a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="172" class="mim-anchor"></a>
<a id="Taylor1976" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Taylor, A. M. R., Metcalfe, J. A., Oxford, J. M., Harnden, D. G.
<strong>Is chromatid-type damage in ataxia-telangiectasia after irradiation at G(0) a consequence of defective repair?</strong>
Nature 260: 441-443, 1976.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1256587/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1256587</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1256587" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/260441a0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="173" class="mim-anchor"></a>
<a id="Tchirkov1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tchirkov, A., Bay, J.-O., Pernin, D., Bignon, Y.-J. Rio, P., Grancho, M., Kwiatkowski, F., Giollant, M., Malet, P., Verrelle, P.
<strong>Detection of heterozygous carriers of the ataxia-telangiectasia (ATM) gene by G(2) phase chromosomal radiosensitivity of peripheral blood lymphocytes.</strong>
Hum. Genet. 101: 312-316, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9439660/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9439660</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9439660" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s004390050634" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="174" class="mim-anchor"></a>
<a id="Telatar1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Telatar, M., Teraoka, S., Wang, Z., Chun, H. H., Liang, T., Castellvi-Bel, S., Udar, N., Borresen-Dale, A. L., Chessa, L., Bernatowska-Matuszkiewicz, E., Porras, O., Watanabe, M., Junker, A., Concannon, P., Gatti, R. A.
<strong>Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations.</strong>
Am. J. Hum. Genet. 62: 86-97, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9443866/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9443866</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9443866" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/301673" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="175" class="mim-anchor"></a>
<a id="Telatar1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Telatar, M., Wang, Z., Castellvi-Bel, S., Tai, L.-Q., Sheikhavandi, S., Regueiro, J. R., Porras, O., Gatti, R. A.
<strong>A model for ATM heterozygote identification in a large population: four founder-effect ATM mutations identify most of Costa Rican patients with ataxia telangiectasia.</strong>
Molec. Genet. Metab. 64: 36-43, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9682216/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9682216</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9682216" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1006/mgme.1998.2693" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="176" class="mim-anchor"></a>
<a id="Teplitz1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Teplitz, R. L.
<strong>Ataxia-telangiectasia.</strong>
Arch. Neurol. 35: 553-554, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/687181/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">687181</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=687181" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1001/archneur.1978.00500330001001" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="177" class="mim-anchor"></a>
<a id="Thibaut1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Thibaut, S., Sass, U., Khoury, A., Simonart, J.-M.
<strong>Ataxia-telangiectasia and necrobiosis lipoidica: an explainable association.</strong>
Europ. J. Derm. 4: 509-513, 1994.
</p>
</div>
</li>
<li>
<a id="178" class="mim-anchor"></a>
<a id="Toledano1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Toledano, S. R., Lange, B. J.
<strong>Ataxia-telangiectasia and acute lymphoblastic leukemia.</strong>
Cancer 45: 1675-1678, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6929216/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6929216</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6929216" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/1097-0142(19800401)45:7&lt;1675::aid-cncr2820450725&gt;3.0.co;2-d" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="179" class="mim-anchor"></a>
<a id="Tse1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tse, A. G. D., Barclay, A. N., Watts, A., Williams, A. F.
<strong>A glycophospholipid tail at the carboxyl terminus of the Thy-1 glycoprotein of neurons and thymocytes.</strong>
Science 230: 1003-1008, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2865810/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2865810</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2865810" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.2865810" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="180" class="mim-anchor"></a>
<a id="van Os2019" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
van Os, N. J. H., Chessa, L., Weemaes, C. M. R., van Deuren, M., Fievet, A., van Gaalen, J., Mahlaoui, N., Roeleveld, N., Schrader, C., Schindler, D., Taylor, A. M. R., Van de Warrenburg, B. P. C., Dork, T., Willemsen, M. A. A. P.
<strong>Genotype-phenotype correlations in ataxia telangiectasia patients with ATM c.3576G-A and c.8147T-C mutations.</strong>
J. Med. Genet. 56: 308-316, 2019.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/30819809/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">30819809</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30819809" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmedgenet-2018-105635" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="181" class="mim-anchor"></a>
<a id="van Os2019" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
van Os, N. J. H., Hensiek, A., van Gaalen, J., Taylor, A. M. R., van Deuren, M., Weemaes, C. M. R., Willemsen, M. A. A. P., van de Warrenburg, B. P. C.
<strong>Trajectories of motor abnormalities in milder phenotypes of ataxia telangiectasia.</strong>
Neurology 92: e19-e29, 2019.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/30504431/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">30504431</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30504431" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/WNL.0000000000006700" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="182" class="mim-anchor"></a>
<a id="Verhagen2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Verhagen, M. M. M., Abdo, W. F., Willemsen, M. A. A. P., Hogervorst, F. B. L., Smeets, D. F. C. M., Hiel, J. A. P., Brunt, E. R., van Rijn, M. A., Krakauer, D. M., Oldenburg, R. A., Broeks, A., Last, J. I., van't Veer, L. J., Tijssen, M. A. J., Dubois, A. M. I., Kremer, H. P. H., Weemaes, C. M. R, Tayloer, A. M. R., van Deuren, M.
<strong>Clinical spectrum of ataxia-telangiectasia in adulthood.</strong>
Neurology 73: 430-437, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19535770/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19535770</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19535770" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1212/WNL.0b013e3181af33bd" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="183" class="mim-anchor"></a>
<a id="Vincent1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Vincent, R. A., Jr., Sheridan, R. B., III, Huang, P. C.
<strong>DNA strand breakage repair in ataxia-telangiectasia fibroblast-like cells.</strong>
Mutat. Res. 33: 357-366, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1214827/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1214827</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1214827" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0027-5107(75)90211-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="184" class="mim-anchor"></a>
<a id="Waldmann1972" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Waldmann, T. A., McIntire, K. R.
<strong>Serum-alpha-fetoprotein levels in patients with ataxia-telangiectasia.</strong>
Lancet 300: 1112-1115, 1972. Note: Originally Volume II.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4117204/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4117204</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4117204" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0140-6736(72)92717-1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="185" class="mim-anchor"></a>
<a id="Waldmann1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Waldmann, T. A., Misiti, J., Nelson, D. L., Kraemer, K. H.
<strong>Ataxia-telangiectasia: a multisystem hereditary disease with immunodeficiency, impaired organ maturation, x-ray hypersensitivity, and a high incidence of neoplasia.</strong>
Ann. Intern. Med. 99: 367-379, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6193747/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6193747</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6193747" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.7326/0003-4819-99-3-367" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="186" class="mim-anchor"></a>
<a id="Watanabe1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Watanabe, A., Hanazono, H., Sogawa, H., Takaya, H.
<strong>Stomach cancer in a 14-year-old-boy with ataxia-telangiectasia.</strong>
Tohoku J. Exp. Med. 121: 127-131, 1977.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/191957/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">191957</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=191957" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1620/tjem.121.127" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="187" class="mim-anchor"></a>
<a id="Waterman1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Waterman, M. J. F., Stavridi, E. S., Waterman, J. L. F., Halazonetis, T. D.
<strong>ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins.</strong>
Nature Genet. 19: 175-178, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9620776/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9620776</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9620776" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/542" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="188" class="mim-anchor"></a>
<a id="Watts2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Watts, J. A., Morley, M., Burdick, J. T., Fiori, J. L., Ewens, W. J., Spielman, R. S., Cheung, V. G.
<strong>Gene expression phenotype in heterozygous carriers of ataxia telangiectasia.</strong>
Am. J. Hum. Genet. 71: 791-800, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12226795/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12226795</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12226795[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12226795" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/342974" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="189" class="mim-anchor"></a>
<a id="Weinstein1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Weinstein, S., Scottolini, A. G., Loo, S. Y. T., Caldwell, P. C., Bhagavan, N. V.
<strong>Ataxia telangiectasia with hepatocellular carcinoma in a 15-year-old girl and studies of her kindred.</strong>
Arch. Path. Lab. Med. 109: 1000-1004, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2996458/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2996458</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2996458" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="190" class="mim-anchor"></a>
<a id="Welshimer1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Welshimer, K., Swift, M.
<strong>Congenital malformations and developmental disabilities in ataxia-telangiectasia, Fanconi anemia, and xeroderma pigmentosum families.</strong>
Am. J. Hum. Genet. 34: 781-793, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7124732/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7124732</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7124732" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="191" class="mim-anchor"></a>
<a id="Wong2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wong, K.-K., Maser, R. S., Bachoo, R. M., Menon, J., Carrasco, D. R., Gu, Y., Alt, F. W., DePinho, R. A.
<strong>Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing.</strong>
Nature 421: 643-648, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12540856/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12540856</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12540856" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature01385" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="192" class="mim-anchor"></a>
<a id="Woods1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Woods, C. G., Bundey, S. E., Taylor, A. M. R.
<strong>Unusual features in the inheritance of ataxia telangiectasia.</strong>
Hum. Genet. 84: 555-562, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2338342/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2338342</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2338342" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00210809" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="193" class="mim-anchor"></a>
<a id="Woods1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Woods, C. G., Taylor, A. M. R.
<strong>Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals.</strong>
Quart. J. Med. 82: 169-179, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1377828/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1377828</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1377828" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="194" class="mim-anchor"></a>
<a id="Wooster1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wooster, R., Ford, D., Mangion, J., Ponder, B. A. J., Peto, J., Easton, D. F., Stratton, M. R.
<strong>Absence of linkage to the ataxia telangiectasia locus in familial breast cancer.</strong>
Hum. Genet. 92: 91-94, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8365732/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8365732</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8365732" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00216153" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="195" class="mim-anchor"></a>
<a id="Worgul2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Worgul, B. V., Smilenov, L., Brenner, D. J., Junk, A., Zhou, W., Hall, E. J.
<strong>Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts.</strong>
Proc. Nat. Acad. Sci. 99: 9836-9839, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12119422/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12119422</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12119422[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12119422" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.162349699" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="196" class="mim-anchor"></a>
<a id="Xu1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Xu, Y., Ashley, T, Brainerd, E. E., Bronson, R. T., Meyn, M. S., Baltimore, D.
<strong>Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma.</strong>
Genes Dev. 10: 2411-2422, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8843194/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8843194</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8843194" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.10.19.2411" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="197" class="mim-anchor"></a>
<a id="Xu1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Xu, Y., Baltimore, D.
<strong>Dual roles of ATM in the cellular response to radiation and in cell growth control.</strong>
Genes Dev. 10: 2401-2410, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8843193/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8843193</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8843193" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1101/gad.10.19.2401" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="198" class="mim-anchor"></a>
<a id="Ying1981" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ying, K. L., Decoteau, W. E.
<strong>Cytogenetic anomalies in a patient with ataxia, immune deficiency, and high alpha-fetoprotein in the absence of telangiectasia.</strong>
Cancer Genet. Cytogenet. 4: 311-317, 1981.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6174206/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6174206</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6174206" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0165-4608(81)90027-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="199" class="mim-anchor"></a>
<a id="Yount1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yount, W. J.
<strong>IgG2 deficiency and ataxia-telangiectasia. (Editorial)</strong>
New Eng. J. Med. 306: 541-543, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7057862/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7057862</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7057862" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM198203043060911" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="200" class="mim-anchor"></a>
<a id="Zadik1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zadik, Z., Levin, S., Prager-Lewin, R., Laron, Z.
<strong>Gonadal dysfunction in patients with ataxia telangiectasia.</strong>
Acta Paediat. Scand. 67: 477-479, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/354315/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">354315</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=354315" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1651-2227.1978.tb16357.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="201" class="mim-anchor"></a>
<a id="Zhang1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zhang, F., Stern, M.-H., Thomas, G., Aurias, A.
<strong>Molecular characterization of ataxia telangiectasia T cell clones. II. The clonal inv(14) in ataxia telangiectasia differs from the inv(14) in T cell lymphoma.</strong>
Hum. Genet. 78: 316-319, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3258841/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3258841</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3258841" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF00291726" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="202" class="mim-anchor"></a>
<a id="Ziv2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ziv, S., Brenner, O., Amariglio, N., Smorodinsky, N. I., Galron, R., Carrion, D. V., Zhang, W., Sharma, G. G., Pandita, R. K., Agarwal, M., Elkon, R., Katzin, N., Bar-Am, I., Pandita, T. K., Kucherlapati, R., Rechavi, G., Shiloh, Y., Barzilai, A.
<strong>Impaired genomic stability and increased oxidative stress exacerbate different tissues of ataxia-telangiectasia.</strong>
Hum. Molec. Genet. 14: 2929-2943, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16150740/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16150740</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16150740" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddi324" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="203" class="mim-anchor"></a>
<a id="Ziv1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ziv, Y., Amiel, A., Jaspers, N. G. J., Berkel, A. I., Shiloh, Y.
<strong>Ataxia-telangiectasia: a variant with altered in vitro phenotype of fibroblast cells.</strong>
Mutat. Res. 210: 211-219, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2911253/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2911253</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2911253" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0027-5107(89)90081-x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="204" class="mim-anchor"></a>
<a id="Ziv1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ziv, Y., Frydman, M., Lange, E., Zelnik, N., Rotman, G., Julier, C., Jaspers, N. G. J., Dagan, Y., Abeliovicz, D., Dar, H., Borochowitz, Z., Lathrop, M., Gatti, R. A., Shiloh, Y.
<strong>Ataxia-telangiectasia: linkage analysis in highly inbred Arab and Druze families and differentiation from an ataxia-microcephaly-cataract syndrome.</strong>
Hum. Genet. 88: 619-626, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1551665/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1551665</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1551665" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF02265285" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="205" class="mim-anchor"></a>
<a id="Ziv1991" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ziv, Y., Rotman, G., Frydman, M., Dagan, J., Cohen, T., Foroud, T., Gatti, R. A., Shiloh, Y.
<strong>The ATC (ataxia-telangiectasia complementation group C) locus localizes to 11q22-q23.</strong>
Genomics 9: 373-375, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1672297/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1672297</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1672297" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0888-7543(91)90268-j" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Hilary J. Vernon - updated : 06/20/2022
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Carol A. Bocchini - updated : 11/11/2020<br>Sonja A. Rasmussen - updated : 08/26/2020<br>Cassandra L. Kniffin - updated : 10/24/2012<br>George E. Tiller - updated : 3/31/2010<br>Cassandra L. Kniffin - updated : 3/1/2010<br>Cassandra L. Kniffin - updated : 12/28/2009<br>George E. Tiller - updated : 4/22/2009<br>Ada Hamosh - updated : 9/8/2008<br>Cassandra L. Kniffin - updated : 7/30/2007<br>Victor A. McKusick - updated : 8/16/2006<br>Victor A. McKusick - updated : 6/20/2006<br>Victor A. McKusick - updated : 10/11/2005<br>Cassandra L. Kniffin - updated : 10/19/2003<br>Cassandra L. Kniffin - reorganized : 5/7/2003<br>Victor A. McKusick - updated : 3/6/2003<br>Ada Hamosh - updated : 2/3/2003<br>Ada Hamosh - updated : 1/29/2003<br>Victor A. McKusick - updated : 1/15/2003<br>Patricia A. Hartz - updated : 12/17/2002<br>Victor A. McKusick - updated : 10/29/2002<br>Stylianos E. Antonarakis - updated : 9/25/2002<br>Victor A. McKusick - updated : 9/20/2002<br>Victor A. McKusick - updated : 8/29/2002<br>Ada Hamosh - updated : 3/28/2002<br>Victor A. McKusick - updated : 3/7/2002<br>Victor A. McKusick - updated : 2/6/2002<br>Victor A. McKusick - updated : 1/10/2002<br>Ada Hamosh - updated : 6/20/2001<br>George E. Tiller - updated : 5/24/2001<br>Ada Hamosh - updated : 4/18/2001<br>Ada Hamosh - updated : 4/10/2001<br>Paul J. Converse - updated : 11/16/2000<br>Victor A. McKusick - updated : 9/25/2000<br>Ada Hamosh - updated : 7/12/2000<br>Ada Hamosh - updated : 5/24/2000<br>Victor A. McKusick - updated : 5/22/2000<br>Victor A. McKusick - updated : 4/19/2000<br>Victor A. McKusick - updated : 4/18/2000<br>Victor A. McKusick - updated : 3/31/2000<br>Victor A. McKusick - updated : 2/9/2000<br>Victor A. McKusick - updated : 12/21/1999<br>Ada Hamosh - updated : 11/4/1999<br>Victor A. McKusick - updated : 10/27/1999<br>Victor A. McKusick - updated : 9/24/1999<br>Ada Hamosh - updated : 9/20/1999<br>Victor A. McKusick - updated : 5/28/1999<br>Ada Hamosh - updated : 3/30/1999<br>Victor A. McKusick - updated : 2/19/1999<br>Victor A. McKusick - updated : 2/9/1999<br>Victor A. McKusick - updated : 11/30/1998<br>Victor A. McKusick - updated : 11/5/1998<br>Victor A. McKusick - updated : 10/13/1998<br>Victor A. McKusick - updated : 10/1/1998<br>Victor A. McKusick - updated : 9/28/1998<br>Victor A. McKusick - updated : 8/14/1998<br>Victor A. McKusick - updated : 6/29/1998<br>Clair A. Francomano - updated : 5/27/1998<br>Victor A. McKusick - updated : 5/7/1998<br>Victor A. McKusick - updated : 4/14/1998<br>Victor A. McKusick - updated : 4/1/1998<br>Victor A. McKusick - updated : 2/19/1998<br>Victor A. McKusick - updated : 2/11/1998<br>Lori M. Kelman - updated : 9/30/1997<br>Victor A. McKusick - updated : 9/12/1997<br>Victor A. McKusick - updated : 9/2/1997<br>Lori M. Kelman - updated : 8/14/1997<br>Victor A. McKusick - updated : 7/31/1997<br>Victor A. McKusick - updated : 4/7/1997<br>Victor A. McKusick - updated : 3/2/1997<br>Victor A. McKusick - updated : 2/18/1997<br>Moyra Smith - updated : 1/30/1997<br>Moyra Smith - updated : 11/12/1996<br>Moyra Smith - updated : 10/1/1996<br>Alan F. Scott - updated : 8/22/1996<br>Alan F. Scott - updated : 5/24/1996<br>Moyra Smith - updated : 4/30/1996<br>Orest Hurko - updated : 6/22/1994
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/3/1986
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 06/21/2022
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 06/20/2022<br>alopez : 03/22/2022<br>carol : 03/18/2022<br>carol : 02/22/2022<br>carol : 11/12/2020<br>carol : 11/11/2020<br>carol : 08/26/2020<br>carol : 10/14/2016<br>carol : 02/16/2015<br>carol : 2/16/2015<br>mgross : 10/7/2013<br>mgross : 10/7/2013<br>mgross : 10/4/2013<br>tpirozzi : 10/1/2013<br>terry : 3/14/2013<br>terry : 3/14/2013<br>carol : 11/5/2012<br>ckniffin : 10/24/2012<br>terry : 6/8/2012<br>terry : 10/12/2010<br>wwang : 4/14/2010<br>terry : 3/31/2010<br>wwang : 3/2/2010<br>ckniffin : 3/1/2010<br>wwang : 1/14/2010<br>ckniffin : 12/28/2009<br>terry : 6/3/2009<br>wwang : 5/8/2009<br>terry : 4/22/2009<br>terry : 2/11/2009<br>alopez : 9/17/2008<br>terry : 9/8/2008<br>wwang : 8/22/2007<br>ckniffin : 7/30/2007<br>carol : 7/12/2007<br>carol : 8/16/2006<br>wwang : 6/20/2006<br>wwang : 10/27/2005<br>wwang : 10/21/2005<br>terry : 10/11/2005<br>carol : 10/19/2003<br>carol : 10/19/2003<br>ckniffin : 10/16/2003<br>alopez : 5/16/2003<br>ckniffin : 5/7/2003<br>ckniffin : 3/7/2003<br>carol : 3/6/2003<br>terry : 3/6/2003<br>ckniffin : 3/3/2003<br>ckniffin : 3/3/2003<br>ckniffin : 3/3/2003<br>alopez : 2/4/2003<br>terry : 2/3/2003<br>alopez : 1/29/2003<br>terry : 1/29/2003<br>cwells : 1/15/2003<br>terry : 1/15/2003<br>mgross : 1/6/2003<br>terry : 12/17/2002<br>carol : 10/29/2002<br>tkritzer : 10/29/2002<br>terry : 10/29/2002<br>mgross : 9/25/2002<br>mgross : 9/25/2002<br>tkritzer : 9/23/2002<br>carol : 9/20/2002<br>tkritzer : 9/6/2002<br>tkritzer : 9/4/2002<br>terry : 8/29/2002<br>alopez : 4/12/2002<br>carol : 3/29/2002<br>carol : 3/29/2002<br>cwells : 3/29/2002<br>terry : 3/28/2002<br>alopez : 3/12/2002<br>terry : 3/7/2002<br>mgross : 2/11/2002<br>terry : 2/6/2002<br>carol : 1/14/2002<br>carol : 1/14/2002<br>terry : 1/10/2002<br>alopez : 6/21/2001<br>terry : 6/20/2001<br>cwells : 5/25/2001<br>cwells : 5/24/2001<br>cwells : 5/23/2001<br>alopez : 4/19/2001<br>terry : 4/18/2001<br>alopez : 4/11/2001<br>alopez : 4/11/2001<br>terry : 4/10/2001<br>joanna : 1/17/2001<br>mgross : 11/16/2000<br>mcapotos : 10/3/2000<br>mcapotos : 9/25/2000<br>mcapotos : 9/8/2000<br>alopez : 7/12/2000<br>alopez : 5/24/2000<br>terry : 5/22/2000<br>carol : 5/12/2000<br>mcapotos : 5/11/2000<br>mcapotos : 5/10/2000<br>terry : 4/19/2000<br>terry : 4/18/2000<br>mgross : 4/11/2000<br>terry : 3/31/2000<br>mgross : 3/2/2000<br>terry : 2/9/2000<br>mgross : 1/3/2000<br>mgross : 12/29/1999<br>terry : 12/21/1999<br>alopez : 11/5/1999<br>alopez : 11/4/1999<br>carol : 10/27/1999<br>carol : 10/22/1999<br>carol : 10/22/1999<br>terry : 9/24/1999<br>carol : 9/21/1999<br>terry : 9/20/1999<br>kayiaros : 7/13/1999<br>mgross : 6/3/1999<br>terry : 5/28/1999<br>alopez : 3/30/1999<br>mgross : 3/10/1999<br>mgross : 2/24/1999<br>mgross : 2/19/1999<br>alopez : 2/19/1999<br>alopez : 2/19/1999<br>carol : 2/18/1999<br>terry : 2/17/1999<br>terry : 2/9/1999<br>psherman : 1/26/1999<br>dkim : 12/10/1998<br>alopez : 12/1/1998<br>terry : 11/30/1998<br>carol : 11/15/1998<br>terry : 11/5/1998<br>carol : 10/18/1998<br>terry : 10/13/1998<br>carol : 10/7/1998<br>terry : 10/1/1998<br>alopez : 9/28/1998<br>joanna : 9/28/1998<br>terry : 8/21/1998<br>terry : 8/19/1998<br>carol : 8/14/1998<br>terry : 8/14/1998<br>terry : 8/11/1998<br>carol : 7/24/1998<br>terry : 7/9/1998<br>carol : 7/1/1998<br>terry : 6/29/1998<br>carol : 6/19/1998<br>terry : 6/16/1998<br>carol : 6/5/1998<br>terry : 6/4/1998<br>terry : 6/1/1998<br>dholmes : 5/28/1998<br>dholmes : 5/27/1998<br>dholmes : 5/21/1998<br>alopez : 5/13/1998<br>alopez : 5/13/1998<br>terry : 5/7/1998<br>carol : 4/14/1998<br>alopez : 4/1/1998<br>terry : 3/23/1998<br>terry : 3/20/1998<br>mark : 2/26/1998<br>terry : 2/19/1998<br>alopez : 2/11/1998<br>alopez : 2/11/1998<br>dholmes : 2/4/1998<br>dholmes : 11/11/1997<br>dholmes : 11/11/1997<br>dholmes : 9/30/1997<br>jenny : 9/19/1997<br>terry : 9/12/1997<br>mark : 9/5/1997<br>jenny : 9/3/1997<br>terry : 9/2/1997<br>terry : 9/2/1997<br>terry : 9/2/1997<br>dholmes : 8/14/1997<br>dholmes : 8/14/1997<br>dholmes : 8/14/1997<br>terry : 8/5/1997<br>terry : 7/31/1997<br>terry : 6/2/1997<br>terry : 4/14/1997<br>mark : 4/7/1997<br>terry : 4/1/1997<br>jamie : 3/4/1997<br>mark : 3/2/1997<br>terry : 2/28/1997<br>jenny : 2/18/1997<br>terry : 2/12/1997<br>terry : 1/30/1997<br>mark : 1/29/1997<br>mark : 1/8/1997<br>terry : 12/10/1996<br>terry : 12/5/1996<br>mark : 11/12/1996<br>mark : 11/12/1996<br>terry : 11/7/1996<br>terry : 11/4/1996<br>mark : 10/1/1996<br>mark : 9/26/1996<br>mark : 9/11/1996<br>terry : 9/6/1996<br>mark : 8/22/1996<br>marlene : 8/20/1996<br>mark : 7/22/1996<br>mark : 7/5/1996<br>terry : 6/26/1996<br>mark : 5/31/1996<br>terry : 5/24/1996<br>terry : 5/24/1996<br>carol : 5/4/1996<br>carol : 4/30/1996<br>mark : 4/25/1996<br>terry : 4/19/1996<br>mark : 3/12/1996<br>terry : 3/5/1996<br>mark : 2/15/1996<br>terry : 2/9/1996<br>mark : 12/20/1995<br>terry : 11/6/1995<br>mark : 10/27/1995<br>pfoster : 2/14/1995<br>davew : 8/16/1994<br>mimadm : 4/29/1994
