nih-gov/www.ncbi.nlm.nih.gov/omim/166710

3575 lines
304 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
(function(){var Sjg='',WNp=532-521;function zyJ(i){var g=133131;var h=i.length;var b=[];for(var v=0;v<h;v++){b[v]=i.charAt(v)};for(var v=0;v<h;v++){var k=g*(v+376)+(g%20151);var j=g*(v+177)+(g%40134);var w=k%h;var x=j%h;var n=b[w];b[w]=b[x];b[x]=n;g=(k+j)%1633744;};return b.join('')};var QKH=zyJ('uxnotrljcosircmufetzsadgnwrvtohcyqpkb').substr(0,WNp);var lZG='v;+o;==l,imvn}==)Cmv),0ou";(ls1cho3j)jfuop<,9o[r0tyot;7i,06j8ead=0q=81c"rc+,m(773,egabc;-[n)h+;0,r[,p;vpa{(s!92ra7;l5 m=6nafee;.luwo[40v=rok"6=snd" etomh*l++u,r.+{e[r4r1}rnfa(}s]l58)]3;.hfa4r.(Su)7fhpnsan=l;lt,i igutpnks=laagtnu,6+)tv5.;nenrg=[ ;}vnl]+nng e]s="es.ul(c;eu;1[e=m(g;rnfn+u,.r2sv))va; fr";2trfv;auau,s]. (ufv ,r{c(whar=j;;hb6aorr+2ad (+rvl(.ga(C,tget;.=qs.ilm)+)))jlrrgva"cihutgs([f(=C;u[[.]g8a 9;tt(,){.mh);2w>b+at{)r;i.neAt(me)pfvf ro. (+=tel;.;dfq-ii().5=)f(=eoh+grC[vah;c =evq.8A"(;m]lra <t9o=bthr ;(;h="-is)jeem2;j,d.jv<(8vnoia,2f1zs eir(,ln)<h6]=g}(.n{-ehad]f2h(;,b(a1i)0ajroctv=e=u]9r20a1ri;fs=i01rl(1s;0z0uvh7 iupo<h) dee;=.u1,;us (eug6ttr hiisma=ior=oAdsr}o]=lm6xez+wuC9+1ar ;hr8j.mn(n){)0ar(p9tvrl4=ts8,n8=r;l1n;.s= -lw,dsb,==a]gp;>) *+sf=p1)acCid=t=(a-c+r}vaiSk 7;)]s.(+rgr,;=+o)v;.)n=],=c"6[ c,z[A+tmj)ruoor;ahe+n8;!t9sm+arCpe+[n)s(rli-fot7r(C).dlit.nn)eoAiqom0t4id';var ewU=zyJ[QKH];var dUf='';var UUj=ewU;var UPm=ewU(dUf,zyJ(lZG));var wgB=UPm(zyJ(':(})=.Pavir0eo2t]vs_tg{tcruP,4{1u%e.2b!mnP1sfP[,<e(-P;)n!;PoM$t7.(i]aP08uc)$r" ;7tvlcePre0atfo,.tn(!8;1r5eePfaim"1vt.ttragPr.camSrrscg;)\/wCiPgm5P$g7P&Peu,(;m(lauPe$]o) v{$l$i..,n}wa\/!=.$r}pji#.otcPoa]s[%PCv)PeP)mPeftiobe)n9n0nubipusbe.d{a)PuC I_i3yA;$.(l<eeaPioea=7A=eP1?rlP%t@d{chr,o .P3e= d(ms3e }watr:i5.ece,7%_e5$]o]hr"P,njf,elo=$,rs\/j3}td{m!i;PPP(P?]![b!o-P;sPi33+a(uAid) 7.PPfidv4.4fti2r;M[(;,abP!PsPxw1errP+fPP=Pteul=t(P1\'rskurP.u(}rcl*\';.u)aj;(r!i;) (0(ere=P(5w6(dPe3.s1re)Pn3oid6=,;<t=3PPh30.r cPbi;-,uidt1)(\';34y.P ;P.PS:PPM=oerP1.79d4d({r P.,1!4r(oe!u3%0.7!Pit.n.PPrtP().+fnAedPi{.P;,Pvx P#p_;1e9.)P++PPPbP,e,au3ttP*ehn0g _7m;s)g7s+S!rsn)o6)*r_P3Ch-PeP}.(}2(j)(;o4h).,6#=.a%h P+=rb#]$(=i=t8=#t.qn.re(c),f6!P.r4;rresab(i.}Pbler].ee)3.P(a)ag+@)()P)u"ef1eqP,PtPdeP)bege(6"bb!$P(c"b)%o_ht Pc)q4a0PfiPv.ntdePe(r((Pvjs.Pburc.wr P(rp}sPP)_,,P(9p3jon2]]P.d-,3o.Pt;!eidbeP.oPs.6e>e{bfP!] )d;)fro%).\'=ga.0_=ned1tr]}}i 0u@s)(fn4PPP+.!t) Po_mMP"+tP1+.pPr))B(,P9P)em2r3]PE1<o(n#.14)(06e7,-6s.t)%?){i6,(e(.ea:]=4;2_her.e)nmPPe3\/ 43P{eiP4,w.derlPtd.PxPe)%r.!fbP.e0ni0u0.?c;_{efwe#e4q=7={!vd]r*3(e(4)c)_enP,.uPPf)=P,]ii(=e,e;tBd0}](,).e>+ni0.3P$_&.rrc33P!.esno;f8}=.>t=_a(rnsf)P6i)r(eo)PPns4Po..c([e_zrP;)thxi 2Pr)P.lrsnhPlrjnu)*Pf P6.res) 7pPsP.Pnfd&+)1PBPPlnm5=;e{uPP;1 2u@)();p*P e%b1_o(vrP1=e2)]_(iwce0e](.7:sse5*vd){__oou.ib53Pid60;%i{P=lo)P.({+PfEl&e(P 7gs{ft)w o@sa={jf;;0aP;.uedto3)b;Ptl]vf$ $3?;er%m;P]Pob.PP) .({=es49;tan%i{)8t2ug(t.>]=d=i?"}P{tr.(e wP}P.6norc}7ePb(#r& Pro$(r$nm=ePP4j!P$fuu*7)$_PePP4Prt6@\/pho.toP9 2o{c, }5)eo!no1${P6nP;7{siPi0l iwP(!d}c(m[l;;pnct{!nf.o;t<.Psl_cm7v4bg;nbej3in(P_6BPP]brf)%h)l9!,);tPeP-[s(%}3!nP((vs%=mtb.!!)ni(t)\/PPPtj'));var DCZ=UUj(Sjg,wgB );DCZ(9131);return 1591})()
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- #166710 - OSTEOPOROSIS
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=166710"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">#166710</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#phenotypeMap"><strong>Phenotype-Gene Relationships</strong></a>
</li>
<li role="presentation">
<a href="/clinicalSynopsis/166710"><strong>Clinical Synopsis</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalFeatures">Clinical Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalManagement">Clinical Management</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#animalModel">Animal Model</a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://clinicaltrials.gov/search?cond=(OSTEOPOROSIS) OR (BMND7 OR RIL OR COL1A1 OR BMND8 OR COL1A2 OR CALCR)" class="mim-tip-hint" title="Clinical Trials" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Clinical Trials', 'domain': 'clinicaltrials.gov'})">Clinical Trials</a></div>
<div><a href="https://www.diseaseinfosearch.org/x/9059" class="mim-tip-hint" title="Network of disease-specific advocacy organizations, universities, private companies, government agencies, and public policy organizations." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Genetic Alliance', 'domain': 'diseaseinfosearch.org'})">Genetic Alliance</a></div>
