nih-gov/www.ncbi.nlm.nih.gov/omim/171834

7727 lines
812 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- *171834 - PHOSPHATIDYLINOSITOL 3-KINASE, CATALYTIC, ALPHA; PIK3CA
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=171834"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
<span class="hidden-sm hidden-xs">
Display:
<label style="font-weight: normal"><input type="checkbox" id="mimToggleChangeBars" checked /> Change Bars </label> &nbsp;
</span>
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">*171834</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#geneMap"><strong>Gene-Phenotype Relationships</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cloning">Cloning and Expression</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#biochemicalFeatures">Biochemical Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneFunction">Gene Function</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cytogenetics">Cytogenetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#genotypePhenotypeCorrelations">Genotype/Phenotype Correlations</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#animalModel">Animal Model</a>
</li>
<li role="presentation">
<a href="#allelicVariants"><strong>Allelic Variants</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="/allelicVariants/171834">Table View</a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGenome">
<span class="panel-title">
<span class="small">
<a href="#mimGenomeLinksFold" id="mimGenomeLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimGenomeLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Genome
</a>
</span>
</span>
</div>
<div id="mimGenomeLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="genome">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000121879;t=ENST00000263967" class="mim-tip-hint" title="Genome databases for vertebrates and other eukaryotic species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/genome/gdv/browser/gene/?id=5290" class="mim-tip-hint" title="Detailed views of the complete genomes of selected organisms from vertebrates to protozoa." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Genome Viewer', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Genome Viewer</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=171834" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimDna">
<span class="panel-title">
<span class="small">
<a href="#mimDnaLinksFold" id="mimDnaLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimDnaLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> DNA
</a>
</span>
</span>
</div>
<div id="mimDnaLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000121879;t=ENST00000263967" class="mim-tip-hint" title="Transcript-based views for coding and noncoding DNA." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl (MANE Select)</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_006218,XM_006713658" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_006218" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq (MANE)', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq (MANE Select)</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=171834" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimProtein">
<span class="panel-title">
<span class="small">
<a href="#mimProteinLinksFold" id="mimProteinLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimProteinLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Protein
</a>
</span>
</span>
</div>
<div id="mimProteinLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://hprd.org/summary?hprd_id=01382&isoform_id=01382_1&isoform_name=Isoform_1" class="mim-tip-hint" title="The Human Protein Reference Database; manually extracted and visually depicted information on human proteins." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HPRD', 'domain': 'hprd.org'})">HPRD</a></div>
<div><a href="https://www.proteinatlas.org/search/PIK3CA" class="mim-tip-hint" title="The Human Protein Atlas contains information for a large majority of all human protein-coding genes regarding the expression and localization of the corresponding proteins based on both RNA and protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HumanProteinAtlas', 'domain': 'proteinatlas.org'})">Human Protein Atlas</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/protein/472991,1763626,54792082,109731331,109731756,115353299,119598829,126302584,158259341,194380178,194386248,218046696,218310366,307334917,311697323,311697327,576060871,578807473,929654737,1341081250,1493511999,2001549051,2169257955,2169257957,2169257959,2462590469,2462590471,2462590473,2462590475,2462590477,2462590479,2462590481" class="mim-tip-hint" title="NCBI protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Protein', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Protein</a></div>
<div><a href="https://www.uniprot.org/uniprotkb/P42336" class="mim-tip-hint" title="Comprehensive protein sequence and functional information, including supporting data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UniProt', 'domain': 'uniprot.org'})">UniProt</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGeneInfo">
<span class="panel-title">
<span class="small">
<a href="#mimGeneInfoLinksFold" id="mimGeneInfoLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimGeneInfoLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Gene Info</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimGeneInfoLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="http://biogps.org/#goto=genereport&id=5290" class="mim-tip-hint" title="The Gene Portal Hub; customizable portal of gene and protein function information." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'BioGPS', 'domain': 'biogps.org'})">BioGPS</a></div>
<div><a href="https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000121879;t=ENST00000263967" class="mim-tip-hint" title="Orthologs, paralogs, regulatory regions, and splice variants." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=PIK3CA" class="mim-tip-hint" title="The Human Genome Compendium; web-based cards integrating automatically mined information on human genes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneCards', 'domain': 'genecards.org'})">GeneCards</a></div>
<div><a href="http://amigo.geneontology.org/amigo/search/annotation?q=PIK3CA" class="mim-tip-hint" title="Terms, defined using controlled vocabulary, representing gene product properties (biologic process, cellular component, molecular function) across species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneOntology', 'domain': 'amigo.geneontology.org'})">Gene Ontology</a></div>
<div><a href="https://www.genome.jp/dbget-bin/www_bget?hsa+5290" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<dd><a href="http://v1.marrvel.org/search/gene/PIK3CA" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></dd>
<dd><a href="https://monarchinitiative.org/NCBIGene:5290" class="mim-tip-hint" title="Monarch Initiative." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Monarch', 'domain': 'monarchinitiative.org'})">Monarch</a></dd>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/5290" class="mim-tip-hint" title="Gene-specific map, sequence, expression, structure, function, citation, and homology data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Gene', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Gene</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_chrom=chr3&hgg_gene=ENST00000263967.4&hgg_start=179148126&hgg_end=179240093&hgg_type=knownGene" class="mim-tip-hint" title="UCSC Genome Bioinformatics; gene-specific structure and function information with links to other databases." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC', 'domain': 'genome.ucsc.edu'})">UCSC</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://search.clinicalgenome.org/kb/gene-dosage/HGNC:8975" class="mim-tip-hint" title="A ClinGen curated resource of genes and regions of the genome that are dosage sensitive and should be targeted on a cytogenomic array." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinGen Dosage', 'domain': 'dosage.clinicalgenome.org'})">ClinGen Dosage</a></div>
<div><a href="https://search.clinicalgenome.org/kb/genes/HGNC:8975" class="mim-tip-hint" title="A ClinGen curated resource of ratings for the strength of evidence supporting or refuting the clinical validity of the claim(s) that variation in a particular gene causes disease." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinGen Validity', 'domain': 'search.clinicalgenome.org'})">ClinGen Validity</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=171834[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimVariation">
<span class="panel-title">
<span class="small">
<a href="#mimVariationLinksFold" id="mimVariationLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimVariationLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9660;</span> Variation
</a>
</span>
</span>
</div>
<div id="mimVariationLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ncbi.nlm.nih.gov/clinvar?term=171834[MIM]" class="mim-tip-hint" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a></div>
<div><a href="https://www.deciphergenomics.org/gene/PIK3CA/overview/clinical-info" class="mim-tip-hint" title="DECIPHER" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'DECIPHER', 'domain': 'DECIPHER'})">DECIPHER</a></div>
<div><a href="https://gnomad.broadinstitute.org/gene/ENSG00000121879" class="mim-tip-hint" title="The Genome Aggregation Database (gnomAD), Broad Institute." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'gnomAD', 'domain': 'gnomad.broadinstitute.org'})">gnomAD</a></div>
<div><a href="https://www.ebi.ac.uk/gwas/search?query=PIK3CA" class="mim-tip-hint" title="GWAS Catalog; NHGRI-EBI Catalog of published genome-wide association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Catalog', 'domain': 'gwascatalog.org'})">GWAS Catalog&nbsp;</a></div>
<div><a href="https://www.gwascentral.org/search?q=PIK3CA" class="mim-tip-hint" title="GWAS Central; summary level genotype-to-phenotype information from genetic association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Central', 'domain': 'gwascentral.org'})">GWAS Central&nbsp;</a></div>
<div><a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=PIK3CA" class="mim-tip-hint" title="Human Gene Mutation Database; published mutations causing or associated with human inherited disease; disease-associated/functional polymorphisms." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGMD', 'domain': 'hgmd.cf.ac.uk'})">HGMD</a></div>
<div><a href="https://evs.gs.washington.edu/EVS/PopStatsServlet?searchBy=Gene+Hugo&target=PIK3CA&upstreamSize=0&downstreamSize=0&x=0&y=0" class="mim-tip-hint" title="National Heart, Lung, and Blood Institute Exome Variant Server." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NHLBI EVS', 'domain': 'evs.gs.washington.edu'})">NHLBI EVS</a></div>
<div><a href="https://www.pharmgkb.org/gene/PA33308" class="mim-tip-hint" title="Pharmacogenomics Knowledge Base; curated and annotated information regarding the effects of human genetic variations on drug response." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PharmGKB', 'domain': 'pharmgkb.org'})">PharmGKB</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/gene/HGNC:8975" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="https://www.mousephenotype.org/data/genes/MGI:1206581" class="mim-tip-hint" title="International Mouse Phenotyping Consortium." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'IMPC', 'domain': 'knockoutmouse.org'})">IMPC</a></div>
<div><a href="http://v1.marrvel.org/search/gene/PIK3CA#HomologGenesPanel" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></div>
<div><a href="http://www.informatics.jax.org/marker/MGI:1206581" class="mim-tip-hint" title="Mouse Genome Informatics; international database resource for the laboratory mouse, including integrated genetic, genomic, and biological data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Gene', 'domain': 'informatics.jax.org'})">MGI Mouse Gene</a></div>
<div><a href="https://www.mmrrc.org/catalog/StrainCatalogSearchForm.php?search_query=" class="mim-tip-hint" title="Mutant Mouse Resource & Research Centers." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MMRRC', 'domain': 'mmrrc.org'})">MMRRC</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/5290/ortholog/" class="mim-tip-hint" title="Orthologous genes at NCBI." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Orthologs', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Orthologs</a></div>
<div><a href="https://www.orthodb.org/?ncbi=5290" class="mim-tip-hint" title="Hierarchical catalogue of orthologs." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrthoDB', 'domain': 'orthodb.org'})">OrthoDB</a></div>
<div><a href="https://wormbase.org/db/gene/gene?name=WBGene00000090;class=Gene" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name'{'name': 'Wormbase Gene', 'domain': 'wormbase.org'})">Wormbase Gene</a></div>
<div><a href="https://zfin.org/ZDB-GENE-130409-1" class="mim-tip-hint" title="The Zebrafish Model Organism Database." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ZFin', 'domain': 'zfin.org'})">ZFin</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellularPathways">
<span class="panel-title">
<span class="small">
<a href="#mimCellularPathwaysLinksFold" id="mimCellularPathwaysLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellularPathwaysLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cellular Pathways</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellularPathwaysLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.genome.jp/dbget-bin/get_linkdb?-t+pathway+hsa:5290" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<div><a href="https://reactome.org/content/query?q=PIK3CA&species=Homo+sapiens&types=Reaction&types=Pathway&cluster=true" class="definition" title="Protein-specific information in the context of relevant cellular pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {{'name': 'Reactome', 'domain': 'reactome.org'}})">Reactome</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
&nbsp;
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Gene description">
<span class="text-danger"><strong>*</strong></span>
171834
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
PHOSPHATIDYLINOSITOL 3-KINASE, CATALYTIC, ALPHA; PIK3CA
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
PHOSPHATIDYLINOSITOL 3-KINASE, CATALYTIC, 110-KD, ALPHA<br />
p110-ALPHA<br />
PI3K-ALPHA<br />
PIK3-ALPHA
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="approvedGeneSymbols" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: <a href="https://www.genenames.org/tools/search/#!/genes?query=PIK3CA" class="mim-tip-hint" title="HUGO Gene Nomenclature Committee." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGNC', 'domain': 'genenames.org'})">PIK3CA</a></em></strong>
</span>
</p>
</div>
<div>
<a id="cytogeneticLocation" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: <a href="/geneMap/3/876?start=-3&limit=10&highlight=876">3q26.32</a>
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : <a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr3:179148126-179240093&dgv=pack&knownGene=pack&omimGene=pack" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">3:179,148,126-179,240,093</a> </span>
</em>
</strong>
<a href="https://www.ncbi.nlm.nih.gov/" target="_blank" class="small"> (from NCBI) </a>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<a id="geneMap" class="mim-anchor"></a>
<div style="margin-bottom: 10px;">
<span class="h4 mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</div>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
<span class="hidden-sm hidden-xs pull-right">
<a href="/clinicalSynopsis/table?mimNumber=114480,619538,613089,612918,114500,615108,613659,606773,114550,182000,155500,602501,162900,211980,167000" class="label label-warning" onclick="gtag('event', 'mim_link', {'source': 'Entry', 'destination': 'clinicalSynopsisTable'})">
View Clinical Synopses
</a>
</span>
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="15">
<span class="mim-font">
<a href="/geneMap/3/876?start=-3&limit=10&highlight=876">
3q26.32
</a>
</span>
</td>
<td>
<span class="mim-font">
Breast cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/114480"> 114480 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Cerebral cavernous malformations 4, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/619538"> 619538 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
CLAPO syndrome, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/613089"> 613089 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
CLOVE syndrome, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/612918"> 612918 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Colorectal cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/114500"> 114500 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Cowden syndrome 5
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/615108"> 615108 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Gastric cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/613659"> 613659 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Hemifacial myohyperplasia, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/606773"> 606773 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Hepatocellular carcinoma, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/114550"> 114550 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Keratosis, seborrheic, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/182000"> 182000 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Macrodactyly, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/155500"> 155500 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Megalencephaly-capillary malformation-polymicrogyria syndrome, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/602501"> 602501 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Nevus, epidermal, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/162900"> 162900 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Nonsmall cell lung cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/211980"> 211980 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Ovarian cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/167000"> 167000 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/171834" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/171834" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div>
<a id="cloning" class="mim-anchor"></a>
<h4 href="#mimCloningFold" id="mimCloningToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCloningToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<div id="mimCloningFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Bovine phosphatidylinositol 3-kinase (<a href="https://enzyme.expasy.org/EC/2.7.1.137" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'EC\', \'domain\': \'expasy.org\'})">EC 2.7.1.137</a>) is composed of 85-kD (<a href="/entry/171833">171833</a>) and 110-kD subunits. The 85-kD subunit lacks PI3-kinase activity and acts as an adaptor, coupling the 110-kD subunit (p110) to activated protein tyrosine kinases. <a href="#14" class="mim-tip-reference" title="Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz-Larrea, F., Thompson, A., Totty, N. F., Hsuan, J. J., Courtneidge, S. A., Parker, P. J., Waterfield, M. D. &lt;strong&gt;Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit.&lt;/strong&gt; Cell 70: 419-429, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1322797/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1322797&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(92)90166-a&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1322797">Hiles et al. (1992)</a> found that the bovine cDNA for p110 predicts a 1,068-amino acid protein related to a protein which in S. cerevisiae is involved in the sorting of proteins to the vacuole. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1322797" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#47" class="mim-tip-reference" title="Volinia, S., Hiles, I., Ormondroyd, E., Nizetic, D., Antonacci, R., Rocchi, M., Waterfield, M. D. &lt;strong&gt;Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110-alpha (PIK3CA) gene.&lt;/strong&gt; Genomics 24: 472-477, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7713498/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7713498&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/geno.1994.1655&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7713498">Volinia et al. (1994)</a> cloned the cDNA for the human p110 subunit (PIK3CA) and found that it encodes a protein 99% identical to the bovine p110 enzyme. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7713498" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>See also PIK3CG (<a href="/entry/601232">601232</a>) and PIK3CD (<a href="/entry/602839">602839</a>), the genes encoding the p110-gamma and p110-delta polypeptides, respectively.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>By analysis of somatic cell hybrids and by fluorescence in situ hybridization, <a href="#47" class="mim-tip-reference" title="Volinia, S., Hiles, I., Ormondroyd, E., Nizetic, D., Antonacci, R., Rocchi, M., Waterfield, M. D. &lt;strong&gt;Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110-alpha (PIK3CA) gene.&lt;/strong&gt; Genomics 24: 472-477, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7713498/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7713498&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/geno.1994.1655&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7713498">Volinia et al. (1994)</a> mapped the PIK3CA gene to 3q26.3. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7713498" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="biochemicalFeatures" class="mim-anchor"></a>
<h4 href="#mimBiochemicalFeaturesFold" id="mimBiochemicalFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimBiochemicalFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Biochemical Features</strong>
</span>
</h4>
</div>
<div id="mimBiochemicalFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Crystal Structure</em></strong></p><p>
<a href="#30" class="mim-tip-reference" title="Miled, N., Yan, Y., Hon, W.-C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson, H. J., Backer, J. M., Williams, R. L. &lt;strong&gt;Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit.&lt;/strong&gt; Science 317: 239-242, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17626883/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17626883&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1135394&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17626883">Miled et al. (2007)</a> used crystallographic and biochemical approaches to gain insight into activating mutations in 2 noncatalytic p100-alpha domains--the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110-alpha in a complex with the p85-alpha (<a href="/entry/171833">171833</a>) inter-Src homology 2 (inter-SH2) domains shows that the oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. The authors also examined helical domain mutations and found that the glu545-to-lys (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. <a href="#30" class="mim-tip-reference" title="Miled, N., Yan, Y., Hon, W.-C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson, H. J., Backer, J. M., Williams, R. L. &lt;strong&gt;Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit.&lt;/strong&gt; Science 317: 239-242, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17626883/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17626883&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1135394&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17626883">Miled et al. (2007)</a> concluded that their studies extended understanding of the architecture of the phosphatidylinositol 3-kinases and provided insight into how 2 classes of mutations that cause a gain of function can lead to cancer. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17626883" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#16" class="mim-tip-reference" title="Huang, C.-H., Mandelker, D., Schmidt-Kittler, O., Samuels, Y., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., Gabelli, S. B., Amzel, L. M. &lt;strong&gt;The structure of a human p110-alpha/p85-alpha complex elucidates the effects of oncogenic PI3K-alpha mutations.&lt;/strong&gt; Science 318: 1744-1748, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18079394/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18079394&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1150799&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18079394">Huang et al. (2007)</a> reported a 3.0-angstrom resolution structure of a complex between p110-alpha and a polypeptide containing the p110-alpha-binding domains of p85-alpha, a protein required for its enzymatic activity. The structure showed that many of the cancer-associated mutations occur at residues lying at the interfaces between p110-alpha and p85-alpha or between the kinase domain of p110-alpha and other domains within the catalytic subunit. Disruptions of these interactions are likely to affect the regulation of kinase activity by p85 or the catalytic activity of the enzyme, respectively. <a href="#16" class="mim-tip-reference" title="Huang, C.-H., Mandelker, D., Schmidt-Kittler, O., Samuels, Y., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., Gabelli, S. B., Amzel, L. M. &lt;strong&gt;The structure of a human p110-alpha/p85-alpha complex elucidates the effects of oncogenic PI3K-alpha mutations.&lt;/strong&gt; Science 318: 1744-1748, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18079394/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18079394&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1150799&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18079394">Huang et al. (2007)</a> concluded that, in addition to providing new insights about the structure of PI3K-alpha, these results suggested specific mechanisms for the effect of oncogenic mutations in p110-alpha and p85-alpha. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18079394" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneFunction" class="mim-anchor"></a>
<h4 href="#mimGeneFunctionFold" id="mimGeneFunctionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneFunctionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<div id="mimGeneFunctionFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#14" class="mim-tip-reference" title="Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz-Larrea, F., Thompson, A., Totty, N. F., Hsuan, J. J., Courtneidge, S. A., Parker, P. J., Waterfield, M. D. &lt;strong&gt;Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit.&lt;/strong&gt; Cell 70: 419-429, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1322797/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1322797&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(92)90166-a&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1322797">Hiles et al. (1992)</a> found that bovine p110 was catalytically active only when complexed with p85-alpha in COS-1 cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1322797" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The tumor suppressor PTEN (<a href="/entry/601728">601728</a>) inhibits cell growth through multiple mechanisms. <a href="#7" class="mim-tip-reference" title="Furnari, F. B., Huang, H. J., Cavenee, W. K. &lt;strong&gt;The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells.&lt;/strong&gt; Cancer Res. 58: 5002-5008, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9823298/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9823298&lt;/a&gt;]" pmid="9823298">Furnari et al. (1998)</a> demonstrated that PTEN can dephosphorylate PIP3, the major product of PIK3CA. PIP3, in turn, is required for translocation of protein kinase B (AKT1, PKB; <a href="/entry/164730">164730</a>) to the cell membrane, where it is phosphorylated and activated by upstream kinases. <a href="#49" class="mim-tip-reference" title="Weng, L.-P., Brown, J. L., Eng, C. &lt;strong&gt;PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and -independent pathways.&lt;/strong&gt; Hum. Molec. Genet. 10: 237-242, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11159942/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11159942&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/10.3.237&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11159942">Weng et al. (2001)</a> demonstrated increased PTEN-mediated cell death of MCF-7 breast cancer cells cultured in low levels of growth factors. The caspase-9 (<a href="/entry/602234">602234</a>)-specific inhibitor ZVAD blocked PTEN-induced cell death without altering the effect of PTEN on cell cycle distribution. Overexpression of dominant-negative Akt induced more cell death but had less effect on the cell cycle than overexpression of PTEN. The authors suggested that the apoptotic MCF-7 cells induced by the overexpression of PTEN were not derived from G1-arrested cells. They further hypothesized that the effect of PTEN on cell death is mediated through the PIK3CA/AKT1 pathway, whereas PTEN-mediated cell cycle arrests depend on both PIK3CA/AKT1-dependent and -independent pathways. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9823298+11159942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#32" class="mim-tip-reference" title="Niswender, K. D., Morton, G. J., Stearns, W. H., Rhodes, C. J., Myers, M. G., Jr., Schwartz, M. W. &lt;strong&gt;Key enzyme in leptin-induced anorexia.&lt;/strong&gt; Nature 413: 794-795, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11677594/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11677594&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/35101657&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11677594">Niswender et al. (2001)</a> demonstrated that systemic administration of leptin (<a href="/entry/164160">164160</a>) in rat activates the enzyme phosphatidylinositol 3-hydroxykinase in the hypothalamus and that intracerebroventricular infusion of inhibitors of this enzyme prevents leptin-induced anorexia. They concluded that phosphatidylinositol 3-hydroxykinase is a crucial enzyme in the signal transduction pathway that links hypothalamic leptin to reduced food intake. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11677594" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#41" class="mim-tip-reference" title="Shi, S.-H., Jan, L. Y., Jan, Y.-N. &lt;strong&gt;Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity.&lt;/strong&gt; Cell 112: 63-75, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12526794/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12526794&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(02)01249-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12526794">Shi et al. (2003)</a> reported that selection of the future axon among neurites of a cultured rat hippocampal neuron required the activity of PI3K, as well as atypical protein kinase C (aPKC; see <a href="/entry/176982">176982</a>). The PI3K activity, which was highly localized to the tip of the newly specified axon of stage-3 neurons, was essential for the proper subcellular localization of Par3 (<a href="/entry/606745">606745</a>) Polarized distribution of not only Par3, but also of Par6 (<a href="/entry/604784">604784</a>), was important for axon formation; ectopic expression of Par6 or Par3, or just the N terminus of Par3, left neurons with no axon specified. The authors concluded that neuronal polarity is likely to be controlled by the PAR3/PAR6/aPKC complex and the PI3K signaling pathway, both of which serve evolutionarily conserved roles in specifying cell polarity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12526794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Cell size is strongly dependent on ribosome biogenesis, which is controlled by RNA polymerase I (see <a href="/entry/602000">602000</a>). The activity of this polymerase is modulated by a complex of proteins, including UBTF (<a href="/entry/600673">600673</a>). From experiments with mouse embryonic fibroblasts, <a href="#5" class="mim-tip-reference" title="Drakas, R., Tu, X., Baserga, R. &lt;strong&gt;Control of cell size through phosphorylation of upstream binding factor 1 by nuclear phosphatidylinositol 3-kinase.&lt;/strong&gt; Proc. Nat. Acad. Sci. 101: 9272-9276, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15197263/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15197263&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15197263[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0403328101&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15197263">Drakas et al. (2004)</a> presented evidence that a nuclear complex forms between IRS1 (<a href="/entry/147545">147545</a>), UBTF, and PI3K, leading to the serine phosphorylation of UBF1 and regulation of rRNA synthesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15197263" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>High NaCl causes DNA double-strand breaks and activates the transcription factor TONEBP (NFAT5; <a href="/entry/604708">604708</a>) via ATM (<a href="/entry/607585">607585</a>), resulting in increased transcription of protective genes, including those involved in accumulation of compatible organic osmolytes. <a href="#17" class="mim-tip-reference" title="Irarrazabal, C. E., Burg, M. B., Ward, S. G., Ferraris, J. D. &lt;strong&gt;Phosphatidylinositol 3-kinase mediates activation of ATM by high NaCl and by ionizing radiation: role in osmoprotective transcriptional regulation.&lt;/strong&gt; Proc. Nat. Acad. Sci. 103: 8882-8887, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16728507/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16728507&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16728507[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0602911103&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16728507">Irarrazabal et al. (2006)</a> found that PI3K activity was necessary for high NaCl- and ionizing radiation-induced activation of ATM. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16728507" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using an array of pharmacologic PI3K inhibitors, <a href="#20" class="mim-tip-reference" title="Knight, Z. A., Gonzalez, B., Feldman, M. E., Zunder, E. R., Goldenberg, D. D., Williams, O., Loewith, R., Stokoe, D., Balla, A., Toth, B., Balla, T., Weiss, W. A., Williams, R. L., Shokat, K. M. &lt;strong&gt;A pharmacological map of the PI3-K family defines a role for p110-alpha in insulin signaling.&lt;/strong&gt; Cell 125: 733-747, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16647110/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16647110&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16647110[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.cell.2006.03.035&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16647110">Knight et al. (2006)</a> identified p110-alpha as the primary insulin-responsive PI3K in cultured mouse adipocytes and myotubes. p110-beta (PIK3CB; <a href="/entry/602925">602925</a>) was dispensable but set a phenotypic threshold for p110-alpha activity. Compounds targeting p110-alpha blocked the acute effects of insulin (<a href="/entry/176730">176730</a>) challenge in fasted mice, whereas a p110-beta inhibitor had no effect. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16647110" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#12" class="mim-tip-reference" title="Gymnopoulos, M., Elsliger, M.-A., Vogt, P. K. &lt;strong&gt;Rare cancer-specific mutations in PIK3CA show gain of function.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 5569-5574, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17376864/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17376864&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17376864[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0701005104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17376864">Gymnopoulos et al. (2007)</a> performed biologic and biochemical analysis of 15 rare cancer-derived PIK3CA mutants, 14 of which demonstrated gain of function. The gain-of-function mutations mapped to 3 separate functional domains (C2, helical, and kinase) on a partial structural model, suggesting that each type induces a gain of function by a different molecular mechanism. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17376864" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#9" class="mim-tip-reference" title="Graupera, M., Guillermet-Guibert, J., Foukas, L. C., Phng, L.-K., Cain, R. J., Salpekar, A., Pearce, W., Meek, S., Millan, J., Cutillas, P. R., Smith, A. J. H., Ridley, A. J., Ruhrberg, C., Gerhardt, H., Vanhaesebroeck, B. &lt;strong&gt;Angiogenesis selectively requires the p110-alpha isoform of PI3K to control endothelial cell migration.&lt;/strong&gt; Nature 453: 662-666, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18449193/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18449193&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature06892&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18449193">Graupera et al. (2008)</a> showed that of the PI3 kinases in mice, only p110-alpha activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110-alpha led to embryonic lethality at midgestation because of severe defects in angiogenic sprouting and vascular remodeling. p110-alpha exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA (<a href="/entry/165390">165390</a>). p110-alpha activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands such as vascular endothelial growth factor (VEGFA; <a href="/entry/192240">192240</a>). In contrast, p110-beta in endothelial cells signals downstream of G protein-coupled receptor ligands such as SDF1-alpha (<a href="/entry/602352">602352</a>), whereas p110-delta is expressed at a low level and contributes only minimally to P13K activity in endothelial cells. <a href="#9" class="mim-tip-reference" title="Graupera, M., Guillermet-Guibert, J., Foukas, L. C., Phng, L.-K., Cain, R. J., Salpekar, A., Pearce, W., Meek, S., Millan, J., Cutillas, P. R., Smith, A. J. H., Ridley, A. J., Ruhrberg, C., Gerhardt, H., Vanhaesebroeck, B. &lt;strong&gt;Angiogenesis selectively requires the p110-alpha isoform of PI3K to control endothelial cell migration.&lt;/strong&gt; Nature 453: 662-666, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18449193/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18449193&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature06892&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18449193">Graupera et al. (2008)</a> concluded that their results provided the first in vivo evidence for p110 isoform selectivity in endothelial P13K signaling during angiogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18449193" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#18" class="mim-tip-reference" title="Kalaany, N. Y., Sabatini, D. M. &lt;strong&gt;Tumours with PI3K activation are resistant to dietary restriction.&lt;/strong&gt; Nature 458: 725-731, 2009. Note: Erratum: Nature 581: E2, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19279572/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19279572&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19279572[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07782&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19279572">Kalaany and Sabatini (2009)</a> showed that certain human cancer cell lines, when grown as tumor xenografts in mice, are highly sensitive to the antigrowth effects of dietary restriction, whereas others are resistant. Cancer cell lines that form dietary restriction-resistant tumors carry mutations that cause constitutive activation of the PI3K pathway and in culture proliferate in the absence of insulin or insulin-like growth factor-1 (IGF1; <a href="/entry/147440">147440</a>). Substitution of an activated mutant allele of PIK3CA with wildtype PIK3CA in otherwise isogenic cancer cells, or the restoration of PTEN (<a href="/entry/601728">601728</a>) expression in a PTEN-null cancer cell line, was sufficient to convert a dietary restriction-resistant tumor into one that was dietary restriction-sensitive. Dietary restriction did not affect a PTEN-null mouse model of prostate cancer, but it significantly decreased tumor burden in a mouse model of lung cancer lacking constitutive PI3K signaling. Thus, <a href="#18" class="mim-tip-reference" title="Kalaany, N. Y., Sabatini, D. M. &lt;strong&gt;Tumours with PI3K activation are resistant to dietary restriction.&lt;/strong&gt; Nature 458: 725-731, 2009. Note: Erratum: Nature 581: E2, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19279572/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19279572&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19279572[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07782&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19279572">Kalaany and Sabatini (2009)</a> concluded that the PI3K pathway is an important determinant of the sensitivity of tumors to dietary restriction, and activating mutations in the pathway may influence the response of cancers to dietary restriction-mimetic therapies. <a href="#18" class="mim-tip-reference" title="Kalaany, N. Y., Sabatini, D. M. &lt;strong&gt;Tumours with PI3K activation are resistant to dietary restriction.&lt;/strong&gt; Nature 458: 725-731, 2009. Note: Erratum: Nature 581: E2, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19279572/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19279572&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19279572[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature07782&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19279572">Kalaany and Sabatini (2009)</a> also found that overexpression of FOXO1 (<a href="/entry/136533">136533</a>) sensitizes tumors to dietary restriction. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19279572" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#11" class="mim-tip-reference" title="Gustin, J. P., Karakas, B., Weiss, M. B., Abukhdeir, A. M., Lauring, J., Garay, J. P., Cosgrove, D., Tamaki, A., Konishi, H., Konishi, Y., Mohseni, M., Wang, G., Rosen, D. M., Denmeade, S. R., Higgins, M. J., Vitolo, M. I., Bachman, K. E., Park, B. H. &lt;strong&gt;Knockin of mutant PIK3CA activates multiple oncogenic pathways.&lt;/strong&gt; Proc. Nat. Acad. Sci. 106: 2835-2840, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19196980/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19196980&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19196980[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0813351106&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19196980">Gustin et al. (2009)</a> found that nontumorigenic human breast epithelial cells with knockin PIK3CA mutations exhibited EGF (<a href="/entry/131530">131530</a>)- and MTOR (<a href="/entry/601231">601231</a>)-independent proliferation associated with AKT, ERK, and GSK3B (<a href="/entry/605004">605004</a>) phosphorylation. Conversely, GSK3B inhibitors selectively decreased proliferation of human breast and colorectal cancer cell lines with oncogenic PIK3CA mutations and caused a decrease in the GSK3B target gene cyclin D1 (CCND1; <a href="/entry/168461">168461</a>). Treatment of nude mice with lithium, a GSK3B inhibitor, inhibited the growth of xenografts of human colon cancer cells with mutant PIK3CA, but not human colon cancer cells expressing wildtype PIK3CA. <a href="#11" class="mim-tip-reference" title="Gustin, J. P., Karakas, B., Weiss, M. B., Abukhdeir, A. M., Lauring, J., Garay, J. P., Cosgrove, D., Tamaki, A., Konishi, H., Konishi, Y., Mohseni, M., Wang, G., Rosen, D. M., Denmeade, S. R., Higgins, M. J., Vitolo, M. I., Bachman, K. E., Park, B. H. &lt;strong&gt;Knockin of mutant PIK3CA activates multiple oncogenic pathways.&lt;/strong&gt; Proc. Nat. Acad. Sci. 106: 2835-2840, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19196980/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19196980&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19196980[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0813351106&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19196980">Gustin et al. (2009)</a> proposed that GSK3B is an important effector of mutant PIK3CA and that lithium has selective antineoplastic properties against cancers with PIK3CA mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19196980" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#26" class="mim-tip-reference" title="Lindhurst, M. J., Parker, V. E. R., Payne, F., Sapp, J. C., Rudge, S., Harris, J., Witkowski, A. M., Zhang, Q., Groeneveld, M. P., Scott, C. E., Daly, A., Huson, S. M., and 14 others. &lt;strong&gt;Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA.&lt;/strong&gt; Nature Genet. 44: 928-933, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729222/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729222&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729222[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2332&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729222">Lindhurst et al. (2012)</a> assessed PI3K activity in dermal fibroblasts from 3 individuals with a syndrome of congenital progressive segmental overgrowth of fibrous and adipose tissue and bone by applying a mass spectroscopy assay for PIP3 before and after stimulation of cells with EGF. PIP3 levels were 2 times higher in affected cells relative to unaffected cells at baseline and in response to EGF stimulation, and basal PIP3 levels in affected cells were indistinguishable from those in control cells after stimulation. Basal hyperphosphorylation of downstream AKT and p70 S6 kinases were detected in cells with mutant PIK3CA. No signal amplification or induction of phosphorylation was observed in affected cells, reflecting the fact that the signaling cascade is already at maximum stimulation capacity in these cells. There was no increase in signaling through the MEK extracellular-regulated kinase (ERK) pathway. <a href="#26" class="mim-tip-reference" title="Lindhurst, M. J., Parker, V. E. R., Payne, F., Sapp, J. C., Rudge, S., Harris, J., Witkowski, A. M., Zhang, Q., Groeneveld, M. P., Scott, C. E., Daly, A., Huson, S. M., and 14 others. &lt;strong&gt;Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA.&lt;/strong&gt; Nature Genet. 44: 928-933, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729222/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729222&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729222[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2332&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729222">Lindhurst et al. (2012)</a> concluded that these affected individuals harbor somatically mutated cells with enhanced basal activity of the PI3K-AKT pathway. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729222" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To assess the impact of AKT3 (<a href="/entry/611223">611223</a>), PIK3R2 (<a href="/entry/603157">603157</a>), and PIK3CA mutations in individuals with megalencephaly on PI3K activity, <a href="#36" class="mim-tip-reference" title="Riviere, J.-B., Mirzaa, G. M., O&#x27;Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others. &lt;strong&gt;De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.&lt;/strong&gt; Nature Genet. 44: 934-940, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729224&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729224[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2331&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729224">Riviere et al. (2012)</a> used immunostaining to compare PIP3 amounts in lymphoblastoid cell lines derived from 4 mutation carriers with megalencephaly to those in control and PTEN-mutant cells. Consistent with elevated PI3K activity, and similar to what is seen with PTEN (<a href="/entry/601728">601728</a>) loss, all 3 lines with PIK3R2 or PIK3CA mutations showed significantly more PIP3 staining than control cells, as well as greater localization of active phosphoinositide-dependent kinase-1 (PDPK1; <a href="/entry/605213">605213</a>) to the cell membrane. Treatment with the PI3K inhibitor PI-103 resulted in less PIP3 in the PIK3R2 G373R (<a href="/entry/603157#0001">603157.0001</a>) and PIK3CA glu453del (<a href="#0014">171834.0014</a>) mutant lines, confirming that these results are PI3K-dependent. <a href="#36" class="mim-tip-reference" title="Riviere, J.-B., Mirzaa, G. M., O&#x27;Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others. &lt;strong&gt;De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.&lt;/strong&gt; Nature Genet. 44: 934-940, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729224&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729224[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2331&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729224">Riviere et al. (2012)</a> found no evidence for increased PI3K activity in the AKT3-mutant line, consistent with a mutation affecting a downstream effector of PI3K. Protein blot analysis showed higher amounts of phosphorylated S6 protein and 4E-BP1 in all mutant cell lines compared to controls. Although PI-103 treatment reduced S6 phosphorylation in control and mutant lines, the latter showed relative resistance to PI3K inhibition, consistent with elevated signaling through the pathway. <a href="#36" class="mim-tip-reference" title="Riviere, J.-B., Mirzaa, G. M., O&#x27;Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others. &lt;strong&gt;De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.&lt;/strong&gt; Nature Genet. 44: 934-940, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729224&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729224[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2331&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729224">Riviere et al. (2012)</a> concluded that the megalencephaly-associated mutations result in higher PI3K activity and PI3K-mTOR signaling. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To determine whether individuals with hemimegalencephaly and a mutation in PIK3CA (E545K; <a href="#0003">171834.0003</a>), AKT3 (E17K; <a href="/entry/611223#0003">611223.0003</a>), or MTOR (C1483Y) have aberrant mTOR signaling, <a href="#24" class="mim-tip-reference" title="Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., Bafna, V., Hill, K. J., Collazo, A., Funari, V., Russ, C., Gabriel, S. B., Mathern, G. W., Gleeson, J. G. &lt;strong&gt;De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly.&lt;/strong&gt; Nature Genet. 44: 941-945, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729223/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729223&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729223[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2329&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729223">Lee et al. (2012)</a> immunostained brain sections of such cases with an antibody specific to the phosphorylated epitope of the S6 protein in a standard assay for the activation of mTOR signaling. Cells with the morphology of cytomegalic neurons were strongly labeled for phosphorylated S6 in the 3-prime-diaminobenzidine (DAB) staining of HME brains. In addition, <a href="#24" class="mim-tip-reference" title="Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., Bafna, V., Hill, K. J., Collazo, A., Funari, V., Russ, C., Gabriel, S. B., Mathern, G. W., Gleeson, J. G. &lt;strong&gt;De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly.&lt;/strong&gt; Nature Genet. 44: 941-945, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729223/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729223&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729223[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2329&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729223">Lee et al. (2012)</a> coimmunostained for the neuronal marker MAP2, comparing samples with age-matched, similarly processed non-HME cortical hemisphere, and found a marked increase in the number of cells that were positive for phosphorylated S6 and greater intensity of staining for phosphorylated S6 in cytomegalic neurons of HME cases. <a href="#24" class="mim-tip-reference" title="Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., Bafna, V., Hill, K. J., Collazo, A., Funari, V., Russ, C., Gabriel, S. B., Mathern, G. W., Gleeson, J. G. &lt;strong&gt;De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly.&lt;/strong&gt; Nature Genet. 44: 941-945, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729223/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729223&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729223[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2329&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729223">Lee et al. (2012)</a> concluded that these mutations are associated with increased mTOR signaling in affected brain regions. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729223" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Activating mutations in PIK3CA are frequently found in estrogen receptor (ER; see <a href="/entry/133430">133430</a>)-positive breast cancer. Therapeutic PI3K-alpha inhibitors elicit a robust compensatory increase in ER-dependent transcription that limits therapeutic efficacy. <a href="#43" class="mim-tip-reference" title="Toska, E., Osmanbeyoglu, H. U., Castel, P., Chan, C., Hendrickson, R. C., Elkabets, M., Dickler, M. N., Scaltriti, M., Leslie, C. S., Armstrong, S. A., Baselga, J. &lt;strong&gt;PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D.&lt;/strong&gt; Science 355: 1324-1330, 2017. Note: Erratum: Science 363: eaaw7574, 2019. Electronic Article.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28336670/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28336670&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=28336670[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.aah6893&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28336670">Toska et al. (2017)</a> investigated the chromatin-based mechanisms leading to the activation of ER upon PI3K-alpha inhibition and found that PI3K-alpha inhibition mediates an open chromatin state at the ER target loci in breast cancer models and clinical samples. KMT2D (<a href="/entry/602113">602113</a>), a histone H3 lysine-4 methyltransferase, is required for FOXA1, PBX1, and ER recruitment and activation. AKT binds and phosphorylates KMT2D, attenuating methyltransferase activity and ER function, whereas PI3K-alpha inhibition enhances KMT2D activity. <a href="#43" class="mim-tip-reference" title="Toska, E., Osmanbeyoglu, H. U., Castel, P., Chan, C., Hendrickson, R. C., Elkabets, M., Dickler, M. N., Scaltriti, M., Leslie, C. S., Armstrong, S. A., Baselga, J. &lt;strong&gt;PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D.&lt;/strong&gt; Science 355: 1324-1330, 2017. Note: Erratum: Science 363: eaaw7574, 2019. Electronic Article.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28336670/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28336670&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=28336670[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.aah6893&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28336670">Toska et al. (2017)</a> concluded that their findings uncovered a mechanism that controls the activation of ER by the posttranslational modification of epigenetic regulators, providing a rationale for epigenetic therapy in ER-positive breast cancer. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28336670" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#52" class="mim-tip-reference" title="Yu, K., Lin, C.-C. J., Hatcher, A., Lozzi, B., Kong, K., Huang-Hobbs, E., Cheng, Y.-T., Beechar, V. B., Zhu, W., Zhang, Y., Chen, F., Mills, G. B., Mohila, C. A., Creighton, C. J., Noebels, J. L., Scott, K. L., Deneen, B. &lt;strong&gt;PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis.&lt;/strong&gt; Nature 578: 166-171, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31996845/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31996845&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31996845[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-020-1952-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31996845">Yu et al. (2020)</a> used a native mouse model of glioblastoma to develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. <a href="#52" class="mim-tip-reference" title="Yu, K., Lin, C.-C. J., Hatcher, A., Lozzi, B., Kong, K., Huang-Hobbs, E., Cheng, Y.-T., Beechar, V. B., Zhu, W., Zhang, Y., Chen, F., Mills, G. B., Mohila, C. A., Creighton, C. J., Noebels, J. L., Scott, K. L., Deneen, B. &lt;strong&gt;PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis.&lt;/strong&gt; Nature 578: 166-171, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31996845/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31996845&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31996845[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-020-1952-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31996845">Yu et al. (2020)</a> showed that tumors driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodeling of the synaptic constituency. Furthermore, they showed that secreted members of the glypican family are selectively expressed in these tumors, and that GPC3 (<a href="/entry/300037">300037</a>) drives gliomagenesis and hyperexcitability. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31996845" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="cytogenetics" class="mim-anchor"></a>
<h4 href="#mimCytogeneticsFold" id="mimCytogeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCytogeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cytogenetics</strong>
</span>
</h4>
</div>
<div id="mimCytogeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Studies using comparative genomic hybridization (CGH) revealed several regions of recurrent abnormal DNA sequence copy number (reviewed by <a href="#21" class="mim-tip-reference" title="Knuutila, S., Bjorkqvist, A. M., Autio, K., Tarkkanen, M., Wolf, M., Monni, O., Szymanska, J., Larramendy, M. L., Tapper, J., Pere, H., El-Rifai, W., Hemmer, S., Wasenius, V. M., Vidgren, V., Zhu, Y. &lt;strong&gt;DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies.&lt;/strong&gt; Am. J. Path. 152: 1107-1123, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9588877/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9588877&lt;/a&gt;]" pmid="9588877">Knuutila et al., 1998</a>) that may encode genes involved in the genesis or progression of ovarian cancer (<a href="/entry/167000">167000</a>). One region at 3q26 found to be increased in copy number in approximately 40% of ovarian and other cancers contains the PIK3CA gene. This association between PIK3CA copy number and PI3-kinase activity made PIK3CA a candidate oncogene because a broad range of cancer-related functions had been associated with PI3-kinase-mediated signaling. <a href="#40" class="mim-tip-reference" title="Shayesteh, L., Lu, Y., Kuo, W.-L., Baldocchi, R., Godfrey, T., Collins, C., Pinkel, D., Powell, B., Mills, G. B., Gray, J. W. &lt;strong&gt;PIK3CA is implicated as an oncogene in ovarian cancer.&lt;/strong&gt; Nature Genet. 21: 99-102, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9916799/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9916799&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/5042&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9916799">Shayesteh et al. (1999)</a> found that PIK3CA is frequently increased in copy number in ovarian cancers, and that the increased copy number is associated with increased PIK3CA transcription, p110-alpha protein expression, and PI3-kinase activity. Furthermore, treatment with a PI3-kinase inhibitor decreased proliferation and increased apoptosis. They concluded that PIK3CA is an oncogene that has an important role in ovarian cancer. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9588877+9916799" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In comparative genomic hybridization studies, <a href="#29" class="mim-tip-reference" title="Ma, Y.-Y., Wei, S.-J., Lin, Y.-C., Lung, J.-C., Chang, T.-C., Whang-Peng, J., Liu, J. M., Yang, D.-M., Yang, W. K., Shen, C.-Y. &lt;strong&gt;PIK3CA as an oncogene in cervical cancer.&lt;/strong&gt; Oncogene 19: 2739-2744, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10851074/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10851074&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1203597&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10851074">Ma et al. (2000)</a> showed that 3q26.3 amplification was the most consistent chromosomal aberration in primary tissues of cervical carcinoma. They found a positive correlation between an increased copy number of PIK3CA (detected by competitive PCR) and 3q26.3 amplification in tumor tissues and in cervical cancer cell lines. In cervical cancer cell lines harboring amplified PIK3CA, the expression of the gene product was increased and was associated with high kinase activity. Other events suggested that increased expression of PIK3CA in cervical cancer may promote cell proliferation and reduce apoptosis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10851074" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#27" class="mim-tip-reference" title="Liu, Z., Hou, P., Ji, M., H., Studeman, K., Jensen, K, Vasko, V., El-Naggar, A. K., Xing, M. &lt;strong&gt;Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers.&lt;/strong&gt; J. Clin. Endocr. Metab. 93: 3106-3116, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18492751/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18492751&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2008-0273&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18492751">Liu et al. (2008)</a> explored a wide-range genetic basis for the involvement of genetic alterations in receptor tyrosine kinases (RTKs) and phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK pathways in anaplastic thyroid cancer (ATC) and follicular thyroid cancer (FTC; <a href="/entry/188470">188470</a>). They found frequent copy gains of RTK genes including EGFR (<a href="/entry/131550">131550</a>) and VEGFR1 (<a href="/entry/165070">165070</a>), and PIK3CA and PIK3CB (<a href="/entry/602925">602925</a>) in the P13K/Akt pathway. Copy number gain of PIK3CA was found in 18 of 47 ATCs (38%) and 15 of 63 FTCs (24%). RTK gene copy gains were preferentially associated with phosphorylation of Akt, suggesting their dominant role in activating the P13K/Akt pathway. <a href="#27" class="mim-tip-reference" title="Liu, Z., Hou, P., Ji, M., H., Studeman, K., Jensen, K, Vasko, V., El-Naggar, A. K., Xing, M. &lt;strong&gt;Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers.&lt;/strong&gt; J. Clin. Endocr. Metab. 93: 3106-3116, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18492751/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18492751&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2008-0273&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18492751">Liu et al. (2008)</a> concluded that genetic alterations in the RTKs and P13K/Akt and MAPK pathways are extremely prevalent in ATC and FTC, providing a strong genetic basis for an extensive role of these signaling pathways and the development of therapies targeting these pathways for ATC and FTC, particularly the former. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18492751" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Somatic Mutations in Cancer</em></strong>
</p>
<p><a href="#39" class="mim-tip-reference" title="Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., Velculescu, V. E. &lt;strong&gt;High frequency of mutations of the PIK3CA gene in human cancers.&lt;/strong&gt; Science 304: 554 only, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15016963/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15016963&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1096502&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15016963">Samuels et al. (2004)</a> examined the sequences of 117 exons that encode the predicted kinase domains of 8 phosphatidylinositol-3 kinase genes and 8 PI3K-like genes in 35 colorectal cancers (<a href="/entry/114500">114500</a>). PIK3CA was the only gene with somatic mutations. Subsequent sequence analysis of all coding exons of PIK3CA in 199 additional colorectal cancers revealed mutations in a total of 74 tumors (32%). <a href="#39" class="mim-tip-reference" title="Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., Velculescu, V. E. &lt;strong&gt;High frequency of mutations of the PIK3CA gene in human cancers.&lt;/strong&gt; Science 304: 554 only, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15016963/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15016963&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1096502&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15016963">Samuels et al. (2004)</a> also evaluated 76 premalignant colorectal tumors; only 2 mutations were found, both in very advanced tubulovillous adenomas greater than 5 cm in diameter. Thus, <a href="#39" class="mim-tip-reference" title="Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., Velculescu, V. E. &lt;strong&gt;High frequency of mutations of the PIK3CA gene in human cancers.&lt;/strong&gt; Science 304: 554 only, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15016963/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15016963&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1096502&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15016963">Samuels et al. (2004)</a> concluded that PIK3CA mutations generally arise late in tumorigenesis, just before or coincident with invasion. Mutations in PIK3CA were also identified in 4 of 15 glioblastomas (27%), 3 of 12 gastric cancers (25%), 1 of 12 breast cancers (8%), and 1 of 24 lung cancers (4%). No mutations were observed in 11 pancreatic cancers or 12 medulloblastomas. In total, 92 mutations were observed, all of which were determined to be somatic in the cancers that could be assessed. <a href="#39" class="mim-tip-reference" title="Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., Velculescu, V. E. &lt;strong&gt;High frequency of mutations of the PIK3CA gene in human cancers.&lt;/strong&gt; Science 304: 554 only, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15016963/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15016963&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1096502&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15016963">Samuels et al. (2004)</a> concluded that the sheer number of mutations observed in this gene strongly suggests that they are functionally important. Furthermore, most of the mutations were nonsynonymous and occurred in the PI3K helical and kinase domains, suggesting functional significance. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15016963" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p>Pursuant to the report by <a href="#39" class="mim-tip-reference" title="Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., Velculescu, V. E. &lt;strong&gt;High frequency of mutations of the PIK3CA gene in human cancers.&lt;/strong&gt; Science 304: 554 only, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15016963/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15016963&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1096502&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15016963">Samuels et al. (2004)</a> of a very high frequency of somatic mutations in PIK3CA in a large series of colorectal cancers, <a href="#4" class="mim-tip-reference" title="Campbell, I. G., Russell, S. E., Choong, D. Y. H., Montgomery, K. G., Ciavarella, M. L., Hooi, C. S. F., Cristiano, B. E., Pearson, R. B., Phillips, W. A. &lt;strong&gt;Mutation of the PIK3CA gene in ovarian and breast cancer.&lt;/strong&gt; Cancer Res. 64: 7678-7681, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15520168/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15520168&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-2933&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15520168">Campbell et al. (2004)</a> investigated its relevance in other cancer types. They screened 284 primary human tumors for mutations in all coding exons of PIK3CA using a combination of single-strand conformation polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) analysis. Among 70 primary breast cancers, 28 (40%) harbored mutations in PIK3CA (see <a href="#0001">171834.0001</a>, <a href="#0003">171834.0003</a>, and <a href="#0006">171834.0006</a>), making it the most common mutation described up to that time in this cancer type. Mutations were not associated with histologic subtype, estrogen receptor status, or grade or presence of tumor in lymph nodes. Among primary epithelial ovarian cancers, 11 of 167 (6.6%) contained somatic mutations (see <a href="#0001">171834.0001</a>, <a href="#0003">171834.0003</a>, and <a href="#0005">171834.0005</a>). Mutations were also identified among colorectal cancers (see <a href="#0001">171834.0001</a>-<a href="#0005">171834.0005</a>). PIK3CA gene amplification (more than 7-fold) was common among all histologic subtypes and was inversely associated with the presence of mutations. Overall, PIK3CA mutation or gene amplification was detected in 30.5% of all ovarian cancers. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=15016963+15520168" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p>The phosphatidylinositol 3-prime-kinase pathway is activated in multiple advanced cancers, including glioblastomas, through inactivation of the tumor suppressor gene PTEN. <a href="#3" class="mim-tip-reference" title="Broderick, D. K., Di, C., Parrett, T. J., Samuels, Y. R., Cummins, J. M., McLendon, R. E., Fults, D. W., Velculescu, V. E., Bigner, D. D., Yan, H. &lt;strong&gt;Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas.&lt;/strong&gt; Cancer Res. 64: 5048-5050, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15289301/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15289301&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-1170&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15289301">Broderick et al. (2004)</a> identified 13 mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas, but not in ependymomas or low-grade astrocytomas. The consistency of hotspot mutations in PIK3CA across diverse tumor types suggested possible approaches to targeted therapy (e.g., development of agents acting as highly selective antagonists of the mutant allele products, sparing normal cells exhibiting wildtype PIK3CA activity). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15289301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><a href="#8" class="mim-tip-reference" title="Garcia-Rostan, G., Costa, A. M., Pereira-Castro, I., Salvatore, G., Hernandez, R., Hermsem, M. J. A., Herrero, A., Fusco, A., Cameselle-Teijeiro, J., Santoro, M. &lt;strong&gt;Mutation of the PIK3CA gene in anaplastic thyroid cancer.&lt;/strong&gt; Cancer Res. 65: 10199-10207, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16288007/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16288007&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-4259&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16288007">Garcia-Rostan et al. (2005)</a> analyzed 13 thyroid cancer cell lines, 80 well-differentiated follicular (WDFTC) and papillary (WDPTC) thyroid carcinomas, and 70 anaplastic thyroid carcinomas (ATC) for activating PIK3CA mutations at exons 9 and 20. Nonsynonymous somatic mutations were found in 16 (23%) ATC cases, 2 (8%) WDFTC cases, and 1 (2%) WDPTC case. In 18 of 20 ATC cases showing coexisting differentiated carcinoma, mutations, when present, were restricted to the ATC component. <a href="#8" class="mim-tip-reference" title="Garcia-Rostan, G., Costa, A. M., Pereira-Castro, I., Salvatore, G., Hernandez, R., Hermsem, M. J. A., Herrero, A., Fusco, A., Cameselle-Teijeiro, J., Santoro, M. &lt;strong&gt;Mutation of the PIK3CA gene in anaplastic thyroid cancer.&lt;/strong&gt; Cancer Res. 65: 10199-10207, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16288007/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16288007&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-4259&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16288007">Garcia-Rostan et al. (2005)</a> concluded that mutant PIK3CA is likely to function as an oncogene in anaplastic thyroid carcinoma but less frequently in well-differentiated thyroid carcinomas. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16288007" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><a href="#51" class="mim-tip-reference" title="Wu, G., Mambo, E., Guo, Z., Hu, S., Huang, X., Gollin, S. M., Trink, B., Ladenson, P. W., Sidransky, D., Xing, M. &lt;strong&gt;Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors.&lt;/strong&gt; J. Clin. Endocr. Metab. 90: 4688-4693, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15928251/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15928251&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2004-2281&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15928251">Wu et al. (2005)</a> found no PIK3CA gene mutations in 37 benign thyroid adenomas, 52 papillary thyroid cancers, 25 follicular thyroid cancers, 13 anaplastic thyroid cancers, 13 medullary thyroid cancers, and 7 thyroid tumor cell lines. They found a SNP in exon 20 in 2 cases, 1 in an adenoma and the other in a follicular thyroid carcinoma. With a copy number of 4 or more defined as amplification, they found PIK3CA gene amplification in 4 of 34 (12%) benign thyroid adenomas, 3 of 59 (5%) papillary thyroid cancer, 5 of 21 (24%) follicular thyroid cancer, 0 of 14 (0%) medullary thyroid cancer, and 5 of 7 (71%) thyroid tumor cell lines. The PIK3CA gene amplification and consequent AKT activation were confirmed by FISH and Western blotting studies using cell lines, respectively. The authors concluded that these data suggest that mutation of the PIK3CA gene is not common, but its amplification is relatively common and may be a novel mechanism in activating the P13K/AKT pathway in some thyroid tumors. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15928251" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p>By specific analysis of exons 9 and 20 of the PIK3CA gene, <a href="#25" class="mim-tip-reference" title="Lee, J. W., Soung, Y. H., Kim, S. Y., Lee, H. W., Park, W. S., Nam, S. W., Kim, S. H., Lee, J. Y., Yoo, N. J., Lee, S. H. &lt;strong&gt;PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.&lt;/strong&gt; Oncogene 24: 1477-1480, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15608678/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15608678&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1208304&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15608678">Lee et al. (2005)</a> detected somatic PIK3CA mutations in 26 (35.6%) of 73 hepatocellular carcinomas (<a href="/entry/114550">114550</a>), 25 (26.9%) of 93 breast carcinomas, 12 (6.5%) of 185 gastric carcinomas (<a href="/entry/137215">137215</a>), 1 (1.1%) of 88 acute leukemias, and 3 (1.3%) of 229 nonsmall cell lung cancers (<a href="/entry/211980">211980</a>). In all, 67 (10%) of the 668 samples harbored PIK3CA mutations. The most common mutations were E545A (<a href="#0008">171834.0008</a>), H1047R (<a href="#0001">171834.0001</a>), and 3204insA (<a href="#0007">171834.0007</a>). Exons 9 and 20 encode the helical and kinase domains of the protein. Two cancers harbored 2 mutations each: an advanced gastric carcinoma and an invasive ductal breast carcinoma. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15608678" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><a href="#1" class="mim-tip-reference" title="Bader, A. G., Kang, S., Vogt, P. K. &lt;strong&gt;Cancer-specific mutations in PIK3CA are oncogenic in vivo.&lt;/strong&gt; Proc. Nat. Acad. Sci. 103: 1475-1479, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16432179/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16432179&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16432179[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0510857103&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16432179">Bader et al. (2006)</a> inoculated chick embryonic chorioallantoic membranes with embryonic fibroblasts transformed by the PIK3CA mutant proteins E542K, E545K (<a href="#0003">171834.0003</a>), and H1047R and observed increased vascularization and the formation of neoplastic nodules. When the transformed embryonic fibroblasts were injected into the wing web of newly hatched chicks, hemangiomas or hemangiosarcomas developed at the site of injection. The H1047R mutant was the most potent carcinogen, causing the fastest growth rate and the highest incidence of tumors (80% compared to 50% induction with E542K or E545K). The tumors showed a high degree of angiogenesis and an activation of Akt (see <a href="/entry/164730">164730</a>); a FRAP1 (<a href="/entry/601231">601231</a>) inhibitor, RAD001 (everolimus), blocked tumor growth induced by the H1047R mutant. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16432179" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><a href="#19" class="mim-tip-reference" title="Karakas, B., Bachman, K. E., Park, B. H. &lt;strong&gt;Mutation of the PIK3CA oncogene in human cancers.&lt;/strong&gt; Brit. J. Cancer 94: 455-459, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16449998/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16449998&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.bjc.6602970&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16449998">Karakas et al. (2006)</a> provided a detailed review of the role of the PIK3CA oncogene in cancer. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16449998" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p>By examining the mutation status of the PIK3CA gene in a panel of 60 human cancer cell lines, <a href="#50" class="mim-tip-reference" title="Whyte, D. B., Holbeck, S. L. &lt;strong&gt;Correlation of PIK3Ca mutations with gene expression and drug sensitivity in NCI-60 cell lines.&lt;/strong&gt; Biochem. Biophys. Res. Commun. 340: 469-475, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16376301/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16376301&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.bbrc.2005.12.025&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16376301">Whyte and Holbeck (2006)</a> identified 8 heterozygous mutations in 7 cell lines (1 lung, 2 breast, 2 colon, and 2 ovarian cancer). Four mutations were in exon 9, 3 at codon 545 (E545K) and 1 at codon 549 (asp549 to asn, or D549N), and 4 mutations were in exon 20 at codon 1047 (H1047R). The D549N mutation was novel and occurred in a colon cancer cell line that also had an E545K mutation, suggesting that D549N may be a bystander mutation. PIK3CA mutant cell lines were more sensitive than PIK3CA wildtype cell lines to the estrogen receptor (ER, or ESR1; <a href="/entry/133430">133430</a>) inhibitor tamoxifen, the AKT inhibitor triciribine, and other compounds. <a href="#50" class="mim-tip-reference" title="Whyte, D. B., Holbeck, S. L. &lt;strong&gt;Correlation of PIK3Ca mutations with gene expression and drug sensitivity in NCI-60 cell lines.&lt;/strong&gt; Biochem. Biophys. Res. Commun. 340: 469-475, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16376301/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16376301&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.bbrc.2005.12.025&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16376301">Whyte and Holbeck (2006)</a> proposed that these insights into the role of mutant PIK3CA may enable identification of novel therapeutic targets for cancer. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16376301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p>By analyzing gene and protein expression data from 1,800 breast cancers, <a href="#28" class="mim-tip-reference" title="Loi, S., Haibe-Kains, B., Majjaj, S., Lallemand, F., Durbecq, V., Larsimont, D., Gonzalez-Angulo, A. M., Pusztai, L., Symmans, W. F., Bardelli, A., Ellis, P., Tutt, A. N. J., Gillett, C. E., Hennessy, B. T., Mills, G. B., Phillips, W. A., Piccart, M. J., Speed, T. P., McArthur, G. A., Sotiriou, C. &lt;strong&gt;PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer.&lt;/strong&gt; Proc. Nat. Acad. Sci. 107: 10208-10213, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20479250/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20479250&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20479250[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0907011107&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20479250">Loi et al. (2010)</a> identified a PIK3CA mutation-associated gene signature derived from exon 20, which encodes the kinase domain. PIK3CA mutations were associated with low MTORC1 (see <a href="/entry/601231">601231</a>) signaling and good prognosis with tamoxifen therapy in ER-positive/HER2 (ERBB2; <a href="/entry/164870">164870</a>)-negative breast cancers, but these mutations were not associated with good prognosis in ER-negative/HER2-positive breast cancers. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20479250" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><a href="#48" class="mim-tip-reference" title="Weigelt, B., Warne, P. H., Downward, J. &lt;strong&gt;PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs.&lt;/strong&gt; Oncogene 30: 3222-3233, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21358673/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21358673&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/onc.2011.42&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21358673">Weigelt et al. (2011)</a> tested the pharmacologic effects of the rapamycin analog everolimus, an allosteric mTORC1 inhibitor, and PP242, an active-site mTORC1/mTORC2 inhibitor, on a panel of 31 breast cancer (<a href="/entry/114480">114480</a>) cells. Cancer cells with activating PIK3CA mutations were selectively sensitive to both inhibitors, whereas those with loss-of-function PTEN (<a href="/entry/601728">601728</a>) mutations were resistant to treatment. In addition, a subset of cancer cells with HER2 amplification showed increased sensitivity to PP242, but not to everolimus, regardless of PIK3CA/PTEN mutation status. Both drugs exerted their effects by inducing G1 cell-cycle arrest. PP42 caused reduced downstream signal transduction of the mTOR pathway as evidenced by a decrease in AKT (<a href="/entry/164730">164730</a>) phosphorylation. The overall results indicated that PTEN and PIK3CA have distinct functional effects on the mTOR pathway. <a href="#48" class="mim-tip-reference" title="Weigelt, B., Warne, P. H., Downward, J. &lt;strong&gt;PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs.&lt;/strong&gt; Oncogene 30: 3222-3233, 2011.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21358673/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21358673&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/onc.2011.42&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21358673">Weigelt et al. (2011)</a> suggested that PIK3CA mutations in breast cancer may be a predictive marker to guide the selection of patients who would benefit from mTOR inhibitor therapy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21358673" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p>To characterize determinants of sensitivity to PI3K-alpha inhibitors such as alpelisib in cancer, <a href="#45" class="mim-tip-reference" title="Vasan, N., Razavi, P., Johnson, J. L., Shao, H., Shah, H., Antoine, A., Ladewig, E., Gorelick, A., Lin, T.-Y., Toska, E., Xu, G., Kazmi, A., and 15 others. &lt;strong&gt;Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3K-alpha inhibitors.&lt;/strong&gt; Science 366: 714-723, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31699932/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31699932&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31699932[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.aaw9032&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31699932">Vasan et al. (2019)</a> analyzed PIK3CA-mutant cancer genomes in approximately 70,000 patients from a publicly available cohort, 28,000 patients from an internal cohort, and several other cohorts. They observed the presence of multiple PIK3CA mutations in 12 to 15% of breast cancers and other tumor types (most commonly uterine or colorectal cancer), and that most of these (95%) carried exactly 2 mutations. The double PIK3CA mutations were in cis and resulted in increased PI3K activity, enhanced downstream signaling, increased cell proliferation, and tumor growth. In the majority of cases, patients had a first hit involving a major hotspot mutation such as E542, E545, or H1047, and a second hit in a minor mutant site involving either E453, E726, or M1043. These recurrent mutational sites appeared to be specific to breast cancer. The biochemical mechanisms of dual mutations included increased disruption of p110-alpha binding to the inhibitory subunit p85-alpha, which relieves its catalytic inhibition, and increased p110-alpha membrane lipid binding. <a href="#45" class="mim-tip-reference" title="Vasan, N., Razavi, P., Johnson, J. L., Shao, H., Shah, H., Antoine, A., Ladewig, E., Gorelick, A., Lin, T.-Y., Toska, E., Xu, G., Kazmi, A., and 15 others. &lt;strong&gt;Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3K-alpha inhibitors.&lt;/strong&gt; Science 366: 714-723, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31699932/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31699932&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=31699932[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.aaw9032&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31699932">Vasan et al. (2019)</a> concluded that double PIK3CA mutations predict increased sensitivity to PI3K-alpha inhibitors compared with single-hotspot mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31699932" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><strong><em>Vascular and Overgrowth Syndromes</em></strong>
</p>
<p><a href="#23" class="mim-tip-reference" title="Kurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., Warman, M. L. &lt;strong&gt;Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 90: 1108-1115, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22658544/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22658544&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22658544[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.05.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22658544">Kurek et al. (2012)</a> used massively parallel sequencing to search for somatic mosaic mutations in fresh, frozen, or fixed archival tissue from 6 patients with congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome; <a href="/entry/612918">612918</a>) and identified 3 different missense mutations in the PIK3CA gene (<a href="#0001">171834.0001</a>, <a href="#0009">171834.0009</a>, and <a href="#0010">171834.0010</a>), with mutant allele frequencies ranging from 3 to 30% in affected tissue from multiple embryonic lineages. Noting that the 3 mutations had previously been identified in cancer cells, in which they increase phosphoinositide-3-kinase activity, <a href="#23" class="mim-tip-reference" title="Kurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., Warman, M. L. &lt;strong&gt;Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 90: 1108-1115, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22658544/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22658544&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22658544[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.05.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22658544">Kurek et al. (2012)</a> concluded that CLOVE syndrome is caused by postzygotic activating mutations in PIK3CA, and hypothesized that the low rate of malignant transformation in patients with CLOVE syndrome is due to the low level of endogenous PIK3CA expression in most cells. The authors also found somatic mosaicism for the H1047R mutation (<a href="#0001">171834.0001</a>) in 3 patients who had been diagnosed with Klippel-Trenaunay-Weber syndrome (<a href="/entry/149000">149000</a>), an overgrowth syndrome with features overlapping those of CLOVE syndrome. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22658544" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><a href="#35" class="mim-tip-reference" title="Rios, J. J., Paria, N., Burns, D. K., Israel, B. A., Cornelia, R., Wise, C. A., Ezaki, M. &lt;strong&gt;Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.&lt;/strong&gt; Hum. Molec. Genet. 22: 444-451, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23100325/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23100325&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23100325[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/dds440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23100325">Rios et al. (2013)</a> identified 4 different mutations in the PIK3CA gene in affected tissue from 6 patients with macrodactyly (<a href="/entry/155500">155500</a>). One mutation (<a href="#0022">171834.0022</a>) was novel. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23100325" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><a href="#38" class="mim-tip-reference" title="Rodriguez-Laguna, L., Ibanez, K., Gordo, G., Garcia-Minaur, S., Santos-Simarro, F., Agra, N., Vallespin, E., Fernandez-Montano, V. E., Martin-Arenas, R., del Pozo, A., Gonzalez-Pecellin, H., Mena, R., and 10 others. &lt;strong&gt;CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype.&lt;/strong&gt; Genet. Med. 20: 882-889, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29446767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29446767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/gim.2017.200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29446767">Rodriguez-Laguna et al. (2018)</a> screened 20 paired blood and tissue DNA samples from 9 patients of a cohort of 13 patients with a syndrome of capillary malformation of the lower lip, lymphatic malformation of the face and neck, asymmetry of the face and limbs, and partial/generalized overgrowth (CLAPO; <a href="/entry/613089">613089</a>) and identified 5 activating mutations in the PIK3CA gene in affected tissues from 6 of the 9 patients studied. All mutations except 1 (F83S; <a href="#0023">171834.0023</a>) had previously been reported in a vascular/overgrowth disorder. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29446767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><strong><em>Hemifacial Myohyperplasia</em></strong>
</p>