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>#</strong> 208900
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
ATAXIA-TELANGIECTASIA; AT
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
AT1<br />
LOUIS-BAR SYNDROME
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
<div>
<div>
<p>
<span class="mim-font">
Other entities represented in this entry:
</span>
</p>
</div>
<div>
<span class="h3 mim-font">
AT, COMPLEMENTATION GROUP A, INCLUDED; ATA, INCLUDED
</span>
</div>
<div>
<span class="h4 mim-font">
AT, COMPLEMENTATION GROUP C, INCLUDED; ATC, INCLUDED<br />
AT, COMPLEMENTATION GROUP D, INCLUDED; ATD, INCLUDED<br />
AT, COMPLEMENTATION GROUP E, INCLUDED; ATE, INCLUDED<br />
ATAXIA-TELANGIECTASIA VARIANT, INCLUDED
</span>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>SNOMEDCT:</strong> 68504005; &nbsp;
<strong>ORPHA:</strong> 100, 370109; &nbsp;
<strong>DO:</strong> 12704; &nbsp;
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
11q22.3
</span>
</td>
<td>
<span class="mim-font">
Ataxia-telangiectasia
</span>
</td>
<td>
<span class="mim-font">
208900
</span>
</td>
<td>
<span class="mim-font">
Autosomal recessive
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
ATM
</span>
</td>
<td>
<span class="mim-font">
607585
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because ataxia-telangiectasia (AT) is caused by homozygous or compound heterozygous mutation in the ATM gene (607585) on chromosome 11q22.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Ataxia-telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar ataxia, telangiectases, immune defects, and a predisposition to malignancy. Chromosomal breakage is a feature. AT cells are abnormally sensitive to killing by ionizing radiation (IR), and abnormally resistant to inhibition of DNA synthesis by ionizing radiation. The latter trait has been used to identify complementation groups for the classic form of the disease (Jaspers et al., 1988). At least 4 of these (A, C, D, and E) map to chromosome 11q23 (Sanal et al., 1990) and are associated with mutations in the ATM gene. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Patients present in early childhood with progressive cerebellar ataxia and later develop conjunctival telangiectases, other progressive neurologic degeneration, sinopulmonary infection, and malignancies. Telangiectases typically develop between 3 and 5 years of age. The earlier ataxia can be misdiagnosed as ataxic cerebral palsy before the appearance of oculocutaneous telangiectases. Gatti et al. (1991) contended that oculocutaneous telangiectases eventually occur in all patients, while Maserati et al. (1988) wrote that patients without telangiectases are not uncommon. A characteristic oculomotor apraxia, i.e., difficulty in the initiation of voluntary eye movements, frequently precedes the development of telangiectases. </p><p>Gonadal dysfunction in ataxia-telangiectasia was discussed by Miller and Chatten (1967), Zadik et al. (1978), and others. Thibaut et al. (1994) reviewed cases of necrobiosis lipoidica in association with ataxia-telangiectasia. </p><p>According to Boder (1985), the oldest known AT patients were a man who died in November 1978 at age 52 years and his sister who died in July 1979 at the age of almost 49 years. The sister was the subject of the report by Saxon et al. (1979) on T-cell leukemia in AT. The possibility of heteroalleles at the ataxia-telangiectasia loci might be suggested. </p><p><strong><em>Neurologic Manifestations</em></strong></p><p>
AT may be the most common syndromic progressive cerebellar ataxia of early childhood. Truncal ataxia precedes appendicular ataxia. Oculomotor apraxia is progressive and opticokinetic nystagmus is absent. Choreoathetosis and/or dystonia occur in 90% of patients and can be severe. Deep tendon reflexes become diminished or absent by age 8 and patients later develop diminished large-fiber sensation. Gatti et al. (1991) pointed out that 'a significant proportion of older patients in their twenties and early thirties develop progressive spinal muscular atrophy, affecting mostly hands and feet, and dystonia.' Interosseous muscular atrophy in the hands in combination with the early-onset dystonic posturing leads to striking combined flexion-extension contractures of the fingers, which they illustrated. Mental retardation is not a feature of AT, although some older patients have a severe loss of short-term memory. </p><p>Neurologic dysfunction is a clinically invariable feature in homozygotes. Woods and Taylor (1992) studied 70 affected persons in the British Isles, 29 females and 41 males with an age range of 2 to 42 years. Most presented by 3 years of age with truncal ataxia. All had ataxia, ocular motor apraxia, an impassive face, and dysarthria, although clinical immune deficiency was present only in 43 of 70 patients. Ocular telangiectases was seen in all but one. All 60 tested showed increased sensitivity to ionizing radiation, 43 of 48 had an elevated alpha-fetoprotein level, and 14 of 21 had an immunoglobulin deficiency. </p><p><strong><em>Malignancy</em></strong></p><p>
Patients with AT have a strong predisposition to malignancy. Hecht et al. (1966) observed lymphocytic leukemia in patients with AT. A nonleukemic sib and 2 unrelated patients with AT had multiple chromosomal breaks and impaired responsiveness to phytohemagglutinin. This was the first report of chromosomal breakage in AT. Leukemia and chromosomal abnormalities occur in at least 2 other mendelian disorders--Fanconi pancytopenia (FA; 227650) and Bloom syndrome (BS; 210900).</p><p>Saxon et al. (1979) demonstrated thymic origin of the neoplastic cells in a 48-year-old woman with AT and chronic lymphatic leukemia. The neoplastic cells had the specific 14q+ translocation and showed both helper and suppressor function, suggesting that the malignant transformation had occurred in an uncommitted T-lymphocyte precursor that was capable of differentiation. This is a situation comparable to chronic myeloid leukemia in which the Philadelphia chromosome occurs in a stem cell progenitor of both polymorphs and megakaryocytes. </p><p>In general, lymphomas in AT patients tend to be of B-cell origin (B-CLL), whereas the leukemias tend to be of the T-CLL type. Rosen and Harris (1987) discussed the case of a 30-year-old man with AT who developed a malignant lymphoma of B-cell type involving the tonsil and lungs. </p><p>Haerer et al. (1969) described a black sibship of 12, of whom 5 had ataxia-telangiectasia; 2 of those affected died of mucinous adenocarcinoma of the stomach at ages 21 and 19 years. Bigbee et al. (1989) demonstrated an increased frequency of somatic cell mutation in vivo in individuals with AT. Obligate heterozygotes for the disease did not appear to have a significantly increased frequency of such mutations. The authors speculated that the predisposition to somatic cell mutation may be related to the increased susceptibility to cancer in AT homozygotes. Other solid tumors, including medulloblastomas and gliomas, occur with increased frequency in AT (Gatti et al., 1991). </p><p><strong><em>Immune Disorders</em></strong></p><p>
Defects of the immune mechanism and hypoplasia of the thymus have been demonstrated. Serum IgG2 or IgA levels are diminished or absent in 80% and 60% of patients, respectively (Gatti et al., 1991). IgE levels can be diminished, IgM levels diminished or normal. Peripheral lymphopenia as well as decreased cellular immunity to intradermally injected test antigens can be seen early in the disorder. Sinopulmonary infections are frequent, but their severity cannot be simply correlated with the degree of immunodeficiency. </p><p>Carbonari et al. (1990) found that patients with AT have more circulating T cells bearing gamma/delta receptors characteristic of immature cells than alpha/beta receptors typical of mature cells. Normal ratios were found in the patients with other immune deficits, except for 1 child with a primary T-cell defect. Peterson and Funkhouser (1990) proposed that these findings are consistent with a defect in genetic recombination leading to the switch from gamma/delta to alpha/beta. There may also be a defect in DNA ligation or some other aspect of DNA repair. Elucidation of the molecular abnormalities of lymphocytes may demonstrate fundamental molecular mechanisms for cellular differentiation not only of lymphocytes but of other cell systems such as the nervous system. </p><p><strong><em>Variant Ataxia-Telangiectasia (Atypical)</em></strong></p><p>
Ying and Decoteau (1981) described a family in which a brother and sister may have had an allelic (and milder) form of AT. The proband, a 58-year-old male of Saskatchewan Mennonite origin, had spinocerebellar degeneration associated with choreiform movements beginning at about age 10 years. Despite considerable physical handicap, he was able to work as a delivery man in the family store. No telangiectases were found at age 44 (they were carefully sought because of typical AT in a niece) or on later examinations. He showed total absence of IgA in serum and concentrated saliva and low IgE in serum. He was anergic on skin testing. Glucose tolerance was markedly decreased. Serum alpha-fetoprotein was 840 ng per ml (normal, less than 10 ng per ml). Lymphocyte response to phytohemagglutinin was blunted. He died of lymphoma at age 58. He showed cytogenetic abnormalities typical of AT; 4 abnormal clones were identified, all involving chromosome 14 in some way. The proband had 4 brothers and 2 sisters. A brother died of leukemia at age 16. A sister was likewise diagnosed as having spinocerebellar degeneration with choreiform movements at age 46; she died at age 55 of breast cancer. The proband's niece with typical AT had telangiectases of the bulbar conjunctivae and earlobes noted at age 3, when she began to have recurrent and severe sinopulmonary infections. She died at age 20 of staphylococcal pneumonia superimposed on bronchiectasis. The brother and sister who died in their 50s may have been genetic compounds. Their parents denied consanguinity. </p><p>Taylor et al. (1987) described 3 patients who were atypical in terms of clinical features and cellular features as observed in vitro. One of the patients was a 45-year-old woman with onset of neurologic manifestations in her early twenties. Maserati et al. (1988) described 2 sisters, aged 9 and 11 years, with a progressive neurologic disorder similar to AT, chromosome instability with rearrangements involving chromosomes 7 and 14, but no telangiectases or immunologic anomalies typical of AT. Byrne et al. (1984) reported similar cases of ataxia without telangiectases with selective IgE deficiency but normal IgA and alpha-fetoprotein. Ziv et al. (1989) described 2 Turkish sibs with an atypically prolonged course and atypical behavior of cultured fibroblasts. See 208910 and 208920 for AT-like syndromes. </p><p>Rare cases of AT patients with milder manifestations of the clinical or cellular characteristics of the disease have been reported and have been designated 'AT variants.' Gilad et al. (1998) quantified ATM protein levels in 6 patients with an AT variant and searched their ATM genes for mutations. Cell lines from these patients exhibited considerable variability in radiosensitivity while showing the typical radioresistant DNA synthesis of AT cells. Unlike classic AT patients, however, these patients exhibited 1 to 17% of the normal level of ATM. The underlying genotypes were either homozygous for mutations expected to produce mild phenotypes or compound heterozygous for a mild and a severe mutation. In an attempt to determine whether the AT(Fresno) variation correlated with ATM mutations and levels of ATM protein expression, Gilad et al. (1998) searched for ATM mutations in a cell line derived from one of the sisters studied by Curry et al. (1989). This cell line was found to be devoid of the ATM protein and homozygous for a severe ATM mutation. Gilad et al. (1998) concluded that certain AT variant phenotypes, including some of those without telangiectasia, represent ATM mutations. </p><p>Saviozzi et al. (2002) noted that milder cases of AT, termed 'AT variants,' comprise a heterogeneous group characterized by later onset of clinical symptoms, slower progression, extended life span compared to most AT patients, and decreased levels of chromosomal instability and cellular radiosensitivity. In these patients, telangiectasia and/or immunodeficiency may be absent, while the neurologic features are present. Saviozzi et al. (2002) noted that the genotype of ATM in milder cases of AT is most often compound heterozygosity for a severe mutation together with a mild or leaky mutation, which expresses some ATM protein with residual function. In 2 sisters with variant AT with onset of ataxia at 27 years, polyneuropathy, choreoathetosis, and absence of telangiectasia, immunodeficiency, and cancer, Saviozzi et al. (2002) identified compound heterozygosity in the ATM gene for a missense (607585.0028) and a frameshift (607585.0029) mutation. Western blot analysis showed a low level of ATM protein with residual phosphorylation activity, which the authors suggested contributed to the milder phenotype. </p><p>Hiel et al. (2006) reported 3 brothers and an unrelated woman with late-onset AT. All 4 were ambulatory and ranged in age from 37 to 43 years; unsteady gait developed approximately 10 years earlier. Cerebellar signs were mild, but all had striking distal muscular atrophy and weakness, decreased or absent ankle reflexes, and normal or borderline delayed motor conduction velocities with markedly decreased compound muscle action potentials. Muscle biopsies showed neurogenic changes. The patients had normal sensation and normal sensory studies. Other features included severe resting tremor, slight intention tremor, and mild dysarthria. ATM phosphorylation activity was only slightly decreased, suggesting that other factors were involved in damage to anterior horn neurons. </p><p>Verhagen et al. (2009) provided a retrospective analysis of 13 adult patients with variant AT from 9 families and 6 unrelated patients with classic AT. All patients were from the Netherlands; 2 of the patients with variant AT had been reported by Hiel et al. (2006). All patients with classic AT were diagnosed in childhood, presented with ataxic gait, and were wheelchair-bound by age 11 years. Five of the 6 died between ages 21 and 27. Those with variant AT were only correctly diagnosed in adulthood, although 7 presented with slowly progressive chorea-athetosis from early childhood. Five with variant AT presented with resting tremor between age 12 to 34, and the remaining patient with variant AT presented with distal muscle weakness of the lower extremities at age 6. Five patients with variant AT became wheelchair-bound between ages 15 and 43, and 2 had died of malignancy at ages 51 and 23 years, respectively. All variant AT patients had dysarthria by adulthood, 9 had choreoathetosis, 8 had resting tremor, 7 had oculomotor apraxia, and 5 had nystagmus. Eight patients had normal cerebellum on MRI, whereas 4 had cerebellar atrophy. Only 7 of 13 had ocular telangiectasia, but all had increased serum alpha-fetoprotein. Six with variant AT had polyneuropathy. Four developed a malignancy, including ALL, pituitary tumor, and breast cancer. Only 1 had slightly decreased IgG levels. Chromosomal instability was found in 8 variant AT patients tested. Those with the mildest form of the disorder had residual ATM protein expression with kinase activity. </p><p>Saunders-Pullman et al. (2012) reported 13 patients from 3 Canadian Mennonite families with variant AT due to a homozygous missense mutation in the ATM gene (A2067D; 607585.0033). The patients had onset of dystonia in the first 2 decades (range, 1-20 years). Dystonia mostly affected the neck, face, tongue, and limbs, and became generalized in 60% of patients. Dysarthria was very common. Additional features in some patients included myoclonus, facial choreiform movements, and irregular tremor. Some patients had clumsy gait, and although none had overt ataxia, 2 patients had ataxia in childhood that spontaneously resolved. None had prominent telangiectases. Postmortem examination showed mild loss of cerebellar Purkinje cells in 1 patient, but cerebellar atrophy was not a prominent finding in any of the patients. Cells from 2 mutation carriers showed increased radiosensitivity and only trace amounts of ATM protein. Heterozygous mutation carriers did not have dystonia. Family history revealed that 2 homozygous mutation carriers in 1 family had died of malignancy in adulthood. </p><p>Schon et al. (2019) reported on 57 patients with variant AT (patients with retained ATM kinase activity). Mean age at assessment was 37.5 years. Most (81%) had their first symptoms by age 10 years. Time from symptom onset until diagnosis was more than 10 years in 68% and more than 20 years in one-third of probands. All patients had neurologic involvement. Disease severity was mild in one-third of patients, with 43% still ambulatory 20 years after disease onset. In one-third, neurologic deficit was predominantly cerebellar ataxia, whereas 18% had a pure extrapyramidal presentation. Patients with extrapyramidal presentations had milder neurologic disease severity. Brain MRI performed in 35 patients showed cerebellar atrophy in 29. Conjunctival telangiectasia was seen in 63%. None of the patients had significant respiratory or immunologic complications, but 25% had a history of malignancy of various types. </p><p><strong><em>Cancer Risk in Heterozygotes</em></strong></p><p>
Welshimer and Swift (1982) studied families of homozygotes for AT, Fanconi anemia (FA), and xeroderma pigmentosum (XP; see 278700) to test the hypothesis that heterozygotes may be predisposed to some of the same congenital malformations and developmental disabilities that are common among homozygotes. Among XP relatives, 11 of 1,100 had unexplained mental retardation, whereas only 3 of 1,439 relatives of FA and AT homozygotes showed mental retardation. Four XP relatives but no FA or AT relatives had microcephaly. Idiopathic scoliosis and vertebral anomalies occurred in excess in AT relatives, while genitourinary and distal limb malformations were found in FA families. </p><p>Swift (1980) defended, from the viewpoint of not causing anxiety, the usefulness and safety of cancer risk counseling of heterozygotes for AT. Swift et al. (1987) examined the cancer risk of heterozygotes for AT in 128 families, including 4 of Amish ancestry, 110 white non-Amish families, and 14 black families. They measured documented cancer incidence rather than cancer mortality based solely on death certificates and compared the cancer incidence in adult blood relatives of probands directly with that in spouse controls. The incidence rates in AT relatives were significantly elevated over those in spouse controls. In persons heterozygous for AT, the relative risk of cancer was estimated to be 2.3 for men and 3.1 for women. Breast cancer in women was the cancer most clearly associated with heterozygosity for AT. Swift et al. (1987) estimated that 8 to 18% of patients with breast cancer in the U.S. white population would be heterozygous for AT. Pippard et al. (1988) reported an excess of breast cancer deaths in British mothers of AT patients (significant at the 5% level), but no excess mortality from malignant neoplasms in the grandparents. </p><p>Morrell et al. (1990) reported cancer incidence measured retrospectively in 574 close blood relatives of AT patients and 213 spouse controls in 44 previously unreported families. For heterozygous carriers of the AT gene, the relative risk of cancer was estimated to be 6.1 as compared with non-heterozygotes. The most frequent cancer site in the blood relatives was the female breast, with 9 cancers observed. Gatti et al. (1991) provided a review in which they noted the possibly high frequency of breast cancer in AT heterozygotes. </p><p>Swift et al. (1991) reported the results of a prospective study of 1,599 adult blood relatives of patients with AT and 821 of their spouses distributed in 161 families. Cancer rates were significantly higher among the blood relatives than in their spouses, specifically in the subgroup of 294 blood relatives who were known to be heterozygous for the AT gene. The estimated risk of cancer of all types among heterozygotes as compared with noncarriers was 3.8 in men and 3.5 in women, and that for breast cancer in carrier women was 5.1. Among the blood relatives, women with breast cancer were more likely to have been exposed to selected sources of ionizing radiation than controls without cancer. Male and female blood relatives also had 3-fold and 2.6-fold excess mortality from all causes, respectively, from the ages of 20 through 59 years. Swift et al. (1991) suggested that diagnostic or occupational exposure to ionizing radiation increases the risk of breast cancer in women heterozygous for AT. The work of Swift et al. (1991) on the frequency of breast cancer in AT was critiqued by numerous authors, including Bridges and Arlett (1992). </p><p>Since the genes responsible for most cases of AT are located on 11q, Wooster et al. (1993) typed 5 DNA markers in the AT region in 16 breast cancer families. They found no evidence for linkage between breast cancer and these markers and concluded that the contribution of AT to familial breast cancer is likely to be minimal. </p><p>Athma et al. (1996) determined the AT gene carrier status of 776 blood relatives in 99 AT families by tracing the ATM gene in each family through tightly linked flanking DNA markers. There were 33 women with breast cancer who could be genotyped; 25 of these were AT heterozygotes, compared to an expected 14.9. For 21 breast cancers with onset before age 60, the odds ratio was 2.9 and for 12 cases with onset at age 60 or older, the odds ratio was 6.4. Thus, the breast cancer risk for AT heterozygous women is not limited to young women but appeared to be even higher at older ages. Athma et al. (1996) estimated that, of all breast cancers in the U.S., 6.6% may occur in women who are AT heterozygotes. This proportion is several times greater than the estimated proportion of carriers of BRCA1 mutations (113705) in breast cancer cases with onset at any age. </p><p>The reported increased risk for breast cancer for AT family members has been most evident among younger women, leading to an age-specific relative risk model predicting that 8% of breast cancer in women under age 40 arises in AT carriers, compared with 2% of cases between 40 and 59 years (Easton, 1994). To test this hypothesis, FitzGerald et al. (1997) undertook a germline mutational analysis of the ATM gene in a population of women with early onset of breast cancer, using a protein truncation (PTT) assay to detect chain-terminating mutations, which account for 90% of mutations identified in children with AT. They detected a heterozygous ATM mutation in 2 of 202 (1%) controls, consistent with the frequency of AT carriers predicted from epidemiologic studies. ATM mutations were present in only 2 of 401 (0.5%) women with early onset of breast cancer (P = 0.6). FitzGerald et al. (1997) concluded that heterozygous ATM mutations do not confer genetic predisposition to early onset of breast cancer. </p><p>The results of FitzGerald et al. (1997) are discrepant with those of Athma et al. (1996), who conducted a study 'from the other direction' by following identified AT mutations through the families of those with clinically recognized AT. Analysis of DNA markers flanking the AT gene allowed them to identify precisely which female relatives with breast cancer carried the AT mutation. On the basis of the genetic relationship between each case and the AT proband, the a priori probability that these 2 share the AT mutation was calculated. This led to an estimated relative risk of 3.8 as compared to noncarriers. This result was similar to that found by Easton (1994), who reanalyzed the previous studies of breast cancer risk in mothers (and other close relatives) of AT cases. Bishop and Hopper (1997) analyzed these 2 studies and suggested that they may not be discrepant. Indeed, they estimated that the study of FitzGerald et al. (1997) yielded an upper limit of the 95% confidence interval for the proportion of early onset breast cancer occurring in AT heterozygotes as 2.4% (assuming that their assay identified 75% of all mutations). </p><p>In a family with multiple cancers, Bay et al. (1999) described heterozygosity for a mutant allele of ATM that caused skipping of exon 61 in the mRNA (607585.0020) and was associated with a previously undescribed polymorphism in intron 61. The mutation was inherited by 2 sisters, one of whom developed breast cancer at age 39 years and the second at age 44 years, from their mother, who developed kidney cancer at age 67 years. Studies of irradiated lymphocytes from both sisters revealed elevated numbers of chromatid breaks, typical of AT heterozygotes. In the breast tumor of the older sister, loss of heterozygosity (LOH) was found in the ATM region of 11q23.1, indicating that the normal ATM allele was lost in the breast tumor. LOH was not seen at the BRCA1 (113705) or BRCA2 (600185) loci. BRCA2 was considered an unlikely cancer-predisposing gene in this family because each sister inherited different chromosomes 13 from each parent. The findings suggested that haploinsufficiency at ATM may promote tumorigenesis, even though LOH at the ATM locus supported a more classic 2-hit tumor suppressor gene model. </p><p>The finding that ATM heterozygotes have an increased relative risk for breast cancer had been supported by some studies but not confirmed by others. Broeks et al. (2000) analyzed germline mutations of the ATM gene in a group of Dutch patients with breast cancer using normal blood lymphocytes and the protein truncation test followed by genomic sequence analysis. A high percentage of ATM germline mutations was demonstrated among patients with sporadic breast cancer. The 82 patients included in this study had developed breast cancer before the age of 45 years and had survived 5 years or more (mean, 15 years), and in 33 (40%) of the patients a contralateral breast tumor had been diagnosed. Among these patients, 7 (8.5%) had germline mutations of the ATM gene, of which 5 were distinct. One splice site mutation, IVS10-6T-G (607585.0021), was detected 3 times in this series. Four heterozygous carriers had bilateral breast cancer. Broeks et al. (2000) concluded that ATM heterozygotes have an approximately 9-fold increased risk of developing a type of breast cancer characterized by frequent bilateral occurrence, early age at onset, and long-term survival. They suggested that the characteristics of this population of patients may explain why such a high frequency was found here and not in other series. </p><p>Olsen et al. (2005) reported on an extended and enlarged follow-up study of cancer incidence in blood relatives of 75 patients with verified AT from 66 Nordic families. When 7 mothers of probands were excluded, no clear relationship was observed between the allocated mutation carrier probability of each family member and the extent of breast cancer risk. They concluded that the increased risk for female breast cancer seen in 66 Nordic AT families appeared to be restricted to women under the age of 55 years and was due mainly to a very high risk in the group of mothers. Olsen et al. (2005) concluded that the findings of breast cancer risk in mothers, but not in other likely mutation carriers, in this and other studies raised questions about the hypothesis of a simple causal relationship with ATM heterozygosity. </p><p>Although the defining characteristic of recessive diseases is the absence of a phenotype in heterozygous carriers, Watts et al. (2002) suggested that expression profiling by microarray techniques might reveal subtle manifestations. Individual carriers of AT cannot be identified; as a group, however, carriers of a mutant AT allele have a phenotype that distinguishes them from normal control individuals: increased radiosensitivity and risk of cancer. Watts et al. (2002) showed that the phenotype was also detectable, in lymphoblastoid cells from AT carriers, as changes in expression level of many genes. The differences were manifested both in baseline expression levels and in response to ionizing radiation. The findings showed that carriers of the recessive disease may have an 'expression phenotype,' which suggested a new approach to the identification of carriers and enhanced understanding of their increased cancer risk. </p><p>Renwick et al. (2006) screened individuals from 443 familial breast cancer pedigrees and 521 controls for ATM sequence variants and identified 12 mutations in affected individuals and 2 in controls (p = 0.0047). Their results demonstrated that ATM mutations that cause ataxia-telangiectasia in biallelic carriers are breast cancer susceptibility alleles in monoallelic carriers, with an estimated relative risk of 2.37 (95% CI = 1.57-3.78, p = 0.0003). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Other Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Waldmann and McIntire (1972) showed raised alpha-fetoprotein in the blood of patients with AT. This, they felt, suggests immaturity of the liver and is consistent with the view that the primary defect is in tissue differentiation, specifically, a defect in the interaction necessary for differentiation of gut-associated organs such as the thymus and liver. Ishiguro et al. (1986) concluded that the elevated alpha-fetoprotein in patients with AT probably originates in the liver. </p><p>On the circulating monocytes of AT patients, Bar et al. (1978) demonstrated an 80 to 85% decrease in insulin receptor affinity. This decrease was not observed in the cultured fibroblasts of AT patients or in the monocytes and fibroblasts of relatives of these patients. In addition, they found that whole plasma and immunoglobulin-enriched fractions of plasma from AT patients inhibited the normal binding of insulin to its receptors on cultured human lymphocytes and on human placental membranes. This suggested the presence of antireceptor immunoglobulins. AT and type B acanthosis nigricans have several features in common that suggest the possibility of similar causes for the insulin resistance each demonstrates. </p><p>Shaham and Becker (1981) showed that the AT clastogenic (chromosome breaking) factor present in plasma of AT patients and in the culture medium of AT skin fibroblasts is a peptide with a molecular weight in the range of 500 to 1000. No clastogenic activity could be demonstrated in extracts of cultured AT fibroblasts. </p><p>Mohamed et al. (1987) found marked reduction of topoisomerase II (126430) in some but not all AT cell lines. DNA topoisomerases I and II are enzymes that introduce transient single- and double-strand breaks into DNA and thus are capable of interconverting various DNA conformations. The isolation of mutants of the 2 enzymes in yeast and the increased levels of DNA topoisomerase II in cells undergoing DNA synthesis provide evidence for the role of these enzymes in DNA replication and in chromosome segregation and organization. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Inheritance</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>In a study of 47 families ascertained throughout the United Kingdom, Woods et al. (1990) found a low parental consanguinity rate; no parents were first cousins or more closely related, whereas 10% had been expected. Furthermore, the incidence of the disorder in 79 sibs of index cases was 1 in 7, rather than the expected 1 in 4. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Diagnosis</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>The presence of early-onset ataxia with oculocutaneous telangiectases permits diagnosis of AT. The clinical diagnosis of AT can be problematic before the appearance of telangiectases. Oculomotor apraxia is a useful aid to early clinical diagnosis. Early-onset cerebellar ataxia and oculomotor apraxia are also typical of X-linked Pelizaeus-Merzbacher disease (312080) and can be seen in Joubert syndrome (213300). These disorders can be distinguished by leukoencephalopathy in the former, and by profound cerebellar hypoplasia in the latter. See also 257550. Elevated levels of alpha-fetoprotein (126430) and carcinoembryonic antigen are the most useful readily available markers for confirmation of the diagnosis of AT (Gatti et al., 1991). Dysgammaglobulinemia, decreased cellular immune responses, and peripheral lymphopenia are supportive findings but are not invariable. </p><p>Henderson et al. (1985) devised a rapid diagnostic method based on the hypersensitivity of AT lymphocytes to killing by gamma irradiation. Similar studies in fibroblasts require skin biopsy and a prolonged culture time. Llerena et al. (1989) concluded that in chorionic villus sampling, gamma radiation is a reliable way of discriminating between unaffected fetuses and those with AT. The reliability of this approach is in question, however. Painter and Young (1980) suggested that the radiosensitivity of AT cells may be caused by their failure to respond to DNA damage with a delay in DNA synthesis that could give time for repair to take place. </p><p>Shiloh et al. (1989) presented evidence that the extent of chromatid damage induced in the G2 phase of the cell cycle by moderate dosage of x-rays is markedly higher in AT heterozygous cells than in normal controls. They used this as a test of heterozygosity. </p><p>Rosin and Ochs (1986) applied the exfoliated cell micronucleus test to the question of in vivo chromosomal instability in AT. This test is performed on exfoliated cells from the oral cavity collected by swabbing the mucosa with a moistened tongue depressor and also on urinary bladder cells obtained by centrifugation of freshly voided urine specimens. Micronuclei in these cells result from fragmentation of chromosomes in the dividing cells from the epithelium, resulting in acentric fragments which are excluded from the main nucleus when the cell divides. These fragments form their own membrane and can be identified as extranuclear Feulgen-positive bodies in daughter cells which migrate up through the epithelium to be exfoliated. Rosin and Ochs (1986) found that AT homozygotes had a 5- to 14-fold increase in the frequency of exfoliated cell micronuclei. Heterozygotes could be reliably identified by this method (Rosin et al., 1989). </p><p>Using X-radiation with 1 Gy on G2-phase lymphocytes from 7 AT patients, 13 obligate AT heterozygotes, and 14 normal controls, Tchirkov et al. (1997) found that both AT homozygotes and heterozygotes showed significantly increased levels of radiation-induced chromatid damage relative to that of normal controls. </p><p><strong><em>Variant Ataxia-Telangiectasia</em></strong></p><p>
Van Os et al. (2019) reported 14 patients from a Dutch AT cohort who had mild neurologic phenotypes of genetically confirmed AT, and identified reports of 91 patients with mild phenotypes in the literature. Mild phenotypes were defined as those with later onset, without ataxia at presentation or ataxia not being the dominant feature, or with slower progression. The mean diagnostic delay in these patients was 19.6 years. Among the 105 patients, the authors identified 6 neurologic trajectories: (1) childhood-onset extrapyramidal features with cerebellar symptoms developing later (18 patients); (2) childhood-onset cerebellar symptoms with extrapyramidal features developing later (35 patients); (3) childhood- to adolescence-onset dystonia without cerebellar symptoms (23 patients); (4) childhood- to adolescence-onset isolated cerebellar symptoms (22 patients), (5) childhood- to adult-onset prominent muscle weakness (2 patients); and (6) patients with adult-onset extrapyramidal features, with anterior horn cell disease arising later (5 patients). The authors proposed that recognition of these neurologic trajectories in patients with milder forms of AT could lead to reduction of diagnostic delay. Oculocutaneous telangiectases were seen in about 50% of patients. About 30% developed a malignancy; the diagnosis of AT was made after the malignancy diagnosis in 11 patients with cancer (35.5%). Among patients with malignancy, predictors of AT included a young age at malignancy onset combined with neurologic impairment, consanguineous family, a family history for neurologic symptoms with a medical history of cancer, severe radiation-induced skin reactions, or a second malignancy. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Patients with AT and their cultured cells are unusually sensitive to x-ray just as patients and cells with xeroderma pigmentosum are sensitive to ultraviolet. Treatment of malignancy with conventional dosages of radiation can be fatal to AT patients.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Cytogenetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Oxford et al. (1975) found that chromosome 14 was often involved in rearrangements in AT and that band 14q12 was a highly specific exchange point. In addition to the changes in chromosome 14, a pericentric inversion of chromosome 7 is characteristic. McCaw et al. (1975) described t(14;14)(q11;q32) translocation in T-cell malignancies of patients with AT. T cells show a t(14;14)q12q32 rearrangement in about 10% of AT patients. </p><p>Croce et al. (1985) assigned the alpha subunit of the T-cell antigen receptor (TCRA; see 186880) to the region of one of the common breakpoints in AT (14q11.2) and suggested that the oncogene TCL1 (186960) is located in the region of the other breakpoint (14q32.3). It is thought that the TCL1 gene may be activated by chromosome inversion or translocation, either of which results in juxtaposition of the TCL1 gene and the TCRA gene. In AT, circulating lymphocytes show characteristic rearrangements involving the site of the T-cell receptor gamma gene (7p15) (TCRG; see 186970), T-cell receptor beta genes (7q35) (TCRB; see 186930), T-cell receptor alpha genes (14q11), and immunoglobulin heavy chain genes (14q32) (IGHG1; 147100) (McFarlin et al., 1972; Ying and Decoteau, 1981). </p><p>Aurias et al. (1986) described a possible 'new' type of chromosome rearrangement, namely, telomere-centromere translocation (tct) followed by double duplication. This type of rearrangement was found between chromosomes 7 and 14 in cases of AT. Gatti et al. (1985) and Aurias and Dutrillaux (1986) found that the sites of breaks in rearrangements (7p14, 7q35, 14q12, 14qter, 2p11, 2p12, and 22q11-q12) are those where members of the immunoglobulin superfamily are located: IGK, IGH, IGL, TCRA, TCRB, TCRG. The somatic gene rearrangement must precede expression of these genes. </p><p>Kennaugh et al. (1986) studied a patient with an inversion of 14q which had been present for many years in T cells. It was found that the breakpoint in 14q32 lay outside the IgH locus and proximal to it. The constant region gene of the T-cell receptor alpha chain (TCRA) locus was translocated to the 14q32 position. Johnson et al. (1986) found that the 14q32 breakpoint in the 14/14 translocation found in T-CLL cells and in an AT patient occurred within the immunoglobulin gene cluster. The AT patient had the characteristic chromosome 14 tandem translocation in 100% of karyotyped T cells 10 years before her death from T-cell leukemia. (This was the same patient described earlier by Saxon et al. (1979).) Stern et al. (1988) used in situ chromosomal hybridization to map the TCRA gene in 3 different nonmalignant T-cell clones derived from patients with AT. The constant region was translocated in each clone; the variable region remained in its original position in 2 clones and was deleted in 1 which lost the derivative chromosome 14. </p><p>Stern et al. (1988) mapped the 14q32.1 recurrent breakpoint of AT clones by in situ hybridization. They found that the breakpoint lay between D14S1 (107750) and PI (107400). In a t(14;14) clone they found an interstitial duplication including D14S1 and a part of the IGH locus. Studying the chromosomes by R-banding, Zhang et al. (1988) concluded that the distal breakpoint in the chromosome 14 inversion in an AT clone was different from that in the chromosome 14 inversion in a malignant T-cell line; specifically, in AT, the breakpoint was centromeric to both the immunoglobulin heavy chain locus and the D14S1 anonymous locus (107750). They suggested that this finding favors the existence of an unknown oncogene in band 14q32.1. </p><p>Russo et al. (1989) presented evidence for a cluster of breakpoints in the 14q32.1 region, the site of the putative oncogene TCL1, in cases of ataxia-telangiectasia with chronic lymphocytic leukemia. The 14q32.1 breakpoint is at least 10,000 kb centromeric to the immunoglobulin heavy chain locus. In a cell line with a translocation t(14;14)(q11;q32) from an AT patient with T-cell chronic lymphocytic leukemia, Russo et al. (1989) showed that a J(alpha) sequence from the TCRA locus was involved. This was again the patient first reported by Saxon et al. (1979). Humphreys et al. (1989) found some rearrangements involving chromosomes 7 and 14 at the usual 4 sites associated with AT--7p14, 7q35, 14q12, and 14q32--all sites of T-cell receptor genes. </p><p>Kojis et al. (1989) suggested that the very high frequency of lymphocyte-associated rearrangements (LARs) in peripheral blood chromosome preparations is a diagnostic criterion of the disease. They pointed out a striking difference in the types of rearrangements observed in lymphocytes and fibroblasts. LARs are not commonly observed in fibroblasts, despite the increased but random instability of chromosomes from these cells relative to lymphocytes. The region of location of the AT gene, 11q22-q23, is not involved in site-specific rearrangements in either lymphocytes or fibroblasts. </p><p>Lipkowitz et al. (1990) showed that an abnormal V(D)J recombination, joining V segments of the T-cell receptor gamma gene (186970) with J segments of the T-cell receptor beta gene (186930), occurs in peripheral blood lymphocytes of AT patients at a frequency 50- to 100-fold higher than normal. This frequency is roughly the same as the increase in the risk for lymphoid malignancy in these individuals. There is also an increase in the frequency of the lymphocyte-specific cytogenetic abnormalities thought to be due to interlocus recombination in non-AT patients with non-Hodgkin lymphoma, further suggesting a relationship between these translocations and lymphoid malignancies. Agriculture workers occupationally exposed to pesticides used in the production and storage of grain have a high frequency of cytogenetic abnormalities in peripheral blood lymphocytes in a pattern reminiscent of those in AT patients. Furthermore, these agriculture workers have an increased risk of developing T- and D-lymphoid malignancies. Lipkowitz et al. (1992) used a PCR-based assay developed for the study of AT patients to demonstrate a 10- to 20-fold increased frequency of hybrid antigen-receptor genes in peripheral blood lymphocytes of agriculture workers with chemical exposure. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>By linkage to RFLP markers, Gatti et al. (1988) localized the AT gene to 11q22-q23. They had previously excluded 171 markers, comprising approximately 35% of the genome. The most promising marker in a large Amish pedigree was found to be THY1 (188230), which is located at 11q22.3; it showed linkage with maximum lod = 1.8 at theta = 0.00. When data from the other 4 informative group A AT families were added, the maximum lod score rose to 3.63 with no observed recombinants. The maximum lod score for all 31 families studied for linkage of AT to THY1 was 4.34 at theta = 0.10. The large Amish pedigree diagrammed in their Figure 1 is the kindred reported by McKusick and Cross (1966), Ginter and Tallapragada (1975), and Rary et al. (1975). By further mapping with a panel of 10 markers, Sanal et al. (1990) concluded that the AT locus is in band 11q23. </p><p>The site of the AT1 gene (11q22-q23) is the same as or adjacent to the region occupied by the CD3 (186790), THY1, and NCAM (116930) genes, all of which are members of the immunoglobulin-gene superfamily and therefore may be subject to the same defect that afflicts the T-cell receptor and immunoglobulin molecules in AT. Concannon et al. (1990) excluded the AT1 gene from a region extending 15 cM to either side of ETS1 (164720), which maps to 11q24. According to Gatti (1990), the gene in families from complementation groups A, C, and D, representing approximately 97% of all families, has been mapped to 11q23. Thus, a single gene may exist with various intragenic defects permitting complementation. </p><p>In studies of 35 consecutively obtained families in the British Isles, McConville et al. (1990) found support for linkage with THY1 at zero recombination. They found evidence suggesting a second AT locus on 11q, centromeric to the site previously postulated. With 3 exceptions, the families had not been assigned to complementation groups. The series of families included the only group E family described to date. They quoted Jaspers et al. (1988) as giving the proportion of group A, group C, and group D cases as approximately 56%, 28%, and 14%, respectively. </p><p>By linkage studies in a Jewish-Moroccan family with AT of the group C type, Ziv et al. (1991) found that the disorder was linked to the same region (11q22-q23) as found in group A families. McConville et al. (1990) located the AT1 gene to a 5-cM region in 11q22-q23, flanked by NCAM and DRD2 (126450) on one side and STMY1 (185250) on the other. </p><p>On the basis of an 18-point map of the 11q23 region of 11q, derived from linkage analysis of 40 CEPH families, Foroud et al. (1991) analyzed 111 AT families from Turkey, Israel, England, Italy, and the United States, localizing the gene to an 8-cM sex-averaged interval between the markers STMY1 and D11S132/NCAM. Ziv et al. (1992) obtained results from linkage study indicating that the ATA gene in 3 large Arab families was located in 11q23. However, in a Druze family unassigned to a specific complementation group, several recombinants between AT and the same markers were observed. </p><p>Sobel et al. (1992) pointed to linkage evidence suggesting that there are 2 AT loci on 11q and that group D AT may be located distal to the site of groups A and C in the 11q23 region. </p><p>In linkage studies of 14 Turkish families, 12 of which were consanguineous, Sanal et al. (1992) obtained results indicating that the most likely location for a single AT locus is within a 6-cM sex-averaged interval defined by STMY and the marker CJ77. However, it appeared that there are at least 2 distinct AT loci (ATA and ATD) at 11q22-q23, with perhaps a third locus, ATC, located very near the ATA gene. </p><p>Hernandez et al. (1993) described a large inbred family in which 2 adult cousins had AT with a somewhat milder clinical course than usual. Since genetic linkage analysis did 'not provide any evidence that the gene for AT in this family is located at 11q22-23,' further locus heterogeneity was suggested. </p><p>In 2 families clinically diagnosed with AT and previously reported by Hernandez et al. (1993) and Klein et al. (1996), respectively, Stewart et al. (1999) identified mutations in the MRE11A gene (600814). Consistent with the clinical outcome of these mutations, cells established from the affected individuals within the 2 families exhibited many of the features characteristic of both AT and Nijmegen breakage syndrome (251260), including chromosomal instability, increased sensitivity to ionizing radiation, defective induction of stress-activated signal transduction pathways, and radioresistant DNA synthesis. The authors designated the disorder ATLD, for AT-like disorder (604391). Because the MRE11A gene maps to 11q21 and the ATM gene maps to 11q23, Stewart et al. (1999) concluded that only a very detailed linkage analysis would separate ATLD from AT purely on the basis of genetic data. Assuming that the mutation rate is proportional to the length of the coding sequences of the 2 genes, they suggested that approximately 6% of AT cases might be expected to have MRE11A mutations. </p><p>Gatti et al. (1993) reported prenatal genotyping in this disorder. They pointed out that although at least 5 complementation groups have been defined, linkage studies of more than 160 families from various parts of the world have failed to show linkage heterogeneity. All but 2 families were linked to a 6-cM (sex-averaged) region at 11q22.3 defined by the markers STMY1 and D11S385. A further analysis of 50 British families narrowed the localization to a 4-cM (sex-averaged) region defined by D11S611 and D11S535. The demonstrated complementation groups may represent different intragenic mutations or separate ataxia-telangiectasia genes clustered within the 11q22.3 region, neither of which would challenge the validity of linkage or haplotyping studies. A possible reinterpretation of the complementation data is that the radiosensitivity of AT fibroblasts can be complemented by many genes besides the AT gene or genes. Gatti et al. (1993) used the flanking markers to show that the haplotypes in a fetus were identical to those in a previously born affected child. The parents chose to continue the pregnancy. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Heterogeneity</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Complementation Groups</em></strong></p><p>
On the basis of complementation studies of DNA repair in cultured fibroblasts, Paterson et al. (1977) suggested the existence of 2 distinct types of ataxia-telangiectasia. By genetic complementation analysis, Jaspers and Bootsma (1982) concluded that extensive genetic heterogeneity exists in AT. Their method involved cell fusion and was based on the observation that the rate of DNA synthesis is inhibited by x-rays to a lesser extent in AT cells than in normal cells. At least 5 complementation groups have been identified (Murnane and Painter, 1982; Jaspers and Bootsma, 1982). Heterogeneity in AT has also been indicated by the clinical work of Fiorilli et al. (1983). </p><p>Jaspers et al. (1988) reported the results of complementation studies on fibroblast strains from 50 patients with AT or Nijmegen breakage syndrome (NBS; 251260), using the radioresistant DNA replication characteristic as a marker. Six different genetic complementation groups were identified. Four of these, called AB, C, D, and E (of which AB is the largest), represented patients with clinical signs of AT. (According to Gatti (1990), the frequencies of these 4 groups are approximately 55%, 28%, 14%, and 3%, respectively.) Patients having NBS fell into 2 groups, designated V1 and V2. A patient with clinical symptoms of both AT and NBS was found in group V1, indicating that the 2 disorders are closely related (Curry et al., 1989). No group-specific patterns of clinical characteristics or ethnic origin were apparent among the AT cases. In addition to the radiosensitive ATs, a separate category of patients was found, characterized by a relatively mild clinical course and weak radiosensitivity. Jaspers et al. (1988) concluded that a defect in 1 of at least 6 different genes may underlie inherited radiosensitivity in humans. </p><p>Curry et al. (1989) used the designation AT(Fresno) (607585.0014) for the V1 disorder in twin girls who had clinical features combining those of ataxia-telangiectasia and the Nijmegen breakage syndrome. Complementation studies with Sendai virus-mediated fusion of fibroblast cell lines showed complementation with AT groups A, C, and E but not with the cell line from a patient with the Nijmegen breakage syndrome. Hernandez et al. (1993) cited evidence for the existence of 4 complementation groups: AB, C, D, and E. Loci for AB, C, and D have been identified on 11q. However, Komatsu et al. (1996) could demonstrate that the gene for the V2 form of Nijmegen breakage syndrome is not located on chromosome 11. They found that cells from a patient with this form were highly sensitive to radiation and that the sensitivity was unchanged after the transfer of an extra copy of normal chromosome 11. </p><p>Gatti et al. (1988) noted the existence of at least 4 clinically indistinguishable complementation groups (A, C, D, and E) among 80 affected individuals (Jaspers et al., 1985; Jaspers et al., 1988). The Amish pedigree represents group A. This locus was designated ATA (HGM9). Since the Thy-1 glycoproteins are major cell surface constituents of rodent thymocytes and neurons (Tse et al., 1985), the question might be raised as to whether mutation in the THY1 gene is the basis of AT. The fact that recombination was found between THY1 and AT in the overall study may indicate that AT is not due to a defect in THY1 or it may mean that complementation group A is caused by mutation in THY1 but a mutation at another site is responsible for other forms of the disorder. When genetic linkage data from group C families are pooled, it appears that group C also may be linked to 11q22-q23 (Gatti, 1989). </p><p>The group D defect is correctable by transfer of chromosome 11 into an SV40-transformed fibroblast cell line (Komatsu et al., 1990). Ejima et al. (1990) corrected the radiosensitivity of a group D fibroblast line by introducing an 11q fragment into these cells. Lambert et al. (1991) showed by microcell-mediated chromosome transfer that immortalized AT cells from complementation group D were corrected by genetic material from region 11q22-q23. A deoxyribophosphodiesterase deficiency has been identified in cells from group E patients. Together, groups A and C encompass about 85% of AT patients. Genetic linkage studies should also clarify whether AT variant families are linked to chromosome 11q22-q23 or to group D or E defects. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Savitsky et al. (1995) identified mutations in the ATM gene in ataxia-telangiectasia cases of complementation groups A, C, D, and E and in 4 other patients in whom the complementation group was not determined (see, e.g., 607585.0001). Thus it appears that the complementation that is observed is intragenic and that all AT patients have mutations in a single gene. </p><p>Concannon and Gatti (1997) discussed the genetic heterogeneity in AT and provided an update of mutations in the ATM gene. They noted that most AT patients from nonconsanguineous families were compound heterozygotes. </p><p>Mutation detection at the ATM locus is difficult because of the large size of the gene (66 exons), the fact that mutations are located throughout the gene with no hotspots, and the difficulty of distinguishing mutations from polymorphisms. Buzin et al. (2003) used a method called DOVAM-S (Detection of Virtually All Mutations by SSCP), a robotically-enhanced, multiplexed scanning method that is a highly sensitive modification of SSCP. They studied 43 unrelated patients and 4 obligate carriers. The results of this complete scan showed that 86% of causative ATM mutations were truncating and 14% were missense. </p><p>See MOLECULAR GENETICS section in 607585.</p><p><strong><em>Variant Ataxia Telangiectasia</em></strong></p><p>