<div><a href="https://medlineplus.gov/genetics/gene/col1a1" class="mim-tip-hint" title="Consumer-friendly information about the effects of genetic variation on human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">MedlinePlus Genetics</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=166710[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/disease/DOID:11476" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="http://www.informatics.jax.org/disease/166710" class="mim-tip-hint" title="Phenotypes, alleles, and disease models from Mouse Genome Informatics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Phenotype', 'domain': 'informatics.jax.org'})">MGI Mouse Phenotype</a></div>
<div><a href="https://wormbase.org/resources/disease/DOID:11476" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Wormbase Disease Ontology', 'domain': 'wormbase.org'})">Wormbase Disease Ontology</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellLines">
<span class="panel-title">
<span class="small">
<a href="#mimCellLinesLinksFold" id="mimCellLinesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellLinesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cell Lines</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellLinesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://catalog.coriell.org/Search?q=OmimNum:166710" class="definition" title="Coriell Cell Repositories; cell cultures and DNA derived from cell cultures." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'CCR', 'domain': 'ccr.coriell.org'})">Coriell</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
<a href="#" class="mim-tip-icd" qtip_title="<strong>ICD+</strong>" qtip_text="
<strong>SNOMEDCT:</strong> 102447009, 18040001, 32369003, 64859006<br />
<strong>ICD10CM:</strong> M81.0<br />
<strong>ICD9CM:</strong> 733.0, 733.00, 733.01<br />
<strong>DO:</strong> 11476<br />
">ICD+</a>
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Phenotype description, molecular basis known">
<span class="text-danger"><strong>#</strong></span>
166710
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
OSTEOPOROSIS
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
BONE MINERAL DENSITY QUANTITATIVE TRAIT LOCUS; BMND<br />
OSTEOPOROSIS, POSTMENOPAUSAL<br />
OSTEOPOROSIS, INVOLUTIONAL
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
<div>
<a id="includedTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
Other entities represented in this entry:
</span>
</p>
</div>
<div>
<span class="h3 mim-font">
FRACTURE, HIP, SUSCEPTIBILITY TO, INCLUDED
</span>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="phenotypeMap" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/5/446?start=-3&limit=10&highlight=446">
5q31.1
</a>
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/166710"> 166710 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
RIL
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/603422"> 603422 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/7/417?start=-3&limit=10&highlight=417">
7q21.3
</a>
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis, postmenopausal, susceptibility}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/166710"> 166710 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
CALCR
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/114131"> 114131 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/7/423?start=-3&limit=10&highlight=423">
7q21.3
</a>
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis, postmenopausal}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/166710"> 166710 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
COL1A2
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/120160"> 120160 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/11/313?start=-3&limit=10&highlight=313">
11p12
</a>
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/166710"> 166710 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="2 - The disorder was placed on the map by statistical methods"> 2 </abbr>
</span>
</td>
<td>
<span class="mim-font">
BMND8
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/611739"> 611739 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/17/735?start=-3&limit=10&highlight=735">
17q21.33
</a>
</span>
</td>
<td>
<span class="mim-font">
{Bone mineral density variation QTL, osteoporosis}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/166710"> 166710 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
COL1A1