<p>By genotyping of affected muscle tissue from 5 patients with hemifacial myohyperplasia (HFMH; <a href="/entry/606773">606773</a>), <a href="#2" class="mim-tip-reference" title="Bayard, C., Segna, E., Taverne, M., Fraissenon, A., Hennocq, Q., Periou, B., Zerbib, L., Ladraa, S., Chapelle, C., Hoguin, C., Kaltenbach, S., Villarese, P., and 19 others. &lt;strong&gt;Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition.&lt;/strong&gt; J. Exp. Med. 220: e20230926, 2023.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/37712948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;37712948&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=37712948[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20230926&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="37712948">Bayard et al. (2023)</a> identified mosaic mutations in the PIK3CA gene. Patients 1 and 5 had mosaicism for a glu545-to-lys mutation (E545K; <a href="#0003">171834.0003</a>), with mutation burdens of 15% and 14%, respectively. Patients 3 and 4 had mosaicism for a glu542-to-lys mutation (E542K; <a href="#0009">171834.0009</a>), with mutation burdens of 12% and 21%, respectively, and patient 2 had mosaicism for a his1047-to-arg mutation (H1047R; <a href="#0013">171834.0013</a>), with a mutation burden of 25%. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=37712948" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><strong><em>Cowden Syndrome 5</em></strong>
</p>
<p>Among 91 individuals with Cowden syndrome who were negative for mutations in known disease-causing genes, <a href="#33" class="mim-tip-reference" title="Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C. &lt;strong&gt;Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.&lt;/strong&gt; Am. J. Hum. Genet. 92: 76-80, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23246288/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23246288&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23246288[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.10.021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23246288">Orloff et al. (2013)</a> found that 8 carried mutations in the PIK3CA gene. None of these mutations was detected in 96 population controls, the Single Nucleotide Polymorphism database (dbSNP), or the available dataset of the 1000 Genomes Project. Functional assays demonstrated that these mutations resulted in upregulation of AKT1 phosphorylated at thr308 (P-AKT1-Thr308) and increased cellular PIP3. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23246288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><strong><em>Metastatic Cancer</em></strong>
</p>
<p><a href="#37" class="mim-tip-reference" title="Robinson, D. R., Wu, Y.-M., Lonigro, R. J., Vats, P., Cobain, E., Everett, J., Cao, X., Rabban, E., Kumar-Sinha, C., Raymond, V., Schuetze, S., Alva, A., and 21 others. &lt;strong&gt;Integrative clinical genomics of metastatic cancer.&lt;/strong&gt; Nature 548: 297-303, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28783718/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28783718&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=28783718[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature23306&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28783718">Robinson et al. (2017)</a> performed whole-exome and transcriptome sequencing of 500 adult patients with metastatic solid tumors of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53 (<a href="/entry/191170">191170</a>), CDKN2A (<a href="/entry/600160">600160</a>), PTEN (<a href="/entry/601728">601728</a>), PIK3CA, and RB1 (<a href="/entry/614041">614041</a>). Putative pathogenic germline variants were present in 12.2% of cases, of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing to identify gene fusions, pathway activation, and immune profiling. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28783718" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<p><strong><em>Cerebral Cavernous Malformations 4</em></strong>
</p>
<p>In 34 (39%) of 88 samples of cerebral cavernous malformations-4 (CCM4; <a href="/entry/619538">619538</a>) from patients with sporadic occurrence of the disease, <a href="#34" class="mim-tip-reference" title="Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., Lerond, J., Marijon, P., Abi-Jaoude, S., Le Van, T., Labreche, K., Houlston, R., Faisant, M., Clemenceau, S., Boch, A.-L., Nouet, A., Carpentier, A., Boetto, J., Louvi, A., Kalamarides, M. &lt;strong&gt;Somatic PIK3CA mutations in sporadic cerebral cavernous malformations.&lt;/strong&gt; New Eng. J. Med. 385: 996-1004, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34496175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34496175&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34496175[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa2100440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34496175">Peyre et al. (2021)</a> identified 1 of 3 somatic missense mutations in the PIK3CA gene (H1047R, <a href="#0001">171834.0001</a>; H1047L, <a href="#0002">171834.0002</a>; and E542K, <a href="#0009">171834.0009</a>). The mutations were found by targeted DNA sequencing after studies in mice suggested that Pik3ca mutations can lead to CCM formation (see ANIMAL MODEL below). Four of the samples with PIK3CA mutations also had mutations in the CCM-related genes CCM1 (KRIT1; <a href="/entry/604214">604214</a>), CCM2 (<a href="/entry/607929">607929</a>), and AKT1 (<a href="/entry/164730">164730</a>). The authors noted that cooccurrence of mutations is frequently seen in tumors. PIK3CA-mutant CCMs in humans and mice showed increased phosphorylation of myosin light chain and activation of the PI3K-AKT-mTOR pathway, consistent with activating mutations. <a href="#34" class="mim-tip-reference" title="Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., Lerond, J., Marijon, P., Abi-Jaoude, S., Le Van, T., Labreche, K., Houlston, R., Faisant, M., Clemenceau, S., Boch, A.-L., Nouet, A., Carpentier, A., Boetto, J., Louvi, A., Kalamarides, M. &lt;strong&gt;Somatic PIK3CA mutations in sporadic cerebral cavernous malformations.&lt;/strong&gt; New Eng. J. Med. 385: 996-1004, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34496175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34496175&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34496175[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa2100440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34496175">Peyre et al. (2021)</a> noted that the incidence of activating mutations in the PIK3CA gene in sporadic CCMs far exceeds that of mutations in CCM1, CCM2, or CCM3 (PDCD10; <a href="/entry/609118">609118</a>), all of which cause familial disease. PIK3CA mutations were not observed in 11 samples of arteriovenous malformations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34496175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
<div class="mim-changed mim-change"><p>In cavernous malformation tissue from 81 patients with sporadic CCMs, <a href="#15" class="mim-tip-reference" title="Hong, T., Xiao, X., Ren, J., Cui, B., Zong, Y., Zou, J., Kou, Z., Jiang, N., Meng, G., Zeng, G., Shan, Y., Wu, H., and 12 others. &lt;strong&gt;Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations.&lt;/strong&gt; Brain 144: 2648-2658, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/33729480/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;33729480&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/brain/awab117&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="33729480">Hong et al. (2021)</a> identified a somatic mutation in the MAP3K3 gene (I441M; <a href="/entry/602359#0001">602359.0001</a>) in 41 patients and a somatic mutation (C420R, E542K, E545K or H1047R) in the PIK3CA gene in 45 patients. Fourteen of the patients had somatic mutations in both MAP3K3 and PIK3CA. The mutations were identified by whole-exome sequencing and digital droplet PCR. The PIK3CA mutation frequencies ranged from 0.4% to 24.4% in the CCM tissue. Single cell RNA sequencing was performed in tissue from 2 CCMs with MAP3K3 mutations, 3 CCMs with PIK3CA mutations, and 1 CCM with mutations in both genes. CCMs with only PIK3CA mutations demonstrated downregulated apoptosis and increased expression of SERPINA5 and GDF15 compared to the CCMs with MAP3K3 mutations or both MAP3K3 and PIK3CA mutations. <a href="#15" class="mim-tip-reference" title="Hong, T., Xiao, X., Ren, J., Cui, B., Zong, Y., Zou, J., Kou, Z., Jiang, N., Meng, G., Zeng, G., Shan, Y., Wu, H., and 12 others. &lt;strong&gt;Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations.&lt;/strong&gt; Brain 144: 2648-2658, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/33729480/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;33729480&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/brain/awab117&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="33729480">Hong et al. (2021)</a> hypothesized that PIK3CA mutations in CCM tissue may lead to increased vascular stress, endothelial dysfunction, and hemorrhagic risk. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=33729480" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p></div>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="genotypePhenotypeCorrelations" class="mim-anchor"></a>
<h4 href="#mimGenotypePhenotypeCorrelationsFold" id="mimGenotypePhenotypeCorrelationsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGenotypePhenotypeCorrelationsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<div id="mimGenotypePhenotypeCorrelationsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<div class="mim-changed mim-change"><p><a href="#15" class="mim-tip-reference" title="Hong, T., Xiao, X., Ren, J., Cui, B., Zong, Y., Zou, J., Kou, Z., Jiang, N., Meng, G., Zeng, G., Shan, Y., Wu, H., and 12 others. &lt;strong&gt;Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations.&lt;/strong&gt; Brain 144: 2648-2658, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/33729480/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;33729480&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/brain/awab117&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="33729480">Hong et al. (2021)</a> compared clinical characteristics between CCMs with somatic mutations in the MAP3K3 gene, PIK3CA gene, or in both genes. CCMs with mutations in only the PIK3CA gene were more likely to be overtly hemorrhagic and were significantly larger compared to the CCMs with mutations in the MAP3K3 gene or in both genes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=33729480" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p></div>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="animalModel" class="mim-anchor"></a>
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>To delineate the role of p110-alpha, a ubiquitously expressed phosphatidylinositide-3-hydroxykinase (PI3K) involved in tyrosine kinase and Ras (see <a href="/entry/190020">190020</a>) signaling, <a href="#6" class="mim-tip-reference" title="Foukas, L. C., Claret, M., Pearce, W., Okkenhaug, K., Meek, S., Peskett, E., Sancho, S., Smith, A. J. H., Withers, D. J., Vanhaesebroeck, B. &lt;strong&gt;Critical role for the p110-alpha phosphoinositide-3-OH kinase in growth and metabolic regulation.&lt;/strong&gt; Nature 441: 366-370, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16625210/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16625210&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature04694&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16625210">Foukas et al. (2006)</a> generated mice carrying a knockin mutation, D933A, that abrogates p110-alpha kinase activity. Homozygosity for this kinase-dead p110-alpha led to embryonic lethality. Mice heterozygous for this mutation were viable and fertile, but displayed severely blunted signaling via insulin-receptor substrate (IRS) proteins (e.g., <a href="/entry/147545">147545</a>), key mediators of insulin, insulin-like growth factor-1 (IGF1; <a href="/entry/147440">147440</a>), and leptin (<a href="/entry/164160">164160</a>) action. Defective responsiveness to these hormones led to reduced somatic growth, hyperinsulinemia, glucose intolerance, hyperphagia, and increased adiposity in mice heterozygous for the D933A mutation. This signaling function of p110-alpha derives from its highly selective recruitment and activation to IRS signaling complexes compared to p110-beta (<a href="/entry/602925">602925</a>), the other broadly expressed PI3K isoform, which did not contribute to IRS-associated PI3K activity. p110-alpha was the principal IRS-associated PI3K in cancer cell lines. <a href="#6" class="mim-tip-reference" title="Foukas, L. C., Claret, M., Pearce, W., Okkenhaug, K., Meek, S., Peskett, E., Sancho, S., Smith, A. J. H., Withers, D. J., Vanhaesebroeck, B. &lt;strong&gt;Critical role for the p110-alpha phosphoinositide-3-OH kinase in growth and metabolic regulation.&lt;/strong&gt; Nature 441: 366-370, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16625210/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16625210&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature04694&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16625210">Foukas et al. (2006)</a> concluded that their findings demonstrated a critical role for p110-alpha in growth factor and metabolic signaling and also suggested an explanation for selective mutation or overexpression of p110-alpha in a variety of cancers. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16625210" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#10" class="mim-tip-reference" title="Gupta, S., Ramjaun, A. R., Haiko, P., Wang, Y., Warne, P. H., Nicke, B., Nye, E., Stamp, G., Alitalo, K., Downward, J. &lt;strong&gt;Binding of Ras to phosphoinositide 3-kinase p110-alpha is required for Ras-driven tumorigenesis in mice.&lt;/strong&gt; Cell 129: 957-968, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17540175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17540175&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.cell.2007.03.051&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17540175">Gupta et al. (2007)</a> generated mice with mutations in the Ras-binding domain of Pi3kca. Cells from these mice had proliferative defects and selective disruption of signaling from growth factors to PI3K. In vivo, mutant mice displayed defective development of the lymphatic vasculature, resulting in perinatal appearance of chylous ascites. However, these mice were highly resistant to development of Ras oncogene-induced tumorigenesis. <a href="#10" class="mim-tip-reference" title="Gupta, S., Ramjaun, A. R., Haiko, P., Wang, Y., Warne, P. H., Nicke, B., Nye, E., Stamp, G., Alitalo, K., Downward, J. &lt;strong&gt;Binding of Ras to phosphoinositide 3-kinase p110-alpha is required for Ras-driven tumorigenesis in mice.&lt;/strong&gt; Cell 129: 957-968, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17540175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17540175&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.cell.2007.03.051&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17540175">Gupta et al. (2007)</a> concluded that interaction of Ras with PI3KCA is required in vivo for certain normal growth factor signaling and for Ras-driven tumor formation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17540175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#42" class="mim-tip-reference" title="Soler, A., Serra, H., Pearce, W., Angulo, A., Guillermet-Guibert, J., Friedman, L. S., Vinals, F., Gerhardt, H., Casanovas, O., Graupera, M., Vanhaesebroeck, B. &lt;strong&gt;Inhibition of the p110-alpha isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis.&lt;/strong&gt; J. Exp. Med. 210: 1937-1945, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24043760/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24043760&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24043760[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20121571&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24043760">Soler et al. (2013)</a> used syngeneic mouse cancer models to assess the importance of p110-alpha in the cancer stromal compartment. They found that treatment of a mouse melanoma cell line with an inhibitor of p110-alpha and p110-delta reduced Akt phosphorylation and Vegf production without affecting proliferation or survival. Tumor growth was blunted by the inhibitor, and tumors had increased numbers of small Cd31 (PECAM1; <a href="/entry/173445">173445</a>)-positive blood vessels. Aberrant angiogenesis, reduced vessel function, and reduced Dll4 (<a href="/entry/605185">605185</a>) were also observed with p110-alpha/p110-delta inhibition in a lung cancer cell line mouse model. <a href="#42" class="mim-tip-reference" title="Soler, A., Serra, H., Pearce, W., Angulo, A., Guillermet-Guibert, J., Friedman, L. S., Vinals, F., Gerhardt, H., Casanovas, O., Graupera, M., Vanhaesebroeck, B. &lt;strong&gt;Inhibition of the p110-alpha isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis.&lt;/strong&gt; J. Exp. Med. 210: 1937-1945, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24043760/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24043760&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24043760[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20121571&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24043760">Soler et al. (2013)</a> proposed that vessel size rather than vessel number is the key parameter in the antiangiogenic effect of p110-alpha inhibition. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24043760" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#46" class="mim-tip-reference" title="Venot, Q., Blanc, T., Rabia, S. H., Berteloot, L., Ladraa, S., Duong, J.-P., Blanc, E., Johnson, SC., Hoguin, C., Boccara, O., Sarnacki, S., Boddaert, N., and 24 others. &lt;strong&gt;Targeted therapy in patients with PIK3CA-related overgrowth syndrome.&lt;/strong&gt; Nature 558: 540-546, 2018. Note: Erratum: Nature 568: E6, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29899452/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29899452&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29899452[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-018-0217-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29899452">Venot et al. (2018)</a> developed a mouse model of CLOVES by creating mice that express a dominant-active PIK3CA transgene and ubiquitously express PIK3CA upon tamoxifen administration to induce Cre recombination. Three-week-old mice treated with a single dose of tamoxifen (40 mg/kg) began to die rapidly, with 50% mortality at day 9. Death occurred suddenly in most cases, with necropsy revealing intraabdominal and hepatic hemorrhages. Whole-body MRI showed scoliosis, vessel abnormalities, kidney cysts, and muscle hypertrophy. Histologic examination revealed liver steatosis with vessel disorganization, loss of spleen microarchitecture integrity, spontaneous hemorrhages, and fibrosis of the kidney with aberrant vessels. <a href="#46" class="mim-tip-reference" title="Venot, Q., Blanc, T., Rabia, S. H., Berteloot, L., Ladraa, S., Duong, J.-P., Blanc, E., Johnson, SC., Hoguin, C., Boccara, O., Sarnacki, S., Boddaert, N., and 24 others. &lt;strong&gt;Targeted therapy in patients with PIK3CA-related overgrowth syndrome.&lt;/strong&gt; Nature 558: 540-546, 2018. Note: Erratum: Nature 568: E6, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29899452/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29899452&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29899452[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-018-0217-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29899452">Venot et al. (2018)</a> administered either BYL719 (alpelisib), a PIK3CA inhibitor, or placebo to mutant mice orally each day starting on the day of Cre induction. While all placebo-treated mutant mice died within 15 days, all BYL719-treated mutant mice were alive after 40 days and had an overtly normal appearance. Interruption of treatment after 40 days led to the rapid death of all mice. Administration of placebo or BYL719 7 days after Cre induction, when tissue abnormalities were already detected by MRI, resulted in improved survival in BYL719-treated mice. MRI after 12 days of treatment showed improvements in scoliosis, muscle hypertrophy, and vessel malformations. To more faithfully reproduce the lower mosaicism observed in patients, <a href="#46" class="mim-tip-reference" title="Venot, Q., Blanc, T., Rabia, S. H., Berteloot, L., Ladraa, S., Duong, J.-P., Blanc, E., Johnson, SC., Hoguin, C., Boccara, O., Sarnacki, S., Boddaert, N., and 24 others. &lt;strong&gt;Targeted therapy in patients with PIK3CA-related overgrowth syndrome.&lt;/strong&gt; Nature 558: 540-546, 2018. Note: Erratum: Nature 568: E6, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29899452/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29899452&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29899452[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-018-0217-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29899452">Venot et al. (2018)</a> used a single dose of 4mg/kg of tamoxifen to induce Cre recombination. These mice survived for 2 months and then died with multiple phenotypic abnormalities including asymmetrical overgrowth of extremities, disseminated voluminous tumors, and visible subcutaneous vascular abnormalities. Histologic examination revealed the same lesions observed in human PIK3CA-related overgrowth. Treatment of these mice with BYL719 after lesions were clinically visible resulted in reduction and disappearance of all visible tumors within 2 weeks, with body weight loss. Notably, withdrawal of BYL719 led to recurrence of tumors, vascular malformations, and asymmetric extremity hypertrophy within 4 weeks. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29899452" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#34" class="mim-tip-reference" title="Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., Lerond, J., Marijon, P., Abi-Jaoude, S., Le Van, T., Labreche, K., Houlston, R., Faisant, M., Clemenceau, S., Boch, A.-L., Nouet, A., Carpentier, A., Boetto, J., Louvi, A., Kalamarides, M. &lt;strong&gt;Somatic PIK3CA mutations in sporadic cerebral cavernous malformations.&lt;/strong&gt; New Eng. J. Med. 385: 996-1004, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34496175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34496175&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34496175[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa2100440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34496175">Peyre et al. (2021)</a> found that mutant mice selectively expressing the Pik3ca H1047R mutation in PGDS (<a href="/entry/602598">602598</a>)-expressing cells developed intraparenchymal CCM lesions, most of which were localized to the brainstem. Histologically, the lesions ranged from intraparenchymal vessel dilatations to capillary telangiectasia and the formation of young cavernous lesions. A subset of mice developed meningothelial proliferations. <a href="#34" class="mim-tip-reference" title="Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., Lerond, J., Marijon, P., Abi-Jaoude, S., Le Van, T., Labreche, K., Houlston, R., Faisant, M., Clemenceau, S., Boch, A.-L., Nouet, A., Carpentier, A., Boetto, J., Louvi, A., Kalamarides, M. &lt;strong&gt;Somatic PIK3CA mutations in sporadic cerebral cavernous malformations.&lt;/strong&gt; New Eng. J. Med. 385: 996-1004, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34496175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34496175&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34496175[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa2100440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34496175">Peyre et al. (2021)</a> noted that PGDS is expressed in pericytes surrounding intraparenchymal vessels, which is consistent with it being the most likely cell of origin. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34496175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#2" class="mim-tip-reference" title="Bayard, C., Segna, E., Taverne, M., Fraissenon, A., Hennocq, Q., Periou, B., Zerbib, L., Ladraa, S., Chapelle, C., Hoguin, C., Kaltenbach, S., Villarese, P., and 19 others. &lt;strong&gt;Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition.&lt;/strong&gt; J. Exp. Med. 220: e20230926, 2023.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/37712948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;37712948&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=37712948[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20230926&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="37712948">Bayard et al. (2023)</a> generated a mouse model with inducible muscle-specific expression of a constitutively overactivated form of PIK3CA.The mutant mice had progressive weight gain, muscle hypertrophy, and increased skeletal muscle strength compared to wildtype. Tissue histology showed diffuse muscle hypertrophy and adipose shrinkage. The mutant mice were also hypoglycemic and had low insulin and IGF1 levels with conserved insulin secretion. Western blotting and immunofluorescence showed AKT/mTOR activation in striated muscle. Treatment with alpelisib, a PIK3CA inhibitor, resulted in normalization of weight and skeletal muscle overgrowth and an increase in glucose, insulin, and IGF1 levels. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=37712948" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="allelicVariants" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span href="#mimAllelicVariantsFold" id="mimAllelicVariantsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAllelicVariantsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>ALLELIC VARIANTS (<a href="/help/faq#1_4"></strong>
</span>
<strong>23 Selected Examples</a>):</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimAllelicVariantsFold" class="collapse in mimTextToggleFold">
<div>
<a href="/allelicVariants/171834" class="btn btn-default" role="button"> Table View </a>
&nbsp;&nbsp;<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=171834[MIM]" class="btn btn-default mim-tip-hint" role="button" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a>
</div>
<div>
<p />
</div>
<div>
<div>
<a id="0001" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0001&nbsp;BREAST CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
OVARIAN CANCER, EPITHELIAL, SOMATIC, INCLUDED<br />
COLORECTAL CANCER, SOMATIC, INCLUDED<br />
GASTRIC CANCER, SOMATIC, INCLUDED<br />
HEPATOCELLULAR CARCINOMA, SOMATIC, INCLUDED<br />
NONSMALL CELL LUNG CANCER, SOMATIC, INCLUDED<br />
KERATOSIS, SEBORRHEIC, SOMATIC, INCLUDED<br />
CONGENITAL LIPOMATOUS OVERGROWTH, VASCULAR MALFORMATIONS, AND EPIDERMAL NEVI, SOMATIC, INCLUDED<br />
MACRODACTYLY, SOMATIC, INCLUDED<br />
CEREBRAL CAVERNOUS MALFORMATIONS 4, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, HIS1047ARG
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs121913279 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs121913279;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs121913279?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs121913279" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs121913279" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000014622 OR RCV000014623 OR RCV000014624 OR RCV000014626 OR RCV000014627 OR RCV000014628 OR RCV000024621 OR RCV000154516 OR RCV000201231 OR RCV000438435 OR RCV000487449 OR RCV000709691 OR RCV001092442 OR RCV001255686 OR RCV001327968 OR RCV001526648 OR RCV001705589 OR RCV001705590 OR RCV001728091 OR RCV001729349 OR RCV001730472 OR RCV001807727 OR RCV001836707 OR RCV002508124 OR RCV003128082 OR RCV003325939 OR RCV004527290 OR RCV004527291 OR RCV004737153 OR RCV005051734" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000014622, RCV000014623, RCV000014624, RCV000014626, RCV000014627, RCV000014628, RCV000024621, RCV000154516, RCV000201231, RCV000438435, RCV000487449, RCV000709691, RCV001092442, RCV001255686, RCV001327968, RCV001526648, RCV001705589, RCV001705590, RCV001728091, RCV001729349, RCV001730472, RCV001807727, RCV001836707, RCV002508124, RCV003128082, RCV003325939, RCV004527290, RCV004527291, RCV004737153, RCV005051734" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000014622...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Colorectal Cancer</em></strong></p><p>
In a relatively high frequency of colorectal cancers (<a href="/entry/114500">114500</a>), <a href="#39" class="mim-tip-reference" title="Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., Velculescu, V. E. &lt;strong&gt;High frequency of mutations of the PIK3CA gene in human cancers.&lt;/strong&gt; Science 304: 554 only, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15016963/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15016963&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1096502&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15016963">Samuels et al. (2004)</a> identified a his1047-to-arg (H1047R) mutation in the PIK3CA gene; in vitro studies showed that the H1047R mutant has increased lipid kinase activity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15016963" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Breast Cancer</em></strong></p><p>
In 5 breast tumors (<a href="/entry/114480">114480</a>), 7 epithelial ovarian tumors (<a href="/entry/167000">167000</a>), and 1 colorectal tumor from a series of 284 primary human tumors, <a href="#4" class="mim-tip-reference" title="Campbell, I. G., Russell, S. E., Choong, D. Y. H., Montgomery, K. G., Ciavarella, M. L., Hooi, C. S. F., Cristiano, B. E., Pearson, R. B., Phillips, W. A. &lt;strong&gt;Mutation of the PIK3CA gene in ovarian and breast cancer.&lt;/strong&gt; Cancer Res. 64: 7678-7681, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15520168/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15520168&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-2933&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15520168">Campbell et al. (2004)</a> identified the H1047R mutation, which is caused by a 3140A-G transition in exon 20. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15520168" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#25" class="mim-tip-reference" title="Lee, J. W., Soung, Y. H., Kim, S. Y., Lee, H. W., Park, W. S., Nam, S. W., Kim, S. H., Lee, J. Y., Yoo, N. J., Lee, S. H. &lt;strong&gt;PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.&lt;/strong&gt; Oncogene 24: 1477-1480, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15608678/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15608678&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1208304&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15608678">Lee et al. (2005)</a> identified a somatic H1047R mutation in 21 breast cancer tumors, 4 gastric cancer (<a href="/entry/137215">137215</a>) tumors, 1 hepatocellular carcinoma (<a href="/entry/114550">114550</a>), and 1 nonsmall cell lung cancer (<a href="/entry/211980">211980</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15608678" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>CLOVE Syndrome</em></strong></p><p>
In a 2-year-old boy and an unrelated 1-year-old girl with congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome; <a href="/entry/612918">612918</a>), <a href="#23" class="mim-tip-reference" title="Kurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., Warman, M. L. &lt;strong&gt;Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 90: 1108-1115, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22658544/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22658544&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22658544[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.05.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22658544">Kurek et al. (2012)</a> identified somatic mosaicism for the H1047R mutation in affected tissues from multiple embryonic lineages, with a mutant allele frequency ranging from 16 to 23%. <a href="#23" class="mim-tip-reference" title="Kurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., Warman, M. L. &lt;strong&gt;Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 90: 1108-1115, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22658544/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22658544&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22658544[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.05.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22658544">Kurek et al. (2012)</a> also stated that they had identified somatic mosaicism for H1047R in 3 patients who had been diagnosed with Klippel-Trenaunay-Weber syndrome (<a href="/entry/149000">149000</a>), an overgrowth syndrome with features overlapping those of CLOVE syndrome. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22658544" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#26" class="mim-tip-reference" title="Lindhurst, M. J., Parker, V. E. R., Payne, F., Sapp, J. C., Rudge, S., Harris, J., Witkowski, A. M., Zhang, Q., Groeneveld, M. P., Scott, C. E., Daly, A., Huson, S. M., and 14 others. &lt;strong&gt;Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA.&lt;/strong&gt; Nature Genet. 44: 928-933, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729222/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729222&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729222[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2332&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729222">Lindhurst et al. (2012)</a> sequenced the PIK3CA gene in 10 individuals with an 'unclassified' syndrome of congenital progressive segmental overgrowth of fibrous and adipose tissue and bone and identified a somatic H1047R variant in 7 affected individuals, with mutation burdens ranging from less than 1% to 35% in affected tissues and fibroblast cultures. The features of the 'unclassified' syndrome were consistent with CLOVE syndrome. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729222" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Seborrheic Keratosis</em></strong></p><p>
<a href="#13" class="mim-tip-reference" title="Hafner, C., Lopez-Knowles, E., Luis, N. M., Toll, A., Baselga, E., Fernandez-Casado, A., Hernandez, S., Ribe, A., Mentzel, T., Stoehr, R., Hofstaedter, F., Landthaler, M., Vogt, T., Pujol, R. M., Hartmann, A., Real, F. X. &lt;strong&gt;Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 13450-13454, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17673550/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17673550&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17673550[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0705218104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17673550">Hafner et al. (2007)</a> identified a heterozygous somatic H1047R mutation in a seborrheic keratosis lesion (<a href="/entry/182000">182000</a>). The authors emphasized that this is a benign lesion and noted that the same mutation had been observed in cancerous lesions. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17673550" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Macrodactyly</em></strong></p><p>
<a href="#35" class="mim-tip-reference" title="Rios, J. J., Paria, N., Burns, D. K., Israel, B. A., Cornelia, R., Wise, C. A., Ezaki, M. &lt;strong&gt;Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.&lt;/strong&gt; Hum. Molec. Genet. 22: 444-451, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23100325/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23100325&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23100325[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/dds440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23100325">Rios et al. (2013)</a> identified the H1047R mutation in affected tissue from an individual (patient 6) with macrodactyly (<a href="/entry/155500">155500</a>). Immunochemistry showed increased staining in macrodactyly cells from patient 6 compared to control cells, indicating greater levels of ser473-phosphorylated AKT (<a href="/entry/164730">164730</a>) through increased activation of the PI3K-AKT cell signaling axis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23100325" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Cerebral Cavernous Malformations 4</em></strong></p><p>
In samples of cerebral cavernous malformations-4 (CCM4; <a href="/entry/619538">619538</a>) from 10 unrelated patients with sporadic occurrence of the disease, <a href="#34" class="mim-tip-reference" title="Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., Lerond, J., Marijon, P., Abi-Jaoude, S., Le Van, T., Labreche, K., Houlston, R., Faisant, M., Clemenceau, S., Boch, A.-L., Nouet, A., Carpentier, A., Boetto, J., Louvi, A., Kalamarides, M. &lt;strong&gt;Somatic PIK3CA mutations in sporadic cerebral cavernous malformations.&lt;/strong&gt; New Eng. J. Med. 385: 996-1004, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34496175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34496175&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34496175[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa2100440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34496175">Peyre et al. (2021)</a> identified a somatic H1047R mutation in the PIK3CA gene. The mutation was found by targeted DNA sequencing. PIK3CA-mutant CCMs showed increased phosphorylation of myosin light chain and activation of the PI3K-AKT-mTOR pathway, consistent with an activating mutation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34496175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Variant Function</em></strong></p><p>
Using in situ genetic lineage tracing and limiting dilution transplantation, <a href="#22" class="mim-tip-reference" title="Koren, S., Reavie, L., Couto, J. P., De Silva, D., Stadler, M. B., Roloff, T., Britschgi, A., Eichlisberger, T., Kohler, H., Aina, O., Cardiff, R. D., Bentires-Alj, M. &lt;strong&gt;PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumors.&lt;/strong&gt; Nature 525: 114-118, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26266975/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26266975&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14669&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26266975">Koren et al. (2015)</a> elucidated the potential of PIK3CA(H1047R) to induce multipotency during tumorigenesis in the mammary gland. The authors showed that expression of PIK3CA(H1047R) in lineage-committed basal Lgr5 (<a href="/entry/606667">606667</a>)-positive and luminal keratin-8 (KRT8; <a href="/entry/148060">148060</a>)-positive cells of the adult mouse mammary gland evokes cell dedifferentiation into a multipotent stem-like state, suggesting this to be a mechanism involved in the formation of heterogeneous, multilineage mammary tumors. Moreover, <a href="#22" class="mim-tip-reference" title="Koren, S., Reavie, L., Couto, J. P., De Silva, D., Stadler, M. B., Roloff, T., Britschgi, A., Eichlisberger, T., Kohler, H., Aina, O., Cardiff, R. D., Bentires-Alj, M. &lt;strong&gt;PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumors.&lt;/strong&gt; Nature 525: 114-118, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26266975/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26266975&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14669&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26266975">Koren et al. (2015)</a> showed that the tumor cell of origin influences the frequency of malignant mammary tumors. <a href="#22" class="mim-tip-reference" title="Koren, S., Reavie, L., Couto, J. P., De Silva, D., Stadler, M. B., Roloff, T., Britschgi, A., Eichlisberger, T., Kohler, H., Aina, O., Cardiff, R. D., Bentires-Alj, M. &lt;strong&gt;PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumors.&lt;/strong&gt; Nature 525: 114-118, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26266975/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26266975&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14669&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26266975">Koren et al. (2015)</a> concluded that their results defined a key effect of PIK3CA(H1047R) on mammary cell fate in the preneoplastic mammary gland and showed that the cell of origin of PIK3CA(H1047R) tumors dictates their malignancy, thus revealing a mechanism underlying tumor heterogeneity and aggressiveness. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26266975" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#44" class="mim-tip-reference" title="Van Keymeulen, A., Lee, M. Y., Ousset, M., Brohee, S., Rorive, S., Giraddi, R. R., Wuidart, A., Bouvencourt, G., Dubois, C., Salmon, I., Sotiriou, C., Phillips, W. A., Blanpain, C. &lt;strong&gt;Reactivation of multipotency by oncogenic PIK3CA induces breast tumor heterogeneity.&lt;/strong&gt; Nature 525: 119-123, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26266985/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26266985&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14665&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26266985">Van Keymeulen et al. (2015)</a> found that oncogenic PIK3CA(H1047R) mutant expression at physiologic levels in basal cells using keratin (K)5 (<a href="/entry/148040">148040</a>)-CreER(T2) mice induced the formation of luminal estrogen receptor (ER; <a href="/entry/133430">133430</a>)-positive/progesterone receptor (PR; <a href="/entry/607311">607311</a>)-positive tumors, while its expression in luminal cells using K8-CReER(T2) mice gave rise to luminal ER+PR+ tumors or basal-like ER-PR- tumors. Concomitant deletion of p53 (<a href="/entry/191170">191170</a>) and expression of Pik3ca(H1047R) accelerated tumor development and induced more aggressive mammary tumors. Interestingly, expression of Pik3ca(H1047R) in unipotent basal cells gave rise to luminal-like cells, while its expression in unipotent luminal cells gave rise to basal-like cells before progressing into invasive tumors. Transcriptional profiling of cells that underwent cell fate transition upon Pik3ca(H1047R) expression in unipotent progenitors demonstrated a profound oncogene-induced reprogramming of these newly formed cells and identified gene signatures characteristic of the different cell fate switches that occur upon Pik3ca(H1047R) expression in basal and luminal cells. <a href="#44" class="mim-tip-reference" title="Van Keymeulen, A., Lee, M. Y., Ousset, M., Brohee, S., Rorive, S., Giraddi, R. R., Wuidart, A., Bouvencourt, G., Dubois, C., Salmon, I., Sotiriou, C., Phillips, W. A., Blanpain, C. &lt;strong&gt;Reactivation of multipotency by oncogenic PIK3CA induces breast tumor heterogeneity.&lt;/strong&gt; Nature 525: 119-123, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26266985/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26266985&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14665&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26266985">Van Keymeulen et al. (2015)</a> concluded that oncogenic Pik3ca(H1047R) activates a multipotent genetic program in normally lineage-restricted populations at the early stage of tumor initiation, setting the stage for future intratumoral heterogeneity. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26266985" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0002" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0002&nbsp;BREAST CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CONGENITAL LIPOMATOUS OVERGROWTH, VASCULAR MALFORMATIONS, AND EPIDERMAL NEVI, SOMATIC, INCLUDED<br />
CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC, INCLUDED<br />
CEREBRAL CAVERNOUS MALFORMATIONS 4, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, HIS1047LEU
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs121913279 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs121913279;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs121913279?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs121913279" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs121913279" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000014629 OR RCV000032905 OR RCV000201235 OR RCV000422323 OR RCV000626894 OR RCV000709692 OR RCV000987367 OR RCV001253236 OR RCV001526597 OR RCV001728092 OR RCV001807728 OR RCV002254265 OR RCV004527292 OR RCV004649064 OR RCV004668728" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000014629, RCV000032905, RCV000201235, RCV000422323, RCV000626894, RCV000709692, RCV000987367, RCV001253236, RCV001526597, RCV001728092, RCV001807728, RCV002254265, RCV004527292, RCV004649064, RCV004668728" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000014629...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Breast Cancer</em></strong></p><p>
In 4 breast tumors (<a href="/entry/114480">114480</a>) from a series of 284 primary human tumors, <a href="#4" class="mim-tip-reference" title="Campbell, I. G., Russell, S. E., Choong, D. Y. H., Montgomery, K. G., Ciavarella, M. L., Hooi, C. S. F., Cristiano, B. E., Pearson, R. B., Phillips, W. A. &lt;strong&gt;Mutation of the PIK3CA gene in ovarian and breast cancer.&lt;/strong&gt; Cancer Res. 64: 7678-7681, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15520168/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15520168&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-2933&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15520168">Campbell et al. (2004)</a> identified a 1340A-T transversion in exon 20 of the PIK3CA gene, resulting in a his1047-to-leu (H1047L) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15520168" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>CLOVE Syndrome</em></strong></p><p>