Schon et al. (2019) reported on 57 patients with variant AT (patients with retained ATM kinase activity). Using Sanger sequencing of PCR-amplified ATM exon sequences, mutations in the ATM gene were identified in 111 of 114 alleles. Patients were classified into 4 groups based on the mutations causing the retained kinase activity: (1) patients with leaky splice site mutations; (2) patients with missense mutations; (3) patients with mutations that affected the initiator methionine codon; and (4) patients with one confirmed mutation and one that had not been identified or fully characterized. Lymphoblastoid cell lines were derived from patient blood and were used to test ATM expression and activity. Patients with absent or just detectable ATM kinase activity had more severe disease. When compared to leaky splice site mutations, missense mutations were associated with milder neurologic disease severity, but with a higher risk of malignancy. </p><p>Van Os et al. (2019) reported 14 patients from a Dutch AT cohort who had mild neurologic phenotypes of genetically confirmed AT and identified reports of 91 patients with mild phenotypes in the literature. Among those 105 patients (210 alleles), mutations in the ATM gene were identified in 202 alleles, including 119 missense, 37 splice site, 30 frameshift, and 12 nonsense mutations, along with 3 deletions and 1 duplication. Four mutations occurred relatively frequently, with the remaining 71 mutations occurring fewer than 6 times. ATM protein was detectable in 54 of 62 patients (87.1%) studied. ATM kinase activity was present in 42 of 48 patients (87.5%) tested. Eight patients had no detectable ATM protein and/or no ATM kinase activity. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Van Os et al. (2019) compared the phenotype of 35 patients with AT and homozygosity or compound heterozygosity for the c.3576G-A (607585.0018) mutation in the ATM gene or 24 patients with AT and compound heterozygosity for the c.8417T-C mutation in the ATM gene to 51 patients with classic AT. Patients with the c.3576G-A mutation had a milder phenotype, including prolonged survival and lower susceptibility to malignancy, respiratory disease, and immunodeficiency, compared to classic AT patients. Patients with the c.8417T-C mutation had a later onset of disease, fewer telangiectases, lower susceptibility to malignancy, respiratory disease, and immunodeficiency, later onset of wheelchair use, and slower progression of neurologic disease compared to classic AT patients. The c.8417T-C mutation was associated with residual cellular ATM kinase activity, which may explain the associated milder phenotype. The c.3576G-A mutation was not clearly associated with retained ATM kinase activity, and the reason for the associated milder phenotype was unclear. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Pathogenesis</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Using 2 recombination vectors to study recombination in AT and control human fibroblast lines, Meyn (1993) found that the spontaneous intrachromosomal recombination rates were 30 to 200 times higher in AT fibroblast lines than in normal cells, whereas extrachromosomal recombination frequencies were near normal. Increased recombination is thus a component of genetic instability in AT and may contribute to the cancer risk. Other evidence of in vitro and in vivo genomic instability includes increased frequencies of translocations and other chromosomal aberrations in lymphocytes and fibroblasts, micronucleus formation in epithelial cells, and loss of heterozygosity in erythrocytes. Hyperrecombination is a specific feature of the AT phenotype rather than a genetic consequence of defective DNA repair because a xeroderma pigmentosum cell line exhibited normal spontaneous recombination rates. </p><p>At least 2 stages in the cell cycle are regulated in response to DNA damage, the G1-S and the G2-M transitions (Hartwell, 1992). These transitions serve as checkpoints at which cells delay progress through the cell cycle to allow repair of damage before entering either S-phase, when damage would be perpetuated, or M-phase, when breaks would result in the loss of genomic material. Checkpoints are thought to consist of surveillance mechanisms that can detect DNA damage, signal transduction pathways that transmit and amplify the signal to the replication or segregation machinery, and possibly repair activities. Both the G1-S and G2-M checkpoints are known to be under genetic control, since there are mutants that abolish the arrest or delay occurring in normal cells in response to DNA damage. Painter et al. (1982) showed that the G1-S checkpoint is abolished in cells from AT patients. </p><p>Kastan et al. (1992) provided strong evidence that the tumor-suppressor protein p53 (191170) is necessary for the G1-S checkpoint. They found that the AT gene(s) is upstream of the p53 gene in a pathway that activates the G1-S checkpoint. p53 levels increase 3- to 5-fold by a posttranscriptional mechanism after gamma-irradiation, coincident with a delay of the G1-S transition (Kastan et al., 1991); the induction of p53 does not occur in AT cells (Kastan et al., 1992). Induction by ionizing radiation of the GADD45 gene (126335), an induction that is also defective in AT cells, is dependent on wildtype p53 function (Kastan et al., 1992). Thus, Kastan et al. (1992) identified 3 participants--AT gene(s), p53, and GADD45--in a signal transduction pathway that controls cell cycle arrest following DNA damage. Abnormalities in this pathway probably contribute to tumor development. Kastan et al. (1992) pointed out that lymphoid malignancies are the most common tumor seen both in AT patients and in p53-deficient mice. Lymphoid cells normally experience DNA strand breaks during gene rearrangements. The G1 checkpoint may be important in the avoidance of errors in that process. Breast cancer and other nonlymphoid cancers are increased in individuals heterozygous for germline mutations of either p53 (e.g., the Li-Fraumeni syndrome; 191170.0001) or the AT gene(s) (Swift et al. (1987, 1991)). </p><p>P53 is a sequence-specific DNA-binding transcription factor that induces cell cycle arrest or apoptosis in response to genotoxic stress. Activation of p53 by DNA-damaging agents is critical for eliminating cells with damaged genomic DNA and underlies the apoptotic response of human cancers treated with ionizing radiation and radiomimetic drugs. Both the levels of p53 protein and its affinity for specific DNA sequences increase in response to genotoxic stress. In vitro, the affinity of p53 for DNA is regulated by its carboxyl terminus. Waterman et al. (1998) therefore examined whether this region of p53 is targeted by DNA-damage signaling pathways in vivo. In nonirradiated cells, serines 376 and 378 of p53 were phosphorylated. IR led to dephosphorylation of ser376, creating a consensus binding site for 14-3-3 proteins (113508) and leading to association of p53 with 14-3-3. In turn, this increased the affinity of p53 for sequence-specific DNA. Consistent with the lack of p53 activation by ionizing radiation in AT, neither ser376 dephosphorylation nor the interaction of p53 with 14-3-3 proteins occurred in AT cells. </p><p>Brown et al. (1999) reviewed studies identifying direct downstream targets of ATM and providing clues about the biologic function of these interactions. They placed the findings in the context of the pleiotropic phenotype displayed by patients with ataxia-telangiectasia and by Atm-deficient mice. The identified targets include ABL (189980), replication protein A (179835), p53, and beta-adaptin (see 600157). Since these targets are located in the nucleus and in the cytoplasm, the ATM protein is most likely involved in several distinct signaling pathways. In the thymus, p53 is phosphorylated directly by ATM after ionizing radiation, probably in the nucleus, leading to transcriptional activation of p21 and consequential cell cycle arrest. In the absence of ATM, this pathway is disrupted, and this defect perhaps results in the immunodeficiency and abnormal cellular responses to IR seen in patients with AT. Furthermore, the infertility noted in both AT patients and Atm-deficient mice is due to abnormal meiotic progression and subsequent germ-cell degeneration, a phenotype that is partially corrected by concomitant loss of p53 and p21 function. ATM interactions with beta-adaptin in the cytoplasm might mediate axonal transport and vesicle trafficking in the central nervous system and so account for the neuronal dysfunction and eventual neurodegeneration seen in ataxia-telangiectasia. Thus, the phenotypic pleiotropy of ataxia-telangiectasia results from the fact that different tissues express different ATM targets and perhaps also express a different complement of ATM family members whose functions may overlap with those of ATM and partially replace ATM. </p><p>Jung et al. (1995) isolated cDNA that corrected the radiation sensitivity and DNA synthesis defects in fibroblasts from an AT1 group D patient by expression cloning, and showed that the cDNA encoded NFKBI, a truncated form of I-kappa-B (164008), which is an inhibitor of NFKB1, the nuclear factor kappa-B transcriptional activator (164011). The parental AT1 fibroblast expressed large amounts of the NFKBI transcript and showed constitutive activation of NFKB1. The AT1 fibroblast transfected with the truncated NFKBI expressed normal amounts of the NFKBI transcript and showed regulated activation of NFKB1. Since the NFKBI gene is located on chromosome 14 and not chromosome 11, it is probably not the site of the primary defect; Jung et al. (1995) hypothesized that its contribution to the ataxia-telangiectasia phenotype may work downstream of the gene representing the primary defect. </p><p>Shackelford et al. (2001) investigated the possibility that the AT phenotype is a consequence, at least in part, of an inability to respond appropriately to oxidative damage. In comparison to normal human fibroblasts, AT dermal fibroblasts exhibited increased sensitivity to t-butyl hydroperoxide toxicity. These cells failed to show G1 to G2 phase checkpoint functions or to induce p53 in response to oxidative challenge. </p><p>In an analysis of expression phenotypes among AT carriers, AT patients, and noncarrier controls, Smirnov and Cheung (2008) uncovered a regulatory pathway in which ATM regulates expression of TNFSF4 (603594) through MIRN125B (see 610104). In AT carriers and AT patients, this pathway is disrupted. As a result, the level of MIRN125B is lower and the level of its target gene, TNFSF4, is higher than in noncarriers. A decreased level of MIRN125B is associated with breast cancer, and an elevated level of TNFSF4 is associated with atherosclerosis. Thus, Smirnov and Cheung (2008) concluded that their findings provided a mechanistic suggestion for the increased risk of breast cancer and heart disease in AT carriers. </p><p>Iourov et al. (2009) observed a 2- to 3-fold increase of stochastic aneuploidy affecting different chromosomes in the cerebellum and the cerebrum of the AT brain. Degenerating cerebellum in AT demonstrated a 5- to 20-fold increase of nonrandom DNA double-strand breaks and aneuploidy affecting chromosomes 14 and, to a lesser extent, chromosomes 7 and X. Novel recurrent chromosome hotspots associated with cerebellar degeneration were mapped to chromosome 14q12 containing the 2 candidate genes FOXG1B (164874) and NOVA1 (602157). Iourov et al. (2009) hypothesized that the existence of nonrandom breaks disrupting specific chromosomal loci in neural cells with DNA repair deficiency is evidence for programmed somatic rearrangements of the neuronal genome. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Population Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>On the basis of a 'vigorous case finding' in the United States in 2 time periods, Swift et al. (1986) estimated the incidence and gene frequency of AT. The highest observed incidence was in the state of Michigan for the period 1965 to 1969 when white AT patients were born at the rate of 11.3 per million births. Based on the incidence data, the minimum frequency of a single hypothetical AT gene in the U.S. white population was estimated to be 0.0017. Pedigree analysis, which estimates the gene frequency from the proportion of affected close blood relatives of homozygous probands, estimated the most likely gene frequency to be 0.007 on the assumption that AT is a single homogeneous genetic syndrome. Given that complementation analysis has demonstrated genetic heterogeneity in AT, the AT heterozygote frequency might fall between 0.68% and 7.7%, with 2.8% being a likely estimate. In the West Midlands of England, the birth frequency of AT was estimated to be about 1 in 300,000. </p><p>Stankovic et al. (1998) reported the spectrum of 59 ATM mutations observed in AT patients in the British Isles. Of the 51 ATM mutations identified in families native to the British Isles, 11 were founder mutations, and 2 of these 11 conferred a milder clinical phenotype with respect to both cerebellar degeneration and cellular features. In 2 AT families, a 7271T-G mutation of the ATM gene appeared to be associated with an increased risk of breast cancer in both homozygotes and heterozygotes, although there was a less severe AT phenotype in terms of the degree of cerebellar degeneration. This mutation was associated with expression of full-length ATM protein at a level comparable to that in unaffected individuals. In addition, Stankovic et al. (1998) studied 18 AT patients, in 15 families, who developed leukemia, lymphoma, preleukemic T-cell proliferation, or Hodgkin lymphoma, mostly in childhood. A wide variety of ATM mutation types, including missense mutations and in-frame deletions, were seen in this group of patients. The authors showed that 25% of all AT patients carried in-frame deletions or missense mutations, many of which were also associated with expression of mutant ATM protein. </p><p>Ejima and Sasaki (1998) studied 8 unrelated Japanese families with ataxia-telangiectasia for mutations in the ATM gene. Six different mutations were found on 12 of the 16 alleles examined. Two mutations, 4612del165 (607585.0014) and 7883del5, were found more frequently than the others; 7 of 16 (44%) of the mutant alleles had 1 of these 2 mutations. Microsatellite genotyping demonstrated that a common haplotype was shared by the mutant alleles for both common mutations. The authors suggested that the 2 founder mutations may be predominant among Japanese ATM mutant alleles. </p><p>Telatar et al. (1998) found that 4 mutations accounted for 86 to 93% of 41 Costa Rican AT patients studied. They suggested that the Costa Rican population might be useful for analyzing the role of ATM heterozygosity in cancer. </p><p>Sasaki et al. (1998) presented the results of a mutation screen in 14 unrelated AT patients, most of them Japanese. They used a hierarchical strategy in which they extensively analyzed the entire coding region of the cDNA. In the first stage, point mutations were sought by PCR-SSCP in short patches. In the second and third stages, the products of medium- and long-patch PCR, each covering the entire region, were examined by agarose gel electrophoresis to search for length changes. They found a total of 15 mutations (including 12 new) and 4 polymorphisms. Abnormal splicing of ATM was frequent among Japanese, and no hotspot was obvious, suggesting no strong founder effects in that ethnic group. Eleven patients carried either 1 homozygous or 2 compound heterozygous mutations, 1 patient carried only 1 detectable heterozygous mutation, and no mutation was found in 2 patients. Overall, mutations were found in at least 75% of the different ATM alleles examined. </p><p>Sandoval et al. (1999) investigated the mutation spectrum of the ATM gene in a cohort of AT patients living in Germany. They amplified and sequenced all 66 exons and the flanking untranslated regions from genomic DNA of 66 unrelated AT patients. They identified 46 different ATM mutations and 26 sequence polymorphisms and variants scattered throughout the gene; 34 mutations had not previously been described in other populations. Seven mutations occurred in more than 1 family, but none of these accounted for more than 5 alleles in the patient group. Most of the mutations were truncating, which confirmed that the absence of full-length ATM protein is the most common molecular basis of AT. Transcript analyses demonstrated single exon skipping as the consequence of most splice site substitutions, but a more complex pattern was observed for 2 mutations. In 4 cases, immunoblot studies of cell lines carrying ATM missense substitutions or in-frame deletions detected residual ATM protein. One of these mutations, a valine deletion proximal to the kinase domain (607585.0017), resulted in ATM protein levels more than 20% of normal in an AT lymphoblastoid cell line. </p><p>Castellvi-Bel et al. (1999) used SSCP analysis to screen the ATM gene in 92 AT patients from different populations. Of 177 expected mutations, approximately 70% were identified using this technique. Thirty-five new mutations and 34 new intragenic polymorphisms or rare variants were described. </p><p>Laake et al. (2000) screened 41 AT families from Denmark, Finland, Norway, and Sweden for ATM mutations. They were able to characterize 67 of the 82 disease-causing alleles. Of the 37 separate mutations detected, 25 had not previously been reported. In 28 of the probands, mutations were found in both alleles; in 11 of the probands only 1 mutated allele was detected; and in 2 Finnish probands, no mutations were detected. One-third of the probands (13) were homozygous, whereas the majority of the probands (26) were compound heterozygous with at least 1 identified allele. Ten alleles were found more than once; 1 Norwegian founder mutation, 3245delATCinsTGAT (607585.0016), an insertion/deletion mutation, constituted 57% of the Norwegian alleles. </p><p>Due to the large size of the ATM gene and the existence of over 400 mutations, identifying mutations in patients with ataxia-telangiectasia is labor intensive. Campbell et al. (2003) compared the single-nucleotide polymorphism (SNP) and short tandem repeat (STR) haplotypes of AT patients from varying ethnicities who were carrying common ATM mutations. They used SSCP to determine SNP haplotypes. To their surprise, all of the most common ATM mutations in their large multiethnic cohort were associated with specific SNP haplotypes, whereas the STR haplotypes varied, suggesting that ATM mutations predate STR haplotypes but not SNP haplotypes. They concluded that these frequently observed ATM mutations are not hotspots, but have occurred only once and spread with time to different ethnic populations. More generally, a combination of SNP and STR haplotyping could be used as a screening strategy for identifying mutations in other large genes by first determining the ancestral SNP and STR haplotypes in order to identify specific founder mutations. Campbell et al. (2003) estimated that this approach will identify approximately 30% of mutations in AT patients across all ethnic groups. </p><p>In a mutation screen of 24 Polish AT families, Mitui et al. (2005) found that 3 founder mutations accounted for 58% of the alleles. They identified 44 (92%) of the expected 48 mutations: 69% were nonsense mutations, 23% caused aberrant splicing, and 5% were missense mutations. Four mutations had not been previously described. Two of the Polish mutations had been observed previously in Amish and Mennonite AT patients; this was considered compatible with historical records. Shared mutations had the same SNP and STR haplotypes, indicating common ancestries. </p><p>In 17 patients from 16 Russian families with AT, Suspitsin et al. (2020) found that the most frequent mutation, identified in 11 of 15 Slavic patients, was E1978X, an allele that was initially found in North American Mennonite families (Telatar et al., 1998). The authors noted that Mennonites resided in Russia until the end of the 19th century when they were forced to leave the country owing to implementation of compulsory military service, which was incompatible with their religious beliefs. </p><p>Anheim et al. (2010) found that AT was the third most common form of autosomal recessive cerebellar ataxia in a cohort of 102 patients evaluated in Alsace, France. Of 57 patients in whom a molecular diagnosis could be determined, 4 were affected with AT. The authors estimated the prevalence of AT to be 1 in 450,000 in this region. FRDA was the most common diagnosis, found in 36 of 57 patients, and AOA2 (606002) was the second most common diagnosis, found in 7 patients. </p><p>See monographs edited by Bridges and Harnden (1982) and Gatti and Swift (1985) for a perspective on the development of this disorder.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Barlow et al. (1996) created a murine model of ataxia-telangiectasia by disrupting the Atm locus via gene targeting. Mice homozygous for the disrupted Atm allele displayed growth retardation, neurologic dysfunction, male and female infertility secondary to the absence of mature gametes, defects in T lymphocyte maturation, and extreme sensitivity to gamma-irradiation. Most of the animals developed malignant thymic lymphomas between 2 and 4 months of age. Several chromosomal anomalies were detected in one of these tumors. Fibroblasts from these mice grew slowly and exhibited abnormal radiation-induced G1 checkpoint function. Atm-disrupted mice recapitulated the ataxia-telangiectasia phenotype in humans. The authors noted that humans also show incomplete sexual maturation in ATM (Boder, 1975). </p><p>Elson et al. (1996) generated a mouse model for ataxia-telangiectasia using gene targeting to generate mice that did not express the Atm protein. Atm-deficient mice were retarded in growth, did not produce mature sperm, and exhibited severe defects in T-cell maturation while going on to develop thymomas. Atm-deficient fibroblasts grew poorly in culture and displayed a high level of double-stranded chromosome breaks. Atm-deficient thymocytes underwent spontaneous apoptosis in vitro significantly more often than controls. Atm-deficient mice then exhibited many of the same symptoms found in ataxia-telangiectasia patients and in cells derived from them. Furthermore, Elson et al. (1996) demonstrated that the Atm protein exists as 2 discrete molecular species, and that loss of 1 or both of these can lead to the development of the disease. </p><p>Xu and Baltimore (1996) disrupted the mouse ATM gene by homologous recombination. Xu et al. (1996) reported that Atm -/- mice are viable, growth-retarded, and infertile. The infertility results from meiotic failure, as meiosis is arrested at the zygotene/pachytene stage of prophase I as a result of abnormal chromosomal synapsis and subsequent chromosome fragmentation. The cerebella of Atm -/- mice appear normal by histologic examination, and the mice have no gross behavioral abnormalities. Atm -/- mice exhibit multiple immune defects similar to those of AT patients, and most develop thymic lymphomas at 3 to 4 months of age and die of the tumors by 4 months. Xu and Baltimore (1996) showed that mouse Atm -/- cells are hypersensitive to gamma irradiation and defective in cell cycle arrest following radiation, and Atm -/- thymocytes are more resistant to apoptosis induced by gamma radiation than normal thymocytes. They also provide direct evidence that ATM acts as an upregulator of p53. </p><p>Ataxia-telangiectasia is characterized by markedly increased sensitivity to ionizing radiation. Ionizing radiation oxidizes macromolecules and causes tissue damage through the generation of reactive oxygen species (ROS). Barlow et al. (1999) therefore hypothesized that AT is due to oxidative damage resulting from loss of function of the ATM gene product. To assess this hypothesis, they employed an animal model of AT, i.e., the mouse with a disrupted Atm gene. They showed that organs that develop pathologic changes in the Atm-deficient mice are targets of oxidative damage, and that cerebellar Purkinje cells are particularly affected. They suggested that these observations provide a mechanistic basis for the AT phenotype and lay a rational foundation for therapeutic intervention. Barlow et al. (1999) exposed Atm +/+ and Atm +/- littermates to a sublethal dose, 4 Gy (400 Rad) of ionizing radiation. The Atm +/- mice had premature graying and decreased life expectancy (median survival 99 weeks vs 71 weeks in wildtype and heterozygous mice, respectively, P = 0.0042). Tumors and infections of similar type were found in all autopsied animals, regardless of genotype. </p><p>Worgul et al. (2002) noted that in vitro studies have shown that cells from individuals homozygous for AT are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene may be slightly more radiosensitive in vitro, it remained to be determined whether their greater susceptibility translated into an increased sensitivity for late effects in vivo, although there was a suggestion that radiotherapy patients heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. Worgul et al. (2002) chose cataract formation in the lens as a means of assaying the effects of ATM deficiency in a late-responding tissue. One eye each of wildtype, Atm heterozygous, and Atm homozygous knockout mice was exposed to various levels of x-rays. Cataract development in the mice of all 3 groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Cataracts appeared earlier in heterozygous versus wildtype mice. The data suggested that ATM heterozygotes in the human population may also be radiosensitive. Worgul et al. (2002) proposed that this information may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage. </p><p>Wong et al. (2003) examined the impact of Atm deficiency as a function of progressive telomere attrition at both the cellular and whole-organism level in mice doubly null for Atm and Terc. These compound mutants showed increased telomere erosion and genomic instability, yet they experienced a substantial elimination of T-cell lymphomas associated with Atm deficiency. A generalized proliferation defect was evident in all cell types and tissues examined, and this defect extended to tissue stem/progenitor cell compartments, thereby providing a basis for progressive multiorgan system compromise, accelerated aging, and premature death. Wong et al. (2003) showed that Atm deficiency and telomere dysfunction act together to impair cellular and whole-organism viability, thus supporting the view that aspects of ataxia-telangiectasia pathophysiology are linked to the functional state of telomeres and its adverse effects on stem/progenitor cell reserves. </p><p>Ziv et al. (2005) augmented specific features of AT by generating mouse strains that combined Atm deficiency with dysfunction of other proteins. Increasing oxidative stress by combining deficiencies in Atm and superoxide dismutase-1 (SOD1; 147450) exacerbated growth retardation and markedly reduced the mean survival time following ionizing radiation. In contrast, increasing genomic instability by combining deficiencies of Atm and the mismatch repair protein Mlh1 (120436) caused a moderate increase in radiation sensitivity and dramatic increase in aggressive lymphomas, compared with the Atm-knockout mice. Atm, Mlh1, or Mlh1/Atm single or double heterozygosity did not significantly affect the life span of the various genotypes. The genomic region on mouse chromosome 15 containing c-Myc (190080) was commonly amplified in tumors, and elevated levels of the c-Myc protein were subsequently observed in the tumors. Ziv et al. (2005) suggested that impaired genomic instability may be an important contributing factor to cancer predisposition in AT, whereas oxidative stress may be more important in the radiation sensitivity and growth retardation facets of this disease. </p><p>(See also ANIMAL MODEL in 607585).</p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>See Also:</strong>
</span>
</h4>
<span class="mim-text-font">
Al Saadi et al. (1980); Ammann et al. (1969); Amromin et al. (1979);
Aurias et al. (1980); Aurias et al. (1983); Aurias and Dutrillaux
(1986); Becker et al. (1989); Bender et al. (1985); Bender et al.