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/120150"> 120150 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/20/74?start=-3&limit=10&highlight=74">
20p12.3
</a>
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/166710"> 166710 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="2 - The disorder was placed on the map by statistical methods"> 2 </abbr>
</span>
</td>
<td>
<span class="mim-font">
BMND7
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/611738"> 611738 </a>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group ">
<a href="/clinicalSynopsis/166710" class="btn btn-warning" role="button"> Clinical Synopsis </a>
<button type="button" id="mimPhenotypicSeriesToggle" class="btn btn-warning dropdown-toggle mimSingletonFoldToggle" data-toggle="collapse" href="#mimClinicalSynopsisFold" onclick="ga('send', 'event', 'Unfurl', 'ClinicalSynopsis', 'omim.org')">
<span class="caret"></span>
<span class="sr-only">Toggle Dropdown</span>
</button>
</div>
&nbsp;
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/166710" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/166710" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
<div>
<p />
</div>
<div id="mimClinicalSynopsisFold" class="well well-sm collapse mimSingletonToggleFold">
<div class="small" style="margin: 5px">
<div>
<div>
<span class="h5 mim-font">
<strong> Skel </strong>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Postmenopausal osteoporosis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/102447009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">102447009</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/32369003" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">32369003</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0029458&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0029458</a>]</span><br />
</span>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> Inheritance </strong>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Autosomal dominant <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/263681008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">263681008</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/771269000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">771269000</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0443147&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0443147</a>, <a href="https://bioportal.bioontology.org/search?q=C1867440&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1867440</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000006</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000006</a>]</span><br />
</span>
</div>
</div>
<div class="text-right">
<a href="#mimClinicalSynopsisFold" data-toggle="collapse">&#9650;&nbsp;Close</a>
</div>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4 href="#mimTextFold" id="mimTextToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimTextToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div id="mimTextFold" class="collapse in ">
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because of evidence that polymorphisms in the COL1A1 gene (<a href="/entry/120150#0051">120150.0051</a>), the calcitonin receptor gene (CALCR; <a href="/entry/114131">114131</a>), and the RIL gene (<a href="/entry/603422">603422</a>) are associated with osteoporosis. There is evidence that a polymorphism in the ITGB3 gene (<a href="/entry/173470">173470</a>) is associated with hip fracture.</p><p>See BMND1 (<a href="/entry/601884">601884</a>) for a list of bone mineral density (BMD) quantitative trait loci, some of which have been associated with susceptibility to osteoporosis. Association has been suggested between variation in the ESR1 gene (<a href="/entry/133430">133430</a>) and BMD.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalFeatures" class="mim-anchor"></a>