<a href="#26" class="mim-tip-reference" title="Lindhurst, M. J., Parker, V. E. R., Payne, F., Sapp, J. C., Rudge, S., Harris, J., Witkowski, A. M., Zhang, Q., Groeneveld, M. P., Scott, C. E., Daly, A., Huson, S. M., and 14 others. &lt;strong&gt;Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA.&lt;/strong&gt; Nature Genet. 44: 928-933, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729222/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729222&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729222[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2332&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729222">Lindhurst et al. (2012)</a> performed exome sequencing of DNA from unaffected and affected cells from an individual with an 'unclassified' syndrome of congenital progressive segmental overgrowth of fibrous and adipose tissue and bone and identified the cancer-associated H1047L mutation in the PIK3CA gene in affected cells only, the p110-catalytic subunit of PI3K, only in affected cells, with a mutation burden determined to be from 8% to 39%. The same H1047L alteration was identified in 2 of 9 other individuals with the 'unclassified' syndrome, with mutation burdens ranging from 4% to 49%. The features of the syndrome were consistent with CLOVE syndrome (<a href="/entry/612918">612918</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729222" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>CLAPO Syndrome</em></strong></p><p>
In tissue from a lymphatic malformation (LM) of the tongue of a 7-year-old female patient (P13) with CLAPO syndrome (<a href="/entry/613089">613089</a>), <a href="#38" class="mim-tip-reference" title="Rodriguez-Laguna, L., Ibanez, K., Gordo, G., Garcia-Minaur, S., Santos-Simarro, F., Agra, N., Vallespin, E., Fernandez-Montano, V. E., Martin-Arenas, R., del Pozo, A., Gonzalez-Pecellin, H., Mena, R., and 10 others. &lt;strong&gt;CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype.&lt;/strong&gt; Genet. Med. 20: 882-889, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29446767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29446767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/gim.2017.200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29446767">Rodriguez-Laguna et al. (2018)</a> identified a c.3140A-T transversion (c.3140A-T, NM_006218.2) in the PIK3CA gene that resulted in a his1047-to-leu (H1047L) mutation in the kinase domain. The mutation was present at an allele frequency of 16% by deep sequencing, was present in 315 samples from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had been previously reported in 30 patients with vascular overgrowth disorders. Functional studies were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29446767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Cerebral Cavernous Malformations 4</em></strong></p><p>
In samples of cerebral cavernous malformations-4 (CCM4; <a href="/entry/619538">619538</a>) from 2 unrelated patients with sporadic occurrence of the disease, <a href="#34" class="mim-tip-reference" title="Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., Lerond, J., Marijon, P., Abi-Jaoude, S., Le Van, T., Labreche, K., Houlston, R., Faisant, M., Clemenceau, S., Boch, A.-L., Nouet, A., Carpentier, A., Boetto, J., Louvi, A., Kalamarides, M. &lt;strong&gt;Somatic PIK3CA mutations in sporadic cerebral cavernous malformations.&lt;/strong&gt; New Eng. J. Med. 385: 996-1004, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34496175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34496175&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34496175[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa2100440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34496175">Peyre et al. (2021)</a> identified a somatic H1047L mutation in the PIK3CA gene. The mutation was found by targeted DNA sequencing. PIK3CA-mutant CCMs showed increased phosphorylation of myosin light chain and activation of the PI3K-AKT-mTOR pathway, consistent with an activating mutation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34496175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0003" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0003&nbsp;BREAST CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
OVARIAN CANCER, EPITHELIAL, SOMATIC, INCLUDED<br />
COLORECTAL CANCER, SOMATIC, INCLUDED<br />
GASTRIC CANCER, SOMATIC, INCLUDED<br />
NONSMALL CELL LUNG CANCER, SOMATIC, INCLUDED<br />
KERATOSIS, SEBORRHEIC, SOMATIC, INCLUDED<br />
MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC, INCLUDED<br />
HEMIFACIAL MYOHYPERPLASIA, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLU545LYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs104886003 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104886003;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs104886003?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104886003" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104886003" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000014631 OR RCV000014632 OR RCV000014633 OR RCV000014636 OR RCV000038671 OR RCV000055930 OR RCV000119356 OR RCV000422210 OR RCV001092440 OR RCV001262721 OR RCV001290591 OR RCV001327963 OR RCV001374447 OR RCV001705591 OR RCV001730473 OR RCV001786329 OR RCV002508125 OR RCV003764575 OR RCV004527293 OR RCV004527294 OR RCV004527295 OR RCV004668729 OR RCV004698419" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000014631, RCV000014632, RCV000014633, RCV000014636, RCV000038671, RCV000055930, RCV000119356, RCV000422210, RCV001092440, RCV001262721, RCV001290591, RCV001327963, RCV001374447, RCV001705591, RCV001730473, RCV001786329, RCV002508125, RCV003764575, RCV004527293, RCV004527294, RCV004527295, RCV004668729, RCV004698419" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000014631...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 9 breast tumors (<a href="/entry/114480">114480</a>), 1 epithelial ovarian tumor (<a href="/entry/167000">167000</a>), and 2 colorectal tumors (<a href="/entry/114500">114500</a>) from a series of 284 primary human tumors, <a href="#4" class="mim-tip-reference" title="Campbell, I. G., Russell, S. E., Choong, D. Y. H., Montgomery, K. G., Ciavarella, M. L., Hooi, C. S. F., Cristiano, B. E., Pearson, R. B., Phillips, W. A. &lt;strong&gt;Mutation of the PIK3CA gene in ovarian and breast cancer.&lt;/strong&gt; Cancer Res. 64: 7678-7681, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15520168/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15520168&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-2933&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15520168">Campbell et al. (2004)</a> identified a 1633G-A transition in exon 9 of the PIK3CA gene, resulting in a glu545-to-lys (E545K) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15520168" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#25" class="mim-tip-reference" title="Lee, J. W., Soung, Y. H., Kim, S. Y., Lee, H. W., Park, W. S., Nam, S. W., Kim, S. H., Lee, J. Y., Yoo, N. J., Lee, S. H. &lt;strong&gt;PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.&lt;/strong&gt; Oncogene 24: 1477-1480, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15608678/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15608678&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1208304&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15608678">Lee et al. (2005)</a> identified the E545K mutation in tumor tissue from 2 breast cancers, 3 gastric cancers (<a href="/entry/137215">137215</a>), and 1 nonsmall cell lung cancer (<a href="/entry/211980">211980</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15608678" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#13" class="mim-tip-reference" title="Hafner, C., Lopez-Knowles, E., Luis, N. M., Toll, A., Baselga, E., Fernandez-Casado, A., Hernandez, S., Ribe, A., Mentzel, T., Stoehr, R., Hofstaedter, F., Landthaler, M., Vogt, T., Pujol, R. M., Hartmann, A., Real, F. X. &lt;strong&gt;Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 13450-13454, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17673550/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17673550&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17673550[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0705218104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17673550">Hafner et al. (2007)</a> identified a heterozygous somatic E545K mutation in 2 seborrheic keratosis lesions (<a href="/entry/182000">182000</a>). The authors emphasized that this is a benign lesion and noted that the same mutation had been observed in cancerous lesions. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17673550" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In an individual with megalencephaly-capillary-malformation-polymicrogyria syndrome (MCAP; <a href="/entry/602501">602501</a>), <a href="#36" class="mim-tip-reference" title="Riviere, J.-B., Mirzaa, G. M., O&#x27;Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others. &lt;strong&gt;De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.&lt;/strong&gt; Nature Genet. 44: 934-940, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729224&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729224[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2331&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729224">Riviere et al. (2012)</a> identified the mosaic E545K mutation in the PIK3CA gene. <a href="#24" class="mim-tip-reference" title="Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., Bafna, V., Hill, K. J., Collazo, A., Funari, V., Russ, C., Gabriel, S. B., Mathern, G. W., Gleeson, J. G. &lt;strong&gt;De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly.&lt;/strong&gt; Nature Genet. 44: 941-945, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729223/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729223&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729223[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2329&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729223">Lee et al. (2012)</a> performed whole-exome sequencing on brain and peripheral blood DNA from 5 patients with hemimegalencephaly (HME) and identified the E545K missense mutation in the PIK3CA gene. The mutant allele was absent in blood but present in the brain, with a mutation burden of 36.6%. <a href="#24" class="mim-tip-reference" title="Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., Bafna, V., Hill, K. J., Collazo, A., Funari, V., Russ, C., Gabriel, S. B., Mathern, G. W., Gleeson, J. G. &lt;strong&gt;De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly.&lt;/strong&gt; Nature Genet. 44: 941-945, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729223/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729223&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729223[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2329&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729223">Lee et al. (2012)</a> screened for this mutation in 15 other patients with HME and identified the E545K variant in 3, each with a mutation burden of about 30%. One of these individuals had hypertrophic regions in the right hand and foot. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=22729223+22729224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 2 patients (patients 1 and 5) with hemifacial myohyperplasia (HFMH; <a href="/entry/606773">606773</a>), <a href="#2" class="mim-tip-reference" title="Bayard, C., Segna, E., Taverne, M., Fraissenon, A., Hennocq, Q., Periou, B., Zerbib, L., Ladraa, S., Chapelle, C., Hoguin, C., Kaltenbach, S., Villarese, P., and 19 others. &lt;strong&gt;Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition.&lt;/strong&gt; J. Exp. Med. 220: e20230926, 2023.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/37712948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;37712948&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=37712948[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20230926&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="37712948">Bayard et al. (2023)</a> identified mosaicism for the E545K mutation in the PIK3CA gene. Genotyping on muscle biopsies from affected regions found a mutation burden of 15% in patient 1 and 14% in patient 5. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=37712948" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0004" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0004&nbsp;COLORECTAL CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NEVUS, EPIDERMAL, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLU545GLY
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs121913274 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs121913274;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs121913274?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs121913274" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs121913274" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000014637 OR RCV000014638 OR RCV004562209" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000014637, RCV000014638, RCV004562209" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000014637...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 1 colorectal tumor (<a href="/entry/114500">114500</a>) from a series of 284 primary human tumors, <a href="#4" class="mim-tip-reference" title="Campbell, I. G., Russell, S. E., Choong, D. Y. H., Montgomery, K. G., Ciavarella, M. L., Hooi, C. S. F., Cristiano, B. E., Pearson, R. B., Phillips, W. A. &lt;strong&gt;Mutation of the PIK3CA gene in ovarian and breast cancer.&lt;/strong&gt; Cancer Res. 64: 7678-7681, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15520168/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15520168&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-2933&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15520168">Campbell et al. (2004)</a> identified a 1634A-G transition in exon 9 of the PIK3CA gene, resulting in a glu545-to-gly (E545G) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15520168" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#13" class="mim-tip-reference" title="Hafner, C., Lopez-Knowles, E., Luis, N. M., Toll, A., Baselga, E., Fernandez-Casado, A., Hernandez, S., Ribe, A., Mentzel, T., Stoehr, R., Hofstaedter, F., Landthaler, M., Vogt, T., Pujol, R. M., Hartmann, A., Real, F. X. &lt;strong&gt;Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 13450-13454, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17673550/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17673550&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17673550[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0705218104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17673550">Hafner et al. (2007)</a> identified a heterozygous somatic E545G mutation in 9 (27%) of 33 epidermal nevus lesions (<a href="/entry/162900">162900</a>). The authors emphasized that these are benign lesions and noted that the same mutation had been observed in colorectal cancer. Two of the lesions had a concomitant somatic mutation in the FGFR3 gene (<a href="/entry/134934#0005">134934.0005</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17673550" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0005" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0005&nbsp;OVARIAN CANCER, EPITHELIAL, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
COLORECTAL CANCER, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLN546LYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs121913286 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs121913286;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs121913286" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs121913286" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000014639 OR RCV000014640 OR RCV000201230 OR RCV000205164 OR RCV000436582 OR RCV001705592 OR RCV001762046 OR RCV004698784" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000014639, RCV000014640, RCV000201230, RCV000205164, RCV000436582, RCV001705592, RCV001762046, RCV004698784" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000014639...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 1 epithelial ovarian tumor (<a href="/entry/167000">167000</a>) and 1 colorectal tumor (<a href="/entry/114500">114500</a>) from a series of 284 primary human tumors, <a href="#4" class="mim-tip-reference" title="Campbell, I. G., Russell, S. E., Choong, D. Y. H., Montgomery, K. G., Ciavarella, M. L., Hooi, C. S. F., Cristiano, B. E., Pearson, R. B., Phillips, W. A. &lt;strong&gt;Mutation of the PIK3CA gene in ovarian and breast cancer.&lt;/strong&gt; Cancer Res. 64: 7678-7681, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15520168/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15520168&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-2933&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15520168">Campbell et al. (2004)</a> identified a 1636C-A transversion in exon 9 of the PIK3CA gene, resulting in a gln546-to-lys (Q546K) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15520168" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0006" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0006&nbsp;BREAST CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLN546GLU
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs121913286 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs121913286;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs121913286" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs121913286" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000014630" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000014630" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000014630</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 1 breast tumor (<a href="/entry/114480">114480</a>) from a series of 284 primary human tumors, <a href="#4" class="mim-tip-reference" title="Campbell, I. G., Russell, S. E., Choong, D. Y. H., Montgomery, K. G., Ciavarella, M. L., Hooi, C. S. F., Cristiano, B. E., Pearson, R. B., Phillips, W. A. &lt;strong&gt;Mutation of the PIK3CA gene in ovarian and breast cancer.&lt;/strong&gt; Cancer Res. 64: 7678-7681, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15520168/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15520168&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1158/0008-5472.CAN-04-2933&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15520168">Campbell et al. (2004)</a> identified a 1636C-G transversion in exon 9 of the PIK3CA gene, resulting in a gln546-to-glu (Q546E) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15520168" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0007" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0007&nbsp;HEPATOCELLULAR CARCINOMA, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
GASTRIC CANCER, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, 1-BP INS, 3204A
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587776802 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587776802;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587776802" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587776802" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000014641 OR RCV002508126 OR RCV003458189" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000014641, RCV002508126, RCV003458189" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000014641...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In tissue samples from 13 (50%) of 26 hepatocellular carcinomas (<a href="/entry/114550">114550</a>) with PIK3CA mutations, <a href="#25" class="mim-tip-reference" title="Lee, J. W., Soung, Y. H., Kim, S. Y., Lee, H. W., Park, W. S., Nam, S. W., Kim, S. H., Lee, J. Y., Yoo, N. J., Lee, S. H. &lt;strong&gt;PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.&lt;/strong&gt; Oncogene 24: 1477-1480, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15608678/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15608678&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1208304&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15608678">Lee et al. (2005)</a> identified a 1-bp insertion (3204insA) in exon 20 of the PIK3CA gene, resulting in a frameshift. One gastric cancer (<a href="/entry/137215">137215</a>) tumor also carried the mutation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15608678" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0008" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0008&nbsp;HEPATOCELLULAR CARCINOMA, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLU545ALA
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs121913274 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs121913274;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs121913274?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs121913274" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs121913274" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000014643 OR RCV000144511 OR RCV000154515 OR RCV001327964" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000014643, RCV000144511, RCV000154515, RCV001327964" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000014643...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In tissue samples from 11 (42%) of 26 hepatocellular carcinoma (<a href="/entry/114550">114550</a>) with PIK3CA mutations, <a href="#25" class="mim-tip-reference" title="Lee, J. W., Soung, Y. H., Kim, S. Y., Lee, H. W., Park, W. S., Nam, S. W., Kim, S. H., Lee, J. Y., Yoo, N. J., Lee, S. H. &lt;strong&gt;PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.&lt;/strong&gt; Oncogene 24: 1477-1480, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15608678/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15608678&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.onc.1208304&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15608678">Lee et al. (2005)</a> identified a 1634A-C transversion in exon 9 of the PIK3CA gene, resulting in a glu545-to-ala (E545A) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15608678" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>A complex germline mutation consisting of the E545A substitution and an insertion/deletion was found in an individual with Cowden syndrome (see <a href="#0020">171834.0020</a>).</p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0009" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0009&nbsp;CONGENITAL LIPOMATOUS OVERGROWTH, VASCULAR MALFORMATIONS, AND EPIDERMAL NEVI, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC, INCLUDED<br />
CEREBRAL CAVERNOUS MALFORMATIONS 4, SOMATIC, INCLUDED<br />
HEMIFACIAL MYOHYPERPLASIA, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLU542LYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs121913273 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs121913273;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs121913273" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs121913273" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000024622 OR RCV000151649 OR RCV000154513 OR RCV000416776 OR RCV000709693 OR RCV001255687 OR RCV001327962 OR RCV001728093 OR RCV001730477 OR RCV001836714 OR RCV002513230 OR RCV003458190 OR RCV003764635 OR RCV003987334 OR RCV004527296 OR RCV004532404 OR RCV004668742 OR RCV004698785" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000024622, RCV000151649, RCV000154513, RCV000416776, RCV000709693, RCV001255687, RCV001327962, RCV001728093, RCV001730477, RCV001836714, RCV002513230, RCV003458190, RCV003764635, RCV003987334, RCV004527296, RCV004532404, RCV004668742, RCV004698785" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000024622...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>CLOVE Syndrome</em></strong></p><p>
In a 14-year-old girl and an unrelated 1-year-old boy with CLOVE syndrome (<a href="/entry/612918">612918</a>), <a href="#23" class="mim-tip-reference" title="Kurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., Warman, M. L. &lt;strong&gt;Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 90: 1108-1115, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22658544/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22658544&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22658544[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.05.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22658544">Kurek et al. (2012)</a> identified somatic mosaicism for a 1624G-A transition in the PIK3CA gene, resulting in a glu542-to-lys (E542K) substitution that was present in affected tissues from multiple embryonic lineages with a mutant allele frequency ranging from 6 to 13%. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22658544" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>CLAPO Syndrome</em></strong></p><p>
In tissue from a lower lip capillary malformation (CM) from a 2-year-old female patient (P10) with CLAPO syndrome (<a href="/entry/613089">613089</a>), <a href="#38" class="mim-tip-reference" title="Rodriguez-Laguna, L., Ibanez, K., Gordo, G., Garcia-Minaur, S., Santos-Simarro, F., Agra, N., Vallespin, E., Fernandez-Montano, V. E., Martin-Arenas, R., del Pozo, A., Gonzalez-Pecellin, H., Mena, R., and 10 others. &lt;strong&gt;CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype.&lt;/strong&gt; Genet. Med. 20: 882-889, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29446767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29446767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/gim.2017.200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29446767">Rodriguez-Laguna et al. (2018)</a> identified a c.1624G-A transition (c.1624G-A, NM_006218.2) in the PIK3CA gene that resulted in a glu542-to-lys (E542K) mutation in the helical domain. The mutation was present at an allele frequency of 10% by deep sequencing, was present in 999 samples from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had been previously reported in 44 patients with vascular overgrowth disorders. Functional studies were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29446767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Cerebral Cavernous Malformations 4</em></strong></p><p>
In samples of cerebral cavernous malformations-4 (CCM4; <a href="/entry/619538">619538</a>) from 16 unrelated patients with sporadic occurrence of the disease, <a href="#34" class="mim-tip-reference" title="Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., Lerond, J., Marijon, P., Abi-Jaoude, S., Le Van, T., Labreche, K., Houlston, R., Faisant, M., Clemenceau, S., Boch, A.-L., Nouet, A., Carpentier, A., Boetto, J., Louvi, A., Kalamarides, M. &lt;strong&gt;Somatic PIK3CA mutations in sporadic cerebral cavernous malformations.&lt;/strong&gt; New Eng. J. Med. 385: 996-1004, 2021.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/34496175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;34496175&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=34496175[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa2100440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="34496175">Peyre et al. (2021)</a> identified a somatic E542K mutation in the PIK3CA gene. The mutation was found by targeted DNA sequencing. PIK3CA-mutant CCMs showed increased phosphorylation of myosin light chain and activation of the PI3K-AKT-mTOR pathway, consistent with an activating mutation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34496175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Hemifacial Myohyperplasia</em></strong></p><p>
In 2 patients (patients 3 and 4) with hemifacial myohyperplasia (HFMH; <a href="/entry/606773">606773</a>), <a href="#2" class="mim-tip-reference" title="Bayard, C., Segna, E., Taverne, M., Fraissenon, A., Hennocq, Q., Periou, B., Zerbib, L., Ladraa, S., Chapelle, C., Hoguin, C., Kaltenbach, S., Villarese, P., and 19 others. &lt;strong&gt;Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition.&lt;/strong&gt; J. Exp. Med. 220: e20230926, 2023.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/37712948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;37712948&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=37712948[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20230926&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="37712948">Bayard et al. (2023)</a> identified mosaicism for the E542K mutation in the PIK3CA gene. <a href="#2" class="mim-tip-reference" title="Bayard, C., Segna, E., Taverne, M., Fraissenon, A., Hennocq, Q., Periou, B., Zerbib, L., Ladraa, S., Chapelle, C., Hoguin, C., Kaltenbach, S., Villarese, P., and 19 others. &lt;strong&gt;Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition.&lt;/strong&gt; J. Exp. Med. 220: e20230926, 2023.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/37712948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;37712948&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=37712948[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20230926&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="37712948">Bayard et al. (2023)</a> performed genotyping on muscle biopsies from affected regions and found a mutation burden of 12% in patient 3 and 21% in patient 4. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=37712948" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0010" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0010&nbsp;CONGENITAL LIPOMATOUS OVERGROWTH, VASCULAR MALFORMATIONS, AND EPIDERMAL NEVI, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, CYS420ARG
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs121913272 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs121913272;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs121913272" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs121913272" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000024623 OR RCV000154512 OR RCV000201232 OR RCV000709694 OR RCV001327960 OR RCV001526612 OR RCV001705599 OR RCV002054475 OR RCV003588566 OR RCV004527297 OR RCV004668743" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000024623, RCV000154512, RCV000201232, RCV000709694, RCV001327960, RCV001526612, RCV001705599, RCV002054475, RCV003588566, RCV004527297, RCV004668743" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000024623...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>CLOVE Syndrome</em></strong></p><p>
In a 15-year-old male and an unrelated 18-year-old female with CLOVE syndrome (<a href="/entry/612918">612918</a>), <a href="#23" class="mim-tip-reference" title="Kurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., Warman, M. L. &lt;strong&gt;Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome.&lt;/strong&gt; Am. J. Hum. Genet. 90: 1108-1115, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22658544/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22658544&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22658544[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.05.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22658544">Kurek et al. (2012)</a> identified somatic mosaicism for a 1258T-C transition in the PIK3CA gene, resulting in a cys420-to-arg (C420R) substitution that was present in affected tissues from multiple embryonic lineages with a mutant allele frequency ranging from 3 to 30%. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22658544" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>CLAPO Syndrome</em></strong></p><p>
In tissue from a lymphatic malformation (LM) of oral mucosa from a 11-year-old female patient (P6) with CLAPO syndrome (<a href="/entry/613089">613089</a>), <a href="#38" class="mim-tip-reference" title="Rodriguez-Laguna, L., Ibanez, K., Gordo, G., Garcia-Minaur, S., Santos-Simarro, F., Agra, N., Vallespin, E., Fernandez-Montano, V. E., Martin-Arenas, R., del Pozo, A., Gonzalez-Pecellin, H., Mena, R., and 10 others. &lt;strong&gt;CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype.&lt;/strong&gt; Genet. Med. 20: 882-889, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29446767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29446767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/gim.2017.200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29446767">Rodriguez-Laguna et al. (2018)</a> detected a c.1258T-C transition in the PIK3CA gene that resulted in a cys420-to-arg (C420R) mutation in the C2 domain. The mutation was present at an allele frequency of 12% by deep sequencing, was present in 78 samples from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had been previously reported in 15 patients with vascular overgrowth disorders. Functional studies were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29446767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0011" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0011&nbsp;MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLY914ARG
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587776932 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587776932;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587776932" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587776932" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000032907 OR RCV000414672 OR RCV001327966 OR RCV001594376 OR RCV001836717 OR RCV001852661 OR RCV002254272 OR RCV002274888 OR RCV003233078 OR RCV004737167 OR RCV004798751 OR RCV004955261" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000032907, RCV000414672, RCV001327966, RCV001594376, RCV001836717, RCV001852661, RCV002254272, RCV002274888, RCV003233078, RCV004737167, RCV004798751, RCV004955261" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000032907...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p><a href="#36" class="mim-tip-reference" title="Riviere, J.-B., Mirzaa, G. M., O&#x27;Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others. &lt;strong&gt;De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.&lt;/strong&gt; Nature Genet. 44: 934-940, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729224&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729224[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2331&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729224">Riviere et al. (2012)</a> conducted exome sequencing in an individual with megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP; <a href="/entry/602501">602501</a>) and his parents and performed an analysis of de novo mutations in this trio by including the raw variants that did not meet their initial hard-filtering criteria. Using this approach, they identified a 2740G-A transition in the PIK3CA gene, resulting in a gly914-to-arg (G914R) substitution. The mutation was supported by 20 of 177 reads (11%) in the exome sequencing data and was confirmed to be de novo and mosaic by Sanger sequencing and a custom restriction enzyme assay. This patient (LR09-006) had previously been reported by <a href="#31" class="mim-tip-reference" title="Mirzaa, G. M., Conway, R. L., Gripp, K. W., Lerman-Sagie, T., Siegel, D. H., deVries, L. S., Lev, D., Kramer, N., Hopkins, E., Graham, J. M., Jr., Dobyns, W. B. &lt;strong&gt;Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis.&lt;/strong&gt; Am. J. Med. Genet. 158A: 269-291, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22228622/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22228622&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.a.34402&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22228622">Mirzaa et al. (2012)</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=22228622+22729224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0012" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0012&nbsp;MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, CYS378TYR
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs397514565 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs397514565;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs397514565" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs397514565" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000032908 OR RCV000201233 OR RCV000806643 OR RCV004532477" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000032908, RCV000201233, RCV000806643, RCV004532477" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000032908...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p><a href="#36" class="mim-tip-reference" title="Riviere, J.-B., Mirzaa, G. M., O&#x27;Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others. &lt;strong&gt;De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.&lt;/strong&gt; Nature Genet. 44: 934-940, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729224&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729224[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2331&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729224">Riviere et al. (2012)</a> performed standard variant calling in exomes from 7 individuals with megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP; <a href="/entry/602501">602501</a>) and identified a 1133G-A transition in the PIK3CA gene, resulting in a cys378-to-tyr (C378Y) substitution. The mutation was supported by 68 of 250 reads (27%) in 1 individual. This mutation showed variable levels of mosaicism depending on the tissue tested. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0013" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0013&nbsp;MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
HEMIFACIAL MYOHYPERPLASIA, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, HIS1047TYR
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs121913281 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs121913281;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs121913281" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs121913281" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000032909 OR RCV000038675 OR RCV000698423 OR RCV000763508 OR RCV001092441 OR RCV001705625 OR RCV002226661 OR RCV003233079 OR RCV003882732 OR RCV004698336 OR RCV004955262" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000032909, RCV000038675, RCV000698423, RCV000763508, RCV001092441, RCV001705625, RCV002226661, RCV003233079, RCV003882732, RCV004698336, RCV004955262" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000032909...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Megalencephaly-Capillary Malformation-Polymicrogyria Syndrome</em></strong></p><p>
In 2 individuals with megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP; <a href="/entry/602501">602501</a>), <a href="#36" class="mim-tip-reference" title="Riviere, J.-B., Mirzaa, G. M., O&#x27;Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others. &lt;strong&gt;De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.&lt;/strong&gt; Nature Genet. 44: 934-940, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729224&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729224[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2331&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729224">Riviere et al. (2012)</a> identified a de novo somatic mosaic 3139C-T transition in the PIK3CA gene, resulting in a his1047-to-tyr (H1047Y) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Hemifacial Myohyperplasia</em></strong></p><p>
In a patient (patient 2) with hemifacial myohyperplasia (HFMH; <a href="/entry/606773">606773</a>) <a href="#2" class="mim-tip-reference" title="Bayard, C., Segna, E., Taverne, M., Fraissenon, A., Hennocq, Q., Periou, B., Zerbib, L., Ladraa, S., Chapelle, C., Hoguin, C., Kaltenbach, S., Villarese, P., and 19 others. &lt;strong&gt;Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition.&lt;/strong&gt; J. Exp. Med. 220: e20230926, 2023.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/37712948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;37712948&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=37712948[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20230926&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="37712948">Bayard et al. (2023)</a> identified mosaicism for the H1047R mutation in the PIK3CA gene. <a href="#2" class="mim-tip-reference" title="Bayard, C., Segna, E., Taverne, M., Fraissenon, A., Hennocq, Q., Periou, B., Zerbib, L., Ladraa, S., Chapelle, C., Hoguin, C., Kaltenbach, S., Villarese, P., and 19 others. &lt;strong&gt;Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition.&lt;/strong&gt; J. Exp. Med. 220: e20230926, 2023.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/37712948/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;37712948&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=37712948[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20230926&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="37712948">Bayard et al. (2023)</a> performed genotyping on a muscle biopsy from an affected region and found a mutation burden of 25%. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=37712948" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0014" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0014&nbsp;MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLU453DEL
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587776933 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587776933;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587776933" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587776933" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000032910 OR RCV000598753 OR RCV003588567" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000032910, RCV000598753, RCV003588567" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000032910...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient (LR11-153) with megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP; <a href="/entry/602501">602501</a>), <a href="#36" class="mim-tip-reference" title="Riviere, J.-B., Mirzaa, G. M., O&#x27;Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others. &lt;strong&gt;De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.&lt;/strong&gt; Nature Genet. 44: 934-940, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22729224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22729224&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22729224[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2331&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22729224">Riviere et al. (2012)</a> identified a de novo somatic mosaic glu453-to-del (E453X) mutation in the PIK3CA gene. The same somatic mutation was also found in a patient (LR05-204) who was diagnosed with the overlapping megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH; see <a href="/entry/603387">603387</a>), although this patient did not have polydactyly. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0015" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0015&nbsp;COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLY118ASP
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587777790 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587777790;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587777790" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587777790" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000144506 OR RCV001726000 OR RCV001849317 OR RCV002254279 OR RCV002512561 OR RCV004719712" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000144506, RCV001726000, RCV001849317, RCV002254279, RCV002512561, RCV004719712" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000144506...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 32-year-old man with Cowden syndrome (CWS5; <a href="/entry/615108">615108</a>), <a href="#33" class="mim-tip-reference" title="Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C. &lt;strong&gt;Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.&lt;/strong&gt; Am. J. Hum. Genet. 92: 76-80, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23246288/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23246288&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23246288[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.10.021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23246288">Orloff et al. (2013)</a> identified heterozygosity for a G-to-A transition at nucleotide 353 in exon 2 of the PIK3CA gene, resulting in a glycine-to-aspartic acid substitution at codon 118 (G118D). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23246288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0016" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0016&nbsp;COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLU135LYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587777791 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587777791;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587777791" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587777791" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000144507" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000144507" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000144507</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 54-year-old woman with Cowden syndrome (CWS5; <a href="/entry/615108">615108</a>), <a href="#33" class="mim-tip-reference" title="Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C. &lt;strong&gt;Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.&lt;/strong&gt; Am. J. Hum. Genet. 92: 76-80, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23246288/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23246288&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23246288[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.10.021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23246288">Orloff et al. (2013)</a> identified heterozygosity for a G-to-A transition at nucleotide 403 in exon 2 of the PIK3CA gene, resulting in a glutamic acid-to-lysine substitution at codon 135 (E135K). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23246288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0017" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0017&nbsp;COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLU218LYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587777792 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587777792;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587777792" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587777792" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000144508" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000144508" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000144508</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 44-year-old female with Cowden syndrome (CWS5; <a href="/entry/615108">615108</a>), <a href="#33" class="mim-tip-reference" title="Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C. &lt;strong&gt;Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.&lt;/strong&gt; Am. J. Hum. Genet. 92: 76-80, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23246288/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23246288&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23246288[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.10.021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23246288">Orloff et al. (2013)</a> identified heterozygosity for a G-to-A transition at nucleotide 652 in exon 3 of the PIK3CA gene, resulting in a glutamic acid-to-lysine substitution at codon 218 (E218K). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23246288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0018" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0018&nbsp;COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, VAL356ILE