(1985); Bernstein et al. (1981); Bochkov et al. (1974); Boder and
Sedgwick (1958); Chen et al. (1984); Cohen et al. (1979); Cohen et
al. (1975); Cooper and Youssoufian (1988); Cornforth and Bedford
(1985); Cox et al. (1978); De Leon et al. (1976); Feigin et al.
(1970); Fiorilli et al. (1985); Ford and Lavin (1981); Frais (1979);
Gatti et al. (1982); Hagberg et al. (1970); Hansen et al. (1977);
Harnden (1974); Hoar and Sargent (1976); Hodge et al. (1980); Huang
and Sheridan (1981); Johnson et al. (1985); Korein et al. (1961);
Krishna Kumar et al. (1979); Levin and Perlov (1971); Lisker and Cobo
(1970); Littlefield et al. (1981); McConville et al. (1990); Oxelius
et al. (1982); Paterson et al. (1976); Paterson and Smith (1979);
Peterson and Funkhouser (1989); Peterson et al. (1964); Rary et al.
(1974); Reye and Mosman (1960); Richkind et al. (1982); Schalch et
al. (1970); Scheres et al. (1980); Sedgwick and Boder (1972); Shultz
et al. (1982); Shuster et al. (1966); Sourander et al. (1966); Stern
et al. (1988); Sugimoto et al. (1982); Swift et al. (1976); Tadjoedin
and Fraser (1965); Taylor et al. (1975); Taylor et al. (1976);
Teplitz (1978); Toledano and Lange (1980); Vincent et al. (1975);
Waldmann et al. (1983); Watanabe et al. (1977); Weinstein et al.
(1985); Yount (1982)
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Al Saadi, A., Palutke, M., Krishna Kumar, G.
<strong>Evolution of chromosomal abnormalities in sequential cytogenetic studies of ataxia telangiectasia.</strong>
Hum. Genet. 55: 23-29, 1980.
[PubMed: 7450753]
[Full Text: https://doi.org/10.1007/BF00329122]
</p>
</li>
<li>
<p class="mim-text-font">
Ammann, A. J., Cain, W. A., Ishizaka, K., Hong, R., Good, R. A.
<strong>Immunoglobulin E deficiency in ataxia-telangiectasia.</strong>
New Eng. J. Med. 281: 469-472, 1969.
[PubMed: 4183711]
[Full Text: https://doi.org/10.1056/NEJM196908282810904]
</p>
</li>
<li>
<p class="mim-text-font">
Amromin, G. D., Boder, E., Teplitz, R.
<strong>Ataxia-telangiectasia with a 32-year survival: a clinicopathological report.</strong>
J. Neuropath. Exp. Neurol. 38: 621-643, 1979.
[PubMed: 533861]
[Full Text: https://doi.org/10.1097/00005072-197911000-00007]
</p>
</li>
<li>
<p class="mim-text-font">
Anheim, M., Fleury, M., Monga, B., Laugel, V., Chaigne, D., Rodier, G., Ginglinger, E., Boulay, C., Courtois, S., Drouot, N., Fritsch, M., Delaunoy, J. P., Stoppa-Lyonnet, D., Tranchant, C., Koenig, M.
<strong>Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management.</strong>
Neurogenetics 11: 1-12, 2010.
[PubMed: 19440741]
[Full Text: https://doi.org/10.1007/s10048-009-0196-y]
</p>
</li>
<li>
<p class="mim-text-font">
Athma, P., Rappaport, R., Swift, M.
<strong>Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer.</strong>
Cancer Genet. Cytogenet. 92: 130-134, 1996.
[PubMed: 8976369]
[Full Text: https://doi.org/10.1016/s0165-4608(96)00328-7]
</p>
</li>
<li>
<p class="mim-text-font">
Aurias, A., Croquette, M. F., Nuyts, J. P., Griscelli, C., Dutrillaux, B.
<strong>New data on clonal anomalies of chromosome 14 in ataxia telangiectasia: tct(14;14) and inv(14).</strong>
Hum. Genet. 72: 22-24, 1986.
[PubMed: 3943860]
[Full Text: https://doi.org/10.1007/BF00278811]
</p>
</li>
<li>
<p class="mim-text-font">
Aurias, A., Dutrillaux, B., Buriot, D., Lejeune, J.
<strong>High frequencies of inversions and translocations of chromosomes 7 and 14 in ataxia-telangiectasia.</strong>
Mutat. Res. 69: 369-374, 1980.
[PubMed: 7360152]
[Full Text: https://doi.org/10.1016/0027-5107(80)90101-3]
</p>
</li>
<li>
<p class="mim-text-font">
Aurias, A., Dutrillaux, B., Griscelli, C.
<strong>Tandem translocation t(14;14) in isolated and clonal cells in ataxia telangiectasia are different.</strong>
Hum. Genet. 63: 320-322, 1983.
[PubMed: 6862436]
[Full Text: https://doi.org/10.1007/BF00274754]
</p>
</li>
<li>
<p class="mim-text-font">
Aurias, A., Dutrillaux, B.
<strong>A possible new type of chromosome rearrangement: telomere-centromere translocation (tct) followed by double duplication.</strong>
Hum. Genet. 72: 25-26, 1986.
[PubMed: 3943861]
[Full Text: https://doi.org/10.1007/BF00278812]
</p>
</li>
<li>
<p class="mim-text-font">
Aurias, A., Dutrillaux, B.
<strong>Probable involvement of immunoglobulin superfamily genes in most recurrent chromosomal rearrangements from ataxia telangiectasia.</strong>
Hum. Genet. 72: 210-214, 1986.
[PubMed: 3456975]
[Full Text: https://doi.org/10.1007/BF00291879]
</p>
</li>
<li>
<p class="mim-text-font">
Bar, R. S., Levis, W. R., Rechler, M. M., Harrison, L. C., Siebert, C., Podskalny, J., Roth, J., Muggeo, M.
<strong>Extreme insulin resistance in ataxia telangiectasia: defect in affinity of insulin receptors.</strong>
New Eng. J. Med. 298: 1164-1171, 1978.
[PubMed: 651946]
[Full Text: https://doi.org/10.1056/NEJM197805252982103]
</p>
</li>
<li>
<p class="mim-text-font">
Barlow, C., Dennery, P. A., Shigenaga, M. K., Smith, M. A., Morrow, J. D., Roberts, L. J., II, Wynshaw-Boris, A., Levine, R. L.
<strong>Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs.</strong>
Proc. Nat. Acad. Sci. 96: 9915-9919, 1999.
[PubMed: 10449794]
[Full Text: https://doi.org/10.1073/pnas.96.17.9915]
</p>
</li>
<li>
<p class="mim-text-font">
Barlow, C., Eckhaus, M. A., Schaffer, A. A., Wynshaw-Boris, A.
<strong>Atm haploinsufficiency results in increased sensitivity to sublethal doses of ionizing radiation in mice.</strong>
Nature Genet. 21: 359-360, 1999.
[PubMed: 10192382]
[Full Text: https://doi.org/10.1038/7684]
</p>
</li>
<li>
<p class="mim-text-font">
Barlow, C., Hirotsune, S., Paylor, R., Liyanage, M., Eckhaus, M., Collins, F., Shiloh, Y., Crawley, J. N., Ried, T., Tagle, D., Wynshaw-Boris, A.
<strong>Atm-deficient mice: a paradigm of ataxia telangiectasia.</strong>
Cell 86: 159-171, 1996.
[PubMed: 8689683]
[Full Text: https://doi.org/10.1016/s0092-8674(00)80086-0]
</p>
</li>
<li>
<p class="mim-text-font">
Bay, J.-O., Uhrhammer, N., Pernin, D., Presneau, N., Tchirkov, A., Vuillaume, M., Laplace, V., Grancho, M., Verrelle, P., Hall, J., Bignon, Y.-J.
<strong>High incidence of cancer in a family segregating a mutation of the ATM gene: possible role of ATM heterozygosity in cancer.</strong>
Hum. Mutat. 14: 485-492, 1999.
[PubMed: 10571946]
[Full Text: https://doi.org/10.1002/(SICI)1098-1004(199912)14:6&lt;485::AID-HUMU7&gt;3.0.CO;2-T]
</p>
</li>
<li>
<p class="mim-text-font">
Becker, Y., Tabor, E., Asher, Y.
<strong>Ataxia-telangiectasia fibroblasts have less fibronectin mRNA than control cells but have the same levels of integrin and beta-actin mRNA.</strong>
Hum. Genet. 81: 165-170, 1989.
[PubMed: 2783578]
[Full Text: https://doi.org/10.1007/BF00293895]
</p>
</li>
<li>
<p class="mim-text-font">
Bender, M. A., Rary, J. M., Kale, R. P.
<strong>G(0) chromosomal radiosensitivity in ataxia telangiectasia lymphocytes.</strong>
Mutat. Res. 150: 277-282, 1985.
[PubMed: 4000160]
[Full Text: https://doi.org/10.1016/0027-5107(85)90123-x]
</p>
</li>
<li>
<p class="mim-text-font">
Bender, M. A., Rary, J. M., Kale, R. P.
<strong>G(2) chromosomal radiosensitivity in ataxia telangiectasia lymphocytes.</strong>
Mutat. Res. 152: 39-47, 1985.
[PubMed: 4047083]
[Full Text: https://doi.org/10.1016/0027-5107(85)90044-2]
</p>
</li>
<li>
<p class="mim-text-font">
Bernstein, R., Pinto, M., Jenkins, T.
<strong>Ataxia telangiectasia with evolution of monosomy 14 and emergence of Hodgkin&#x27;s disease.</strong>
Cancer Genet. Cytogenet. 4: 31-37, 1981.
[PubMed: 7284988]
[Full Text: https://doi.org/10.1016/0165-4608(81)90005-4]
</p>
</li>
<li>
<p class="mim-text-font">
Bigbee, W. L., Langlois, R. G., Swift, M., Jensen, R. H.
<strong>Evidence for an elevated frequency of in vivo somatic cell mutations in ataxia telangiectasia.</strong>
Am. J. Hum. Genet. 44: 402-408, 1989.
[PubMed: 2916583]
</p>
</li>
<li>
<p class="mim-text-font">
Bishop, D. T., Hopper, J.
<strong>AT-tributable risks?</strong>
Nature Genet. 15: 226 only, 1997.
[PubMed: 9054927]
[Full Text: https://doi.org/10.1038/ng0397-226]
</p>
</li>
<li>
<p class="mim-text-font">
Bochkov, N. P., Lopukhin, Y. M., Kuleshov, N. P., Kovalchuk, L. V.
<strong>Cytogenetic study of patients with ataxia-telangiectasia.</strong>
Humangenetik 24: 115-128, 1974.
[PubMed: 4430492]
[Full Text: https://doi.org/10.1007/BF00283768]
</p>
</li>
<li>
<p class="mim-text-font">
Boder, E., Sedgwick, R. P.
<strong>Ataxia-telangiectasia: a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection.</strong>
Pediatrics 21: 526-554, 1958.
[PubMed: 13542097]
</p>
</li>
<li>
<p class="mim-text-font">
Boder, E.
<strong>Ataxia-telangiectasia: some historic, clinical and pathologic observations. In: Bergsma, D. (ed.): Immunodeficiency in Man and Animals.</strong>
New York: National Foundation-March of Dimes (pub.) 1975. Pp. 255-300.
</p>
</li>
<li>
<p class="mim-text-font">
Boder, E.
<strong>Ataxia-telangiectasia: an overview. In: Gatti, R. A.; Swift, M.: Ataxia-telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood.</strong>
New York: Alan R. Liss (pub.) 1985. Pp. 1-63.
</p>
</li>
<li>
<p class="mim-text-font">
Bridges, B. A., Arlett, C. F.
<strong>Risk of breast cancer in ataxia-telangiectasia. (Letter)</strong>
New Eng. J. Med. 326: 1357-1361, 1992.
[PubMed: 1304718]
[Full Text: https://doi.org/10.1056/NEJM199205143262011]
</p>
</li>
<li>
<p class="mim-text-font">
Bridges, B. A., Harnden, D. G.
<strong>Ataxia-telangiectasia: A Cellular and Molecular Link between Cancer, Neuropathology, and Immune Deficiency.</strong>
New York: John Wiley (pub.) 1982.
</p>
</li>
<li>
<p class="mim-text-font">
Broeks, A., Urbanus, J. H. M., Floore, A. N., Dahler, E. C., Klijn, J. G. M., Rutgers, E. J. Th., Devilee, P., Russell, N. S., van Leeuwen, F. E., van't Veer, L. J.
<strong>ATM-heterozygous germline mutations contribute to breast cancer-susceptibility.</strong>
Am. J. Hum. Genet. 66: 494-500, 2000.
[PubMed: 10677309]
[Full Text: https://doi.org/10.1086/302746]
</p>
</li>
<li>
<p class="mim-text-font">
Brown, K. D., Barlow, C., Wynshaw-Boris, A.
<strong>Multiple ATM-dependent pathways: an explanation for pleiotropy. (Editorial)</strong>
Am. J. Hum. Genet. 64: 46-50, 1999.
[PubMed: 9915942]
[Full Text: https://doi.org/10.1086/302223]
</p>
</li>
<li>
<p class="mim-text-font">
Buzin, C. H., Gatti, R. A., Nguyen, V. Q., Wen, C. Y., Mitui, M., Sanal, O., Chen, J. S., Nozari, G., Mengos, A., Li, X., Fujimura, F., Sommer, S. S.
<strong>Comprehensive scanning of the ATM gene with DOVAM-S.</strong>
Hum. Mutat. 21: 123-131, 2003.
[PubMed: 12552559]
[Full Text: https://doi.org/10.1002/humu.10158]
</p>
</li>
<li>
<p class="mim-text-font">
Byrne, E., Hallpike, J. F., Manson, J. F., Sutherland, G. R., Thong, Y. H.
<strong>Ataxia-without-telangiectasia: progressive multisystem degeneration with IgE deficiency and chromosome instability.</strong>
J. Neurol. Sci. 66: 307-317, 1984.
[PubMed: 6597863]
[Full Text: https://doi.org/10.1016/0022-510x(84)90019-4]
</p>
</li>
<li>
<p class="mim-text-font">
Campbell, C., Mitui, M., Eng, L., Coutinho, G., Thorstenson, Y., Gatti, R. A.
<strong>ATM mutations on distinct SNP and STR haplotypes in ataxia-telangiectasia patients of differing ethnicities reveal ancestral founder effects.</strong>
Hum. Mutat. 21: 80-85, 2003.
[PubMed: 12497634]
[Full Text: https://doi.org/10.1002/humu.10156]
</p>
</li>
<li>
<p class="mim-text-font">
Carbonari, M., Cherchi, M., Paganelli, R., Giannini, G., Galli, E., Gaetano, C., Papetti, C., Fiorilli, M.
<strong>Relative increase of T cells expressing the gamma/delta rather than the alpha/beta receptor in ataxia-telangiectasia.</strong>
New Eng. J. Med. 322: 73-76, 1990.
[PubMed: 2136770]
[Full Text: https://doi.org/10.1056/NEJM199001113220201]
</p>
</li>
<li>
<p class="mim-text-font">
Castellvi-Bel, S., Sheikhavandi, S., Telatar, M., Tai, L.-Q., Hwang, M., Wang, Z., Yang, Z., Cheng, R., Gatti, R. A.
<strong>New mutations, polymorphisms, and rare variants in the ATM gene detected by a novel SSCP strategy.</strong>
Hum. Mutat. 14: 156-162, 1999.
[PubMed: 10425038]
[Full Text: https://doi.org/10.1002/(SICI)1098-1004(1999)14:2&lt;156::AID-HUMU7&gt;3.0.CO;2-E]
</p>
</li>
<li>
<p class="mim-text-font">
Chen, P., Imray, F. P., Kidson, C.
<strong>Gene dosage and complementation analysis of ataxia telangiectasia lymphoblastoid cell lines assayed by induced chromosome aberrations.</strong>
Mutat. Res. 129: 165-172, 1984.
[PubMed: 6504056]
[Full Text: https://doi.org/10.1016/0027-5107(84)90149-0]
</p>
</li>
<li>
<p class="mim-text-font">
Cohen, M. M., Sagi, M., Ben-Zur, Z., Schaap, T., Voss, R., Kohn, G., Ben-Bassat, H.
<strong>Ataxia telangiectasia: chromosomal stability in continuous lymphoblastoid cell lines.</strong>
Cytogenet. Cell Genet. 23: 44-52, 1979.
[PubMed: 761484]
[Full Text: https://doi.org/10.1159/000131301]
</p>
</li>
<li>
<p class="mim-text-font">
Cohen, M. M., Shaham, M., Dagan, J., Shmueli, E., Kohn, G.
<strong>Cytogenetic investigations in families with ataxia-telangiectasia.</strong>
Cytogenet. Cell Genet. 15: 338-356, 1975.
[PubMed: 1222588]
[Full Text: https://doi.org/10.1159/000130530]
</p>
</li>
<li>
<p class="mim-text-font">
Concannon, P., Gatti, R. A.
<strong>Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia.</strong>
Hum. Mutat. 10: 100-107, 1997.
[PubMed: 9259193]
[Full Text: https://doi.org/10.1002/(SICI)1098-1004(1997)10:2&lt;100::AID-HUMU2&gt;3.0.CO;2-O]
</p>
</li>
<li>
<p class="mim-text-font">
Concannon, P., Malhotra, U., Charmley, P., Reynolds, J., Lange, K., Gatti, R. A.
<strong>The ataxia-telangiectasia gene (ATA) on chromosome 11 is distinct from the ETS-1 gene.</strong>
Am. J. Hum. Genet. 46: 789-794, 1990.
[PubMed: 1969227]
</p>
</li>
<li>
<p class="mim-text-font">
Cooper, D. N., Youssoufian, H.
<strong>The CpG dinucleotide and human genetic disease.</strong>
Hum. Genet. 78: 151-155, 1988.
[PubMed: 3338800]
[Full Text: https://doi.org/10.1007/BF00278187]
</p>
</li>
<li>
<p class="mim-text-font">
Cornforth, M. N., Bedford, J. S.
<strong>On the nature of a defect in cells from individuals with ataxia-telangiectasia.</strong>
Science 227: 1589-1591, 1985.
[PubMed: 3975628]
[Full Text: https://doi.org/10.1126/science.3975628]
</p>
</li>
<li>
<p class="mim-text-font">
Cox, R., Hosking, G. P., Wilson, J.
<strong>Ataxia telangiectasia: evaluation of radiosensitivity in cultured skin fibroblasts as a diagnostic test.</strong>
Arch. Dis. Child. 53: 386-390, 1978.
[PubMed: 666352]
[Full Text: https://doi.org/10.1136/adc.53.5.386]
</p>
</li>
<li>
<p class="mim-text-font">
Croce, C. M., Isobe, M., Palumbo, A., Puck, J., Ming, J., Tweardy, D., Erikson, J., Davis, M., Rovera, G.
<strong>Gene for alpha-chain of human T-cell receptor: location on chromosome 14 region involved in T-cell neoplasms.</strong>
Science 227: 1044-1047, 1985.
[PubMed: 3919442]
[Full Text: https://doi.org/10.1126/science.3919442]
</p>
</li>
<li>
<p class="mim-text-font">
Curry, C. J. R., O'Lague, P., Tsai, J., Hutchison, H. T., Jaspers, N. G. J., Wara, D., Gatti, R. A.
<strong>AT-Fresno: a phenotype linking ataxia-telangiectasia with the Nijmegen breakage syndrome.</strong>
Am. J. Hum. Genet. 45: 270-275, 1989. Note: Erratum: Am. J. Hum. Genet. 45: 663 only, 1989.
[PubMed: 2491181]
</p>
</li>
<li>
<p class="mim-text-font">
De Leon, G. A., Grover, W. D., Huff, D. S.
<strong>Neuropathologic changes in ataxia-telangiectasia.</strong>
Neurology 26: 947-951, 1976.
[PubMed: 986586]
[Full Text: https://doi.org/10.1212/wnl.26.10.947]
</p>
</li>
<li>
<p class="mim-text-font">
Easton, D. F.
<strong>Cancer risks in A-T heterozygotes.</strong>
Int. J. Rad. Biol. 66: S177-S182, 1994.
[PubMed: 7836845]
[Full Text: https://doi.org/10.1080/09553009414552011]
</p>
</li>
<li>
<p class="mim-text-font">
Ejima, Y., Oshimura, M., Sasaki, M. S.
<strong>Establishment of a novel immortalized cell line from ataxia-telangiectasia fibroblasts and its use for the chromosomal assignment of radiosensitivity gene.</strong>
Int. J. Radiat. Biol. 58: 989-997, 1990.
[PubMed: 1978855]
[Full Text: https://doi.org/10.1080/09553009014552301]
</p>
</li>
<li>
<p class="mim-text-font">
Ejima, Y., Sasaki, M. S.
<strong>Mutations of the ATM gene detected in Japanese ataxia-telangiectasia patients: possible preponderance of the two founder mutations 4612del165 and 7883del5.</strong>
Hum. Genet. 102: 403-408, 1998.
[PubMed: 9600235]
[Full Text: https://doi.org/10.1007/s004390050712]
</p>
</li>
<li>
<p class="mim-text-font">
Elson, A., Wang, Y., Daugherty, C. J., Morton, C. C., Zhou, F., Campos-Torres, J., Leder, P.
<strong>Pleiotropic defects in ataxia-telangiectasia protein-deficient mice.</strong>
Proc. Nat. Acad. Sci. 93: 13084-13089, 1996.
[PubMed: 8917548]
[Full Text: https://doi.org/10.1073/pnas.93.23.13084]
</p>
</li>
<li>
<p class="mim-text-font">
Feigin, R. D., Vietti, T. J., Wyatt, R. G., Kaufman, D. G., Smith, C. H.
<strong>Ataxia telangiectasia with granulocytopenia.</strong>
J. Pediat. 77: 431-438, 1970.
[PubMed: 4925908]
[Full Text: https://doi.org/10.1016/s0022-3476(70)80011-7]
</p>
</li>
<li>
<p class="mim-text-font">
Fiorilli, M., Antonelli, A., Russo, G., Crescenzi, M., Carbonari, M., Petrinelli, P.
<strong>Variant of ataxia-telangiectasia with low-level radiosensitivity.</strong>
Hum. Genet. 70: 274-277, 1985.
[PubMed: 2410349]
[Full Text: https://doi.org/10.1007/BF00273456]
</p>
</li>
<li>
<p class="mim-text-font">
Fiorilli, M., Businco, L., Pandolfi, F., Paganelli, R., Russo, G., Aiuti, F.
<strong>Heterogeneity of immunological abnormalities in ataxia-telangiectasia.</strong>
J. Clin. Immun. 3: 135-141, 1983.
[PubMed: 6222062]
[Full Text: https://doi.org/10.1007/BF00915484]
</p>
</li>
<li>
<p class="mim-text-font">
FitzGerald, M. G., Bean, J. M., Hedge, S. R., Unsal, H., MacDonald, D. J., Harkin, D. P., Finkelstein, D. M.
<strong>Isselbacher, K. J.; Haber, D. A.: Heterozygous ATM mutations do not contribute to early onset of breast cancer.</strong>
Nature Genet. 15: 307-310, 1997.
[PubMed: 9054948]
[Full Text: https://doi.org/10.1038/ng0397-307]
</p>
</li>
<li>
<p class="mim-text-font">
Ford, M. D., Lavin, M. F.
<strong>Ataxia telangiectasia: an anomaly in DNA replication after irradiation.</strong>
Nucleic Acids Res. 9: 1395-1404, 1981.
[PubMed: 7232219]
[Full Text: https://doi.org/10.1093/nar/9.6.1395]
</p>
</li>
<li>
<p class="mim-text-font">
Foroud, T., Wei, S., Ziv, Y., Sobel, E., Lange, E., Chao, A., Goradia, T., Huo, Y., Tolun, A., Chessa, L., Charmley, P., Sanal, O., Salman, N., Julier, C., Concannon, P., McConville, C., Taylor, A. M. R., Shiloh, Y., Lange, K., Gatti, R. A.
<strong>Localization of an ataxia-telangiectasia locus to a 3-cM interval on chromosome 11q23: linkage analysis of 111 families by an international consortium.</strong>
Am. J. Hum. Genet. 49: 1263-1279, 1991.
[PubMed: 1746555]
</p>
</li>
<li>
<p class="mim-text-font">
Frais, M. A.