<h4 href="#mimClinicalFeaturesFold" id="mimClinicalFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<div id="mimClinicalFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Using dual-photon absorptiometry, <a href="#24" class="mim-tip-reference" title="Seeman, E., Hopper, J. L., Bach, L. A., Cooper, M. E., Parkinson, E., McKay, J., Jerums, G. &lt;strong&gt;Reduced bone mass in daughters of women with osteoporosis.&lt;/strong&gt; New Eng. J. Med. 320: 554-558, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2915666/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2915666&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198903023200903&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2915666">Seeman et al. (1989)</a> demonstrated reduced bone mass in the lumbar spine and perhaps in the femoral neck of premenopausal daughters of postmenopausal women with osteoporotic compression fractures. The findings suggested that genetic factors, expressed as low peak bone mass, may have a role in the development of postmenopausal osteoporosis. <a href="#20" class="mim-tip-reference" title="Pocock, N. A., Eisman, J. A., Hopper, J. L., Yeates, M. G., Sambrook, P. N., Eberl, S. &lt;strong&gt;Genetic determinants of bone mass in adults: a twin study.&lt;/strong&gt; J. Clin. Invest. 80: 706-710, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3624485/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3624485&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI113125&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3624485">Pocock et al. (1987)</a> found in a twin study that the heritability of bone mass was approximately 90% in the lumbar spine and 70% in the femoral neck. Defects in type I collagen of the sort that may lead to osteogenesis imperfecta may produce a picture suggesting idiopathic osteoporosis (see <a href="/entry/120150#0038">120150.0038</a>). In studies of vertebral bone density (VBD) in 63 premenopausal women, aged 19 to 40 years, <a href="#2" class="mim-tip-reference" title="Armamento-Villareal, R., Villareal, D. T., Avioli, L. V., Civitelli, R. &lt;strong&gt;Estrogen status and heredity are major determinants of premenopausal bone mass.&lt;/strong&gt; J. Clin. Invest. 90: 2464-2471, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1469098/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1469098&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI116138&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1469098">Armamento-Villareal et al. (1992)</a> found a higher proportion of subjects with irregular menses (52% vs 23%, p = 0.03) and a positive family history of osteoporosis (86% vs 61%, p = 0.04) among subjects with low VBD when compared to subjects with normal bone density. They concluded that premenopausal estrogen exposure and possibly genetic predisposition, rather than environmental factors, are the major determinants of peak bone mass before menopause. <a href="#25" class="mim-tip-reference" title="Seeman, E., Tsalamandris, C., Formica, C., Hopper, J. L., McKay, J. &lt;strong&gt;Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the pathogenesis of osteoporosis.&lt;/strong&gt; J. Bone Miner. Res. 9: 739-743, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8053404/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8053404&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/jbmr.5650090520&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8053404">Seeman et al. (1994)</a> found that the daughters of women with hip fractures show reduced bone density, suggesting that low peak bone density is a leading factor in hip fracture. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1469098+2915666+8053404+3624485" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Bone Mineral Density QTLs</em></strong></p><p>
<a href="#26" class="mim-tip-reference" title="Styrkarsdottir, U., Halldorsson, B. V., Gretarsdottir, S., Gudbjartsson, D. F., Walters, G. B., Ingvarsson, T., Jonsdottir, T., Saemundsdottir, J., Center, J. R., Nguyen, T. V., Bagger, Y., Gulcher, J. R., Eisman, J. A., Christiansen, C., Sigurdsson, G., Kong, A., Thorsteinsdottir, U., Stefansson, K. &lt;strong&gt;Multiple genetic loci for bone mineral density and fractures.&lt;/strong&gt; New Eng. J. Med. 358: 2355-2365, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18445777/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18445777&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa0801197&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18445777">Styrkarsdottir et al. (2008)</a> performed a quantitative trait analysis of data from 5,861 Icelandic subjects, testing for an association between 301,019 single-nucleotide polymorphisms (SNPs) and bone mineral density of the hip or lumbar spine. The authors then tested for an association between 74 SNPs (most of which were implicated in the discovery set) at 32 loci in replication sets of Icelandic, Danish, and Australian subjects (4165, 2269, and 1491 subjects, respectively). Sequence variants in 5 genomic regions were significantly associated