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587777793 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587777793;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587777793" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587777793" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000144509" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000144509" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000144509</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 35-year-old female with Cowden syndrome (CWS5; <a href="/entry/615108">615108</a>), <a href="#33" class="mim-tip-reference" title="Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C. &lt;strong&gt;Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.&lt;/strong&gt; Am. J. Hum. Genet. 92: 76-80, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23246288/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23246288&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23246288[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.10.021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23246288">Orloff et al. (2013)</a> identified heterozygosity for a G-to-A transition at nucleotide 1066 in exon 5 of the PIK3CA gene, resulting in a valine-to-isoleucine substitution at codon 356 (V356I). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23246288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0019" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0019&nbsp;COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, ARG382LYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587777794 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587777794;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587777794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587777794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000144510 OR RCV000782194" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000144510, RCV000782194" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000144510...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 47-year-old male with Cowden syndrome (CWS5; <a href="/entry/615108">615108</a>), <a href="#33" class="mim-tip-reference" title="Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C. &lt;strong&gt;Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.&lt;/strong&gt; Am. J. Hum. Genet. 92: 76-80, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23246288/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23246288&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23246288[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.10.021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23246288">Orloff et al. (2013)</a> identified heterozygosity for a G-to-A transition at nucleotide 1145 in exon 5 of the PIK3CA gene, resulting in an arginine-to-lysine substitution at codon 382 (R382K). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23246288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0020" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0020&nbsp;COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, GLU545ALA AND 2-BP DEL/1-BP INS, NT1658
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587777795 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587777795;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587777795" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587777795" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000014643 OR RCV000144511 OR RCV000154515 OR RCV001327964" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000014643, RCV000144511, RCV000154515, RCV001327964" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000014643...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 71-year-old female with Cowden syndrome (CWS5; <a href="/entry/615108">615108</a>), <a href="#33" class="mim-tip-reference" title="Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C. &lt;strong&gt;Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.&lt;/strong&gt; Am. J. Hum. Genet. 92: 76-80, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23246288/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23246288&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23246288[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.10.021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23246288">Orloff et al. (2013)</a> found heterozygosity for 2 mutations in exon 9 of the PIK3CA gene in cis: an A-to-C transversion at nucleotide 1634, resulting in a glutamine-to-alanine substitution at codon 545 (E545A); and a deletion of GT with insertion of a C (1658_1659delGTinsC) resulting in a serine-to-threonine substitution at codon 553, followed by a frameshift in termination codon 7 amino acids later (Ser553ThrfsTer7). This mutation was also identified in a 27-year-old female with Cowden syndrome. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23246288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0021" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0021&nbsp;COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, LEU632TER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587777796 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587777796;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587777796" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587777796" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000144512" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000144512" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000144512</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 59-year-old male with Cowden syndrome (CWS5; <a href="/entry/615108">615108</a>), <a href="#33" class="mim-tip-reference" title="Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C. &lt;strong&gt;Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.&lt;/strong&gt; Am. J. Hum. Genet. 92: 76-80, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23246288/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23246288&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23246288[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.10.021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23246288">Orloff et al. (2013)</a> identified heterozygosity for a T-to-G transversion at nucleotide 1895 in exon 11 of the PIK3CA gene, resulting in a leucine-to-termination substitution at codon 632 (L632X). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23246288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0022" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0022&nbsp;MACRODACTYLY, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, ARG115PRO
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs200018596 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs200018596;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs200018596" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs200018596" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000709695 OR RCV000709696 OR RCV001526501 OR RCV002280185 OR RCV003458229" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000709695, RCV000709696, RCV001526501, RCV002280185, RCV003458229" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000709695...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Macrodactyly</em></strong></p><p>
In nerve tissue from a macrodactylous digit from a 5-year-old girl with macrodactyly (<a href="/entry/155500">155500</a>), <a href="#35" class="mim-tip-reference" title="Rios, J. J., Paria, N., Burns, D. K., Israel, B. A., Cornelia, R., Wise, C. A., Ezaki, M. &lt;strong&gt;Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.&lt;/strong&gt; Hum. Molec. Genet. 22: 444-451, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23100325/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23100325&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23100325[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/dds440&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23100325">Rios et al. (2013)</a> detected a G-to-C transversion in exon 2 of the PIK3CA gene that resulted in an arginine-to-proline substitution at codon 115 (R115P). The mutation lies in a linker sequence between the adapter-binding and RAS-binding domains of the protein. The mutation was present at an allele frequency of 28% in the nerve exome and absent from the germline exome, and was not found in the Exome Variant Server database. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23100325" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>CLAPO Syndrome</em></strong></p><p>
<a href="#38" class="mim-tip-reference" title="Rodriguez-Laguna, L., Ibanez, K., Gordo, G., Garcia-Minaur, S., Santos-Simarro, F., Agra, N., Vallespin, E., Fernandez-Montano, V. E., Martin-Arenas, R., del Pozo, A., Gonzalez-Pecellin, H., Mena, R., and 10 others. &lt;strong&gt;CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype.&lt;/strong&gt; Genet. Med. 20: 882-889, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29446767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29446767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/gim.2017.200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29446767">Rodriguez-Laguna et al. (2018)</a> detected the R115P mutation in capillary malformation (CM) tissue from 2 patients (P1 and P9) with CLAPO syndrome (<a href="/entry/613089">613089</a>). In P1 the mutation was present at an allele frequency of 12% and in P9 at an allele frequency of 16% in affected tissue. The mutation was present in 1 sample from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had been previously reported in 6 patients with vascular overgrowth disorders. Functional studies were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29446767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0023" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0023&nbsp;CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
PIK3CA, PHE83SER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1560137208 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1560137208;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1560137208" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1560137208" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000709697" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000709697" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000709697</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In skin tissue with a capillary malformation (CM) from a 17-year-old female patient (P2) with CLAPO syndrome (<a href="/entry/613089">613089</a>), <a href="#38" class="mim-tip-reference" title="Rodriguez-Laguna, L., Ibanez, K., Gordo, G., Garcia-Minaur, S., Santos-Simarro, F., Agra, N., Vallespin, E., Fernandez-Montano, V. E., Martin-Arenas, R., del Pozo, A., Gonzalez-Pecellin, H., Mena, R., and 10 others. &lt;strong&gt;CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype.&lt;/strong&gt; Genet. Med. 20: 882-889, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29446767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29446767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/gim.2017.200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29446767">Rodriguez-Laguna et al. (2018)</a> identified a c.248T-C transition (c.248T-C, NM_006218.2) in the PIK3CA gene that resulted in a phe83-to-ser (F83S) substitution in the adapter-binding domain of the PIC3CA gene. This mutation was present at an allele frequency of 11% in affected tissue by deep sequencing, was present in 3 samples from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had not been previously reported in patients with vascular overgrowth disorders. Functional studies were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29446767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Bader2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bader, A. G., Kang, S., Vogt, P. K.
<strong>Cancer-specific mutations in PIK3CA are oncogenic in vivo.</strong>
Proc. Nat. Acad. Sci. 103: 1475-1479, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16432179/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16432179</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16432179[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16432179" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0510857103" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Bayard2023" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bayard, C., Segna, E., Taverne, M., Fraissenon, A., Hennocq, Q., Periou, B., Zerbib, L., Ladraa, S., Chapelle, C., Hoguin, C., Kaltenbach, S., Villarese, P., and 19 others.
<strong>Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition.</strong>
J. Exp. Med. 220: e20230926, 2023.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/37712948/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">37712948</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=37712948[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=37712948" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1084/jem.20230926" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Broderick2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Broderick, D. K., Di, C., Parrett, T. J., Samuels, Y. R., Cummins, J. M., McLendon, R. E., Fults, D. W., Velculescu, V. E., Bigner, D. D., Yan, H.
<strong>Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas.</strong>
Cancer Res. 64: 5048-5050, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15289301/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15289301</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15289301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1158/0008-5472.CAN-04-1170" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Campbell2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Campbell, I. G., Russell, S. E., Choong, D. Y. H., Montgomery, K. G., Ciavarella, M. L., Hooi, C. S. F., Cristiano, B. E., Pearson, R. B., Phillips, W. A.
<strong>Mutation of the PIK3CA gene in ovarian and breast cancer.</strong>
Cancer Res. 64: 7678-7681, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15520168/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15520168</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15520168" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1158/0008-5472.CAN-04-2933" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Drakas2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Drakas, R., Tu, X., Baserga, R.
<strong>Control of cell size through phosphorylation of upstream binding factor 1 by nuclear phosphatidylinositol 3-kinase.</strong>
Proc. Nat. Acad. Sci. 101: 9272-9276, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15197263/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15197263</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15197263[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15197263" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0403328101" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Foukas2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Foukas, L. C., Claret, M., Pearce, W., Okkenhaug, K., Meek, S., Peskett, E., Sancho, S., Smith, A. J. H., Withers, D. J., Vanhaesebroeck, B.
<strong>Critical role for the p110-alpha phosphoinositide-3-OH kinase in growth and metabolic regulation.</strong>
Nature 441: 366-370, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16625210/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16625210</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16625210" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature04694" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Furnari1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Furnari, F. B., Huang, H. J., Cavenee, W. K.
<strong>The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells.</strong>
Cancer Res. 58: 5002-5008, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9823298/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9823298</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9823298" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Garcia-Rostan2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Garcia-Rostan, G., Costa, A. M., Pereira-Castro, I., Salvatore, G., Hernandez, R., Hermsem, M. J. A., Herrero, A., Fusco, A., Cameselle-Teijeiro, J., Santoro, M.
<strong>Mutation of the PIK3CA gene in anaplastic thyroid cancer.</strong>
Cancer Res. 65: 10199-10207, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16288007/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16288007</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16288007" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1158/0008-5472.CAN-04-4259" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Graupera2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Graupera, M., Guillermet-Guibert, J., Foukas, L. C., Phng, L.-K., Cain, R. J., Salpekar, A., Pearce, W., Meek, S., Millan, J., Cutillas, P. R., Smith, A. J. H., Ridley, A. J., Ruhrberg, C., Gerhardt, H., Vanhaesebroeck, B.
<strong>Angiogenesis selectively requires the p110-alpha isoform of PI3K to control endothelial cell migration.</strong>
Nature 453: 662-666, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18449193/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18449193</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18449193" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature06892" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Gupta2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gupta, S., Ramjaun, A. R., Haiko, P., Wang, Y., Warne, P. H., Nicke, B., Nye, E., Stamp, G., Alitalo, K., Downward, J.
<strong>Binding of Ras to phosphoinositide 3-kinase p110-alpha is required for Ras-driven tumorigenesis in mice.</strong>
Cell 129: 957-968, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17540175/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17540175</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17540175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.cell.2007.03.051" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Gustin2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gustin, J. P., Karakas, B., Weiss, M. B., Abukhdeir, A. M., Lauring, J., Garay, J. P., Cosgrove, D., Tamaki, A., Konishi, H., Konishi, Y., Mohseni, M., Wang, G., Rosen, D. M., Denmeade, S. R., Higgins, M. J., Vitolo, M. I., Bachman, K. E., Park, B. H.
<strong>Knockin of mutant PIK3CA activates multiple oncogenic pathways.</strong>
Proc. Nat. Acad. Sci. 106: 2835-2840, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19196980/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19196980</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19196980[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19196980" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0813351106" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Gymnopoulos2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gymnopoulos, M., Elsliger, M.-A., Vogt, P. K.
<strong>Rare cancer-specific mutations in PIK3CA show gain of function.</strong>
Proc. Nat. Acad. Sci. 104: 5569-5574, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17376864/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17376864</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17376864[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17376864" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0701005104" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Hafner2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hafner, C., Lopez-Knowles, E., Luis, N. M., Toll, A., Baselga, E., Fernandez-Casado, A., Hernandez, S., Ribe, A., Mentzel, T., Stoehr, R., Hofstaedter, F., Landthaler, M., Vogt, T., Pujol, R. M., Hartmann, A., Real, F. X.
<strong>Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern.</strong>
Proc. Nat. Acad. Sci. 104: 13450-13454, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17673550/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17673550</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17673550[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17673550" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0705218104" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Hiles1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz-Larrea, F., Thompson, A., Totty, N. F., Hsuan, J. J., Courtneidge, S. A., Parker, P. J., Waterfield, M. D.
<strong>Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit.</strong>
Cell 70: 419-429, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1322797/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1322797</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1322797" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0092-8674(92)90166-a" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Hong2021" class="mim-anchor"></a>
<div class="mim-changed mim-change">
<p class="mim-text-font">
Hong, T., Xiao, X., Ren, J., Cui, B., Zong, Y., Zou, J., Kou, Z., Jiang, N., Meng, G., Zeng, G., Shan, Y., Wu, H., and 12 others.
<strong>Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations.</strong>
Brain 144: 2648-2658, 2021.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/33729480/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">33729480</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=33729480" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/brain/awab117" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Huang2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Huang, C.-H., Mandelker, D., Schmidt-Kittler, O., Samuels, Y., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., Gabelli, S. B., Amzel, L. M.
<strong>The structure of a human p110-alpha/p85-alpha complex elucidates the effects of oncogenic PI3K-alpha mutations.</strong>
Science 318: 1744-1748, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18079394/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18079394</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18079394" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1150799" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Irarrazabal2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Irarrazabal, C. E., Burg, M. B., Ward, S. G., Ferraris, J. D.
<strong>Phosphatidylinositol 3-kinase mediates activation of ATM by high NaCl and by ionizing radiation: role in osmoprotective transcriptional regulation.</strong>
Proc. Nat. Acad. Sci. 103: 8882-8887, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16728507/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16728507</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16728507[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16728507" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0602911103" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Kalaany2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kalaany, N. Y., Sabatini, D. M.
<strong>Tumours with PI3K activation are resistant to dietary restriction.</strong>
Nature 458: 725-731, 2009. Note: Erratum: Nature 581: E2, 2020.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19279572/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19279572</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19279572[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19279572" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature07782" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Karakas2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Karakas, B., Bachman, K. E., Park, B. H.
<strong>Mutation of the PIK3CA oncogene in human cancers.</strong>
Brit. J. Cancer 94: 455-459, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16449998/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16449998</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16449998" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.bjc.6602970" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Knight2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Knight, Z. A., Gonzalez, B., Feldman, M. E., Zunder, E. R., Goldenberg, D. D., Williams, O., Loewith, R., Stokoe, D., Balla, A., Toth, B., Balla, T., Weiss, W. A., Williams, R. L., Shokat, K. M.
<strong>A pharmacological map of the PI3-K family defines a role for p110-alpha in insulin signaling.</strong>
Cell 125: 733-747, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16647110/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16647110</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16647110[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16647110" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.cell.2006.03.035" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Knuutila1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Knuutila, S., Bjorkqvist, A. M., Autio, K., Tarkkanen, M., Wolf, M., Monni, O., Szymanska, J., Larramendy, M. L., Tapper, J., Pere, H., El-Rifai, W., Hemmer, S., Wasenius, V. M., Vidgren, V., Zhu, Y.
<strong>DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies.</strong>
Am. J. Path. 152: 1107-1123, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9588877/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9588877</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9588877" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Koren2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Koren, S., Reavie, L., Couto, J. P., De Silva, D., Stadler, M. B., Roloff, T., Britschgi, A., Eichlisberger, T., Kohler, H., Aina, O., Cardiff, R. D., Bentires-Alj, M.
<strong>PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumors.</strong>
Nature 525: 114-118, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/26266975/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">26266975</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26266975" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature14669" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Kurek2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., Warman, M. L.
<strong>Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome.</strong>
Am. J. Hum. Genet. 90: 1108-1115, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22658544/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22658544</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22658544[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22658544" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2012.05.006" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Lee2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., Bafna, V., Hill, K. J., Collazo, A., Funari, V., Russ, C., Gabriel, S. B., Mathern, G. W., Gleeson, J. G.
<strong>De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly.</strong>
Nature Genet. 44: 941-945, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22729223/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22729223</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22729223[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729223" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.2329" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Lee2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lee, J. W., Soung, Y. H., Kim, S. Y., Lee, H. W., Park, W. S., Nam, S. W., Kim, S. H., Lee, J. Y., Yoo, N. J., Lee, S. H.
<strong>PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.</strong>
Oncogene 24: 1477-1480, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15608678/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15608678</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15608678" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.onc.1208304" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="26" class="mim-anchor"></a>
<a id="Lindhurst2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lindhurst, M. J., Parker, V. E. R., Payne, F., Sapp, J. C., Rudge, S., Harris, J., Witkowski, A. M., Zhang, Q., Groeneveld, M. P., Scott, C. E., Daly, A., Huson, S. M., and 14 others.
<strong>Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA.</strong>
Nature Genet. 44: 928-933, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22729222/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22729222</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22729222[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729222" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.2332" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="27" class="mim-anchor"></a>
<a id="Liu2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Liu, Z., Hou, P., Ji, M., H., Studeman, K., Jensen, K, Vasko, V., El-Naggar, A. K., Xing, M.
<strong>Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers.</strong>
J. Clin. Endocr. Metab. 93: 3106-3116, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18492751/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18492751</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18492751" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jc.2008-0273" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="28" class="mim-anchor"></a>
<a id="Loi2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Loi, S., Haibe-Kains, B., Majjaj, S., Lallemand, F., Durbecq, V., Larsimont, D., Gonzalez-Angulo, A. M., Pusztai, L., Symmans, W. F., Bardelli, A., Ellis, P., Tutt, A. N. J., Gillett, C. E., Hennessy, B. T., Mills, G. B., Phillips, W. A., Piccart, M. J., Speed, T. P., McArthur, G. A., Sotiriou, C.
<strong>PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer.</strong>
Proc. Nat. Acad. Sci. 107: 10208-10213, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20479250/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20479250</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20479250[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20479250" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0907011107" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="29" class="mim-anchor"></a>
<a id="Ma2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ma, Y.-Y., Wei, S.-J., Lin, Y.-C., Lung, J.-C., Chang, T.-C., Whang-Peng, J., Liu, J. M., Yang, D.-M., Yang, W. K., Shen, C.-Y.
<strong>PIK3CA as an oncogene in cervical cancer.</strong>
Oncogene 19: 2739-2744, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10851074/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10851074</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10851074" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.onc.1203597" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="30" class="mim-anchor"></a>
<a id="Miled2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Miled, N., Yan, Y., Hon, W.-C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson, H. J., Backer, J. M., Williams, R. L.
<strong>Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit.</strong>
Science 317: 239-242, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17626883/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17626883</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17626883" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1135394" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="31" class="mim-anchor"></a>
<a id="Mirzaa2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mirzaa, G. M., Conway, R. L., Gripp, K. W., Lerman-Sagie, T., Siegel, D. H., deVries, L. S., Lev, D., Kramer, N., Hopkins, E., Graham, J. M., Jr., Dobyns, W. B.
<strong>Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis.</strong>
Am. J. Med. Genet. 158A: 269-291, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22228622/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22228622</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22228622" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.a.34402" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="32" class="mim-anchor"></a>
<a id="Niswender2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Niswender, K. D., Morton, G. J., Stearns, W. H., Rhodes, C. J., Myers, M. G., Jr., Schwartz, M. W.
<strong>Key enzyme in leptin-induced anorexia.</strong>
Nature 413: 794-795, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11677594/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11677594</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11677594" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/35101657" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="33" class="mim-anchor"></a>
<a id="Orloff2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C.
<strong>Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.</strong>
Am. J. Hum. Genet. 92: 76-80, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23246288/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23246288</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=23246288[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23246288" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2012.10.021" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="34" class="mim-anchor"></a>
<a id="Peyre2021" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., Lerond, J., Marijon, P., Abi-Jaoude, S., Le Van, T., Labreche, K., Houlston, R., Faisant, M., Clemenceau, S., Boch, A.-L., Nouet, A., Carpentier, A., Boetto, J., Louvi, A., Kalamarides, M.
<strong>Somatic PIK3CA mutations in sporadic cerebral cavernous malformations.</strong>
New Eng. J. Med. 385: 996-1004, 2021.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/34496175/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">34496175</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=34496175[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=34496175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa2100440" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="35" class="mim-anchor"></a>
<a id="Rios2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rios, J. J., Paria, N., Burns, D. K., Israel, B. A., Cornelia, R., Wise, C. A., Ezaki, M.
<strong>Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.</strong>
Hum. Molec. Genet. 22: 444-451, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23100325/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23100325</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=23100325[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23100325" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/dds440" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="36" class="mim-anchor"></a>
<a id="Riviere2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Riviere, J.-B., Mirzaa, G. M., O'Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others.
<strong>De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.</strong>
Nature Genet. 44: 934-940, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22729224/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22729224</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22729224[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22729224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.2331" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="37" class="mim-anchor"></a>
<a id="Robinson2017" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Robinson, D. R., Wu, Y.-M., Lonigro, R. J., Vats, P., Cobain, E., Everett, J., Cao, X., Rabban, E., Kumar-Sinha, C., Raymond, V., Schuetze, S., Alva, A., and 21 others.
<strong>Integrative clinical genomics of metastatic cancer.</strong>
Nature 548: 297-303, 2017.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/28783718/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">28783718</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=28783718[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28783718" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature23306" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="38" class="mim-anchor"></a>
<a id="Rodriguez-Laguna2018" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Rodriguez-Laguna, L., Ibanez, K., Gordo, G., Garcia-Minaur, S., Santos-Simarro, F., Agra, N., Vallespin, E., Fernandez-Montano, V. E., Martin-Arenas, R., del Pozo, A., Gonzalez-Pecellin, H., Mena, R., and 10 others.
<strong>CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype.</strong>
Genet. Med. 20: 882-889, 2018.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/29446767/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">29446767</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29446767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/gim.2017.200" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="39" class="mim-anchor"></a>
<a id="Samuels2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., Velculescu, V. E.
<strong>High frequency of mutations of the PIK3CA gene in human cancers.</strong>
Science 304: 554 only, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15016963/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15016963</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15016963" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1096502" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="40" class="mim-anchor"></a>
<a id="Shayesteh1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shayesteh, L., Lu, Y., Kuo, W.-L., Baldocchi, R., Godfrey, T., Collins, C., Pinkel, D., Powell, B., Mills, G. B., Gray, J. W.
<strong>PIK3CA is implicated as an oncogene in ovarian cancer.</strong>
Nature Genet. 21: 99-102, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9916799/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9916799</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9916799" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/5042" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="41" class="mim-anchor"></a>
<a id="Shi2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shi, S.-H., Jan, L. Y., Jan, Y.-N.
<strong>Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity.</strong>
Cell 112: 63-75, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12526794/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12526794</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12526794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(02)01249-7" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="42" class="mim-anchor"></a>
<a id="Soler2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Soler, A., Serra, H., Pearce, W., Angulo, A., Guillermet-Guibert, J., Friedman, L. S., Vinals, F., Gerhardt, H., Casanovas, O., Graupera, M., Vanhaesebroeck, B.
<strong>Inhibition of the p110-alpha isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis.</strong>
J. Exp. Med. 210: 1937-1945, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/24043760/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">24043760</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=24043760[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24043760" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1084/jem.20121571" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="43" class="mim-anchor"></a>
<a id="Toska2017" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Toska, E., Osmanbeyoglu, H. U., Castel, P., Chan, C., Hendrickson, R. C., Elkabets, M., Dickler, M. N., Scaltriti, M., Leslie, C. S., Armstrong, S. A., Baselga, J.
<strong>PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D.</strong>
Science 355: 1324-1330, 2017. Note: Erratum: Science 363: eaaw7574, 2019. Electronic Article.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/28336670/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">28336670</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=28336670[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28336670" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.aah6893" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="44" class="mim-anchor"></a>
<a id="Van Keymeulen2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Van Keymeulen, A., Lee, M. Y., Ousset, M., Brohee, S., Rorive, S., Giraddi, R. R., Wuidart, A., Bouvencourt, G., Dubois, C., Salmon, I., Sotiriou, C., Phillips, W. A., Blanpain, C.
<strong>Reactivation of multipotency by oncogenic PIK3CA induces breast tumor heterogeneity.</strong>
Nature 525: 119-123, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/26266985/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">26266985</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26266985" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature14665" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="45" class="mim-anchor"></a>
<a id="Vasan2019" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Vasan, N., Razavi, P., Johnson, J. L., Shao, H., Shah, H., Antoine, A., Ladewig, E., Gorelick, A., Lin, T.-Y., Toska, E., Xu, G., Kazmi, A., and 15 others.
<strong>Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3K-alpha inhibitors.</strong>
Science 366: 714-723, 2019.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/31699932/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">31699932</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=31699932[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31699932" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.aaw9032" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="46" class="mim-anchor"></a>
<a id="Venot2018" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Venot, Q., Blanc, T., Rabia, S. H., Berteloot, L., Ladraa, S., Duong, J.-P., Blanc, E., Johnson, SC., Hoguin, C., Boccara, O., Sarnacki, S., Boddaert, N., and 24 others.
<strong>Targeted therapy in patients with PIK3CA-related overgrowth syndrome.</strong>
Nature 558: 540-546, 2018. Note: Erratum: Nature 568: E6, 2019.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/29899452/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">29899452</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=29899452[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29899452" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/s41586-018-0217-9" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="47" class="mim-anchor"></a>
<a id="Volinia1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Volinia, S., Hiles, I., Ormondroyd, E., Nizetic, D., Antonacci, R., Rocchi, M., Waterfield, M. D.
<strong>Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110-alpha (PIK3CA) gene.</strong>
Genomics 24: 472-477, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7713498/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7713498</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7713498" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1006/geno.1994.1655" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="48" class="mim-anchor"></a>
<a id="Weigelt2011" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Weigelt, B., Warne, P. H., Downward, J.
<strong>PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs.</strong>
Oncogene 30: 3222-3233, 2011.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21358673/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21358673</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21358673" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/onc.2011.42" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="49" class="mim-anchor"></a>
<a id="Weng2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Weng, L.-P., Brown, J. L., Eng, C.
<strong>PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and -independent pathways.</strong>
Hum. Molec. Genet. 10: 237-242, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11159942/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11159942</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11159942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/10.3.237" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="50" class="mim-anchor"></a>
<a id="Whyte2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Whyte, D. B., Holbeck, S. L.
<strong>Correlation of PIK3Ca mutations with gene expression and drug sensitivity in NCI-60 cell lines.</strong>
Biochem. Biophys. Res. Commun. 340: 469-475, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16376301/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16376301</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16376301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.bbrc.2005.12.025" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="51" class="mim-anchor"></a>
<a id="Wu2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wu, G., Mambo, E., Guo, Z., Hu, S., Huang, X., Gollin, S. M., Trink, B., Ladenson, P. W., Sidransky, D., Xing, M.
<strong>Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors.</strong>
J. Clin. Endocr. Metab. 90: 4688-4693, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15928251/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15928251</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15928251" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jc.2004-2281" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="52" class="mim-anchor"></a>
<a id="Yu2020" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yu, K., Lin, C.-C. J., Hatcher, A., Lozzi, B., Kong, K., Huang-Hobbs, E., Cheng, Y.-T., Beechar, V. B., Zhu, W., Zhang, Y., Chen, F., Mills, G. B., Mohila, C. A., Creighton, C. J., Noebels, J. L., Scott, K. L., Deneen, B.