<strong>Gastric adenocarcinoma due to ataxia-telangiectasia (Louis-Bar syndrome).</strong>
J. Med. Genet. 16: 160-161, 1979.
[PubMed: 458837]
[Full Text: https://doi.org/10.1136/jmg.16.2.160]
</p>
</li>
<li>
<p class="mim-text-font">
Gatti, R. A., Aurias, A., Griscelli, C., Sparkes, R. S.
<strong>Translocations involving chromosomes 2p and 22q in ataxia-telangiectasia.</strong>
Dis. Markers 3: 169-195, 1985.
</p>
</li>
<li>
<p class="mim-text-font">
Gatti, R. A., Berkel, I., Boder, E., Braedt, G., Charmley, P., Concannon, P., Ersoy, R., Foroud, T., Jaspers, N. G. J., Lange, K., Lathrop, G. M., Leppert, M., Nakamura, Y., O'Connell, P., Paterson, M., Salser, W., Sanal, O., Silver, J., Sparkes, R. S., Susi, E., Weeks, D. E., Wei, S., White, R., Yoder, F.
<strong>Localization of an ataxia-telangiectasia gene to chromosome 11q22-23.</strong>
Nature 336: 577-580, 1988.
[PubMed: 3200306]
[Full Text: https://doi.org/10.1038/336577a0]
</p>
</li>
<li>
<p class="mim-text-font">
Gatti, R. A., Bick, M., Tam, C. F., Medici, M. A., Oxelius, V.-A., Holland, M., Goldstein, A. L., Boder, E.
<strong>Ataxia-telangiectasia: a multiparameter analysis of eight families.</strong>
Clin. Immun. Immunopath. 23: 501-516, 1982.
[PubMed: 6213343]
[Full Text: https://doi.org/10.1016/0090-1229(82)90134-9]
</p>
</li>
<li>
<p class="mim-text-font">
Gatti, R. A., Boder, E., Vinters, H. V., Sparkes, R. S., Norman, A., Lange, K.
<strong>Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis.</strong>
Medicine 70: 99-117, 1991.
[PubMed: 2005780]
</p>
</li>
<li>
<p class="mim-text-font">
Gatti, R. A., Peterson, K. L., Novak, J., Chen, X., Yang-Chen, L., Liang, T., Lange, E., Lange, K.
<strong>Prenatal genotyping of ataxia-telangiectasia. (Letter)</strong>
Lancet 342: 376 only, 1993.
[PubMed: 8101622]
[Full Text: https://doi.org/10.1016/0140-6736(93)91525-q]
</p>
</li>
<li>
<p class="mim-text-font">
Gatti, R. A., Swift, M.
<strong>Ataxia-telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood.</strong>
New York: Alan R. Liss (pub.) 1985.
</p>
</li>
<li>
<p class="mim-text-font">
Gatti, R. A.
<strong>Personal Communication.</strong>
Los Angeles, Calif. 6/13/1989.
</p>
</li>
<li>
<p class="mim-text-font">
Gatti, R. A.
<strong>Personal Communication.</strong>
Los Angeles, Calif. 6/1990.
</p>
</li>
<li>
<p class="mim-text-font">
Gilad, S., Chessa, L., Khosravi, R., Russell, P., Galanty, Y., Piane, M., Gatti, R. A., Jorgensen, T. J., Shiloh, Y., Bar-Shira, A.
<strong>Genotype-phenotype relationships in ataxia-telangiectasia and variants.</strong>
Am. J. Hum. Genet. 62: 551-561, 1998.
[PubMed: 9497252]
[Full Text: https://doi.org/10.1086/301755]
</p>
</li>
<li>
<p class="mim-text-font">
Ginter, D. N., Tallapragada, R.
<strong>Ataxia-telangiectasia.</strong>
Birth Defects Orig. Art. Ser. XI(2): 408-409, 1975.
</p>
</li>
<li>
<p class="mim-text-font">
Haerer, A. F., Jackson, J. F., Evers, C. G.
<strong>Ataxia-telangiectasia with gastric adenocarcinoma.</strong>
JAMA 210: 1884-1887, 1969.
[PubMed: 4311128]
</p>
</li>
<li>
<p class="mim-text-font">
Hagberg, A., Hansson, O., Liden, S., Nilsson, K.
<strong>Familial ataxic diplegia with deficient cellular immunity: a new clinical entity.</strong>
Acta Paediat. Scand. 59: 545-550, 1970.
[PubMed: 5455521]
[Full Text: https://doi.org/10.1111/j.1651-2227.1970.tb16806.x]
</p>
</li>
<li>
<p class="mim-text-font">
Hansen, R. L., Marx, J. J., Ptacek, L. J., Roberts, R. C.
<strong>Immunological studies on an aberrant form of ataxia-telangiectasia.</strong>
Am. J. Dis. Child. 131: 518-521, 1977.
[PubMed: 857652]
[Full Text: https://doi.org/10.1001/archpedi.1977.02120180032004]
</p>
</li>
<li>
<p class="mim-text-font">
Harnden, D. G.
<strong>Ataxia-telangiectasia syndrome: cytogenetic and cancer aspects. In: German, J.: Chromosomes and Cancer.</strong>
New York: Wiley (pub.) 1974. Pp. 619-636.
</p>
</li>
<li>
<p class="mim-text-font">
Hartwell, L.
<strong>Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells.</strong>
Cell 71: 543-546, 1992.
[PubMed: 1423612]
[Full Text: https://doi.org/10.1016/0092-8674(92)90586-2]
</p>
</li>
<li>
<p class="mim-text-font">
Hecht, F., Koler, R. D., Rigas, D. A., Dahnke, G. S., Case, M. P., Tisdale, V., Miller, R. W.
<strong>Leukemia and lymphocytes in ataxia-telangiectasia. (Letter)</strong>
Lancet 288: 1193 only, 1966. Note: Originally Volume II.
</p>
</li>
<li>
<p class="mim-text-font">
Henderson, L., Cole, H., Arlett, C., James, S. E., Cole, J., Lehmann, A., Rosenbloom, L., Redmond, T., Meller, S.
<strong>Diagnosis of ataxia-telangiectasia by T-lymphocyte cloning assay. (Letter)</strong>
Lancet 326: 1242 only, 1985. Note: Originally Volume II.
[PubMed: 2866314]
[Full Text: https://doi.org/10.1016/s0140-6736(85)90766-4]
</p>
</li>
<li>
<p class="mim-text-font">
Hernandez, D., McConville, C. M., Stacey, M., Woods, C. G., Brown, M. M., Shutt, P., Rysiecki, G., Taylor, A. M. R.
<strong>A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 11q22-23.</strong>
J. Med. Genet. 30: 135-140, 1993.
[PubMed: 8445618]
[Full Text: https://doi.org/10.1136/jmg.30.2.135]
</p>
</li>
<li>
<p class="mim-text-font">
Hiel, J. A. P., van Engelen, B. G. M., Weemaes, C. M. R., Broeks, A., Verrips, A., ter Laak, H., Vingerhoets, H. M., van den Heuvel, L. P. W., Lammens, M., Gabreels, F. J. M., Last, J. I., Taylor, A. M. R.
<strong>Distal spinal muscular atrophy as a major feature in adult-onset ataxia telangiectasia.</strong>
Neurology 67: 346-349, 2006.
[PubMed: 16864838]
[Full Text: https://doi.org/10.1212/01.wnl.0000224878.22821.23]
</p>
</li>
<li>
<p class="mim-text-font">
Hoar, D. I., Sargent, P.
<strong>Chemical mutagen hypersensitivity in ataxia-telangiectasia.</strong>
Nature 261: 590-592, 1976.
[PubMed: 180416]
[Full Text: https://doi.org/10.1038/261590a0]
</p>
</li>
<li>
<p class="mim-text-font">
Hodge, S. E., Berkel, A. I., Gatti, R. A., Boder, E., Spence, M. A.
<strong>Ataxia-telangiectasia and xeroderma pigmentosum: no evidence of linkage to HLA.</strong>
Tissue Antigens 15: 313-317, 1980.
[PubMed: 7466773]
[Full Text: https://doi.org/10.1111/j.1399-0039.1980.tb00922.x]
</p>
</li>
<li>
<p class="mim-text-font">
Huang, P. C., Sheridan, R. B., III.
<strong>Genetic and biochemical studies with ataxia telangiectasia.</strong>
Hum. Genet. 59: 1-9, 1981.
[PubMed: 10819014]
[Full Text: https://doi.org/10.1007/BF00278846]
</p>
</li>
<li>
<p class="mim-text-font">
Humphreys, M. W., Nevin, N. C., Wooldridge, M. A. W.
<strong>Cytogenetic investigations in a family with ataxia telangiectasia.</strong>
Hum. Genet. 83: 79-82, 1989.
[PubMed: 2767681]
[Full Text: https://doi.org/10.1007/BF00274154]
</p>
</li>
<li>
<p class="mim-text-font">
Iourov, I. Y., Vorsanova, S. G., Liehr, T., Kolotii, A. D., Yurov, Y. B.
<strong>Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain.</strong>
Hum. Molec. Genet. 18: 2656-2669, 2009.
[PubMed: 19414482]
[Full Text: https://doi.org/10.1093/hmg/ddp207]
</p>
</li>
<li>
<p class="mim-text-font">
Ishiguro, T., Taketa, K., Gatti, R. A.
<strong>Tissue of origin of elevated alpha-fetoprotein in ataxia-telangiectasia.</strong>
Dis. Markers 4: 293-297, 1986.
[PubMed: 2454778]
</p>
</li>
<li>
<p class="mim-text-font">
Jaspers, N. G. J., Bootsma, D.
<strong>Genetic heterogeneity in ataxia-telangiectasia studied by cell fusion.</strong>
Proc. Nat. Acad. Sci. 79: 2641-2644, 1982.
[PubMed: 6953420]
[Full Text: https://doi.org/10.1073/pnas.79.8.2641]
</p>
</li>
<li>
<p class="mim-text-font">
Jaspers, N. G. J., Gatti, R. A., Baan, C., Linssen, P. C. M. L., Bootsma, D.
<strong>Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients.</strong>
Cytogenet. Cell Genet. 49: 259-263, 1988.
[PubMed: 3248383]
[Full Text: https://doi.org/10.1159/000132673]
</p>
</li>
<li>
<p class="mim-text-font">
Jaspers, N. G. J., Painter, R. B., Paterson, M. C., Kidson, C., Inoue, T.
<strong>Complementation analysis of ataxia-telangiectasia. In: Gatti, R. A.; Swift, M.: Ataxia-telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood.</strong>
New York: Alan R. Liss (pub.) 1985. Pp. 147-162.
</p>
</li>
<li>
<p class="mim-text-font">
Johnson, J. P., Gatti, R. A., Sears, T. S., White, R. L.
<strong>Inverted duplication of J(H) associated with chromosome 14 translocation and T-cell leukemia in ataxia-telangiectasia.</strong>
Am. J. Hum. Genet. 39: 787-796, 1986.
[PubMed: 3026175]
</p>
</li>
<li>
<p class="mim-text-font">
Johnson, J. P., White, R. L., Gatti, R. A.
<strong>Rearrangement of J(H) genes in a patient with ataxia telangiectasia, chromosome 14 translocation, and T-cell leukemia. (Abstract)</strong>
Am. J. Hum. Genet. 37: A100, 1985.
</p>
</li>
<li>
<p class="mim-text-font">
Jung, M., Zhang, Y., Lee, S., Dritschilo, A.
<strong>Correction of radiation sensitivity in ataxia telangiectasia cells by a truncated I-kappa-B-alpha.</strong>
Science 268: 1619-1621, 1995.
[PubMed: 7777860]
[Full Text: https://doi.org/10.1126/science.7777860]
</p>
</li>
<li>
<p class="mim-text-font">
Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., Craig, R. W.
<strong>Participation of p53 protein in the cellular response to DNA damage.</strong>
Cancer Res. 51: 6304-6311, 1991.
[PubMed: 1933891]
</p>
</li>
<li>
<p class="mim-text-font">
Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., Fornace, A. J., Jr.
<strong>A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.</strong>
Cell 71: 587-597, 1992.
[PubMed: 1423616]
[Full Text: https://doi.org/10.1016/0092-8674(92)90593-2]
</p>
</li>
<li>
<p class="mim-text-font">
Kennaugh, A. A., Butterworth, S. V., Hollis, R., Baer, R., Rabbitts, T. H., Taylor, A. M. R.
<strong>The chromosome breakpoint at 14q32 in an ataxia telangiectasia t(14;14) T cell clone is different from the 14q32 breakpoint in Burkitts and an inv(14) T cell lymphoma.</strong>
Hum. Genet. 73: 254-259, 1986.
[PubMed: 3488254]
[Full Text: https://doi.org/10.1007/BF00401239]
</p>
</li>
<li>
<p class="mim-text-font">
Klein, C., Wenning, G. K., Quinn, N. P., Marsden, C. D.
<strong>Ataxia without telangiectasia masquerading as benign hereditary chorea.</strong>
Mov. Disord. 11: 217-220, 1996.
[PubMed: 8684395]
[Full Text: https://doi.org/10.1002/mds.870110217]
</p>
</li>
<li>
<p class="mim-text-font">
Kojis, T. L., Schreck, R. R., Gatti, R. A., Sparkes, R. S.
<strong>Tissue specificity of chromosomal rearrangements in ataxia-telangiectasia.</strong>
Hum. Genet. 83: 347-352, 1989.
[PubMed: 2807275]
[Full Text: https://doi.org/10.1007/BF00291379]
</p>
</li>
<li>
<p class="mim-text-font">
Komatsu, K., Kodama, S., Okumura, Y., Koi, M., Oshimura, M.
<strong>Restoration of radiation resistance in ataxia-telangiectasia cells by the introduction of normal human chromosome 11.</strong>
Mutat. Res. 235: 59-63, 1990.
[PubMed: 2155385]
[Full Text: https://doi.org/10.1016/0921-8777(90)90058-d]
</p>
</li>
<li>
<p class="mim-text-font">
Komatsu, K., Matsuura, S., Tauchi, H., Endo, S., Kodama, S., Smeets, D., Weemaes, C., Oshimura, M.
<strong>The gene for Nijmegen breakage syndrome (V2) is not located on chromosome 11. (Letter)</strong>
Am. J. Hum. Genet. 58: 885-888, 1996.
[PubMed: 8644753]
</p>
</li>
<li>
<p class="mim-text-font">
Korein, J., Steinman, P. A., Senz, E. H.
<strong>Ataxia-telangiectasia: report of a case and review of the literature.</strong>
Arch. Neurol. 4: 272-280, 1961.
[PubMed: 13753133]
[Full Text: https://doi.org/10.1001/archneur.1961.00450090038006]
</p>
</li>
<li>
<p class="mim-text-font">
Krishna Kumar, G., Al Saadi, A., Yang, S. S., McCaughey, R. S.
<strong>Ataxia-telangiectasia and hepatocellular carcinoma.</strong>
Am. J. Med. Sci. 278: 157-160, 1979.
[PubMed: 92892]
[Full Text: https://doi.org/10.1097/00000441-197909000-00008]
</p>
</li>
<li>
<p class="mim-text-font">
Laake, K., Jansen, L., Hahnemann, J. M., Brondum-Nielsen, K., Lonnqvist, T., Kaariainen, H., Sankila, R., Lahdesmaki, A., Hammarstrom, L., Yuen, J., Tretli, S., Heiberg, A., Olsen, J. H., Tucker, M., Kleinerman, R., Borresen-Dale, A.-L.
<strong>Characterization of ATM mutations in 41 Nordic families with ataxia telangiectasia.</strong>
Hum. Mutat. 16: 232-246, 2000.
[PubMed: 10980530]
[Full Text: https://doi.org/10.1002/1098-1004(200009)16:3&lt;232::AID-HUMU6&gt;3.0.CO;2-L]
</p>
</li>
<li>
<p class="mim-text-font">
Lambert, C., Schultz, R. A., Smith, M., Wagner-McPherson, C., McDaniel, L. D., Donlon, T., Stanbridge, E. J., Friedberg, E. C.
<strong>Functional complementation of ataxia-telangiectasia group D (AT-D) cells by microcell-mediated chromosome transfer and mapping of the AT-D locus to the region 11q22-23.</strong>
Proc. Nat. Acad. Sci. 88: 5907-5911, 1991.
[PubMed: 2062869]
[Full Text: https://doi.org/10.1073/pnas.88.13.5907]
</p>
</li>
<li>
<p class="mim-text-font">
Levin, S., Perlov, S.
<strong>Ataxia-telangiectasia in Israel, with observations on its relationship to malignant disease.</strong>
Isr. J. Med. Sci. 7: 1535-1541, 1971.
[PubMed: 5291441]
</p>
</li>
<li>
<p class="mim-text-font">
Lipkowitz, S., Garry, V. F., Kirsch, I. R.
<strong>Interlocus V-J recombination measures genomic instability in agriculture workers at risk for lymphoid malignancies.</strong>
Proc. Nat. Acad. Sci. 89: 5301-5305, 1992.
[PubMed: 1608939]
[Full Text: https://doi.org/10.1073/pnas.89.12.5301]
</p>
</li>
<li>
<p class="mim-text-font">
Lipkowitz, S., Stern, M.-H., Kirsch, I. R.
<strong>Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasia lymphocytes.</strong>
J. Exp. Med. 172: 409-418, 1990.
[PubMed: 1695665]
[Full Text: https://doi.org/10.1084/jem.172.2.409]
</p>
</li>
<li>
<p class="mim-text-font">
Lisker, R., Cobo, A.
<strong>Chromosome breakage in ataxia-telangiectasia. (Letter)</strong>
Lancet 295: 618 only, 1970. Note: Originally Volume I.
[PubMed: 4190570]
[Full Text: https://doi.org/10.1016/s0140-6736(70)91657-0]
</p>
</li>
<li>
<p class="mim-text-font">
Littlefield, L. G., Colyer, S. P., Joiner, E. E., DuFrain, R. J., Frome, E., Cohen, M. M.
<strong>Chromosomal radiation sensitivity in ataxia telangiectasia long-term lymphoblastoid cell lines.</strong>
Cytogenet. Cell Genet. 31: 203-213, 1981.
[PubMed: 6978798]
[Full Text: https://doi.org/10.1159/000131650]
</p>
</li>
<li>
<p class="mim-text-font">
Llerena, J., Jr., Murer-Orlando, M., McGuire, M., Zahed, L., Sheridan, R. J., Berry, A. C., Bobrow, M.
<strong>Spontaneous and induced chromosome breakage in chorionic villus samples: a cytogenetic approach to first trimester prenatal diagnosis of ataxia telangiectasia syndrome.</strong>
J. Med. Genet. 26: 174-178, 1989.
[PubMed: 2468772]
[Full Text: https://doi.org/10.1136/jmg.26.3.174]
</p>
</li>
<li>
<p class="mim-text-font">
Maserati, E., Ottolini, A., Veggiotti, P., Lanzi, G., Pasquali, F.
<strong>Ataxia-without-telangiectasia in two sisters with rearrangements of chromosomes 7 and 14.</strong>
Clin. Genet. 34: 283-287, 1988.
[PubMed: 3228996]
[Full Text: https://doi.org/10.1111/j.1399-0004.1988.tb02879.x]
</p>
</li>
<li>
<p class="mim-text-font">
McCaw, B. K., Hecht, F., Harden, D. G., Teplitz, R. L.
<strong>Somatic rearrangement of chromosome 14 in human lymphocytes.</strong>
Proc. Nat. Acad. Sci. 72: 2071-2075, 1975.
[PubMed: 1056013]
[Full Text: https://doi.org/10.1073/pnas.72.6.2071]
</p>
</li>
<li>
<p class="mim-text-font">
McConville, C. M., Formstone, C. J., Hernandez, D., Thick, J., Taylor, A. M.
<strong>Fine mapping of the chromosome 11q22-23 region using PFGE, linkage and haplotype analysis; localization of the gene for ataxia telangiectasia to a 5cM region flanked by NCAM/DRD2 and STMY/CJ52.75, phi 2.22.</strong>
Nucleic Acids Res. 18: 4335-4343, 1990.
[PubMed: 1975092]
[Full Text: https://doi.org/10.1093/nar/18.15.4335]
</p>
</li>
<li>
<p class="mim-text-font">
McConville, C. M., Woods, C. G., Farrall, M., Metcalfe, J. A., Taylor, A. M. R.
<strong>Analysis of 7 polymorphic markers at chromosome 11q22-23 in 35 ataxia telangiectasia families; further evidence of linkage.</strong>
Hum. Genet. 85: 215-220, 1990.
[PubMed: 2370052]
[Full Text: https://doi.org/10.1007/BF00193199]
</p>
</li>
<li>
<p class="mim-text-font">
McFarlin, D. E., Strober, W., Waldmann, T. A.
<strong>Ataxia-telangiectasia.</strong>
Medicine 51: 281-314, 1972.
[PubMed: 5033506]
[Full Text: https://doi.org/10.1097/00005792-197207000-00002]
</p>
</li>
<li>
<p class="mim-text-font">
McKusick, V. A., Cross, H. E.
<strong>Ataxia-telangiectasia and Swiss-type agammaglobulinemia. Two genetic disorders of the immune mechanism in related Amish sibships.</strong>
JAMA 195: 739-745, 1966.
[PubMed: 5951879]
[Full Text: https://doi.org/10.1001/jama.195.9.739]
</p>
</li>
<li>
<p class="mim-text-font">
Meyn, M. S.
<strong>High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia.</strong>
Science 260: 1327-1330, 1993.
[PubMed: 8493577]
[Full Text: https://doi.org/10.1126/science.8493577]
</p>
</li>
<li>
<p class="mim-text-font">
Miller, M. E., Chatten, J.
<strong>Ovarian changes in ataxia-telangiectasia.</strong>
Acta Paediat. Scand. 56: 559-561, 1967.
[PubMed: 6050359]
[Full Text: https://doi.org/10.1111/j.1651-2227.1967.tb15424.x]
</p>
</li>
<li>
<p class="mim-text-font">
Mitui, M., Bernatowska, E., Pietrucha, B., Piotrowska-Jastrzebska, J., Eng, L., Nahas, S., Teraoka, S., Sholty, G., Purayidom, A., Concannon, P., Gatti, R. A.
<strong>ATM gene founder haplotypes and associated mutations in Polish families with ataxia-telangiectasia.</strong>
Ann. Hum. Genet. 69: 657-664, 2005.
[PubMed: 16266405]
[Full Text: https://doi.org/10.1111/j.1529-8817.2005.00199.x]
</p>
</li>
<li>
<p class="mim-text-font">
Mohamed, R., Pal Singh, S., Kumar, S., Lavin, M. F.
<strong>A defect in DNA topoisomerase II activity in ataxia-telangiectasia cells.</strong>
Biochem. Biophys. Res. Commun. 149: 233-238, 1987.
[PubMed: 2825700]
[Full Text: https://doi.org/10.1016/0006-291x(87)91629-9]
</p>
</li>
<li>
<p class="mim-text-font">
Morrell, D., Chase, C. L., Swift, M.
<strong>Cancers in 44 families with ataxia-telangiectasia.</strong>
Cancer Genet. Cytogenet. 50: 119-123, 1990.
[PubMed: 2253179]
[Full Text: https://doi.org/10.1016/0165-4608(90)90245-6]
</p>
</li>
<li>
<p class="mim-text-font">
Murnane, J. P., Painter, R. B.
<strong>Complementation of the effects in DNA synthesis in irradiated and unirradiated ataxia-telangiectasia cells.</strong>
Proc. Nat. Acad. Sci. 79: 1960-1963, 1982.
[PubMed: 6952246]
[Full Text: https://doi.org/10.1073/pnas.79.6.1960]
</p>
</li>
<li>
<p class="mim-text-font">
Olsen, J. H., Hahnemann, J. M. D., Borresen-Dale, A.-L., Tretli, S., Kleinerman, R., Sankila, R., Hammarstrom, L., Robsahm, T. E., Kaariainen, H., Bregard, A., Brondum-Nielsen, K., Yuen, J., Tucker, M.
<strong>Breast and other cancers in 1445 blood relatives of 75 Nordic patients with ataxia telangiectasia.</strong>
Brit. J. Cancer 93: 260-265, 2005.
[PubMed: 15942625]
[Full Text: https://doi.org/10.1038/sj.bjc.6602658]
</p>
</li>
<li>
<p class="mim-text-font">
Oxelius, V.-A., Berkel, A. I., Hanson, L. A.
<strong>IgG2 deficiency in ataxia-telangiectasia.</strong>
New Eng. J. Med. 306: 515-517, 1982.