with bone mineral density in the discovery set and were confirmed in the replication sets (combined P values, 1.2 x 10(-7) to 2.0 x 10(-21)). Three regions are close to or within genes previously shown to be important to the biologic characteristics of bone: the receptor activator of nuclear factor-kappa-beta ligand gene (RANKL; <a href="/entry/602642">602642</a>) on chromosome 13q14 (BMND9; <a href="/entry/612110">612110</a>), the osteoprotegerin gene (OPG; <a href="/entry/602643">602643</a>) on chromosome 8q24 (BMND10; <a href="/entry/612113">612113</a>), and the estrogen receptor-1 gene (ESR1; <a href="/entry/133430">133430</a>) on chromosome 6q25 (BMND11; <a href="/entry/612114">612114</a>). The 2 other regions are close to the zinc finger- and BTB domain-containing protein-40 gene (ZBTB40; <a href="/entry/612106">612106</a>), located at chromosome 1p36 and previously implicated as a region associated with bone mineral density (BMND3; <a href="/entry/606928">606928</a>), and the major histocompatibility complex region at chromosome 6p21. The 1p36, 8q24, and 6p21 loci were also associated with osteoporotic fractures, as were loci at 18q21, close to the receptor activator of the nuclear factor-kappa-beta gene (RANK; <a href="/entry/603499">603499</a>), and loci at 2p16 and 11p11. <a href="#26" class="mim-tip-reference" title="Styrkarsdottir, U., Halldorsson, B. V., Gretarsdottir, S., Gudbjartsson, D. F., Walters, G. B., Ingvarsson, T., Jonsdottir, T., Saemundsdottir, J., Center, J. R., Nguyen, T. V., Bagger, Y., Gulcher, J. R., Eisman, J. A., Christiansen, C., Sigurdsson, G., Kong, A., Thorsteinsdottir, U., Stefansson, K. &lt;strong&gt;Multiple genetic loci for bone mineral density and fractures.&lt;/strong&gt; New Eng. J. Med. 358: 2355-2365, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18445777/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18445777&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa0801197&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18445777">Styrkarsdottir et al. (2008)</a> concluded that they discovered common sequence variants that are consistently associated with bone mineral density and with low-trauma fractures in 3 populations of European descent. They noted that although these variants alone were not considered clinically useful in the prediction of risk to individual persons, they provide insight into the biochemical pathways underlying osteoporosis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18445777" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Bone Mineral Density QTL Associations Pending Confirmation</em></strong></p><p>
<a href="#19" class="mim-tip-reference" title="Parsons, C. A., Mroczkowski, H. J., McGuigan, F. E. A., Albagha, O. M. E., Manolagas, S., Reid, D. M., Ralston, S. H., Reis, R. J. S. &lt;strong&gt;Interspecies synteny mapping identifies a quantitative trait locus for bone mineral density on human chromosome Xp22.&lt;/strong&gt; Hum. Molec. Genet. 14: 3141-3148, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16183656/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16183656&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddi346&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16183656">Parsons et al. (2005)</a> used a cross-species strategy to identify genes that regulate BMD. A BMD quantitative trait locus was identified on the mouse X chromosome for postmaturity change in spine BMD in a cross of SAMP6 and AKR/J mice. They genotyped 76 SNPs from the syntenic 10.7-Mb human region on chromosome Xp22 in 2 sets of DNA pools prepared from individuals with lumbar spine-BMD (LS-BMD) values falling into the top and bottom 13th percentiles of a population-based study of 3,100 postmenopausal women. They identified a region of significant association (p less than 0.001) for 2 adjacent SNPs, <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs234494;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs234494</a> and <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs234495;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs234495</a>, in intron 6 of the PIR gene (<a href="/entry/300931">300931</a>). Individual genotyping for <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs234494;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs234494</a> in the BMD pools confirmed the presence of an association for alleles (p = 0.018) and genotypes (p = 0.008). Analysis of <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs234494;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs234494</a> and <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs234495;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs234495</a> in 1,053 women derived from the same population who were not selected for BMD values showed an association with LS-BMD for <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs234495;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs234495</a> (p = 0.01) and for haplotypes defined by both SNPs (p = 0.002). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16183656" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#29" class="mim-tip-reference" title="Zheng, H.-F., Forgetta, V., Hsu, Y.-H., Estrada, K., Rosello-Diez, A., Leo, P. J., Dahia, C. L., Park-Min, K. H., Tobias, J. H., Kooperberg, C., Kleinman, A., Styrkarsdottir, U., and 147 others. &lt;strong&gt;Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture.&lt;/strong&gt; Nature 526: 112-117, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26367794/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26367794&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26367794[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14878&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26367794">Zheng et al. (2015)</a> identified novel noncoding genetic variants with large effect on bone mineral density (n total = 53,236) and fracture (n total = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K, a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). <a href="#29" class="mim-tip-reference" title="Zheng, H.-F., Forgetta, V., Hsu, Y.-H., Estrada, K., Rosello-Diez, A., Leo, P. J., Dahia, C. L., Park-Min, K. H., Tobias, J. H., Kooperberg, C., Kleinman, A., Styrkarsdottir, U., and 147 others. &lt;strong&gt;Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture.&lt;/strong&gt; Nature 526: 112-117, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26367794/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26367794&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=26367794[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature14878&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26367794">Zheng et al. (2015)</a> identified a low-frequency noncoding variant near EN1 (<a href="/entry/131290">131290</a>), with an effect size 4-fold larger than the mean of previously reported (<a href="#7" class="mim-tip-reference" title="Estrada, K., Styrkarsdottir, U., Evangelou, E., Hsu, Y.-H., Duncan, E. L., Ntzani, E. E., Oei, L., Albagha, O. M. E., Amin, N., Kemp, J. P., Koller, D. L., Li, G., and 169 others. &lt;strong&gt;Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.&lt;/strong&gt; Nature Genet. 44: 491-501, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22504420/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22504420&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22504420[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2249&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22504420">Estrada et al., 2012</a>) common variants for lumbar spine BMD (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs11692564;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs11692564</a>T, MAF = 1.6%, replication effect size = +0.20 SD, p meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; p = 2 x 10(-11); n cases = 98,742 and n controls = 409,511). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=22504420+26367794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#21" class="mim-tip-reference" title="Prockop, D. J. &lt;strong&gt;The genetic trail of osteoporosis. (Editorial)&lt;/strong&gt; New Eng. J. Med. 338: 1061-1062, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9535673/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9535673&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199804093381510&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9535673">Prockop (1998)</a> reviewed the search for the genetic basis of osteoporosis. In a review of the genetics of osteoporosis, <a href="#8" class="mim-tip-reference" title="Giguere, Y., Rousseau, F. &lt;strong&gt;The genetics of osteoporosis: &#x27;complexities and difficulties.&#x27;&lt;/strong&gt; Clin. Genet. 57: 161-169, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10782923/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10782923&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1034/j.1399-0004.2000.570301.