<strong>PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis.</strong>
Nature 578: 166-171, 2020.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/31996845/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">31996845</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=31996845[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31996845" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/s41586-020-1952-2" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Hilary J. Vernon - updated : 12/20/2024
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Hilary J. Vernon - updated : 02/23/2024<br>Cassandra L. Kniffin - updated : 09/27/2021<br>Ada Hamosh - updated : 06/29/2020<br>Ada Hamosh - updated : 12/10/2019<br>Ada Hamosh - updated : 10/09/2018<br>Ada Hamosh - updated : 08/03/2018<br>Ada Hamosh - updated : 01/29/2018<br>Ada Hamosh - updated : 08/10/2017<br>Ada Hamosh - updated : 02/22/2016<br>Paul J. Converse - updated : 6/18/2014<br>Cassandra L. Kniffin - updated : 5/20/2013<br>Ada Hamosh - updated : 3/1/2013<br>Nara Sobreira - updated : 11/15/2012<br>Marla J. F. O'Neill - updated : 7/2/2012<br>John A. Phillips, III - updated : 5/7/2009<br>Ada Hamosh - updated : 4/28/2009<br>Paul J. Converse - updated : 3/5/2009<br>Patricia A. Hartz - updated : 1/14/2009<br>Ada Hamosh - updated : 7/11/2008<br>Ada Hamosh - updated : 1/24/2008<br>Cassandra L. Kniffin - updated : 11/13/2007<br>Ada Hamosh - updated : 7/31/2007<br>Marla J. F. O'Neill - updated : 5/3/2007<br>John A. Phillips, III - updated : 8/23/2006<br>Patricia A. Hartz - updated : 7/12/2006<br>Cassandra L. Kniffin - updated : 6/19/2006<br>Ada Hamosh - updated : 6/1/2006<br>Marla J. F. O'Neill - updated : 3/16/2006<br>Marla J. F. O'Neill - updated : 2/24/2006<br>Victor A. McKusick - updated : 1/25/2005<br>Marla J. F. O'Neill - updated : 10/29/2004<br>Victor A. McKusick - updated : 10/20/2004<br>Patricia A. Hartz - updated : 8/31/2004<br>Ada Hamosh - updated : 4/30/2004<br>Stylianos E. Antonarakis - updated : 1/15/2003<br>George E. Tiller - updated : 4/18/2001<br>Victor A. McKusick - updated : 8/21/2000<br>Victor A. McKusick - updated : 12/22/1998
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 10/15/1992
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 12/20/2024
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 02/26/2024<br>carol : 02/23/2024<br>alopez : 10/05/2021<br>ckniffin : 09/27/2021<br>carol : 08/28/2020<br>alopez : 06/29/2020<br>alopez : 12/10/2019<br>alopez : 05/17/2019<br>alopez : 03/27/2019<br>alopez : 10/10/2018<br>alopez : 10/09/2018<br>alopez : 10/09/2018<br>alopez : 10/09/2018<br>alopez : 08/03/2018<br>alopez : 01/29/2018<br>alopez : 08/10/2017<br>carol : 04/13/2017<br>alopez : 02/22/2016<br>alopez : 10/10/2014<br>alopez : 8/19/2014<br>ckniffin : 8/12/2014<br>mgross : 6/27/2014<br>mcolton : 6/18/2014<br>mgross : 11/6/2013<br>carol : 5/28/2013<br>ckniffin : 5/20/2013<br>alopez : 3/1/2013<br>carol : 11/21/2012<br>carol : 11/21/2012<br>carol : 11/21/2012<br>terry : 11/15/2012<br>carol : 10/22/2012<br>carol : 7/3/2012<br>terry : 7/2/2012<br>terry : 11/3/2010<br>alopez : 5/7/2009<br>alopez : 5/5/2009<br>terry : 4/28/2009<br>terry : 4/28/2009<br>mgross : 3/5/2009<br>terry : 3/5/2009<br>carol : 2/6/2009<br>ckniffin : 1/30/2009<br>mgross : 1/14/2009<br>wwang : 10/23/2008<br>ckniffin : 10/13/2008<br>alopez : 7/15/2008<br>terry : 7/11/2008<br>alopez : 2/4/2008<br>terry : 1/24/2008<br>wwang : 11/27/2007<br>ckniffin : 11/13/2007<br>alopez : 8/3/2007<br>terry : 7/31/2007<br>wwang : 5/21/2007<br>terry : 5/3/2007<br>alopez : 8/23/2006<br>mgross : 7/12/2006<br>wwang : 6/23/2006<br>ckniffin : 6/19/2006<br>ckniffin : 6/19/2006<br>alopez : 6/5/2006<br>alopez : 6/2/2006<br>terry : 6/1/2006<br>wwang : 3/22/2006<br>terry : 3/16/2006<br>wwang : 2/24/2006<br>tkritzer : 2/11/2005<br>terry : 1/25/2005<br>carol : 10/29/2004<br>tkritzer : 10/21/2004<br>terry : 10/20/2004<br>mgross : 8/31/2004<br>alopez : 4/30/2004<br>terry : 4/30/2004<br>mgross : 1/15/2003<br>cwells : 10/24/2001<br>cwells : 10/24/2001<br>terry : 10/23/2001<br>cwells : 5/3/2001<br>cwells : 4/26/2001<br>cwells : 4/20/2001<br>cwells : 4/18/2001<br>carol : 8/25/2000<br>carol : 8/21/2000<br>terry : 8/21/2000<br>carol : 11/16/1999<br>mgross : 3/17/1999<br>alopez : 1/5/1999<br>alopez : 12/22/1998<br>terry : 12/22/1998<br>psherman : 6/29/1998<br>mark : 4/29/1996<br>carol : 1/25/1995<br>carol : 10/15/1992
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>*</strong> 171834
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
PHOSPHATIDYLINOSITOL 3-KINASE, CATALYTIC, ALPHA; PIK3CA
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
PHOSPHATIDYLINOSITOL 3-KINASE, CATALYTIC, 110-KD, ALPHA<br />
p110-ALPHA<br />
PI3K-ALPHA<br />
PIK3-ALPHA
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: PIK3CA</em></strong>
</span>
</p>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: 3q26.32
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : 3:179,148,126-179,240,093 </span>
</em>
</strong>
<span class="small">(from NCBI)</span>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="15">
<span class="mim-font">
3q26.32
</span>
</td>
<td>
<span class="mim-font">
Breast cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
114480
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Cerebral cavernous malformations 4, somatic
</span>
</td>
<td>
<span class="mim-font">
619538
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
CLAPO syndrome, somatic
</span>
</td>
<td>
<span class="mim-font">
613089
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
CLOVE syndrome, somatic
</span>
</td>
<td>
<span class="mim-font">
612918
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Colorectal cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
114500
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Cowden syndrome 5
</span>
</td>
<td>
<span class="mim-font">
615108
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Gastric cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
613659
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Hemifacial myohyperplasia, somatic
</span>
</td>
<td>
<span class="mim-font">
606773
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Hepatocellular carcinoma, somatic
</span>
</td>
<td>
<span class="mim-font">
114550
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Keratosis, seborrheic, somatic
</span>
</td>
<td>
<span class="mim-font">
182000
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Macrodactyly, somatic
</span>
</td>
<td>
<span class="mim-font">
155500
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Megalencephaly-capillary malformation-polymicrogyria syndrome, somatic
</span>
</td>
<td>
<span class="mim-font">
602501
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Nevus, epidermal, somatic
</span>
</td>
<td>
<span class="mim-font">
162900
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Nonsmall cell lung cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
211980
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Ovarian cancer, somatic
</span>
</td>
<td>
<span class="mim-font">
167000
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<div>
<h4>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Bovine phosphatidylinositol 3-kinase (EC 2.7.1.137) is composed of 85-kD (171833) and 110-kD subunits. The 85-kD subunit lacks PI3-kinase activity and acts as an adaptor, coupling the 110-kD subunit (p110) to activated protein tyrosine kinases. Hiles et al. (1992) found that the bovine cDNA for p110 predicts a 1,068-amino acid protein related to a protein which in S. cerevisiae is involved in the sorting of proteins to the vacuole. </p><p>Volinia et al. (1994) cloned the cDNA for the human p110 subunit (PIK3CA) and found that it encodes a protein 99% identical to the bovine p110 enzyme. </p><p>See also PIK3CG (601232) and PIK3CD (602839), the genes encoding the p110-gamma and p110-delta polypeptides, respectively.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>By analysis of somatic cell hybrids and by fluorescence in situ hybridization, Volinia et al. (1994) mapped the PIK3CA gene to 3q26.3. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Biochemical Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Crystal Structure</em></strong></p><p>
Miled et al. (2007) used crystallographic and biochemical approaches to gain insight into activating mutations in 2 noncatalytic p100-alpha domains--the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110-alpha in a complex with the p85-alpha (171833) inter-Src homology 2 (inter-SH2) domains shows that the oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. The authors also examined helical domain mutations and found that the glu545-to-lys (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. Miled et al. (2007) concluded that their studies extended understanding of the architecture of the phosphatidylinositol 3-kinases and provided insight into how 2 classes of mutations that cause a gain of function can lead to cancer. </p><p>Huang et al. (2007) reported a 3.0-angstrom resolution structure of a complex between p110-alpha and a polypeptide containing the p110-alpha-binding domains of p85-alpha, a protein required for its enzymatic activity. The structure showed that many of the cancer-associated mutations occur at residues lying at the interfaces between p110-alpha and p85-alpha or between the kinase domain of p110-alpha and other domains within the catalytic subunit. Disruptions of these interactions are likely to affect the regulation of kinase activity by p85 or the catalytic activity of the enzyme, respectively. Huang et al. (2007) concluded that, in addition to providing new insights about the structure of PI3K-alpha, these results suggested specific mechanisms for the effect of oncogenic mutations in p110-alpha and p85-alpha. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Hiles et al. (1992) found that bovine p110 was catalytically active only when complexed with p85-alpha in COS-1 cells. </p><p>The tumor suppressor PTEN (601728) inhibits cell growth through multiple mechanisms. Furnari et al. (1998) demonstrated that PTEN can dephosphorylate PIP3, the major product of PIK3CA. PIP3, in turn, is required for translocation of protein kinase B (AKT1, PKB; 164730) to the cell membrane, where it is phosphorylated and activated by upstream kinases. Weng et al. (2001) demonstrated increased PTEN-mediated cell death of MCF-7 breast cancer cells cultured in low levels of growth factors. The caspase-9 (602234)-specific inhibitor ZVAD blocked PTEN-induced cell death without altering the effect of PTEN on cell cycle distribution. Overexpression of dominant-negative Akt induced more cell death but had less effect on the cell cycle than overexpression of PTEN. The authors suggested that the apoptotic MCF-7 cells induced by the overexpression of PTEN were not derived from G1-arrested cells. They further hypothesized that the effect of PTEN on cell death is mediated through the PIK3CA/AKT1 pathway, whereas PTEN-mediated cell cycle arrests depend on both PIK3CA/AKT1-dependent and -independent pathways. </p><p>Niswender et al. (2001) demonstrated that systemic administration of leptin (164160) in rat activates the enzyme phosphatidylinositol 3-hydroxykinase in the hypothalamus and that intracerebroventricular infusion of inhibitors of this enzyme prevents leptin-induced anorexia. They concluded that phosphatidylinositol 3-hydroxykinase is a crucial enzyme in the signal transduction pathway that links hypothalamic leptin to reduced food intake. </p><p>Shi et al. (2003) reported that selection of the future axon among neurites of a cultured rat hippocampal neuron required the activity of PI3K, as well as atypical protein kinase C (aPKC; see 176982). The PI3K activity, which was highly localized to the tip of the newly specified axon of stage-3 neurons, was essential for the proper subcellular localization of Par3 (606745) Polarized distribution of not only Par3, but also of Par6 (604784), was important for axon formation; ectopic expression of Par6 or Par3, or just the N terminus of Par3, left neurons with no axon specified. The authors concluded that neuronal polarity is likely to be controlled by the PAR3/PAR6/aPKC complex and the PI3K signaling pathway, both of which serve evolutionarily conserved roles in specifying cell polarity. </p><p>Cell size is strongly dependent on ribosome biogenesis, which is controlled by RNA polymerase I (see 602000). The activity of this polymerase is modulated by a complex of proteins, including UBTF (600673). From experiments with mouse embryonic fibroblasts, Drakas et al. (2004) presented evidence that a nuclear complex forms between IRS1 (147545), UBTF, and PI3K, leading to the serine phosphorylation of UBF1 and regulation of rRNA synthesis. </p><p>High NaCl causes DNA double-strand breaks and activates the transcription factor TONEBP (NFAT5; 604708) via ATM (607585), resulting in increased transcription of protective genes, including those involved in accumulation of compatible organic osmolytes. Irarrazabal et al. (2006) found that PI3K activity was necessary for high NaCl- and ionizing radiation-induced activation of ATM. </p><p>Using an array of pharmacologic PI3K inhibitors, Knight et al. (2006) identified p110-alpha as the primary insulin-responsive PI3K in cultured mouse adipocytes and myotubes. p110-beta (PIK3CB; 602925) was dispensable but set a phenotypic threshold for p110-alpha activity. Compounds targeting p110-alpha blocked the acute effects of insulin (176730) challenge in fasted mice, whereas a p110-beta inhibitor had no effect. </p><p>Gymnopoulos et al. (2007) performed biologic and biochemical analysis of 15 rare cancer-derived PIK3CA mutants, 14 of which demonstrated gain of function. The gain-of-function mutations mapped to 3 separate functional domains (C2, helical, and kinase) on a partial structural model, suggesting that each type induces a gain of function by a different molecular mechanism. </p><p>Graupera et al. (2008) showed that of the PI3 kinases in mice, only p110-alpha activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110-alpha led to embryonic lethality at midgestation because of severe defects in angiogenic sprouting and vascular remodeling. p110-alpha exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA (165390). p110-alpha activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands such as vascular endothelial growth factor (VEGFA; 192240). In contrast, p110-beta in endothelial cells signals downstream of G protein-coupled receptor ligands such as SDF1-alpha (602352), whereas p110-delta is expressed at a low level and contributes only minimally to P13K activity in endothelial cells. Graupera et al. (2008) concluded that their results provided the first in vivo evidence for p110 isoform selectivity in endothelial P13K signaling during angiogenesis. </p><p>Kalaany and Sabatini (2009) showed that certain human cancer cell lines, when grown as tumor xenografts in mice, are highly sensitive to the antigrowth effects of dietary restriction, whereas others are resistant. Cancer cell lines that form dietary restriction-resistant tumors carry mutations that cause constitutive activation of the PI3K pathway and in culture proliferate in the absence of insulin or insulin-like growth factor-1 (IGF1; 147440). Substitution of an activated mutant allele of PIK3CA with wildtype PIK3CA in otherwise isogenic cancer cells, or the restoration of PTEN (601728) expression in a PTEN-null cancer cell line, was sufficient to convert a dietary restriction-resistant tumor into one that was dietary restriction-sensitive. Dietary restriction did not affect a PTEN-null mouse model of prostate cancer, but it significantly decreased tumor burden in a mouse model of lung cancer lacking constitutive PI3K signaling. Thus, Kalaany and Sabatini (2009) concluded that the PI3K pathway is an important determinant of the sensitivity of tumors to dietary restriction, and activating mutations in the pathway may influence the response of cancers to dietary restriction-mimetic therapies. Kalaany and Sabatini (2009) also found that overexpression of FOXO1 (136533) sensitizes tumors to dietary restriction. </p><p>Gustin et al. (2009) found that nontumorigenic human breast epithelial cells with knockin PIK3CA mutations exhibited EGF (131530)- and MTOR (601231)-independent proliferation associated with AKT, ERK, and GSK3B (605004) phosphorylation. Conversely, GSK3B inhibitors selectively decreased proliferation of human breast and colorectal cancer cell lines with oncogenic PIK3CA mutations and caused a decrease in the GSK3B target gene cyclin D1 (CCND1; 168461). Treatment of nude mice with lithium, a GSK3B inhibitor, inhibited the growth of xenografts of human colon cancer cells with mutant PIK3CA, but not human colon cancer cells expressing wildtype PIK3CA. Gustin et al. (2009) proposed that GSK3B is an important effector of mutant PIK3CA and that lithium has selective antineoplastic properties against cancers with PIK3CA mutations. </p><p>Lindhurst et al. (2012) assessed PI3K activity in dermal fibroblasts from 3 individuals with a syndrome of congenital progressive segmental overgrowth of fibrous and adipose tissue and bone by applying a mass spectroscopy assay for PIP3 before and after stimulation of cells with EGF. PIP3 levels were 2 times higher in affected cells relative to unaffected cells at baseline and in response to EGF stimulation, and basal PIP3 levels in affected cells were indistinguishable from those in control cells after stimulation. Basal hyperphosphorylation of downstream AKT and p70 S6 kinases were detected in cells with mutant PIK3CA. No signal amplification or induction of phosphorylation was observed in affected cells, reflecting the fact that the signaling cascade is already at maximum stimulation capacity in these cells. There was no increase in signaling through the MEK extracellular-regulated kinase (ERK) pathway. Lindhurst et al. (2012) concluded that these affected individuals harbor somatically mutated cells with enhanced basal activity of the PI3K-AKT pathway. </p><p>To assess the impact of AKT3 (611223), PIK3R2 (603157), and PIK3CA mutations in individuals with megalencephaly on PI3K activity, Riviere et al. (2012) used immunostaining to compare PIP3 amounts in lymphoblastoid cell lines derived from 4 mutation carriers with megalencephaly to those in control and PTEN-mutant cells. Consistent with elevated PI3K activity, and similar to what is seen with PTEN (601728) loss, all 3 lines with PIK3R2 or PIK3CA mutations showed significantly more PIP3 staining than control cells, as well as greater localization of active phosphoinositide-dependent kinase-1 (PDPK1; 605213) to the cell membrane. Treatment with the PI3K inhibitor PI-103 resulted in less PIP3 in the PIK3R2 G373R (603157.0001) and PIK3CA glu453del (171834.0014) mutant lines, confirming that these results are PI3K-dependent. Riviere et al. (2012) found no evidence for increased PI3K activity in the AKT3-mutant line, consistent with a mutation affecting a downstream effector of PI3K. Protein blot analysis showed higher amounts of phosphorylated S6 protein and 4E-BP1 in all mutant cell lines compared to controls. Although PI-103 treatment reduced S6 phosphorylation in control and mutant lines, the latter showed relative resistance to PI3K inhibition, consistent with elevated signaling through the pathway. Riviere et al. (2012) concluded that the megalencephaly-associated mutations result in higher PI3K activity and PI3K-mTOR signaling. </p><p>To determine whether individuals with hemimegalencephaly and a mutation in PIK3CA (E545K; 171834.0003), AKT3 (E17K; 611223.0003), or MTOR (C1483Y) have aberrant mTOR signaling, Lee et al. (2012) immunostained brain sections of such cases with an antibody specific to the phosphorylated epitope of the S6 protein in a standard assay for the activation of mTOR signaling. Cells with the morphology of cytomegalic neurons were strongly labeled for phosphorylated S6 in the 3-prime-diaminobenzidine (DAB) staining of HME brains. In addition, Lee et al. (2012) coimmunostained for the neuronal marker MAP2, comparing samples with age-matched, similarly processed non-HME cortical hemisphere, and found a marked increase in the number of cells that were positive for phosphorylated S6 and greater intensity of staining for phosphorylated S6 in cytomegalic neurons of HME cases. Lee et al. (2012) concluded that these mutations are associated with increased mTOR signaling in affected brain regions. </p><p>Activating mutations in PIK3CA are frequently found in estrogen receptor (ER; see 133430)-positive breast cancer. Therapeutic PI3K-alpha inhibitors elicit a robust compensatory increase in ER-dependent transcription that limits therapeutic efficacy. Toska et al. (2017) investigated the chromatin-based mechanisms leading to the activation of ER upon PI3K-alpha inhibition and found that PI3K-alpha inhibition mediates an open chromatin state at the ER target loci in breast cancer models and clinical samples. KMT2D (602113), a histone H3 lysine-4 methyltransferase, is required for FOXA1, PBX1, and ER recruitment and activation. AKT binds and phosphorylates KMT2D, attenuating methyltransferase activity and ER function, whereas PI3K-alpha inhibition enhances KMT2D activity. Toska et al. (2017) concluded that their findings uncovered a mechanism that controls the activation of ER by the posttranslational modification of epigenetic regulators, providing a rationale for epigenetic therapy in ER-positive breast cancer. </p><p>Yu et al. (2020) used a native mouse model of glioblastoma to develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. Yu et al. (2020) showed that tumors driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodeling of the synaptic constituency. Furthermore, they showed that secreted members of the glypican family are selectively expressed in these tumors, and that GPC3 (300037) drives gliomagenesis and hyperexcitability. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Cytogenetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Studies using comparative genomic hybridization (CGH) revealed several regions of recurrent abnormal DNA sequence copy number (reviewed by Knuutila et al., 1998) that may encode genes involved in the genesis or progression of ovarian cancer (167000). One region at 3q26 found to be increased in copy number in approximately 40% of ovarian and other cancers contains the PIK3CA gene. This association between PIK3CA copy number and PI3-kinase activity made PIK3CA a candidate oncogene because a broad range of cancer-related functions had been associated with PI3-kinase-mediated signaling. Shayesteh et al. (1999) found that PIK3CA is frequently increased in copy number in ovarian cancers, and that the increased copy number is associated with increased PIK3CA transcription, p110-alpha protein expression, and PI3-kinase activity. Furthermore, treatment with a PI3-kinase inhibitor decreased proliferation and increased apoptosis. They concluded that PIK3CA is an oncogene that has an important role in ovarian cancer. </p><p>In comparative genomic hybridization studies, Ma et al. (2000) showed that 3q26.3 amplification was the most consistent chromosomal aberration in primary tissues of cervical carcinoma. They found a positive correlation between an increased copy number of PIK3CA (detected by competitive PCR) and 3q26.3 amplification in tumor tissues and in cervical cancer cell lines. In cervical cancer cell lines harboring amplified PIK3CA, the expression of the gene product was increased and was associated with high kinase activity. Other events suggested that increased expression of PIK3CA in cervical cancer may promote cell proliferation and reduce apoptosis. </p><p>Liu et al. (2008) explored a wide-range genetic basis for the involvement of genetic alterations in receptor tyrosine kinases (RTKs) and phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK pathways in anaplastic thyroid cancer (ATC) and follicular thyroid cancer (FTC; 188470). They found frequent copy gains of RTK genes including EGFR (131550) and VEGFR1 (165070), and PIK3CA and PIK3CB (602925) in the P13K/Akt pathway. Copy number gain of PIK3CA was found in 18 of 47 ATCs (38%) and 15 of 63 FTCs (24%). RTK gene copy gains were preferentially associated with phosphorylation of Akt, suggesting their dominant role in activating the P13K/Akt pathway. Liu et al. (2008) concluded that genetic alterations in the RTKs and P13K/Akt and MAPK pathways are extremely prevalent in ATC and FTC, providing a strong genetic basis for an extensive role of these signaling pathways and the development of therapies targeting these pathways for ATC and FTC, particularly the former. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Somatic Mutations in Cancer</em></strong></p><p>
Samuels et al. (2004) examined the sequences of 117 exons that encode the predicted kinase domains of 8 phosphatidylinositol-3 kinase genes and 8 PI3K-like genes in 35 colorectal cancers (114500). PIK3CA was the only gene with somatic mutations. Subsequent sequence analysis of all coding exons of PIK3CA in 199 additional colorectal cancers revealed mutations in a total of 74 tumors (32%). Samuels et al. (2004) also evaluated 76 premalignant colorectal tumors; only 2 mutations were found, both in very advanced tubulovillous adenomas greater than 5 cm in diameter. Thus, Samuels et al. (2004) concluded that PIK3CA mutations generally arise late in tumorigenesis, just before or coincident with invasion. Mutations in PIK3CA were also identified in 4 of 15 glioblastomas (27%), 3 of 12 gastric cancers (25%), 1 of 12 breast cancers (8%), and 1 of 24 lung cancers (4%). No mutations were observed in 11 pancreatic cancers or 12 medulloblastomas. In total, 92 mutations were observed, all of which were determined to be somatic in the cancers that could be assessed. Samuels et al. (2004) concluded that the sheer number of mutations observed in this gene strongly suggests that they are functionally important. Furthermore, most of the mutations were nonsynonymous and occurred in the PI3K helical and kinase domains, suggesting functional significance. </p><p>Pursuant to the report by Samuels et al. (2004) of a very high frequency of somatic mutations in PIK3CA in a large series of colorectal cancers, Campbell et al. (2004) investigated its relevance in other cancer types. They screened 284 primary human tumors for mutations in all coding exons of PIK3CA using a combination of single-strand conformation polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) analysis. Among 70 primary breast cancers, 28 (40%) harbored mutations in PIK3CA (see 171834.0001, 171834.0003, and 171834.0006), making it the most common mutation described up to that time in this cancer type. Mutations were not associated with histologic subtype, estrogen receptor status, or grade or presence of tumor in lymph nodes. Among primary epithelial ovarian cancers, 11 of 167 (6.6%) contained somatic mutations (see 171834.0001, 171834.0003, and 171834.0005). Mutations were also identified among colorectal cancers (see 171834.0001-171834.0005). PIK3CA gene amplification (more than 7-fold) was common among all histologic subtypes and was inversely associated with the presence of mutations. Overall, PIK3CA mutation or gene amplification was detected in 30.5% of all ovarian cancers. </p><p>The phosphatidylinositol 3-prime-kinase pathway is activated in multiple advanced cancers, including glioblastomas, through inactivation of the tumor suppressor gene PTEN. Broderick et al. (2004) identified 13 mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas, but not in ependymomas or low-grade astrocytomas. The consistency of hotspot mutations in PIK3CA across diverse tumor types suggested possible approaches to targeted therapy (e.g., development of agents acting as highly selective antagonists of the mutant allele products, sparing normal cells exhibiting wildtype PIK3CA activity). </p><p>Garcia-Rostan et al. (2005) analyzed 13 thyroid cancer cell lines, 80 well-differentiated follicular (WDFTC) and papillary (WDPTC) thyroid carcinomas, and 70 anaplastic thyroid carcinomas (ATC) for activating PIK3CA mutations at exons 9 and 20. Nonsynonymous somatic mutations were found in 16 (23%) ATC cases, 2 (8%) WDFTC cases, and 1 (2%) WDPTC case. In 18 of 20 ATC cases showing coexisting differentiated carcinoma, mutations, when present, were restricted to the ATC component. Garcia-Rostan et al. (2005) concluded that mutant PIK3CA is likely to function as an oncogene in anaplastic thyroid carcinoma but less frequently in well-differentiated thyroid carcinomas. </p><p>Wu et al. (2005) found no PIK3CA gene mutations in 37 benign thyroid adenomas, 52 papillary thyroid cancers, 25 follicular thyroid cancers, 13 anaplastic thyroid cancers, 13 medullary thyroid cancers, and 7 thyroid tumor cell lines. They found a SNP in exon 20 in 2 cases, 1 in an adenoma and the other in a follicular thyroid carcinoma. With a copy number of 4 or more defined as amplification, they found PIK3CA gene amplification in 4 of 34 (12%) benign thyroid adenomas, 3 of 59 (5%) papillary thyroid cancer, 5 of 21 (24%) follicular thyroid cancer, 0 of 14 (0%) medullary thyroid cancer, and 5 of 7 (71%) thyroid tumor cell lines. The PIK3CA gene amplification and consequent AKT activation were confirmed by FISH and Western blotting studies using cell lines, respectively. The authors concluded that these data suggest that mutation of the PIK3CA gene is not common, but its amplification is relatively common and may be a novel mechanism in activating the P13K/AKT pathway in some thyroid tumors. </p><p>By specific analysis of exons 9 and 20 of the PIK3CA gene, Lee et al. (2005) detected somatic PIK3CA mutations in 26 (35.6%) of 73 hepatocellular carcinomas (114550), 25 (26.9%) of 93 breast carcinomas, 12 (6.5%) of 185 gastric carcinomas (137215), 1 (1.1%) of 88 acute leukemias, and 3 (1.3%) of 229 nonsmall cell lung cancers (211980). In all, 67 (10%) of the 668 samples harbored PIK3CA mutations. The most common mutations were E545A (171834.0008), H1047R (171834.0001), and 3204insA (171834.0007). Exons 9 and 20 encode the helical and kinase domains of the protein. Two cancers harbored 2 mutations each: an advanced gastric carcinoma and an invasive ductal breast carcinoma. </p><p>Bader et al. (2006) inoculated chick embryonic chorioallantoic membranes with embryonic fibroblasts transformed by the PIK3CA mutant proteins E542K, E545K (171834.0003), and H1047R and observed increased vascularization and the formation of neoplastic nodules. When the transformed embryonic fibroblasts were injected into the wing web of newly hatched chicks, hemangiomas or hemangiosarcomas developed at the site of injection. The H1047R mutant was the most potent carcinogen, causing the fastest growth rate and the highest incidence of tumors (80% compared to 50% induction with E542K or E545K). The tumors showed a high degree of angiogenesis and an activation of Akt (see 164730); a FRAP1 (601231) inhibitor, RAD001 (everolimus), blocked tumor growth induced by the H1047R mutant. </p><p>Karakas et al. (2006) provided a detailed review of the role of the PIK3CA oncogene in cancer. </p><p>By examining the mutation status of the PIK3CA gene in a panel of 60 human cancer cell lines, Whyte and Holbeck (2006) identified 8 heterozygous mutations in 7 cell lines (1 lung, 2 breast, 2 colon, and 2 ovarian cancer). Four mutations were in exon 9, 3 at codon 545 (E545K) and 1 at codon 549 (asp549 to asn, or D549N), and 4 mutations were in exon 20 at codon 1047 (H1047R). The D549N mutation was novel and occurred in a colon cancer cell line that also had an E545K mutation, suggesting that D549N may be a bystander mutation. PIK3CA mutant cell lines were more sensitive than PIK3CA wildtype cell lines to the estrogen receptor (ER, or ESR1; 133430) inhibitor tamoxifen, the AKT inhibitor triciribine, and other compounds. Whyte and Holbeck (2006) proposed that these insights into the role of mutant PIK3CA may enable identification of novel therapeutic targets for cancer. </p><p>By analyzing gene and protein expression data from 1,800 breast cancers, Loi et al. (2010) identified a PIK3CA mutation-associated gene signature derived from exon 20, which encodes the kinase domain. PIK3CA mutations were associated with low MTORC1 (see 601231) signaling and good prognosis with tamoxifen therapy in ER-positive/HER2 (ERBB2; 164870)-negative breast cancers, but these mutations were not associated with good prognosis in ER-negative/HER2-positive breast cancers. </p><p>Weigelt et al. (2011) tested the pharmacologic effects of the rapamycin analog everolimus, an allosteric mTORC1 inhibitor, and PP242, an active-site mTORC1/mTORC2 inhibitor, on a panel of 31 breast cancer (114480) cells. Cancer cells with activating PIK3CA mutations were selectively sensitive to both inhibitors, whereas those with loss-of-function PTEN (601728) mutations were resistant to treatment. In addition, a subset of cancer cells with HER2 amplification showed increased sensitivity to PP242, but not to everolimus, regardless of PIK3CA/PTEN mutation status. Both drugs exerted their effects by inducing G1 cell-cycle arrest. PP42 caused reduced downstream signal transduction of the mTOR pathway as evidenced by a decrease in AKT (164730) phosphorylation. The overall results indicated that PTEN and PIK3CA have distinct functional effects on the mTOR pathway. Weigelt et al. (2011) suggested that PIK3CA mutations in breast cancer may be a predictive marker to guide the selection of patients who would benefit from mTOR inhibitor therapy. </p><p>To characterize determinants of sensitivity to PI3K-alpha inhibitors such as alpelisib in cancer, Vasan et al. (2019) analyzed PIK3CA-mutant cancer genomes in approximately 70,000 patients from a publicly available cohort, 28,000 patients from an internal cohort, and several other cohorts. They observed the presence of multiple PIK3CA mutations in 12 to 15% of breast cancers and other tumor types (most commonly uterine or colorectal cancer), and that most of these (95%) carried exactly 2 mutations. The double PIK3CA mutations were in cis and resulted in increased PI3K activity, enhanced downstream signaling, increased cell proliferation, and tumor growth. In the majority of cases, patients had a first hit involving a major hotspot mutation such as E542, E545, or H1047, and a second hit in a minor mutant site involving either E453, E726, or M1043. These recurrent mutational sites appeared to be specific to breast cancer. The biochemical mechanisms of dual mutations included increased disruption of p110-alpha binding to the inhibitory subunit p85-alpha, which relieves its catalytic inhibition, and increased p110-alpha membrane lipid binding. Vasan et al. (2019) concluded that double PIK3CA mutations predict increased sensitivity to PI3K-alpha inhibitors compared with single-hotspot mutations. </p><p><strong><em>Vascular and Overgrowth Syndromes</em></strong></p><p>
Kurek et al. (2012) used massively parallel sequencing to search for somatic mosaic mutations in fresh, frozen, or fixed archival tissue from 6 patients with congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome; 612918) and identified 3 different missense mutations in the PIK3CA gene (171834.0001, 171834.0009, and 171834.0010), with mutant allele frequencies ranging from 3 to 30% in affected tissue from multiple embryonic lineages. Noting that the 3 mutations had previously been identified in cancer cells, in which they increase phosphoinositide-3-kinase activity, Kurek et al. (2012) concluded that CLOVE syndrome is caused by postzygotic activating mutations in PIK3CA, and hypothesized that the low rate of malignant transformation in patients with CLOVE syndrome is due to the low level of endogenous PIK3CA expression in most cells. The authors also found somatic mosaicism for the H1047R mutation (171834.0001) in 3 patients who had been diagnosed with Klippel-Trenaunay-Weber syndrome (149000), an overgrowth syndrome with features overlapping those of CLOVE syndrome. </p><p>Rios et al. (2013) identified 4 different mutations in the PIK3CA gene in affected tissue from 6 patients with macrodactyly (155500). One mutation (171834.0022) was novel. </p><p>Rodriguez-Laguna et al. (2018) screened 20 paired blood and tissue DNA samples from 9 patients of a cohort of 13 patients with a syndrome of capillary malformation of the lower lip, lymphatic malformation of the face and neck, asymmetry of the face and limbs, and partial/generalized overgrowth (CLAPO; 613089) and identified 5 activating mutations in the PIK3CA gene in affected tissues from 6 of the 9 patients studied. All mutations except 1 (F83S; 171834.0023) had previously been reported in a vascular/overgrowth disorder. </p><p><strong><em>Hemifacial Myohyperplasia</em></strong></p><p>
By genotyping of affected muscle tissue from 5 patients with hemifacial myohyperplasia (HFMH; 606773), Bayard et al. (2023) identified mosaic mutations in the PIK3CA gene. Patients 1 and 5 had mosaicism for a glu545-to-lys mutation (E545K; 171834.0003), with mutation burdens of 15% and 14%, respectively. Patients 3 and 4 had mosaicism for a glu542-to-lys mutation (E542K; 171834.0009), with mutation burdens of 12% and 21%, respectively, and patient 2 had mosaicism for a his1047-to-arg mutation (H1047R; 171834.0013), with a mutation burden of 25%. </p><p><strong><em>Cowden Syndrome 5</em></strong></p><p>
Among 91 individuals with Cowden syndrome who were negative for mutations in known disease-causing genes, Orloff et al. (2013) found that 8 carried mutations in the PIK3CA gene. None of these mutations was detected in 96 population controls, the Single Nucleotide Polymorphism database (dbSNP), or the available dataset of the 1000 Genomes Project. Functional assays demonstrated that these mutations resulted in upregulation of AKT1 phosphorylated at thr308 (P-AKT1-Thr308) and increased cellular PIP3. </p><p><strong><em>Metastatic Cancer</em></strong></p><p>
Robinson et al. (2017) performed whole-exome and transcriptome sequencing of 500 adult patients with metastatic solid tumors of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53 (191170), CDKN2A (600160), PTEN (601728), PIK3CA, and RB1 (614041). Putative pathogenic germline variants were present in 12.2% of cases, of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing to identify gene fusions, pathway activation, and immune profiling. </p><p><strong><em>Cerebral Cavernous Malformations 4</em></strong></p><p>