[PubMed: 7057859]
[Full Text: https://doi.org/10.1056/NEJM198203043060905]
</p>
</li>
<li>
<p class="mim-text-font">
Oxford, J. M., Harnden, D. G., Parrington, J. M., Delhanty, J. D. A.
<strong>Specific chromosome aberrations in ataxia-telangiectasia.</strong>
J. Med. Genet. 12: 251-262, 1975.
[PubMed: 1177276]
[Full Text: https://doi.org/10.1136/jmg.12.3.251]
</p>
</li>
<li>
<p class="mim-text-font">
Painter, R. B., Cramer, P., Howard, R., Young, B. R.
<strong>Two forms of inhibition of DNA replicon initiation in human cells. In: Harris, C. C.; Cerutti, P. C.: Mechanisms of Chemical Carcinogenesis.</strong>
New York: Alan R. Liss (pub.) 1982. Pp. 383-386.
</p>
</li>
<li>
<p class="mim-text-font">
Painter, R. B., Young, B. R.
<strong>Radiosensitivity in ataxia-telangiectasia: a new explanation.</strong>
Proc. Nat. Acad. Sci. 77: 7315-7317, 1980.
[PubMed: 6938978]
[Full Text: https://doi.org/10.1073/pnas.77.12.7315]
</p>
</li>
<li>
<p class="mim-text-font">
Paterson, M. C., Smith, B. P., Knight, P. A., Anderson, A. K.
<strong>Ataxia telangiectasia: an inherited human disease involving radiosensitivity, malignancy and defective DNA repair. In: Castellani, A. (ed.): Research in Photobiology.</strong>
New York: Plenum (pub.) 1977. Pp. 207-218.
</p>
</li>
<li>
<p class="mim-text-font">
Paterson, M. C., Smith, B. P., Lohman, P. H. M., Anderson, A. K., Fishman, L.
<strong>Defective excision repair of gamma-ray-damaged DNA in human (ataxia-telangiectasia) fibroblasts.</strong>
Nature 260: 444-447, 1976.
[PubMed: 1256588]
[Full Text: https://doi.org/10.1038/260444a0]
</p>
</li>
<li>
<p class="mim-text-font">
Paterson, M. C., Smith, P. J.
<strong>Ataxia telangiectasia: an inherited human disorder involving hypersensitivity to ionizing radiation and related DNA-damaging chemicals.</strong>
Annu. Rev. Genet. 13: 291-318, 1979.
[PubMed: 395894]
[Full Text: https://doi.org/10.1146/annurev.ge.13.120179.001451]
</p>
</li>
<li>
<p class="mim-text-font">
Peterson, R. D. A., Funkhouser, J. D.
<strong>Speculations on ataxia-telangiectasia: defective regulation of the immunoglobulin gene superfamily.</strong>
Immun. Today 10: 313-315, 1989.
[PubMed: 2686680]
[Full Text: https://doi.org/10.1016/0167-5699(89)90087-X]
</p>
</li>
<li>
<p class="mim-text-font">
Peterson, R. D. A., Funkhouser, J. D.
<strong>Ataxia-telangiectasia: an important clue. (Editorial)</strong>
New Eng. J. Med. 322: 124-125, 1990.
[PubMed: 2136769]
[Full Text: https://doi.org/10.1056/NEJM199001113220209]
</p>
</li>
<li>
<p class="mim-text-font">
Peterson, R. D. A., Kelly, W. D., Good, R. A.
<strong>Ataxia-telangiectasia: its association with a defective thymus, immunological-deficiency disease, and malignancy.</strong>
Lancet 283: 1189-1193, 1964. Note: Originally Volume I.
[PubMed: 14132657]
[Full Text: https://doi.org/10.1016/s0140-6736(64)91209-7]
</p>
</li>
<li>
<p class="mim-text-font">
Pippard, E. C., Hall, A. J., Barker, D. J. P., Bridges, B. A.
<strong>Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain.</strong>
Cancer Res. 48: 2929-2932, 1988.
[PubMed: 3359449]
</p>
</li>
<li>
<p class="mim-text-font">
Rary, J. M., Bender, M. A., Kelly, T. E.
<strong>Cytogenetic studies of ataxia-telangiectasia. (Abstract)</strong>
Am. J. Hum. Genet. 26: 70, 1974.
</p>
</li>
<li>
<p class="mim-text-font">
Rary, J. M., Bender, M. A., Kelly, T. E.
<strong>A 14/14 marker chromosome lymphocyte clone in ataxia telangiectasis.</strong>
J. Hered. 66: 33-35, 1975.
[PubMed: 1141685]
[Full Text: https://doi.org/10.1093/oxfordjournals.jhered.a108569]
</p>
</li>
<li>
<p class="mim-text-font">
Renwick, A., Thompson, D., Seal, S., Kelly, P., Chagtai, T., Ahmed, M., North, B., Jayatilake, H., Barfoot, R., Spanova, K., McGuffog, L., Evans, D. G., Eccles, D., The Breast Cancer Susceptibility Collaboration (UK), Easton, D. F., Stratton, M. R., Rahman, N.
<strong>ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles.</strong>
Nature Genet. 38: 873-875, 2006.
[PubMed: 16832357]
[Full Text: https://doi.org/10.1038/ng1837]
</p>
</li>
<li>
<p class="mim-text-font">
Reye, C., Mosman, N. S. W.
<strong>Ataxia-telangiectasia.</strong>
Am. J. Dis. Child. 99: 238-247, 1960.
</p>
</li>
<li>
<p class="mim-text-font">
Richkind, K. E., Boder, E., Teplitz, R. L.
<strong>Fetal proteins in ataxia-telangiectasia.</strong>
JAMA 248: 1346-1347, 1982.
[PubMed: 6180190]
</p>
</li>
<li>
<p class="mim-text-font">
Rosen, F. S., Harris, N. L.
<strong>Case records of the Massachusetts General Hospital: a 30-year-old man with ataxia-telangiectasia and dysphagia.</strong>
New Eng. J. Med. 316: 91-100, 1987.
[PubMed: 3785360]
[Full Text: https://doi.org/10.1056/NEJM198701083160206]
</p>
</li>
<li>
<p class="mim-text-font">
Rosin, M. P., Ochs, H. D., Gatti, R. A., Boder, E.
<strong>Heterogeneity of chromosomal breakage levels in epithelial tissue of ataxia-telangiectasia homozygotes and heterozygotes.</strong>
Hum. Genet. 83: 133-138, 1989.
[PubMed: 2777252]
[Full Text: https://doi.org/10.1007/BF00286705]
</p>
</li>
<li>
<p class="mim-text-font">
Rosin, M. P., Ochs, H. D.
<strong>In vivo chromosomal instability in ataxia-telangiectasia homozygotes and heterozygotes.</strong>
Hum. Genet. 74: 335-340, 1986.
[PubMed: 3793095]
[Full Text: https://doi.org/10.1007/BF00280482]
</p>
</li>
<li>
<p class="mim-text-font">
Russo, G., Isobe, M., Gatti, R., Finan, J., Batuman, O., Huebner, K., Nowell, P. C., Croce, C. M.
<strong>Molecular analysis of a t(14;14) translocation in leukemic T-cells of an ataxia telangiectasia patient.</strong>
Proc. Nat. Acad. Sci. 86: 602-606, 1989.
[PubMed: 2783489]
[Full Text: https://doi.org/10.1073/pnas.86.2.602]
</p>
</li>
<li>
<p class="mim-text-font">
Sanal, O., Lange, E., Telatar, M., Sobel, E., Salazar-Novak, J., Ersoy, F., Morrison, A., Concannon, P., Tolun, A., Gatti, R. A.
<strong>Ataxia-telangiectasia: linkage analysis of chromosome 11q22-23 markers in Turkish families.</strong>
FASEB J. 6: 2848-2852, 1992.
[PubMed: 1634048]
[Full Text: https://doi.org/10.1096/fasebj.6.10.1634048]
</p>
</li>
<li>
<p class="mim-text-font">
Sanal, O., Wei, S., Foroud, T., Malhotra, U., Concannon, P., Charmley, P., Salser, W., Lange, K., Gatti, R. A.
<strong>Further mapping of an ataxia-telangiectasia locus to the chromosome 11q23 region.</strong>
Am. J. Hum. Genet. 47: 860-866, 1990.
[PubMed: 2220826]
</p>
</li>
<li>
<p class="mim-text-font">
Sandoval, N., Platzer, M., Rosenthal, A., Dork, T., Bendix, R., Skawran, B., Stuhrmann, M., Wegner, R.-D., Sperling, K., Banin, S., Shiloh, Y., Baumer, A., Bernthaler, U., Sennefelder, H., Brohm, M., Weber, B. H. F., Schindler, D.
<strong>Characterization of ATM gene mutations in 66 ataxia telangiectasia families.</strong>
Hum. Molec. Genet. 8: 69-79, 1999.
[PubMed: 9887333]
[Full Text: https://doi.org/10.1093/hmg/8.1.69]
</p>
</li>
<li>
<p class="mim-text-font">
Sasaki, T., Tian, H., Kukita, Y., Inazuka, M., Tahira, T., Imai, T., Yamauchi, M., Saito, T., Hori, T., Hashimoto-Tamaoki, T., Komatsu, K., Nikaido, O., Hayashi, K.
<strong>ATM mutations in patients with ataxia telangiectasia screened by a hierarchical strategy.</strong>
Hum. Mutat. 12: 186-195, 1998.
[PubMed: 9711876]
[Full Text: https://doi.org/10.1002/(SICI)1098-1004(1998)12:3&lt;186::AID-HUMU6&gt;3.0.CO;2-F]
</p>
</li>
<li>
<p class="mim-text-font">
Saunders-Pullman, R., Raymond, D., Stoessl, A. J., Hobson, D., Nakamura, K., Pullman, S., Lefton, D., Okun, M. S., Uitti, R., Sachdev, R., Stanley, K., San Luciano, M., Hagenah, J., Gatti, R., Ozelius, L. J., Bressman, S. B.
<strong>Variant ataxia-telangiectasia presenting as primary-appearing dystonia in Canadian Mennonites.</strong>
Neurology 78: 649-657, 2012. Note: Erratum: Neurology 78: 1029 only, 2012.
[PubMed: 22345219]
[Full Text: https://doi.org/10.1212/WNL.0b013e3182494d51]
</p>
</li>
<li>
<p class="mim-text-font">
Saviozzi, S., Saluto, A., Taylor, A. M. R., Last, J. I. L., Trebini, F., Paradiso, M. C., Grosso, E., Funaro, A., Ponzio, G., Migone, N., Brusco, A.
<strong>A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA.</strong>
J. Med. Genet. 39: 57-61, 2002.
[PubMed: 11826028]
[Full Text: https://doi.org/10.1136/jmg.39.1.57]
</p>
</li>
<li>
<p class="mim-text-font">
Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D. A., Smith, S., Uziel, T., Sfez, S., Ashkenazi, M., Pecker, I., and 18 others.
<strong>A single ataxia telangiectasia gene with a product similar to PI-3 kinase.</strong>
Science 268: 1749-1753, 1995.
[PubMed: 7792600]
[Full Text: https://doi.org/10.1126/science.7792600]
</p>
</li>
<li>
<p class="mim-text-font">
Saxon, A., Stevens, R. H., Golde, D. W.
<strong>Helper and suppressor T-lymphocyte leukemia in ataxia-telangiectasia.</strong>
New Eng. J. Med. 300: 700-704, 1979.
[PubMed: 310962]
[Full Text: https://doi.org/10.1056/NEJM197903293001303]
</p>
</li>
<li>
<p class="mim-text-font">
Schalch, D. S., McFarlin, D. E., Barlow, M. H.
<strong>An unusual form of diabetes mellitus in ataxia-telangiectasia.</strong>
New Eng. J. Med. 282: 1396-1402, 1970.
[PubMed: 4192270]
[Full Text: https://doi.org/10.1056/NEJM197006182822503]
</p>
</li>
<li>
<p class="mim-text-font">
Scheres, J. M. J. C., Hustinx, T. W. J., Weemaes, C. M. R.
<strong>Chromosome 7 in ataxia-telangiectasia.</strong>
J. Pediat. 97: 440-441, 1980.
[PubMed: 7411307]
[Full Text: https://doi.org/10.1016/s0022-3476(80)80200-9]
</p>
</li>
<li>
<p class="mim-text-font">
Schon, K., van Os, N. J. H., Oscroft, N., Baxendale, H., Scoffings, D., Ray, J., Suri, M., Whitehouse, W. P., Mehta, P. R., Everett, N., Bottolo, L., van de Warrenburg, B. P., Byrd, P. J., Weemaes, C., Willemsen, M. A., Tishkowitz, M., Taylor, A. M., Hensiek, A. E.
<strong>Genotype, extrapyramidal features, and severity of variant ataxia-telangiectasia.</strong>
Ann. Neurol. 85: 170-180, 2019.
[PubMed: 30549301]
[Full Text: https://doi.org/10.1002/ana.25394]
</p>
</li>
<li>
<p class="mim-text-font">
Sedgwick, R. P., Boder, E.
<strong>Ataxia-telangiectasia. In: Vinken, P. J.; Bruyn, G. W. (eds.): Handbook of Clinical Neurology. Vol. 14.</strong>
Amsterdam: North-Holland Publishing Co. (pub.) 1972. Pp. 267-339.
</p>
</li>
<li>
<p class="mim-text-font">
Shackelford, R. E., Innes, C. L., Sieber, S. O., Heinloth, A. N., Leadon, S. A., Paules, R. S.
<strong>The ataxia telangiectasia gene product is required for oxidative stress-induced G1 and G2 checkpoint function in human fibroblasts.</strong>
J. Biol. Chem. 276: 21951-21959, 2001.
[PubMed: 11290740]
[Full Text: https://doi.org/10.1074/jbc.M011303200]
</p>
</li>
<li>
<p class="mim-text-font">
Shaham, M., Becker, Y.
<strong>The ataxia telangiectasia clastogenic factor is a low molecular weight peptide.</strong>
Hum. Genet. 58: 422-424, 1981.
[PubMed: 7327565]
[Full Text: https://doi.org/10.1007/BF00282828]
</p>
</li>
<li>
<p class="mim-text-font">
Shiloh, Y., Parshad, R., Frydman, M., Sanford, K. K., Portnoi, S., Ziv, Y., Jones, G. M.
<strong>G(2) chromosomal radiosensitivity in families with ataxia-telangiectasia.</strong>
Hum. Genet. 84: 15-18, 1989.
[PubMed: 2606472]
[Full Text: https://doi.org/10.1007/BF00210663]
</p>
</li>
<li>
<p class="mim-text-font">
Shultz, L. D., Sweet, H. O., Davisson, M. T., Coman, D. R.
<strong>&#x27;Wasted,&#x27; a new mutant of the mouse with abnormalities characteristic of ataxia telangiectasia.</strong>
Nature 297: 402-404, 1982.
[PubMed: 7078649]
[Full Text: https://doi.org/10.1038/297402a0]
</p>
</li>
<li>
<p class="mim-text-font">
Shuster, J., Hart, Z., Stimson, C. W., Brough, A. J., Poulik, M. D.
<strong>Ataxia-telangiectasia with cerebellar tumor.</strong>
Pediatrics 37: 776-786, 1966.
[PubMed: 5326774]
</p>
</li>
<li>
<p class="mim-text-font">
Smirnov, D. A., Cheung, V. G.
<strong>ATM gene mutations result in both recessive and dominant expression phenotypes of genes and microRNAs.</strong>
Am. J. Hum. Genet. 83: 243-253, 2008. Note: Erratum: Am. J. Hum. Genet. 83: 657 only, 2008.
[PubMed: 18674748]
[Full Text: https://doi.org/10.1016/j.ajhg.2008.07.003]
</p>
</li>
<li>
<p class="mim-text-font">
Sobel, E., Lange, E., Jaspers, N. G. J., Chessa, L., Sanal, O., Shiloh, Y., Taylor, A. M. R., Weemaes, C. M. A., Lange, K., Gatti, R. A.
<strong>Ataxia-telangiectasia: linkage evidence for genetic heterogeneity. (Letter)</strong>
Am. J. Hum. Genet. 50: 1343-1348, 1992.
[PubMed: 1598915]
</p>
</li>
<li>
<p class="mim-text-font">
Sourander, P., Bonnevier, J. O., Olsson, Y.
<strong>A case of ataxia-telangiectasia with lesions in the spinal cord.</strong>
Acta Neurol. Scand. 42: 354-366, 1966.
[PubMed: 5935908]
[Full Text: https://doi.org/10.1111/j.1600-0404.1966.tb01187.x]
</p>
</li>
<li>
<p class="mim-text-font">
Stankovic, T., Kidd, A. M. J., Sutcliffe, A., McGuire, G. M., Robinson, P., Weber, P., Bedenham, T., Bradwell, A. R., Easton, D. F., Lennox, G. G., Haites, N., Byrd, P. J., Taylor, A. M. R.
<strong>ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer.</strong>
Am. J. Hum. Genet. 62: 334-345, 1998.
[PubMed: 9463314]
[Full Text: https://doi.org/10.1086/301706]
</p>
</li>
<li>
<p class="mim-text-font">
Stern, M.-H., Zhang, F., Griscelli, C., Thomas, G., Aurias, A.
<strong>Molecular characterization of different ataxia telangiectasia T-cell clones. I. A common breakpoint at the 14q11.2 band splits the T-cell receptor alpha-chain gene.</strong>
Hum. Genet. 78: 33-36, 1988.
[PubMed: 3422210]
[Full Text: https://doi.org/10.1007/BF00291230]
</p>
</li>
<li>
<p class="mim-text-font">
Stern, M.-H., Zhang, F., Thomas, G., Griscelli, C., Aurias, A.
<strong>Molecular characterization of ataxia telangiectasia T cell clones. III. Mapping the 14q32.1 distal breakpoint.</strong>
Hum. Genet. 81: 18-22, 1988.
[PubMed: 3264259]
[Full Text: https://doi.org/10.1007/BF00283722]
</p>
</li>
<li>
<p class="mim-text-font">
Stewart, G. S., Maser, R. S., Stankovic, T., Bressan, D. A., Kaplan, M. I., Jaspers, N. G. J., Raams, A., Byrd, P. J., Petrini, J. H. J., Taylor, A. M. R.
<strong>The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder.</strong>
Cell 99: 577-587, 1999.
[PubMed: 10612394]
[Full Text: https://doi.org/10.1016/s0092-8674(00)81547-0]
</p>
</li>
<li>
<p class="mim-text-font">
Sugimoto, T., Kidowaki, T., Sawada, T., Ohtsuka-Urano, T., Kusunoki, T.
<strong>Ataxia-telangiectasia associated with non-T, non-B cell acute lymphocytic leukemia.</strong>
Acta Paediat. Scand. 71: 509-510, 1982.
[PubMed: 6958175]
[Full Text: https://doi.org/10.1111/j.1651-2227.1982.tb09462.x]
</p>
</li>
<li>
<p class="mim-text-font">
Suspitsin, E., Sokolenko, A., Bizin, I., Tumakova, A., Guseva, M., Sokolova, N., Vakhlyarskaya, S., Kondratenko, I., Imyanitov, E.
<strong>ATM mutation spectrum in Russian children with ataxia-telangiectasia.</strong>
Europ. J. Med. Genet. 63: 103630, 2020. Note: Electronic Article.
[PubMed: 30772474]
[Full Text: https://doi.org/10.1016/j.ejmg.2019.02.003]
</p>
</li>
<li>
<p class="mim-text-font">
Swift, M., Morrell, D., Cromartie, E., Chamberlin, A. R., Skolnick, M. H., Bishop, D. T.
<strong>The incidence and gene frequency of ataxia-telangiectasia in the United States.</strong>
Am. J. Hum. Genet. 39: 573-583, 1986.
[PubMed: 3788973]
</p>
</li>
<li>
<p class="mim-text-font">
Swift, M., Morrell, D., Massey, R. B., Chase, C. L.
<strong>Incidence of cancer in 161 families affected by ataxia-telangiectasia.</strong>
New Eng. J. Med. 325: 1831-1836, 1991.
[PubMed: 1961222]
[Full Text: https://doi.org/10.1056/NEJM199112263252602]
</p>
</li>
<li>
<p class="mim-text-font">
Swift, M. R., Sholman, L., Perry, M., Chase, C.
<strong>Malignant neoplasms in the families of patients with ataxia-telangiectasia.</strong>
Cancer Res. 36: 209-215, 1976.
[PubMed: 1248000]
</p>
</li>
<li>
<p class="mim-text-font">
Swift, M., Reitnauer, P. J., Morrell, D., Chase, C. L.
<strong>Breast and other cancers in families with ataxia-telangiectasia.</strong>
New Eng. J. Med. 316: 1289-1294, 1987.
[PubMed: 3574400]
[Full Text: https://doi.org/10.1056/NEJM198705213162101]
</p>
</li>
<li>
<p class="mim-text-font">
Swift, M.
<strong>Cancer risk counseling. (Letter)</strong>
Science 210: 1074, 1980.
[PubMed: 7444436]
[Full Text: https://doi.org/10.1126/science.7444436]
</p>
</li>
<li>
<p class="mim-text-font">
Tadjoedin, M. K., Fraser, F. C.
<strong>Heredity of ataxia-telangiectasia (Louis-Bar syndrome).</strong>
Am. J. Dis. Child. 110: 64-68, 1965.
[PubMed: 14308125]
[Full Text: https://doi.org/10.1001/archpedi.1965.02090030070009]
</p>
</li>
<li>
<p class="mim-text-font">
Taylor, A. M. R., Flude, E., Laher, B., Stacey, M., McKay, E., Watt, J., Green, S. H., Harding, A. E.
<strong>Variant forms of ataxia telangiectasia.</strong>
J. Med. Genet. 24: 669-677, 1987.
[PubMed: 3430541]
[Full Text: https://doi.org/10.1136/jmg.24.11.669]
</p>
</li>
<li>
<p class="mim-text-font">
Taylor, A. M. R., Harnden, D. G., Arlett, C. F., Harcourt, S. A., Lehmann, A. R., Stevens, S., Bridges, B. A.
<strong>Ataxia-telangiectasia: a human mutation with abnormal radiation sensitivity.</strong>
Nature 258: 427-429, 1975.
[PubMed: 1196376]
[Full Text: https://doi.org/10.1038/258427a0]
</p>
</li>
<li>
<p class="mim-text-font">
Taylor, A. M. R., Metcalfe, J. A., Oxford, J. M., Harnden, D. G.
<strong>Is chromatid-type damage in ataxia-telangiectasia after irradiation at G(0) a consequence of defective repair?</strong>
Nature 260: 441-443, 1976.
[PubMed: 1256587]
[Full Text: https://doi.org/10.1038/260441a0]
</p>
</li>
<li>
<p class="mim-text-font">
Tchirkov, A., Bay, J.-O., Pernin, D., Bignon, Y.-J. Rio, P., Grancho, M., Kwiatkowski, F., Giollant, M., Malet, P., Verrelle, P.
<strong>Detection of heterozygous carriers of the ataxia-telangiectasia (ATM) gene by G(2) phase chromosomal radiosensitivity of peripheral blood lymphocytes.</strong>
Hum. Genet. 101: 312-316, 1997.
[PubMed: 9439660]
[Full Text: https://doi.org/10.1007/s004390050634]
</p>
</li>
<li>
<p class="mim-text-font">
Telatar, M., Teraoka, S., Wang, Z., Chun, H. H., Liang, T., Castellvi-Bel, S., Udar, N., Borresen-Dale, A. L., Chessa, L., Bernatowska-Matuszkiewicz, E., Porras, O., Watanabe, M., Junker, A., Concannon, P., Gatti, R. A.
<strong>Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations.</strong>
Am. J. Hum. Genet. 62: 86-97, 1998.
[PubMed: 9443866]
[Full Text: https://doi.org/10.1086/301673]
</p>
</li>
<li>
<p class="mim-text-font">
Telatar, M., Wang, Z., Castellvi-Bel, S., Tai, L.-Q., Sheikhavandi, S., Regueiro, J. R., Porras, O., Gatti, R. A.
<strong>A model for ATM heterozygote identification in a large population: four founder-effect ATM mutations identify most of Costa Rican patients with ataxia telangiectasia.</strong>
Molec. Genet. Metab. 64: 36-43, 1998.
[PubMed: 9682216]
[Full Text: https://doi.org/10.1006/mgme.1998.2693]
</p>
</li>
<li>
<p class="mim-text-font">
Teplitz, R. L.
<strong>Ataxia-telangiectasia.</strong>
Arch. Neurol. 35: 553-554, 1978.
[PubMed: 687181]
[Full Text: https://doi.org/10.1001/archneur.1978.00500330001001]
</p>
</li>
<li>
<p class="mim-text-font">
Thibaut, S., Sass, U., Khoury, A., Simonart, J.-M.
<strong>Ataxia-telangiectasia and necrobiosis lipoidica: an explainable association.</strong>
Europ. J. Derm. 4: 509-513, 1994.
</p>
</li>
<li>
<p class="mim-text-font">
Toledano, S. R., Lange, B. J.
<strong>Ataxia-telangiectasia and acute lymphoblastic leukemia.</strong>
Cancer 45: 1675-1678, 1980.
[PubMed: 6929216]
[Full Text: https://doi.org/10.1002/1097-0142(19800401)45:7&lt;1675::aid-cncr2820450725&gt;3.0.co;2-d]
</p>
</li>
<li>
<p class="mim-text-font">
Tse, A. G. D., Barclay, A. N., Watts, A., Williams, A. F.
<strong>A glycophospholipid tail at the carboxyl terminus of the Thy-1 glycoprotein of neurons and thymocytes.</strong>
Science 230: 1003-1008, 1985.
[PubMed: 2865810]
[Full Text: https://doi.org/10.1126/science.2865810]
</p>
</li>
<li>
<p class="mim-text-font">
van Os, N. J. H., Chessa, L., Weemaes, C. M. R., van Deuren, M., Fievet, A., van Gaalen, J., Mahlaoui, N., Roeleveld, N., Schrader, C., Schindler, D., Taylor, A. M. R., Van de Warrenburg, B. P. C., Dork, T., Willemsen, M. A. A. P.
<strong>Genotype-phenotype correlations in ataxia telangiectasia patients with ATM c.3576G-A and c.8147T-C mutations.</strong>
J. Med. Genet. 56: 308-316, 2019.
[PubMed: 30819809]
[Full Text: https://doi.org/10.1136/jmedgenet-2018-105635]
</p>
</li>
<li>
<p class="mim-text-font">
van Os, N. J. H., Hensiek, A., van Gaalen, J., Taylor, A. M. R., van Deuren, M., Weemaes, C. M. R., Willemsen, M. A. A. P., van de Warrenburg, B. P. C.
<strong>Trajectories of motor abnormalities in milder phenotypes of ataxia telangiectasia.</strong>
Neurology 92: e19-e29, 2019.
[PubMed: 30504431]
[Full Text: https://doi.org/10.1212/WNL.0000000000006700]
</p>
</li>
<li>
<p class="mim-text-font">
Verhagen, M. M. M., Abdo, W. F., Willemsen, M. A. A. P., Hogervorst, F. B. L., Smeets, D. F. C. M., Hiel, J. A. P., Brunt, E. R., van Rijn, M. A., Krakauer, D. M., Oldenburg, R. A., Broeks, A., Last, J. I., van't Veer, L. J., Tijssen, M. A. J., Dubois, A. M. I., Kremer, H. P. H., Weemaes, C. M. R, Tayloer, A. M. R., van Deuren, M.
<strong>Clinical spectrum of ataxia-telangiectasia in adulthood.</strong>
Neurology 73: 430-437, 2009.
[PubMed: 19535770]
[Full Text: https://doi.org/10.1212/WNL.0b013e3181af33bd]
</p>
</li>
<li>
<p class="mim-text-font">
Vincent, R. A., Jr., Sheridan, R. B., III, Huang, P. C.
<strong>DNA strand breakage repair in ataxia-telangiectasia fibroblast-like cells.</strong>
Mutat. Res. 33: 357-366, 1975.
[PubMed: 1214827]
[Full Text: https://doi.org/10.1016/0027-5107(75)90211-0]
</p>
</li>
<li>
<p class="mim-text-font">
Waldmann, T. A., McIntire, K. R.
<strong>Serum-alpha-fetoprotein levels in patients with ataxia-telangiectasia.</strong>
Lancet 300: 1112-1115, 1972. Note: Originally Volume II.
[PubMed: 4117204]
[Full Text: https://doi.org/10.1016/s0140-6736(72)92717-1]
</p>
</li>
<li>
<p class="mim-text-font">
Waldmann, T. A., Misiti, J., Nelson, D. L., Kraemer, K. H.
<strong>Ataxia-telangiectasia: a multisystem hereditary disease with immunodeficiency, impaired organ maturation, x-ray hypersensitivity, and a high incidence of neoplasia.</strong>
Ann. Intern. Med. 99: 367-379, 1983.
[PubMed: 6193747]
[Full Text: https://doi.org/10.7326/0003-4819-99-3-367]
</p>
</li>
<li>
<p class="mim-text-font">
Watanabe, A., Hanazono, H., Sogawa, H., Takaya, H.
<strong>Stomach cancer in a 14-year-old-boy with ataxia-telangiectasia.</strong>
Tohoku J. Exp. Med. 121: 127-131, 1977.
[PubMed: 191957]
[Full Text: https://doi.org/10.1620/tjem.121.127]
</p>
</li>
<li>
<p class="mim-text-font">
Waterman, M. J. F., Stavridi, E. S., Waterman, J. L. F., Halazonetis, T. D.
<strong>ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins.</strong>
Nature Genet. 19: 175-178, 1998.
[PubMed: 9620776]
[Full Text: https://doi.org/10.1038/542]
</p>
</li>
<li>
<p class="mim-text-font">
Watts, J. A., Morley, M., Burdick, J. T., Fiori, J. L., Ewens, W. J., Spielman, R. S., Cheung, V. G.
<strong>Gene expression phenotype in heterozygous carriers of ataxia telangiectasia.</strong>
Am. J. Hum. Genet. 71: 791-800, 2002.
[PubMed: 12226795]
[Full Text: https://doi.org/10.1086/342974]
</p>
</li>
<li>
<p class="mim-text-font">
Weinstein, S., Scottolini, A. G., Loo, S. Y. T., Caldwell, P. C., Bhagavan, N. V.
<strong>Ataxia telangiectasia with hepatocellular carcinoma in a 15-year-old girl and studies of her kindred.</strong>
Arch. Path. Lab. Med. 109: 1000-1004, 1985.
[PubMed: 2996458]
</p>
</li>
<li>
<p class="mim-text-font">
Welshimer, K., Swift, M.
<strong>Congenital malformations and developmental disabilities in ataxia-telangiectasia, Fanconi anemia, and xeroderma pigmentosum families.</strong>
Am. J. Hum. Genet. 34: 781-793, 1982.
[PubMed: 7124732]
</p>
</li>
<li>
<p class="mim-text-font">
Wong, K.-K., Maser, R. S., Bachoo, R. M., Menon, J., Carrasco, D. R., Gu, Y., Alt, F. W., DePinho, R. A.
<strong>Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing.</strong>
Nature 421: 643-648, 2003.
[PubMed: 12540856]
[Full Text: https://doi.org/10.1038/nature01385]
</p>
</li>
<li>
<p class="mim-text-font">
Woods, C. G., Bundey, S. E., Taylor, A. M. R.
<strong>Unusual features in the inheritance of ataxia telangiectasia.</strong>
Hum. Genet. 84: 555-562, 1990.
[PubMed: 2338342]
[Full Text: https://doi.org/10.1007/BF00210809]
</p>
</li>
<li>
<p class="mim-text-font">
Woods, C. G., Taylor, A. M. R.
<strong>Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals.</strong>
Quart. J. Med. 82: 169-179, 1992.
[PubMed: 1377828]
</p>
</li>
<li>
<p class="mim-text-font">
Wooster, R., Ford, D., Mangion, J., Ponder, B. A. J., Peto, J., Easton, D. F., Stratton, M. R.
<strong>Absence of linkage to the ataxia telangiectasia locus in familial breast cancer.</strong>
Hum. Genet. 92: 91-94, 1993.
[PubMed: 8365732]
[Full Text: https://doi.org/10.1007/BF00216153]
</p>
</li>
<li>
<p class="mim-text-font">
Worgul, B. V., Smilenov, L., Brenner, D. J., Junk, A., Zhou, W., Hall, E. J.
<strong>Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts.</strong>
Proc. Nat. Acad. Sci. 99: 9836-9839, 2002.
[PubMed: 12119422]
[Full Text: https://doi.org/10.1073/pnas.162349699]
</p>
</li>
<li>
<p class="mim-text-font">
Xu, Y., Ashley, T, Brainerd, E. E., Bronson, R. T., Meyn, M. S., Baltimore, D.
<strong>Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma.</strong>
Genes Dev. 10: 2411-2422, 1996.
[PubMed: 8843194]
[Full Text: https://doi.org/10.1101/gad.10.19.2411]
</p>
</li>
<li>
<p class="mim-text-font">
Xu, Y., Baltimore, D.
<strong>Dual roles of ATM in the cellular response to radiation and in cell growth control.</strong>
Genes Dev. 10: 2401-2410, 1996.
[PubMed: 8843193]
[Full Text: https://doi.org/10.1101/gad.10.19.2401]
</p>
</li>
<li>
<p class="mim-text-font">
Ying, K. L., Decoteau, W. E.
<strong>Cytogenetic anomalies in a patient with ataxia, immune deficiency, and high alpha-fetoprotein in the absence of telangiectasia.</strong>
Cancer Genet. Cytogenet. 4: 311-317, 1981.
[PubMed: 6174206]
[Full Text: https://doi.org/10.1016/0165-4608(81)90027-3]
</p>
</li>
<li>
<p class="mim-text-font">
Yount, W. J.
<strong>IgG2 deficiency and ataxia-telangiectasia. (Editorial)</strong>
New Eng. J. Med. 306: 541-543, 1982.
[PubMed: 7057862]
[Full Text: https://doi.org/10.1056/NEJM198203043060911]
</p>
</li>
<li>
<p class="mim-text-font">
Zadik, Z., Levin, S., Prager-Lewin, R., Laron, Z.
<strong>Gonadal dysfunction in patients with ataxia telangiectasia.</strong>
Acta Paediat. Scand. 67: 477-479, 1978.
[PubMed: 354315]
[Full Text: https://doi.org/10.1111/j.1651-2227.1978.tb16357.x]
</p>
</li>
<li>
<p class="mim-text-font">
Zhang, F., Stern, M.-H., Thomas, G., Aurias, A.
<strong>Molecular characterization of ataxia telangiectasia T cell clones. II. The clonal inv(14) in ataxia telangiectasia differs from the inv(14) in T cell lymphoma.</strong>
Hum. Genet. 78: 316-319, 1988.
[PubMed: 3258841]
[Full Text: https://doi.org/10.1007/BF00291726]
</p>
</li>
<li>
<p class="mim-text-font">
Ziv, S., Brenner, O., Amariglio, N., Smorodinsky, N. I., Galron, R., Carrion, D. V., Zhang, W., Sharma, G. G., Pandita, R. K., Agarwal, M., Elkon, R., Katzin, N., Bar-Am, I., Pandita, T. K., Kucherlapati, R., Rechavi, G., Shiloh, Y., Barzilai, A.
<strong>Impaired genomic stability and increased oxidative stress exacerbate different tissues of ataxia-telangiectasia.</strong>
Hum. Molec. Genet. 14: 2929-2943, 2005.
[PubMed: 16150740]
[Full Text: https://doi.org/10.1093/hmg/ddi324]
</p>
</li>
<li>
<p class="mim-text-font">
Ziv, Y., Amiel, A., Jaspers, N. G. J., Berkel, A. I., Shiloh, Y.
<strong>Ataxia-telangiectasia: a variant with altered in vitro phenotype of fibroblast cells.</strong>
Mutat. Res. 210: 211-219, 1989.
[PubMed: 2911253]
[Full Text: https://doi.org/10.1016/0027-5107(89)90081-x]
</p>
</li>
<li>
<p class="mim-text-font">
Ziv, Y., Frydman, M., Lange, E., Zelnik, N., Rotman, G., Julier, C., Jaspers, N. G. J., Dagan, Y., Abeliovicz, D., Dar, H., Borochowitz, Z., Lathrop, M., Gatti, R. A., Shiloh, Y.
<strong>Ataxia-telangiectasia: linkage analysis in highly inbred Arab and Druze families and differentiation from an ataxia-microcephaly-cataract syndrome.</strong>
Hum. Genet. 88: 619-626, 1992.
[PubMed: 1551665]
[Full Text: https://doi.org/10.1007/BF02265285]
</p>
</li>
<li>
<p class="mim-text-font">
Ziv, Y., Rotman, G., Frydman, M., Dagan, J., Cohen, T., Foroud, T., Gatti, R. A., Shiloh, Y.
<strong>The ATC (ataxia-telangiectasia complementation group C) locus localizes to 11q22-q23.</strong>
Genomics 9: 373-375, 1991.
[PubMed: 1672297]
[Full Text: https://doi.org/10.1016/0888-7543(91)90268-j]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Hilary J. Vernon - updated : 06/20/2022<br>Carol A. Bocchini - updated : 11/11/2020<br>Sonja A. Rasmussen - updated : 08/26/2020<br>Cassandra L. Kniffin - updated : 10/24/2012<br>George E. Tiller - updated : 3/31/2010<br>Cassandra L. Kniffin - updated : 3/1/2010<br>Cassandra L. Kniffin - updated : 12/28/2009<br>George E. Tiller - updated : 4/22/2009<br>Ada Hamosh - updated : 9/8/2008<br>Cassandra L. Kniffin - updated : 7/30/2007<br>Victor A. McKusick - updated : 8/16/2006<br>Victor A. McKusick - updated : 6/20/2006<br>Victor A. McKusick - updated : 10/11/2005<br>Cassandra L. Kniffin - updated : 10/19/2003<br>Cassandra L. Kniffin - reorganized : 5/7/2003<br>Victor A. McKusick - updated : 3/6/2003<br>Ada Hamosh - updated : 2/3/2003<br>Ada Hamosh - updated : 1/29/2003<br>Victor A. McKusick - updated : 1/15/2003<br>Patricia A. Hartz - updated : 12/17/2002<br>Victor A. McKusick - updated : 10/29/2002<br>Stylianos E. Antonarakis - updated : 9/25/2002<br>Victor A. McKusick - updated : 9/20/2002<br>Victor A. McKusick - updated : 8/29/2002<br>Ada Hamosh - updated : 3/28/2002<br>Victor A. McKusick - updated : 3/7/2002<br>Victor A. McKusick - updated : 2/6/2002<br>Victor A. McKusick - updated : 1/10/2002<br>Ada Hamosh - updated : 6/20/2001<br>George E. Tiller - updated : 5/24/2001<br>Ada Hamosh - updated : 4/18/2001<br>Ada Hamosh - updated : 4/10/2001<br>Paul J. Converse - updated : 11/16/2000<br>Victor A. McKusick - updated : 9/25/2000<br>Ada Hamosh - updated : 7/12/2000<br>Ada Hamosh - updated : 5/24/2000<br>Victor A. McKusick - updated : 5/22/2000<br>Victor A. McKusick - updated : 4/19/2000<br>Victor A. McKusick - updated : 4/18/2000<br>Victor A. McKusick - updated : 3/31/2000<br>Victor A. McKusick - updated : 2/9/2000<br>Victor A. McKusick - updated : 12/21/1999<br>Ada Hamosh - updated : 11/4/1999<br>Victor A. McKusick - updated : 10/27/1999<br>Victor A. McKusick - updated : 9/24/1999<br>Ada Hamosh - updated : 9/20/1999<br>Victor A. McKusick - updated : 5/28/1999<br>Ada Hamosh - updated : 3/30/1999<br>Victor A. McKusick - updated : 2/19/1999<br>Victor A. McKusick - updated : 2/9/1999<br>Victor A. McKusick - updated : 11/30/1998<br>Victor A. McKusick - updated : 11/5/1998<br>Victor A. McKusick - updated : 10/13/1998<br>Victor A. McKusick - updated : 10/1/1998<br>Victor A. McKusick - updated : 9/28/1998<br>Victor A. McKusick - updated : 8/14/1998<br>Victor A. McKusick - updated : 6/29/1998<br>Clair A. Francomano - updated : 5/27/1998<br>Victor A. McKusick - updated : 5/7/1998<br>Victor A. McKusick - updated : 4/14/1998<br>Victor A. McKusick - updated : 4/1/1998<br>Victor A. McKusick - updated : 2/19/1998<br>Victor A. McKusick - updated : 2/11/1998<br>Lori M. Kelman - updated : 9/30/1997<br>Victor A. McKusick - updated : 9/12/1997<br>Victor A. McKusick - updated : 9/2/1997<br>Lori M. Kelman - updated : 8/14/1997<br>Victor A. McKusick - updated : 7/31/1997<br>Victor A. McKusick - updated : 4/7/1997<br>Victor A. McKusick - updated : 3/2/1997<br>Victor A. McKusick - updated : 2/18/1997<br>Moyra Smith - updated : 1/30/1997<br>Moyra Smith - updated : 11/12/1996<br>Moyra Smith - updated : 10/1/1996<br>Alan F. Scott - updated : 8/22/1996<br>Alan F. Scott - updated : 5/24/1996<br>Moyra Smith - updated : 4/30/1996<br>Orest Hurko - updated : 6/22/1994
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/3/1986
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 06/21/2022<br>carol : 06/20/2022<br>alopez : 03/22/2022<br>carol : 03/18/2022<br>carol : 02/22/2022<br>carol : 11/12/2020<br>carol : 11/11/2020<br>carol : 08/26/2020<br>carol : 10/14/2016<br>carol : 02/16/2015<br>carol : 2/16/2015<br>mgross : 10/7/2013<br>mgross : 10/7/2013<br>mgross : 10/4/2013<br>tpirozzi : 10/1/2013<br>terry : 3/14/2013<br>terry : 3/14/2013<br>carol : 11/5/2012<br>ckniffin : 10/24/2012<br>terry : 6/8/2012<br>terry : 10/12/2010<br>wwang : 4/14/2010<br>terry : 3/31/2010<br>wwang : 3/2/2010<br>ckniffin : 3/1/2010<br>wwang : 1/14/2010<br>ckniffin : 12/28/2009<br>terry : 6/3/2009<br>wwang : 5/8/2009<br>terry : 4/22/2009<br>terry : 2/11/2009<br>alopez : 9/17/2008<br>terry : 9/8/2008<br>wwang : 8/22/2007<br>ckniffin : 7/30/2007<br>carol : 7/12/2007<br>carol : 8/16/2006<br>wwang : 6/20/2006<br>wwang : 10/27/2005<br>wwang : 10/21/2005<br>terry : 10/11/2005<br>carol : 10/19/2003<br>carol : 10/19/2003<br>ckniffin : 10/16/2003<br>alopez : 5/16/2003<br>ckniffin : 5/7/2003<br>ckniffin : 3/7/2003<br>carol : 3/6/2003<br>terry : 3/6/2003<br>ckniffin : 3/3/2003<br>ckniffin : 3/3/2003<br>ckniffin : 3/3/2003<br>alopez : 2/4/2003<br>terry : 2/3/2003<br>alopez : 1/29/2003<br>terry : 1/29/2003<br>cwells : 1/15/2003<br>terry : 1/15/2003<br>mgross : 1/6/2003<br>terry : 12/17/2002<br>carol : 10/29/2002<br>tkritzer : 10/29/2002<br>terry : 10/29/2002<br>mgross : 9/25/2002<br>mgross : 9/25/2002<br>tkritzer : 9/23/2002<br>carol : 9/20/2002<br>tkritzer : 9/6/2002<br>tkritzer : 9/4/2002<br>terry : 8/29/2002<br>alopez : 4/12/2002<br>carol : 3/29/2002<br>carol : 3/29/2002<br>cwells : 3/29/2002<br>terry : 3/28/2002<br>alopez : 3/12/2002<br>terry : 3/7/2002<br>mgross : 2/11/2002<br>terry : 2/6/2002<br>carol : 1/14/2002<br>carol : 1/14/2002<br>terry : 1/10/2002<br>alopez : 6/21/2001<br>terry : 6/20/2001<br>cwells : 5/25/2001<br>cwells : 5/24/2001<br>cwells : 5/23/2001<br>alopez : 4/19/2001<br>terry : 4/18/2001<br>alopez : 4/11/2001<br>alopez : 4/11/2001<br>terry : 4/10/2001<br>joanna : 1/17/2001<br>mgross : 11/16/2000<br>mcapotos : 10/3/2000<br>mcapotos : 9/25/2000<br>mcapotos : 9/8/2000<br>alopez : 7/12/2000<br>alopez : 5/24/2000<br>terry : 5/22/2000<br>carol : 5/12/2000<br>mcapotos : 5/11/2000<br>mcapotos : 5/10/2000<br>terry : 4/19/2000<br>terry : 4/18/2000<br>mgross : 4/11/2000<br>terry : 3/31/2000<br>mgross : 3/2/2000<br>terry : 2/9/2000<br>mgross : 1/3/2000<br>mgross : 12/29/1999<br>terry : 12/21/1999<br>alopez : 11/5/1999<br>alopez : 11/4/1999<br>carol : 10/27/1999<br>carol : 10/22/1999<br>carol : 10/22/1999<br>terry : 9/24/1999<br>carol : 9/21/1999<br>terry : 9/20/1999<br>kayiaros : 7/13/1999<br>mgross : 6/3/1999<br>terry : 5/28/1999<br>alopez : 3/30/1999<br>mgross : 3/10/1999<br>mgross : 2/24/1999<br>mgross : 2/19/1999<br>alopez : 2/19/1999<br>alopez : 2/19/1999<br>carol : 2/18/1999<br>terry : 2/17/1999<br>terry : 2/9/1999<br>psherman : 1/26/1999<br>dkim : 12/10/1998<br>alopez : 12/1/1998<br>terry : 11/30/1998<br>carol : 11/15/1998<br>terry : 11/5/1998<br>carol : 10/18/1998<br>terry : 10/13/1998<br>carol : 10/7/1998<br>terry : 10/1/1998<br>alopez : 9/28/1998<br>joanna : 9/28/1998<br>terry : 8/21/1998<br>terry : 8/19/1998<br>carol : 8/14/1998<br>terry : 8/14/1998<br>terry : 8/11/1998<br>carol : 7/24/1998<br>terry : 7/9/1998<br>carol : 7/1/1998<br>terry : 6/29/1998<br>carol : 6/19/1998<br>terry : 6/16/1998<br>carol : 6/5/1998<br>terry : 6/4/1998<br>terry : 6/1/1998<br>dholmes : 5/28/1998<br>dholmes : 5/27/1998<br>dholmes : 5/21/1998<br>alopez : 5/13/1998<br>alopez : 5/13/1998<br>terry : 5/7/1998<br>carol : 4/14/1998<br>alopez : 4/1/1998<br>terry : 3/23/1998<br>terry : 3/20/1998<br>mark : 2/26/1998<br>terry : 2/19/1998<br>alopez : 2/11/1998<br>alopez : 2/11/1998<br>dholmes : 2/4/1998<br>dholmes : 11/11/1997<br>dholmes : 11/11/1997<br>dholmes : 9/30/1997<br>jenny : 9/19/1997<br>terry : 9/12/1997<br>mark : 9/5/1997<br>jenny : 9/3/1997<br>terry : 9/2/1997<br>terry : 9/2/1997<br>terry : 9/2/1997<br>dholmes : 8/14/1997<br>dholmes : 8/14/1997<br>dholmes : 8/14/1997<br>terry : 8/5/1997<br>terry : 7/31/1997<br>terry : 6/2/1997<br>terry : 4/14/1997<br>mark : 4/7/1997<br>terry : 4/1/1997<br>jamie : 3/4/1997<br>mark : 3/2/1997<br>terry : 2/28/1997<br>jenny : 2/18/1997<br>terry : 2/12/1997<br>terry : 1/30/1997<br>mark : 1/29/1997<br>mark : 1/8/1997<br>terry : 12/10/1996<br>terry : 12/5/1996<br>mark : 11/12/1996<br>mark : 11/12/1996<br>terry : 11/7/1996<br>terry : 11/4/1996<br>mark : 10/1/1996<br>mark : 9/26/1996<br>mark : 9/11/1996<br>terry : 9/6/1996<br>mark : 8/22/1996<br>marlene : 8/20/1996<br>mark : 7/22/1996<br>mark : 7/5/1996<br>terry : 6/26/1996<br>mark : 5/31/1996<br>terry : 5/24/1996<br>terry : 5/24/1996<br>carol : 5/4/1996<br>carol : 4/30/1996<br>mark : 4/25/1996<br>terry : 4/19/1996<br>mark : 3/12/1996<br>terry : 3/5/1996<br>mark : 2/15/1996<br>terry : 2/9/1996<br>mark : 12/20/1995<br>terry : 11/6/1995<br>mark : 10/27/1995<br>pfoster : 2/14/1995<br>davew : 8/16/1994<br>mimadm : 4/29/1994
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 5, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>