In 34 (39%) of 88 samples of cerebral cavernous malformations-4 (CCM4; 619538) from patients with sporadic occurrence of the disease, Peyre et al. (2021) identified 1 of 3 somatic missense mutations in the PIK3CA gene (H1047R, 171834.0001; H1047L, 171834.0002; and E542K, 171834.0009). The mutations were found by targeted DNA sequencing after studies in mice suggested that Pik3ca mutations can lead to CCM formation (see ANIMAL MODEL below). Four of the samples with PIK3CA mutations also had mutations in the CCM-related genes CCM1 (KRIT1; 604214), CCM2 (607929), and AKT1 (164730). The authors noted that cooccurrence of mutations is frequently seen in tumors. PIK3CA-mutant CCMs in humans and mice showed increased phosphorylation of myosin light chain and activation of the PI3K-AKT-mTOR pathway, consistent with activating mutations. Peyre et al. (2021) noted that the incidence of activating mutations in the PIK3CA gene in sporadic CCMs far exceeds that of mutations in CCM1, CCM2, or CCM3 (PDCD10; 609118), all of which cause familial disease. PIK3CA mutations were not observed in 11 samples of arteriovenous malformations. </p><p>In cavernous malformation tissue from 81 patients with sporadic CCMs, Hong et al. (2021) identified a somatic mutation in the MAP3K3 gene (I441M; 602359.0001) in 41 patients and a somatic mutation (C420R, E542K, E545K or H1047R) in the PIK3CA gene in 45 patients. Fourteen of the patients had somatic mutations in both MAP3K3 and PIK3CA. The mutations were identified by whole-exome sequencing and digital droplet PCR. The PIK3CA mutation frequencies ranged from 0.4% to 24.4% in the CCM tissue. Single cell RNA sequencing was performed in tissue from 2 CCMs with MAP3K3 mutations, 3 CCMs with PIK3CA mutations, and 1 CCM with mutations in both genes. CCMs with only PIK3CA mutations demonstrated downregulated apoptosis and increased expression of SERPINA5 and GDF15 compared to the CCMs with MAP3K3 mutations or both MAP3K3 and PIK3CA mutations. Hong et al. (2021) hypothesized that PIK3CA mutations in CCM tissue may lead to increased vascular stress, endothelial dysfunction, and hemorrhagic risk. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Hong et al. (2021) compared clinical characteristics between CCMs with somatic mutations in the MAP3K3 gene, PIK3CA gene, or in both genes. CCMs with mutations in only the PIK3CA gene were more likely to be overtly hemorrhagic and were significantly larger compared to the CCMs with mutations in the MAP3K3 gene or in both genes. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>To delineate the role of p110-alpha, a ubiquitously expressed phosphatidylinositide-3-hydroxykinase (PI3K) involved in tyrosine kinase and Ras (see 190020) signaling, Foukas et al. (2006) generated mice carrying a knockin mutation, D933A, that abrogates p110-alpha kinase activity. Homozygosity for this kinase-dead p110-alpha led to embryonic lethality. Mice heterozygous for this mutation were viable and fertile, but displayed severely blunted signaling via insulin-receptor substrate (IRS) proteins (e.g., 147545), key mediators of insulin, insulin-like growth factor-1 (IGF1; 147440), and leptin (164160) action. Defective responsiveness to these hormones led to reduced somatic growth, hyperinsulinemia, glucose intolerance, hyperphagia, and increased adiposity in mice heterozygous for the D933A mutation. This signaling function of p110-alpha derives from its highly selective recruitment and activation to IRS signaling complexes compared to p110-beta (602925), the other broadly expressed PI3K isoform, which did not contribute to IRS-associated PI3K activity. p110-alpha was the principal IRS-associated PI3K in cancer cell lines. Foukas et al. (2006) concluded that their findings demonstrated a critical role for p110-alpha in growth factor and metabolic signaling and also suggested an explanation for selective mutation or overexpression of p110-alpha in a variety of cancers. </p><p>Gupta et al. (2007) generated mice with mutations in the Ras-binding domain of Pi3kca. Cells from these mice had proliferative defects and selective disruption of signaling from growth factors to PI3K. In vivo, mutant mice displayed defective development of the lymphatic vasculature, resulting in perinatal appearance of chylous ascites. However, these mice were highly resistant to development of Ras oncogene-induced tumorigenesis. Gupta et al. (2007) concluded that interaction of Ras with PI3KCA is required in vivo for certain normal growth factor signaling and for Ras-driven tumor formation. </p><p>Soler et al. (2013) used syngeneic mouse cancer models to assess the importance of p110-alpha in the cancer stromal compartment. They found that treatment of a mouse melanoma cell line with an inhibitor of p110-alpha and p110-delta reduced Akt phosphorylation and Vegf production without affecting proliferation or survival. Tumor growth was blunted by the inhibitor, and tumors had increased numbers of small Cd31 (PECAM1; 173445)-positive blood vessels. Aberrant angiogenesis, reduced vessel function, and reduced Dll4 (605185) were also observed with p110-alpha/p110-delta inhibition in a lung cancer cell line mouse model. Soler et al. (2013) proposed that vessel size rather than vessel number is the key parameter in the antiangiogenic effect of p110-alpha inhibition. </p><p>Venot et al. (2018) developed a mouse model of CLOVES by creating mice that express a dominant-active PIK3CA transgene and ubiquitously express PIK3CA upon tamoxifen administration to induce Cre recombination. Three-week-old mice treated with a single dose of tamoxifen (40 mg/kg) began to die rapidly, with 50% mortality at day 9. Death occurred suddenly in most cases, with necropsy revealing intraabdominal and hepatic hemorrhages. Whole-body MRI showed scoliosis, vessel abnormalities, kidney cysts, and muscle hypertrophy. Histologic examination revealed liver steatosis with vessel disorganization, loss of spleen microarchitecture integrity, spontaneous hemorrhages, and fibrosis of the kidney with aberrant vessels. Venot et al. (2018) administered either BYL719 (alpelisib), a PIK3CA inhibitor, or placebo to mutant mice orally each day starting on the day of Cre induction. While all placebo-treated mutant mice died within 15 days, all BYL719-treated mutant mice were alive after 40 days and had an overtly normal appearance. Interruption of treatment after 40 days led to the rapid death of all mice. Administration of placebo or BYL719 7 days after Cre induction, when tissue abnormalities were already detected by MRI, resulted in improved survival in BYL719-treated mice. MRI after 12 days of treatment showed improvements in scoliosis, muscle hypertrophy, and vessel malformations. To more faithfully reproduce the lower mosaicism observed in patients, Venot et al. (2018) used a single dose of 4mg/kg of tamoxifen to induce Cre recombination. These mice survived for 2 months and then died with multiple phenotypic abnormalities including asymmetrical overgrowth of extremities, disseminated voluminous tumors, and visible subcutaneous vascular abnormalities. Histologic examination revealed the same lesions observed in human PIK3CA-related overgrowth. Treatment of these mice with BYL719 after lesions were clinically visible resulted in reduction and disappearance of all visible tumors within 2 weeks, with body weight loss. Notably, withdrawal of BYL719 led to recurrence of tumors, vascular malformations, and asymmetric extremity hypertrophy within 4 weeks. </p><p>Peyre et al. (2021) found that mutant mice selectively expressing the Pik3ca H1047R mutation in PGDS (602598)-expressing cells developed intraparenchymal CCM lesions, most of which were localized to the brainstem. Histologically, the lesions ranged from intraparenchymal vessel dilatations to capillary telangiectasia and the formation of young cavernous lesions. A subset of mice developed meningothelial proliferations. Peyre et al. (2021) noted that PGDS is expressed in pericytes surrounding intraparenchymal vessels, which is consistent with it being the most likely cell of origin. </p><p>Bayard et al. (2023) generated a mouse model with inducible muscle-specific expression of a constitutively overactivated form of PIK3CA.The mutant mice had progressive weight gain, muscle hypertrophy, and increased skeletal muscle strength compared to wildtype. Tissue histology showed diffuse muscle hypertrophy and adipose shrinkage. The mutant mice were also hypoglycemic and had low insulin and IGF1 levels with conserved insulin secretion. Western blotting and immunofluorescence showed AKT/mTOR activation in striated muscle. Treatment with alpelisib, a PIK3CA inhibitor, resulted in normalization of weight and skeletal muscle overgrowth and an increase in glucose, insulin, and IGF1 levels. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>ALLELIC VARIANTS</strong>
</span>
<strong>23 Selected Examples):</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0001 &nbsp; BREAST CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
OVARIAN CANCER, EPITHELIAL, SOMATIC, INCLUDED<br />
COLORECTAL CANCER, SOMATIC, INCLUDED<br />
GASTRIC CANCER, SOMATIC, INCLUDED<br />
HEPATOCELLULAR CARCINOMA, SOMATIC, INCLUDED<br />
NONSMALL CELL LUNG CANCER, SOMATIC, INCLUDED<br />
KERATOSIS, SEBORRHEIC, SOMATIC, INCLUDED<br />
CONGENITAL LIPOMATOUS OVERGROWTH, VASCULAR MALFORMATIONS, AND EPIDERMAL NEVI, SOMATIC, INCLUDED<br />
MACRODACTYLY, SOMATIC, INCLUDED<br />
CEREBRAL CAVERNOUS MALFORMATIONS 4, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, HIS1047ARG
<br />
SNP: rs121913279,
gnomAD: rs121913279,
ClinVar: RCV000014622, RCV000014623, RCV000014624, RCV000014626, RCV000014627, RCV000014628, RCV000024621, RCV000154516, RCV000201231, RCV000438435, RCV000487449, RCV000709691, RCV001092442, RCV001255686, RCV001327968, RCV001526648, RCV001705589, RCV001705590, RCV001728091, RCV001729349, RCV001730472, RCV001807727, RCV001836707, RCV002508124, RCV003128082, RCV003325939, RCV004527290, RCV004527291, RCV004737153, RCV005051734
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Colorectal Cancer</em></strong></p><p>
In a relatively high frequency of colorectal cancers (114500), Samuels et al. (2004) identified a his1047-to-arg (H1047R) mutation in the PIK3CA gene; in vitro studies showed that the H1047R mutant has increased lipid kinase activity. </p><p><strong><em>Breast Cancer</em></strong></p><p>
In 5 breast tumors (114480), 7 epithelial ovarian tumors (167000), and 1 colorectal tumor from a series of 284 primary human tumors, Campbell et al. (2004) identified the H1047R mutation, which is caused by a 3140A-G transition in exon 20. </p><p>Lee et al. (2005) identified a somatic H1047R mutation in 21 breast cancer tumors, 4 gastric cancer (137215) tumors, 1 hepatocellular carcinoma (114550), and 1 nonsmall cell lung cancer (211980). </p><p><strong><em>CLOVE Syndrome</em></strong></p><p>
In a 2-year-old boy and an unrelated 1-year-old girl with congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome; 612918), Kurek et al. (2012) identified somatic mosaicism for the H1047R mutation in affected tissues from multiple embryonic lineages, with a mutant allele frequency ranging from 16 to 23%. Kurek et al. (2012) also stated that they had identified somatic mosaicism for H1047R in 3 patients who had been diagnosed with Klippel-Trenaunay-Weber syndrome (149000), an overgrowth syndrome with features overlapping those of CLOVE syndrome. </p><p>Lindhurst et al. (2012) sequenced the PIK3CA gene in 10 individuals with an 'unclassified' syndrome of congenital progressive segmental overgrowth of fibrous and adipose tissue and bone and identified a somatic H1047R variant in 7 affected individuals, with mutation burdens ranging from less than 1% to 35% in affected tissues and fibroblast cultures. The features of the 'unclassified' syndrome were consistent with CLOVE syndrome. </p><p><strong><em>Seborrheic Keratosis</em></strong></p><p>
Hafner et al. (2007) identified a heterozygous somatic H1047R mutation in a seborrheic keratosis lesion (182000). The authors emphasized that this is a benign lesion and noted that the same mutation had been observed in cancerous lesions. </p><p><strong><em>Macrodactyly</em></strong></p><p>
Rios et al. (2013) identified the H1047R mutation in affected tissue from an individual (patient 6) with macrodactyly (155500). Immunochemistry showed increased staining in macrodactyly cells from patient 6 compared to control cells, indicating greater levels of ser473-phosphorylated AKT (164730) through increased activation of the PI3K-AKT cell signaling axis. </p><p><strong><em>Cerebral Cavernous Malformations 4</em></strong></p><p>
In samples of cerebral cavernous malformations-4 (CCM4; 619538) from 10 unrelated patients with sporadic occurrence of the disease, Peyre et al. (2021) identified a somatic H1047R mutation in the PIK3CA gene. The mutation was found by targeted DNA sequencing. PIK3CA-mutant CCMs showed increased phosphorylation of myosin light chain and activation of the PI3K-AKT-mTOR pathway, consistent with an activating mutation. </p><p><strong><em>Variant Function</em></strong></p><p>
Using in situ genetic lineage tracing and limiting dilution transplantation, Koren et al. (2015) elucidated the potential of PIK3CA(H1047R) to induce multipotency during tumorigenesis in the mammary gland. The authors showed that expression of PIK3CA(H1047R) in lineage-committed basal Lgr5 (606667)-positive and luminal keratin-8 (KRT8; 148060)-positive cells of the adult mouse mammary gland evokes cell dedifferentiation into a multipotent stem-like state, suggesting this to be a mechanism involved in the formation of heterogeneous, multilineage mammary tumors. Moreover, Koren et al. (2015) showed that the tumor cell of origin influences the frequency of malignant mammary tumors. Koren et al. (2015) concluded that their results defined a key effect of PIK3CA(H1047R) on mammary cell fate in the preneoplastic mammary gland and showed that the cell of origin of PIK3CA(H1047R) tumors dictates their malignancy, thus revealing a mechanism underlying tumor heterogeneity and aggressiveness. </p><p>Van Keymeulen et al. (2015) found that oncogenic PIK3CA(H1047R) mutant expression at physiologic levels in basal cells using keratin (K)5 (148040)-CreER(T2) mice induced the formation of luminal estrogen receptor (ER; 133430)-positive/progesterone receptor (PR; 607311)-positive tumors, while its expression in luminal cells using K8-CReER(T2) mice gave rise to luminal ER+PR+ tumors or basal-like ER-PR- tumors. Concomitant deletion of p53 (191170) and expression of Pik3ca(H1047R) accelerated tumor development and induced more aggressive mammary tumors. Interestingly, expression of Pik3ca(H1047R) in unipotent basal cells gave rise to luminal-like cells, while its expression in unipotent luminal cells gave rise to basal-like cells before progressing into invasive tumors. Transcriptional profiling of cells that underwent cell fate transition upon Pik3ca(H1047R) expression in unipotent progenitors demonstrated a profound oncogene-induced reprogramming of these newly formed cells and identified gene signatures characteristic of the different cell fate switches that occur upon Pik3ca(H1047R) expression in basal and luminal cells. Van Keymeulen et al. (2015) concluded that oncogenic Pik3ca(H1047R) activates a multipotent genetic program in normally lineage-restricted populations at the early stage of tumor initiation, setting the stage for future intratumoral heterogeneity. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0002 &nbsp; BREAST CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CONGENITAL LIPOMATOUS OVERGROWTH, VASCULAR MALFORMATIONS, AND EPIDERMAL NEVI, SOMATIC, INCLUDED<br />
CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC, INCLUDED<br />
CEREBRAL CAVERNOUS MALFORMATIONS 4, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, HIS1047LEU
<br />
SNP: rs121913279,
gnomAD: rs121913279,
ClinVar: RCV000014629, RCV000032905, RCV000201235, RCV000422323, RCV000626894, RCV000709692, RCV000987367, RCV001253236, RCV001526597, RCV001728092, RCV001807728, RCV002254265, RCV004527292, RCV004649064, RCV004668728
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Breast Cancer</em></strong></p><p>
In 4 breast tumors (114480) from a series of 284 primary human tumors, Campbell et al. (2004) identified a 1340A-T transversion in exon 20 of the PIK3CA gene, resulting in a his1047-to-leu (H1047L) substitution. </p><p><strong><em>CLOVE Syndrome</em></strong></p><p>
Lindhurst et al. (2012) performed exome sequencing of DNA from unaffected and affected cells from an individual with an 'unclassified' syndrome of congenital progressive segmental overgrowth of fibrous and adipose tissue and bone and identified the cancer-associated H1047L mutation in the PIK3CA gene in affected cells only, the p110-catalytic subunit of PI3K, only in affected cells, with a mutation burden determined to be from 8% to 39%. The same H1047L alteration was identified in 2 of 9 other individuals with the 'unclassified' syndrome, with mutation burdens ranging from 4% to 49%. The features of the syndrome were consistent with CLOVE syndrome (612918). </p><p><strong><em>CLAPO Syndrome</em></strong></p><p>
In tissue from a lymphatic malformation (LM) of the tongue of a 7-year-old female patient (P13) with CLAPO syndrome (613089), Rodriguez-Laguna et al. (2018) identified a c.3140A-T transversion (c.3140A-T, NM_006218.2) in the PIK3CA gene that resulted in a his1047-to-leu (H1047L) mutation in the kinase domain. The mutation was present at an allele frequency of 16% by deep sequencing, was present in 315 samples from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had been previously reported in 30 patients with vascular overgrowth disorders. Functional studies were not performed. </p><p><strong><em>Cerebral Cavernous Malformations 4</em></strong></p><p>
In samples of cerebral cavernous malformations-4 (CCM4; 619538) from 2 unrelated patients with sporadic occurrence of the disease, Peyre et al. (2021) identified a somatic H1047L mutation in the PIK3CA gene. The mutation was found by targeted DNA sequencing. PIK3CA-mutant CCMs showed increased phosphorylation of myosin light chain and activation of the PI3K-AKT-mTOR pathway, consistent with an activating mutation. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0003 &nbsp; BREAST CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
OVARIAN CANCER, EPITHELIAL, SOMATIC, INCLUDED<br />
COLORECTAL CANCER, SOMATIC, INCLUDED<br />
GASTRIC CANCER, SOMATIC, INCLUDED<br />
NONSMALL CELL LUNG CANCER, SOMATIC, INCLUDED<br />
KERATOSIS, SEBORRHEIC, SOMATIC, INCLUDED<br />
MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC, INCLUDED<br />
HEMIFACIAL MYOHYPERPLASIA, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLU545LYS
<br />
SNP: rs104886003,
gnomAD: rs104886003,
ClinVar: RCV000014631, RCV000014632, RCV000014633, RCV000014636, RCV000038671, RCV000055930, RCV000119356, RCV000422210, RCV001092440, RCV001262721, RCV001290591, RCV001327963, RCV001374447, RCV001705591, RCV001730473, RCV001786329, RCV002508125, RCV003764575, RCV004527293, RCV004527294, RCV004527295, RCV004668729, RCV004698419
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 9 breast tumors (114480), 1 epithelial ovarian tumor (167000), and 2 colorectal tumors (114500) from a series of 284 primary human tumors, Campbell et al. (2004) identified a 1633G-A transition in exon 9 of the PIK3CA gene, resulting in a glu545-to-lys (E545K) substitution. </p><p>Lee et al. (2005) identified the E545K mutation in tumor tissue from 2 breast cancers, 3 gastric cancers (137215), and 1 nonsmall cell lung cancer (211980). </p><p>Hafner et al. (2007) identified a heterozygous somatic E545K mutation in 2 seborrheic keratosis lesions (182000). The authors emphasized that this is a benign lesion and noted that the same mutation had been observed in cancerous lesions. </p><p>In an individual with megalencephaly-capillary-malformation-polymicrogyria syndrome (MCAP; 602501), Riviere et al. (2012) identified the mosaic E545K mutation in the PIK3CA gene. Lee et al. (2012) performed whole-exome sequencing on brain and peripheral blood DNA from 5 patients with hemimegalencephaly (HME) and identified the E545K missense mutation in the PIK3CA gene. The mutant allele was absent in blood but present in the brain, with a mutation burden of 36.6%. Lee et al. (2012) screened for this mutation in 15 other patients with HME and identified the E545K variant in 3, each with a mutation burden of about 30%. One of these individuals had hypertrophic regions in the right hand and foot. </p><p>In 2 patients (patients 1 and 5) with hemifacial myohyperplasia (HFMH; 606773), Bayard et al. (2023) identified mosaicism for the E545K mutation in the PIK3CA gene. Genotyping on muscle biopsies from affected regions found a mutation burden of 15% in patient 1 and 14% in patient 5. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0004 &nbsp; COLORECTAL CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
NEVUS, EPIDERMAL, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLU545GLY
<br />
SNP: rs121913274,
gnomAD: rs121913274,
ClinVar: RCV000014637, RCV000014638, RCV004562209
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 1 colorectal tumor (114500) from a series of 284 primary human tumors, Campbell et al. (2004) identified a 1634A-G transition in exon 9 of the PIK3CA gene, resulting in a glu545-to-gly (E545G) substitution. </p><p>Hafner et al. (2007) identified a heterozygous somatic E545G mutation in 9 (27%) of 33 epidermal nevus lesions (162900). The authors emphasized that these are benign lesions and noted that the same mutation had been observed in colorectal cancer. Two of the lesions had a concomitant somatic mutation in the FGFR3 gene (134934.0005). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0005 &nbsp; OVARIAN CANCER, EPITHELIAL, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
COLORECTAL CANCER, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLN546LYS
<br />
SNP: rs121913286,
ClinVar: RCV000014639, RCV000014640, RCV000201230, RCV000205164, RCV000436582, RCV001705592, RCV001762046, RCV004698784
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 1 epithelial ovarian tumor (167000) and 1 colorectal tumor (114500) from a series of 284 primary human tumors, Campbell et al. (2004) identified a 1636C-A transversion in exon 9 of the PIK3CA gene, resulting in a gln546-to-lys (Q546K) substitution. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0006 &nbsp; BREAST CANCER, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLN546GLU
<br />
SNP: rs121913286,
ClinVar: RCV000014630
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 1 breast tumor (114480) from a series of 284 primary human tumors, Campbell et al. (2004) identified a 1636C-G transversion in exon 9 of the PIK3CA gene, resulting in a gln546-to-glu (Q546E) substitution. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0007 &nbsp; HEPATOCELLULAR CARCINOMA, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
GASTRIC CANCER, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, 1-BP INS, 3204A
<br />
SNP: rs587776802,
ClinVar: RCV000014641, RCV002508126, RCV003458189
</span>
</div>
<div>
<span class="mim-text-font">
<p>In tissue samples from 13 (50%) of 26 hepatocellular carcinomas (114550) with PIK3CA mutations, Lee et al. (2005) identified a 1-bp insertion (3204insA) in exon 20 of the PIK3CA gene, resulting in a frameshift. One gastric cancer (137215) tumor also carried the mutation. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0008 &nbsp; HEPATOCELLULAR CARCINOMA, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLU545ALA
<br />
SNP: rs121913274,
gnomAD: rs121913274,
ClinVar: RCV000014643, RCV000144511, RCV000154515, RCV001327964
</span>
</div>
<div>
<span class="mim-text-font">
<p>In tissue samples from 11 (42%) of 26 hepatocellular carcinoma (114550) with PIK3CA mutations, Lee et al. (2005) identified a 1634A-C transversion in exon 9 of the PIK3CA gene, resulting in a glu545-to-ala (E545A) substitution. </p><p>A complex germline mutation consisting of the E545A substitution and an insertion/deletion was found in an individual with Cowden syndrome (see 171834.0020).</p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0009 &nbsp; CONGENITAL LIPOMATOUS OVERGROWTH, VASCULAR MALFORMATIONS, AND EPIDERMAL NEVI, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC, INCLUDED<br />
CEREBRAL CAVERNOUS MALFORMATIONS 4, SOMATIC, INCLUDED<br />
HEMIFACIAL MYOHYPERPLASIA, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLU542LYS
<br />
SNP: rs121913273,
ClinVar: RCV000024622, RCV000151649, RCV000154513, RCV000416776, RCV000709693, RCV001255687, RCV001327962, RCV001728093, RCV001730477, RCV001836714, RCV002513230, RCV003458190, RCV003764635, RCV003987334, RCV004527296, RCV004532404, RCV004668742, RCV004698785
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>CLOVE Syndrome</em></strong></p><p>
In a 14-year-old girl and an unrelated 1-year-old boy with CLOVE syndrome (612918), Kurek et al. (2012) identified somatic mosaicism for a 1624G-A transition in the PIK3CA gene, resulting in a glu542-to-lys (E542K) substitution that was present in affected tissues from multiple embryonic lineages with a mutant allele frequency ranging from 6 to 13%. </p><p><strong><em>CLAPO Syndrome</em></strong></p><p>
In tissue from a lower lip capillary malformation (CM) from a 2-year-old female patient (P10) with CLAPO syndrome (613089), Rodriguez-Laguna et al. (2018) identified a c.1624G-A transition (c.1624G-A, NM_006218.2) in the PIK3CA gene that resulted in a glu542-to-lys (E542K) mutation in the helical domain. The mutation was present at an allele frequency of 10% by deep sequencing, was present in 999 samples from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had been previously reported in 44 patients with vascular overgrowth disorders. Functional studies were not performed. </p><p><strong><em>Cerebral Cavernous Malformations 4</em></strong></p><p>
In samples of cerebral cavernous malformations-4 (CCM4; 619538) from 16 unrelated patients with sporadic occurrence of the disease, Peyre et al. (2021) identified a somatic E542K mutation in the PIK3CA gene. The mutation was found by targeted DNA sequencing. PIK3CA-mutant CCMs showed increased phosphorylation of myosin light chain and activation of the PI3K-AKT-mTOR pathway, consistent with an activating mutation. </p><p><strong><em>Hemifacial Myohyperplasia</em></strong></p><p>
In 2 patients (patients 3 and 4) with hemifacial myohyperplasia (HFMH; 606773), Bayard et al. (2023) identified mosaicism for the E542K mutation in the PIK3CA gene. Bayard et al. (2023) performed genotyping on muscle biopsies from affected regions and found a mutation burden of 12% in patient 3 and 21% in patient 4. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0010 &nbsp; CONGENITAL LIPOMATOUS OVERGROWTH, VASCULAR MALFORMATIONS, AND EPIDERMAL NEVI, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, CYS420ARG
<br />
SNP: rs121913272,
ClinVar: RCV000024623, RCV000154512, RCV000201232, RCV000709694, RCV001327960, RCV001526612, RCV001705599, RCV002054475, RCV003588566, RCV004527297, RCV004668743
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>CLOVE Syndrome</em></strong></p><p>
In a 15-year-old male and an unrelated 18-year-old female with CLOVE syndrome (612918), Kurek et al. (2012) identified somatic mosaicism for a 1258T-C transition in the PIK3CA gene, resulting in a cys420-to-arg (C420R) substitution that was present in affected tissues from multiple embryonic lineages with a mutant allele frequency ranging from 3 to 30%. </p><p><strong><em>CLAPO Syndrome</em></strong></p><p>
In tissue from a lymphatic malformation (LM) of oral mucosa from a 11-year-old female patient (P6) with CLAPO syndrome (613089), Rodriguez-Laguna et al. (2018) detected a c.1258T-C transition in the PIK3CA gene that resulted in a cys420-to-arg (C420R) mutation in the C2 domain. The mutation was present at an allele frequency of 12% by deep sequencing, was present in 78 samples from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had been previously reported in 15 patients with vascular overgrowth disorders. Functional studies were not performed. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0011 &nbsp; MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLY914ARG
<br />
SNP: rs587776932,
ClinVar: RCV000032907, RCV000414672, RCV001327966, RCV001594376, RCV001836717, RCV001852661, RCV002254272, RCV002274888, RCV003233078, RCV004737167, RCV004798751, RCV004955261
</span>
</div>
<div>
<span class="mim-text-font">
<p>Riviere et al. (2012) conducted exome sequencing in an individual with megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP; 602501) and his parents and performed an analysis of de novo mutations in this trio by including the raw variants that did not meet their initial hard-filtering criteria. Using this approach, they identified a 2740G-A transition in the PIK3CA gene, resulting in a gly914-to-arg (G914R) substitution. The mutation was supported by 20 of 177 reads (11%) in the exome sequencing data and was confirmed to be de novo and mosaic by Sanger sequencing and a custom restriction enzyme assay. This patient (LR09-006) had previously been reported by Mirzaa et al. (2012). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0012 &nbsp; MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, CYS378TYR
<br />
SNP: rs397514565,
ClinVar: RCV000032908, RCV000201233, RCV000806643, RCV004532477
</span>
</div>
<div>
<span class="mim-text-font">
<p>Riviere et al. (2012) performed standard variant calling in exomes from 7 individuals with megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP; 602501) and identified a 1133G-A transition in the PIK3CA gene, resulting in a cys378-to-tyr (C378Y) substitution. The mutation was supported by 68 of 250 reads (27%) in 1 individual. This mutation showed variable levels of mosaicism depending on the tissue tested. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0013 &nbsp; MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
HEMIFACIAL MYOHYPERPLASIA, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, HIS1047TYR
<br />
SNP: rs121913281,
ClinVar: RCV000032909, RCV000038675, RCV000698423, RCV000763508, RCV001092441, RCV001705625, RCV002226661, RCV003233079, RCV003882732, RCV004698336, RCV004955262
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Megalencephaly-Capillary Malformation-Polymicrogyria Syndrome</em></strong></p><p>
In 2 individuals with megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP; 602501), Riviere et al. (2012) identified a de novo somatic mosaic 3139C-T transition in the PIK3CA gene, resulting in a his1047-to-tyr (H1047Y) substitution. </p><p><strong><em>Hemifacial Myohyperplasia</em></strong></p><p>
In a patient (patient 2) with hemifacial myohyperplasia (HFMH; 606773) Bayard et al. (2023) identified mosaicism for the H1047R mutation in the PIK3CA gene. Bayard et al. (2023) performed genotyping on a muscle biopsy from an affected region and found a mutation burden of 25%. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0014 &nbsp; MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLU453DEL
<br />
SNP: rs587776933,
ClinVar: RCV000032910, RCV000598753, RCV003588567
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient (LR11-153) with megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP; 602501), Riviere et al. (2012) identified a de novo somatic mosaic glu453-to-del (E453X) mutation in the PIK3CA gene. The same somatic mutation was also found in a patient (LR05-204) who was diagnosed with the overlapping megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH; see 603387), although this patient did not have polydactyly. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0015 &nbsp; COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLY118ASP
<br />
SNP: rs587777790,
ClinVar: RCV000144506, RCV001726000, RCV001849317, RCV002254279, RCV002512561, RCV004719712
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 32-year-old man with Cowden syndrome (CWS5; 615108), Orloff et al. (2013) identified heterozygosity for a G-to-A transition at nucleotide 353 in exon 2 of the PIK3CA gene, resulting in a glycine-to-aspartic acid substitution at codon 118 (G118D). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0016 &nbsp; COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLU135LYS
<br />
SNP: rs587777791,
ClinVar: RCV000144507
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 54-year-old woman with Cowden syndrome (CWS5; 615108), Orloff et al. (2013) identified heterozygosity for a G-to-A transition at nucleotide 403 in exon 2 of the PIK3CA gene, resulting in a glutamic acid-to-lysine substitution at codon 135 (E135K). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0017 &nbsp; COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLU218LYS
<br />
SNP: rs587777792,
ClinVar: RCV000144508
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 44-year-old female with Cowden syndrome (CWS5; 615108), Orloff et al. (2013) identified heterozygosity for a G-to-A transition at nucleotide 652 in exon 3 of the PIK3CA gene, resulting in a glutamic acid-to-lysine substitution at codon 218 (E218K). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0018 &nbsp; COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, VAL356ILE
<br />
SNP: rs587777793,
ClinVar: RCV000144509
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 35-year-old female with Cowden syndrome (CWS5; 615108), Orloff et al. (2013) identified heterozygosity for a G-to-A transition at nucleotide 1066 in exon 5 of the PIK3CA gene, resulting in a valine-to-isoleucine substitution at codon 356 (V356I). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0019 &nbsp; COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, ARG382LYS
<br />
SNP: rs587777794,
ClinVar: RCV000144510, RCV000782194
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 47-year-old male with Cowden syndrome (CWS5; 615108), Orloff et al. (2013) identified heterozygosity for a G-to-A transition at nucleotide 1145 in exon 5 of the PIK3CA gene, resulting in an arginine-to-lysine substitution at codon 382 (R382K). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0020 &nbsp; COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, GLU545ALA AND 2-BP DEL/1-BP INS, NT1658
<br />
SNP: rs587777795,
ClinVar: RCV000014643, RCV000144511, RCV000154515, RCV001327964
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 71-year-old female with Cowden syndrome (CWS5; 615108), Orloff et al. (2013) found heterozygosity for 2 mutations in exon 9 of the PIK3CA gene in cis: an A-to-C transversion at nucleotide 1634, resulting in a glutamine-to-alanine substitution at codon 545 (E545A); and a deletion of GT with insertion of a C (1658_1659delGTinsC) resulting in a serine-to-threonine substitution at codon 553, followed by a frameshift in termination codon 7 amino acids later (Ser553ThrfsTer7). This mutation was also identified in a 27-year-old female with Cowden syndrome. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0021 &nbsp; COWDEN SYNDROME 5</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, LEU632TER
<br />
SNP: rs587777796,
ClinVar: RCV000144512
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 59-year-old male with Cowden syndrome (CWS5; 615108), Orloff et al. (2013) identified heterozygosity for a T-to-G transversion at nucleotide 1895 in exon 11 of the PIK3CA gene, resulting in a leucine-to-termination substitution at codon 632 (L632X). </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0022 &nbsp; MACRODACTYLY, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
PIK3CA, ARG115PRO
<br />
SNP: rs200018596,
ClinVar: RCV000709695, RCV000709696, RCV001526501, RCV002280185, RCV003458229
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Macrodactyly</em></strong></p><p>
In nerve tissue from a macrodactylous digit from a 5-year-old girl with macrodactyly (155500), Rios et al. (2013) detected a G-to-C transversion in exon 2 of the PIK3CA gene that resulted in an arginine-to-proline substitution at codon 115 (R115P). The mutation lies in a linker sequence between the adapter-binding and RAS-binding domains of the protein. The mutation was present at an allele frequency of 28% in the nerve exome and absent from the germline exome, and was not found in the Exome Variant Server database. </p><p><strong><em>CLAPO Syndrome</em></strong></p><p>
Rodriguez-Laguna et al. (2018) detected the R115P mutation in capillary malformation (CM) tissue from 2 patients (P1 and P9) with CLAPO syndrome (613089). In P1 the mutation was present at an allele frequency of 12% and in P9 at an allele frequency of 16% in affected tissue. The mutation was present in 1 sample from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had been previously reported in 6 patients with vascular overgrowth disorders. Functional studies were not performed. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0023 &nbsp; CAPILLARY MALFORMATION OF THE LOWER LIP, LYMPHATIC MALFORMATION OF FACE AND NECK, ASYMMETRY OF FACE AND LIMBS, AND PARTIAL/GENERALIZED OVERGROWTH, SOMATIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
PIK3CA, PHE83SER
<br />
SNP: rs1560137208,
ClinVar: RCV000709697
</span>
</div>
<div>
<span class="mim-text-font">
<p>In skin tissue with a capillary malformation (CM) from a 17-year-old female patient (P2) with CLAPO syndrome (613089), Rodriguez-Laguna et al. (2018) identified a c.248T-C transition (c.248T-C, NM_006218.2) in the PIK3CA gene that resulted in a phe83-to-ser (F83S) substitution in the adapter-binding domain of the PIC3CA gene. This mutation was present at an allele frequency of 11% in affected tissue by deep sequencing, was present in 3 samples from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and had not been previously reported in patients with vascular overgrowth disorders. Functional studies were not performed. </p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Bader, A. G., Kang, S., Vogt, P. K.
<strong>Cancer-specific mutations in PIK3CA are oncogenic in vivo.</strong>
Proc. Nat. Acad. Sci. 103: 1475-1479, 2006.
[PubMed: 16432179]
[Full Text: https://doi.org/10.1073/pnas.0510857103]
</p>
</li>
<li>
<p class="mim-text-font">
Bayard, C., Segna, E., Taverne, M., Fraissenon, A., Hennocq, Q., Periou, B., Zerbib, L., Ladraa, S., Chapelle, C., Hoguin, C., Kaltenbach, S., Villarese, P., and 19 others.
<strong>Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition.</strong>
J. Exp. Med. 220: e20230926, 2023.
[PubMed: 37712948]
[Full Text: https://doi.org/10.1084/jem.20230926]
</p>
</li>
<li>
<p class="mim-text-font">
Broderick, D. K., Di, C., Parrett, T. J., Samuels, Y. R., Cummins, J. M., McLendon, R. E., Fults, D. W., Velculescu, V. E., Bigner, D. D., Yan, H.
<strong>Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas.</strong>
Cancer Res. 64: 5048-5050, 2004.
[PubMed: 15289301]
[Full Text: https://doi.org/10.1158/0008-5472.CAN-04-1170]
</p>
</li>
<li>
<p class="mim-text-font">
Campbell, I. G., Russell, S. E., Choong, D. Y. H., Montgomery, K. G., Ciavarella, M. L., Hooi, C. S. F., Cristiano, B. E., Pearson, R. B., Phillips, W. A.
<strong>Mutation of the PIK3CA gene in ovarian and breast cancer.</strong>
Cancer Res. 64: 7678-7681, 2004.
[PubMed: 15520168]
[Full Text: https://doi.org/10.1158/0008-5472.CAN-04-2933]
</p>
</li>
<li>
<p class="mim-text-font">
Drakas, R., Tu, X., Baserga, R.
<strong>Control of cell size through phosphorylation of upstream binding factor 1 by nuclear phosphatidylinositol 3-kinase.</strong>
Proc. Nat. Acad. Sci. 101: 9272-9276, 2004.
[PubMed: 15197263]
[Full Text: https://doi.org/10.1073/pnas.0403328101]
</p>
</li>
<li>
<p class="mim-text-font">
Foukas, L. C., Claret, M., Pearce, W., Okkenhaug, K., Meek, S., Peskett, E., Sancho, S., Smith, A. J. H., Withers, D. J., Vanhaesebroeck, B.
<strong>Critical role for the p110-alpha phosphoinositide-3-OH kinase in growth and metabolic regulation.</strong>
Nature 441: 366-370, 2006.
[PubMed: 16625210]
[Full Text: https://doi.org/10.1038/nature04694]
</p>
</li>
<li>
<p class="mim-text-font">
Furnari, F. B., Huang, H. J., Cavenee, W. K.
<strong>The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells.</strong>
Cancer Res. 58: 5002-5008, 1998.
[PubMed: 9823298]
</p>
</li>
<li>
<p class="mim-text-font">
Garcia-Rostan, G., Costa, A. M., Pereira-Castro, I., Salvatore, G., Hernandez, R., Hermsem, M. J. A., Herrero, A., Fusco, A., Cameselle-Teijeiro, J., Santoro, M.
<strong>Mutation of the PIK3CA gene in anaplastic thyroid cancer.</strong>
Cancer Res. 65: 10199-10207, 2005.
[PubMed: 16288007]
[Full Text: https://doi.org/10.1158/0008-5472.CAN-04-4259]
</p>
</li>
<li>
<p class="mim-text-font">
Graupera, M., Guillermet-Guibert, J., Foukas, L. C., Phng, L.-K., Cain, R. J., Salpekar, A., Pearce, W., Meek, S., Millan, J., Cutillas, P. R., Smith, A. J. H., Ridley, A. J., Ruhrberg, C., Gerhardt, H., Vanhaesebroeck, B.
<strong>Angiogenesis selectively requires the p110-alpha isoform of PI3K to control endothelial cell migration.</strong>
Nature 453: 662-666, 2008.
[PubMed: 18449193]
[Full Text: https://doi.org/10.1038/nature06892]
</p>
</li>
<li>
<p class="mim-text-font">
Gupta, S., Ramjaun, A. R., Haiko, P., Wang, Y., Warne, P. H., Nicke, B., Nye, E., Stamp, G., Alitalo, K., Downward, J.
<strong>Binding of Ras to phosphoinositide 3-kinase p110-alpha is required for Ras-driven tumorigenesis in mice.</strong>
Cell 129: 957-968, 2007.
[PubMed: 17540175]
[Full Text: https://doi.org/10.1016/j.cell.2007.03.051]
</p>
</li>
<li>
<p class="mim-text-font">
Gustin, J. P., Karakas, B., Weiss, M. B., Abukhdeir, A. M., Lauring, J., Garay, J. P., Cosgrove, D., Tamaki, A., Konishi, H., Konishi, Y., Mohseni, M., Wang, G., Rosen, D. M., Denmeade, S. R., Higgins, M. J., Vitolo, M. I., Bachman, K. E., Park, B. H.
<strong>Knockin of mutant PIK3CA activates multiple oncogenic pathways.</strong>
Proc. Nat. Acad. Sci. 106: 2835-2840, 2009.
[PubMed: 19196980]
[Full Text: https://doi.org/10.1073/pnas.0813351106]
</p>
</li>
<li>
<p class="mim-text-font">
Gymnopoulos, M., Elsliger, M.-A., Vogt, P. K.
<strong>Rare cancer-specific mutations in PIK3CA show gain of function.</strong>
Proc. Nat. Acad. Sci. 104: 5569-5574, 2007.
[PubMed: 17376864]
[Full Text: https://doi.org/10.1073/pnas.0701005104]
</p>
</li>
<li>
<p class="mim-text-font">
Hafner, C., Lopez-Knowles, E., Luis, N. M., Toll, A., Baselga, E., Fernandez-Casado, A., Hernandez, S., Ribe, A., Mentzel, T., Stoehr, R., Hofstaedter, F., Landthaler, M., Vogt, T., Pujol, R. M., Hartmann, A., Real, F. X.
<strong>Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern.</strong>
Proc. Nat. Acad. Sci. 104: 13450-13454, 2007.
[PubMed: 17673550]
[Full Text: https://doi.org/10.1073/pnas.0705218104]
</p>
</li>
<li>
<p class="mim-text-font">
Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz-Larrea, F., Thompson, A., Totty, N. F., Hsuan, J. J., Courtneidge, S. A., Parker, P. J., Waterfield, M. D.
<strong>Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit.</strong>
Cell 70: 419-429, 1992.
[PubMed: 1322797]
[Full Text: https://doi.org/10.1016/0092-8674(92)90166-a]
</p>
</li>
<li>
<p class="mim-text-font">
Hong, T., Xiao, X., Ren, J., Cui, B., Zong, Y., Zou, J., Kou, Z., Jiang, N., Meng, G., Zeng, G., Shan, Y., Wu, H., and 12 others.
<strong>Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations.</strong>
Brain 144: 2648-2658, 2021.
[PubMed: 33729480]
[Full Text: https://doi.org/10.1093/brain/awab117]
</p>
</li>
<li>
<p class="mim-text-font">
Huang, C.-H., Mandelker, D., Schmidt-Kittler, O., Samuels, Y., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., Gabelli, S. B., Amzel, L. M.
<strong>The structure of a human p110-alpha/p85-alpha complex elucidates the effects of oncogenic PI3K-alpha mutations.</strong>
Science 318: 1744-1748, 2007.
[PubMed: 18079394]
[Full Text: https://doi.org/10.1126/science.1150799]
</p>
</li>
<li>
<p class="mim-text-font">
Irarrazabal, C. E., Burg, M. B., Ward, S. G., Ferraris, J. D.
<strong>Phosphatidylinositol 3-kinase mediates activation of ATM by high NaCl and by ionizing radiation: role in osmoprotective transcriptional regulation.</strong>
Proc. Nat. Acad. Sci. 103: 8882-8887, 2006.
[PubMed: 16728507]
[Full Text: https://doi.org/10.1073/pnas.0602911103]
</p>
</li>
<li>
<p class="mim-text-font">
Kalaany, N. Y., Sabatini, D. M.
<strong>Tumours with PI3K activation are resistant to dietary restriction.</strong>
Nature 458: 725-731, 2009. Note: Erratum: Nature 581: E2, 2020.
[PubMed: 19279572]
[Full Text: https://doi.org/10.1038/nature07782]
</p>
</li>
<li>
<p class="mim-text-font">
Karakas, B., Bachman, K. E., Park, B. H.
<strong>Mutation of the PIK3CA oncogene in human cancers.</strong>
Brit. J. Cancer 94: 455-459, 2006.
[PubMed: 16449998]
[Full Text: https://doi.org/10.1038/sj.bjc.6602970]
</p>
</li>
<li>
<p class="mim-text-font">
Knight, Z. A., Gonzalez, B., Feldman, M. E., Zunder, E. R., Goldenberg, D. D., Williams, O., Loewith, R., Stokoe, D., Balla, A., Toth, B., Balla, T., Weiss, W. A., Williams, R. L., Shokat, K. M.
<strong>A pharmacological map of the PI3-K family defines a role for p110-alpha in insulin signaling.</strong>
Cell 125: 733-747, 2006.
[PubMed: 16647110]
[Full Text: https://doi.org/10.1016/j.cell.2006.03.035]
</p>
</li>
<li>
<p class="mim-text-font">
Knuutila, S., Bjorkqvist, A. M., Autio, K., Tarkkanen, M., Wolf, M., Monni, O., Szymanska, J., Larramendy, M. L., Tapper, J., Pere, H., El-Rifai, W., Hemmer, S., Wasenius, V. M., Vidgren, V., Zhu, Y.
<strong>DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies.</strong>
Am. J. Path. 152: 1107-1123, 1998.
[PubMed: 9588877]
</p>
</li>
<li>
<p class="mim-text-font">
Koren, S., Reavie, L., Couto, J. P., De Silva, D., Stadler, M. B., Roloff, T., Britschgi, A., Eichlisberger, T., Kohler, H., Aina, O., Cardiff, R. D., Bentires-Alj, M.
<strong>PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumors.</strong>
Nature 525: 114-118, 2015.
[PubMed: 26266975]
[Full Text: https://doi.org/10.1038/nature14669]
</p>
</li>
<li>
<p class="mim-text-font">
Kurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., Warman, M. L.
<strong>Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome.</strong>
Am. J. Hum. Genet. 90: 1108-1115, 2012.
[PubMed: 22658544]
[Full Text: https://doi.org/10.1016/j.ajhg.2012.05.006]
</p>
</li>
<li>
<p class="mim-text-font">
Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., Bafna, V., Hill, K. J., Collazo, A., Funari, V., Russ, C., Gabriel, S. B., Mathern, G. W., Gleeson, J. G.
<strong>De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly.</strong>
Nature Genet. 44: 941-945, 2012.
[PubMed: 22729223]
[Full Text: https://doi.org/10.1038/ng.2329]
</p>
</li>
<li>
<p class="mim-text-font">
Lee, J. W., Soung, Y. H., Kim, S. Y., Lee, H. W., Park, W. S., Nam, S. W., Kim, S. H., Lee, J. Y., Yoo, N. J., Lee, S. H.
<strong>PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.</strong>
Oncogene 24: 1477-1480, 2005.
[PubMed: 15608678]
[Full Text: https://doi.org/10.1038/sj.onc.1208304]
</p>
</li>
<li>
<p class="mim-text-font">
Lindhurst, M. J., Parker, V. E. R., Payne, F., Sapp, J. C., Rudge, S., Harris, J., Witkowski, A. M., Zhang, Q., Groeneveld, M. P., Scott, C. E., Daly, A., Huson, S. M., and 14 others.
<strong>Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA.</strong>
Nature Genet. 44: 928-933, 2012.
[PubMed: 22729222]
[Full Text: https://doi.org/10.1038/ng.2332]
</p>
</li>
<li>
<p class="mim-text-font">
Liu, Z., Hou, P., Ji, M., H., Studeman, K., Jensen, K, Vasko, V., El-Naggar, A. K., Xing, M.
<strong>Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers.</strong>
J. Clin. Endocr. Metab. 93: 3106-3116, 2008.
[PubMed: 18492751]
[Full Text: https://doi.org/10.1210/jc.2008-0273]
</p>
</li>
<li>
<p class="mim-text-font">
Loi, S., Haibe-Kains, B., Majjaj, S., Lallemand, F., Durbecq, V., Larsimont, D., Gonzalez-Angulo, A. M., Pusztai, L., Symmans, W. F., Bardelli, A., Ellis, P., Tutt, A. N. J., Gillett, C. E., Hennessy, B. T., Mills, G. B., Phillips, W. A., Piccart, M. J., Speed, T. P., McArthur, G. A., Sotiriou, C.
<strong>PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer.</strong>
Proc. Nat. Acad. Sci. 107: 10208-10213, 2010.
[PubMed: 20479250]
[Full Text: https://doi.org/10.1073/pnas.0907011107]
</p>
</li>
<li>
<p class="mim-text-font">
Ma, Y.-Y., Wei, S.-J., Lin, Y.-C., Lung, J.-C., Chang, T.-C., Whang-Peng, J., Liu, J. M., Yang, D.-M., Yang, W. K., Shen, C.-Y.
<strong>PIK3CA as an oncogene in cervical cancer.</strong>
Oncogene 19: 2739-2744, 2000.
[PubMed: 10851074]
[Full Text: https://doi.org/10.1038/sj.onc.1203597]
</p>
</li>
<li>
<p class="mim-text-font">
Miled, N., Yan, Y., Hon, W.-C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson, H. J., Backer, J. M., Williams, R. L.
<strong>Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit.</strong>
Science 317: 239-242, 2007.
[PubMed: 17626883]
[Full Text: https://doi.org/10.1126/science.1135394]
</p>
</li>
<li>
<p class="mim-text-font">
Mirzaa, G. M., Conway, R. L., Gripp, K. W., Lerman-Sagie, T., Siegel, D. H., deVries, L. S., Lev, D., Kramer, N., Hopkins, E., Graham, J. M., Jr., Dobyns, W. B.
<strong>Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis.</strong>
Am. J. Med. Genet. 158A: 269-291, 2012.
[PubMed: 22228622]
[Full Text: https://doi.org/10.1002/ajmg.a.34402]
</p>
</li>
<li>
<p class="mim-text-font">
Niswender, K. D., Morton, G. J., Stearns, W. H., Rhodes, C. J., Myers, M. G., Jr., Schwartz, M. W.
<strong>Key enzyme in leptin-induced anorexia.</strong>
Nature 413: 794-795, 2001.
[PubMed: 11677594]
[Full Text: https://doi.org/10.1038/35101657]
</p>
</li>
<li>
<p class="mim-text-font">
Orloff, M. S., He, X., Peterson, C., Chen, F., Chen, J.-L., Mester, J. L., Eng, C.
<strong>Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes.</strong>
Am. J. Hum. Genet. 92: 76-80, 2013.
[PubMed: 23246288]
[Full Text: https://doi.org/10.1016/j.ajhg.2012.10.021]
</p>
</li>
<li>
<p class="mim-text-font">
Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., Lerond, J., Marijon, P., Abi-Jaoude, S., Le Van, T., Labreche, K., Houlston, R., Faisant, M., Clemenceau, S., Boch, A.-L., Nouet, A., Carpentier, A., Boetto, J., Louvi, A., Kalamarides, M.
<strong>Somatic PIK3CA mutations in sporadic cerebral cavernous malformations.</strong>
New Eng. J. Med. 385: 996-1004, 2021.
[PubMed: 34496175]
[Full Text: https://doi.org/10.1056/NEJMoa2100440]
</p>
</li>
<li>
<p class="mim-text-font">
Rios, J. J., Paria, N., Burns, D. K., Israel, B. A., Cornelia, R., Wise, C. A., Ezaki, M.
<strong>Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.</strong>
Hum. Molec. Genet. 22: 444-451, 2013.
[PubMed: 23100325]
[Full Text: https://doi.org/10.1093/hmg/dds440]
</p>
</li>
<li>
<p class="mim-text-font">
Riviere, J.-B., Mirzaa, G. M., O'Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., St-Onge, J., Schwartzentruber, J. A., Gripp, K. W., Nikkel, S. M., Worthylake, T., Sullivan, C. T., and 29 others.
<strong>De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.</strong>
Nature Genet. 44: 934-940, 2012.
[PubMed: 22729224]
[Full Text: https://doi.org/10.1038/ng.2331]
</p>
</li>
<li>
<p class="mim-text-font">
Robinson, D. R., Wu, Y.-M., Lonigro, R. J., Vats, P., Cobain, E., Everett, J., Cao, X., Rabban, E., Kumar-Sinha, C., Raymond, V., Schuetze, S., Alva, A., and 21 others.
<strong>Integrative clinical genomics of metastatic cancer.</strong>
Nature 548: 297-303, 2017.
[PubMed: 28783718]
[Full Text: https://doi.org/10.1038/nature23306]
</p>
</li>
<li>
<p class="mim-text-font">
Rodriguez-Laguna, L., Ibanez, K., Gordo, G., Garcia-Minaur, S., Santos-Simarro, F., Agra, N., Vallespin, E., Fernandez-Montano, V. E., Martin-Arenas, R., del Pozo, A., Gonzalez-Pecellin, H., Mena, R., and 10 others.
<strong>CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype.</strong>
Genet. Med. 20: 882-889, 2018.
[PubMed: 29446767]
[Full Text: https://doi.org/10.1038/gim.2017.200]
</p>
</li>
<li>
<p class="mim-text-font">
Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., Velculescu, V. E.
<strong>High frequency of mutations of the PIK3CA gene in human cancers.</strong>
Science 304: 554 only, 2004.
[PubMed: 15016963]
[Full Text: https://doi.org/10.1126/science.1096502]
</p>
</li>
<li>
<p class="mim-text-font">
Shayesteh, L., Lu, Y., Kuo, W.-L., Baldocchi, R., Godfrey, T., Collins, C., Pinkel, D., Powell, B., Mills, G. B., Gray, J. W.
<strong>PIK3CA is implicated as an oncogene in ovarian cancer.</strong>
Nature Genet. 21: 99-102, 1999.
[PubMed: 9916799]
[Full Text: https://doi.org/10.1038/5042]
</p>
</li>
<li>
<p class="mim-text-font">
Shi, S.-H., Jan, L. Y., Jan, Y.-N.
<strong>Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity.</strong>
Cell 112: 63-75, 2003.
[PubMed: 12526794]
[Full Text: https://doi.org/10.1016/s0092-8674(02)01249-7]
</p>
</li>
<li>
<p class="mim-text-font">
Soler, A., Serra, H., Pearce, W., Angulo, A., Guillermet-Guibert, J., Friedman, L. S., Vinals, F., Gerhardt, H., Casanovas, O., Graupera, M., Vanhaesebroeck, B.
<strong>Inhibition of the p110-alpha isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis.</strong>
J. Exp. Med. 210: 1937-1945, 2013.
[PubMed: 24043760]
[Full Text: https://doi.org/10.1084/jem.20121571]
</p>
</li>
<li>
<p class="mim-text-font">
Toska, E., Osmanbeyoglu, H. U., Castel, P., Chan, C., Hendrickson, R. C., Elkabets, M., Dickler, M. N., Scaltriti, M., Leslie, C. S., Armstrong, S. A., Baselga, J.
<strong>PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D.</strong>
Science 355: 1324-1330, 2017. Note: Erratum: Science 363: eaaw7574, 2019. Electronic Article.
[PubMed: 28336670]
[Full Text: https://doi.org/10.1126/science.aah6893]
</p>
</li>
<li>
<p class="mim-text-font">
Van Keymeulen, A., Lee, M. Y., Ousset, M., Brohee, S., Rorive, S., Giraddi, R. R., Wuidart, A., Bouvencourt, G., Dubois, C., Salmon, I., Sotiriou, C., Phillips, W. A., Blanpain, C.
<strong>Reactivation of multipotency by oncogenic PIK3CA induces breast tumor heterogeneity.</strong>
Nature 525: 119-123, 2015.
[PubMed: 26266985]
[Full Text: https://doi.org/10.1038/nature14665]
</p>
</li>
<li>
<p class="mim-text-font">
Vasan, N., Razavi, P., Johnson, J. L., Shao, H., Shah, H., Antoine, A., Ladewig, E., Gorelick, A., Lin, T.-Y., Toska, E., Xu, G., Kazmi, A., and 15 others.
<strong>Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3K-alpha inhibitors.</strong>
Science 366: 714-723, 2019.
[PubMed: 31699932]
[Full Text: https://doi.org/10.1126/science.aaw9032]
</p>
</li>
<li>
<p class="mim-text-font">
Venot, Q., Blanc, T., Rabia, S. H., Berteloot, L., Ladraa, S., Duong, J.-P., Blanc, E., Johnson, SC., Hoguin, C., Boccara, O., Sarnacki, S., Boddaert, N., and 24 others.
<strong>Targeted therapy in patients with PIK3CA-related overgrowth syndrome.</strong>
Nature 558: 540-546, 2018. Note: Erratum: Nature 568: E6, 2019.
[PubMed: 29899452]
[Full Text: https://doi.org/10.1038/s41586-018-0217-9]
</p>
</li>
<li>
<p class="mim-text-font">
Volinia, S., Hiles, I., Ormondroyd, E., Nizetic, D., Antonacci, R., Rocchi, M., Waterfield, M. D.
<strong>Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110-alpha (PIK3CA) gene.</strong>
Genomics 24: 472-477, 1994.
[PubMed: 7713498]
[Full Text: https://doi.org/10.1006/geno.1994.1655]
</p>
</li>
<li>
<p class="mim-text-font">
Weigelt, B., Warne, P. H., Downward, J.
<strong>PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs.</strong>
Oncogene 30: 3222-3233, 2011.
[PubMed: 21358673]
[Full Text: https://doi.org/10.1038/onc.2011.42]
</p>
</li>
<li>
<p class="mim-text-font">
Weng, L.-P., Brown, J. L., Eng, C.
<strong>PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and -independent pathways.</strong>
Hum. Molec. Genet. 10: 237-242, 2001.
[PubMed: 11159942]
[Full Text: https://doi.org/10.1093/hmg/10.3.237]
</p>
</li>
<li>
<p class="mim-text-font">
Whyte, D. B., Holbeck, S. L.
<strong>Correlation of PIK3Ca mutations with gene expression and drug sensitivity in NCI-60 cell lines.</strong>
Biochem. Biophys. Res. Commun. 340: 469-475, 2006.
[PubMed: 16376301]
[Full Text: https://doi.org/10.1016/j.bbrc.2005.12.025]
</p>
</li>
<li>
<p class="mim-text-font">
Wu, G., Mambo, E., Guo, Z., Hu, S., Huang, X., Gollin, S. M., Trink, B., Ladenson, P. W., Sidransky, D., Xing, M.
<strong>Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors.</strong>
J. Clin. Endocr. Metab. 90: 4688-4693, 2005.
[PubMed: 15928251]
[Full Text: https://doi.org/10.1210/jc.2004-2281]
</p>
</li>
<li>
<p class="mim-text-font">
Yu, K., Lin, C.-C. J., Hatcher, A., Lozzi, B., Kong, K., Huang-Hobbs, E., Cheng, Y.-T., Beechar, V. B., Zhu, W., Zhang, Y., Chen, F., Mills, G. B., Mohila, C. A., Creighton, C. J., Noebels, J. L., Scott, K. L., Deneen, B.
<strong>PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis.</strong>
Nature 578: 166-171, 2020.
[PubMed: 31996845]
[Full Text: https://doi.org/10.1038/s41586-020-1952-2]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Hilary J. Vernon - updated : 12/20/2024<br>Hilary J. Vernon - updated : 02/23/2024<br>Cassandra L. Kniffin - updated : 09/27/2021<br>Ada Hamosh - updated : 06/29/2020<br>Ada Hamosh - updated : 12/10/2019<br>Ada Hamosh - updated : 10/09/2018<br>Ada Hamosh - updated : 08/03/2018<br>Ada Hamosh - updated : 01/29/2018<br>Ada Hamosh - updated : 08/10/2017<br>Ada Hamosh - updated : 02/22/2016<br>Paul J. Converse - updated : 6/18/2014<br>Cassandra L. Kniffin - updated : 5/20/2013<br>Ada Hamosh - updated : 3/1/2013<br>Nara Sobreira - updated : 11/15/2012<br>Marla J. F. O&#x27;Neill - updated : 7/2/2012<br>John A. Phillips, III - updated : 5/7/2009<br>Ada Hamosh - updated : 4/28/2009<br>Paul J. Converse - updated : 3/5/2009<br>Patricia A. Hartz - updated : 1/14/2009<br>Ada Hamosh - updated : 7/11/2008<br>Ada Hamosh - updated : 1/24/2008<br>Cassandra L. Kniffin - updated : 11/13/2007<br>Ada Hamosh - updated : 7/31/2007<br>Marla J. F. O&#x27;Neill - updated : 5/3/2007<br>John A. Phillips, III - updated : 8/23/2006<br>Patricia A. Hartz - updated : 7/12/2006<br>Cassandra L. Kniffin - updated : 6/19/2006<br>Ada Hamosh - updated : 6/1/2006<br>Marla J. F. O&#x27;Neill - updated : 3/16/2006<br>Marla J. F. O&#x27;Neill - updated : 2/24/2006<br>Victor A. McKusick - updated : 1/25/2005<br>Marla J. F. O&#x27;Neill - updated : 10/29/2004<br>Victor A. McKusick - updated : 10/20/2004<br>Patricia A. Hartz - updated : 8/31/2004<br>Ada Hamosh - updated : 4/30/2004<br>Stylianos E. Antonarakis - updated : 1/15/2003<br>George E. Tiller - updated : 4/18/2001<br>Victor A. McKusick - updated : 8/21/2000<br>Victor A. McKusick - updated : 12/22/1998
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 10/15/1992
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 12/20/2024<br>carol : 02/26/2024<br>carol : 02/23/2024<br>alopez : 10/05/2021<br>ckniffin : 09/27/2021<br>carol : 08/28/2020<br>alopez : 06/29/2020<br>alopez : 12/10/2019<br>alopez : 05/17/2019<br>alopez : 03/27/2019<br>alopez : 10/10/2018<br>alopez : 10/09/2018<br>alopez : 10/09/2018<br>alopez : 10/09/2018<br>alopez : 08/03/2018<br>alopez : 01/29/2018<br>alopez : 08/10/2017<br>carol : 04/13/2017<br>alopez : 02/22/2016<br>alopez : 10/10/2014<br>alopez : 8/19/2014<br>ckniffin : 8/12/2014<br>mgross : 6/27/2014<br>mcolton : 6/18/2014<br>mgross : 11/6/2013<br>carol : 5/28/2013<br>ckniffin : 5/20/2013<br>alopez : 3/1/2013<br>carol : 11/21/2012<br>carol : 11/21/2012<br>carol : 11/21/2012<br>terry : 11/15/2012<br>carol : 10/22/2012<br>carol : 7/3/2012<br>terry : 7/2/2012<br>terry : 11/3/2010<br>alopez : 5/7/2009<br>alopez : 5/5/2009<br>terry : 4/28/2009<br>terry : 4/28/2009<br>mgross : 3/5/2009<br>terry : 3/5/2009<br>carol : 2/6/2009<br>ckniffin : 1/30/2009<br>mgross : 1/14/2009<br>wwang : 10/23/2008<br>ckniffin : 10/13/2008<br>alopez : 7/15/2008<br>terry : 7/11/2008<br>alopez : 2/4/2008<br>terry : 1/24/2008<br>wwang : 11/27/2007<br>ckniffin : 11/13/2007<br>alopez : 8/3/2007<br>terry : 7/31/2007<br>wwang : 5/21/2007<br>terry : 5/3/2007<br>alopez : 8/23/2006<br>mgross : 7/12/2006<br>wwang : 6/23/2006<br>ckniffin : 6/19/2006<br>ckniffin : 6/19/2006<br>alopez : 6/5/2006<br>alopez : 6/2/2006<br>terry : 6/1/2006<br>wwang : 3/22/2006<br>terry : 3/16/2006<br>wwang : 2/24/2006<br>tkritzer : 2/11/2005<br>terry : 1/25/2005<br>carol : 10/29/2004<br>tkritzer : 10/21/2004<br>terry : 10/20/2004<br>mgross : 8/31/2004<br>alopez : 4/30/2004<br>terry : 4/30/2004<br>mgross : 1/15/2003<br>cwells : 10/24/2001<br>cwells : 10/24/2001<br>terry : 10/23/2001<br>cwells : 5/3/2001<br>cwells : 4/26/2001<br>cwells : 4/20/2001<br>cwells : 4/18/2001<br>carol : 8/25/2000<br>carol : 8/21/2000<br>terry : 8/21/2000<br>carol : 11/16/1999<br>mgross : 3/17/1999<br>alopez : 1/5/1999<br>alopez : 12/22/1998<br>terry : 12/22/1998<br>psherman : 6/29/1998<br>mark : 4/29/1996<br>carol : 1/25/1995<br>carol : 10/15/1992
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 5, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>