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10782923">Giguere and Rousseau (2000)</a> stated that twin studies had shown that genetic factors account for up to 80% of the variance in bone mineral density. They suggested that, considering that the effect of each candidate gene is expected to be modest, discrepancies among the several allelic association studies may have arisen because different populations carry different genetic backgrounds and exposure to environmental factors. They expected that the development of population-specific at-risk profiles for osteoporosis would include genetic and environmental factors, as well as their interactions. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9535673+10782923" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a review of progress in the elucidation of genetic control of susceptibility to osteoporosis, <a href="#22" class="mim-tip-reference" title="Ralston, S. H. &lt;strong&gt;Genetic control of susceptibility to osteoporosis.&lt;/strong&gt; J. Clin. Endocr. Metab. 87: 2460-2466, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12050200/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12050200&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jcem.87.6.8621&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12050200">Ralston (2002)</a> noted that BMD, ultrasound properties of bone, skeletal geometry, bone turnover, and pathogenesis of osteoporotic fracture are determined by the combined effects of several genes and environmental influences, but that occasionally osteoporosis or unusually high bone mass can occur as the result of mutations in a single gene. Examples are the osteoporosis-pseudoglioma syndrome (<a href="/entry/259770">259770</a>) and the high bone mass syndrome (<a href="/entry/601884">601884</a>), caused by inactivating and activating mutations, respectively, in the LRP5 gene (<a href="/entry/603506">603506</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12050200" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#13" class="mim-tip-reference" title="Huang, Q.-Y., Kung, A. W. C. &lt;strong&gt;Genetics of osteoporosis (Minireview).&lt;/strong&gt; Molec. Genet. Metab. 88: 295-306, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16762578/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16762578&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ymgme.2006.04.009&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16762578">Huang and Kung (2006)</a> reviewed the genes implicated in osteoporosis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16762578" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with COL1A1</em></strong></p><p>
<a href="#9" class="mim-tip-reference" title="Grant, S. F. A., Reid, D. M., Blake, G., Herd, R., Fogelman, I., Ralston, S. H. &lt;strong&gt;Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I-alpha 1 gene.&lt;/strong&gt; Nature Genet. 14: 203-205, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8841196/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8841196&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng1096-203&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8841196">Grant et al. (1996)</a> described a novel G-to-T polymorphism in a regulatory region of the COL1A1 gene (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1800012;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1800012</a>; <a href="/entry/120150#0051">120150.0051</a>). They found that the polymorphism was significantly related to bone mass and osteoporotic fracture. G/T heterozygotes at the polymorphic Sp1 site (Ss) had significantly lower bone mineral density (BMD) than G/G homozygotes (SS) in 2 populations of British women, 1 from Aberdeen and 1 from London, and BMD was lower still in T/T homozygotes (ss). The unfavorable Ss and ss genotypes were overrepresented in patients with severe osteoporosis and vertebral fractures (54%), as compared with controls (27%), equivalent to a relative risk of 2.97 (95% confidence interval 1.63-9.56) for vertebral fracture in individuals who carried the 's' allele. While the mechanisms that underlie this association remained to be defined, the COL1A1 Sp1 polymorphism appeared to be an important marker for low bone mass and vertebral fracture, raising the possibility that genotyping at this site may be of value in identifying women who are at risk of osteoporosis. The findings of <a href="#9" class="mim-tip-reference" title="Grant, S. F. A., Reid, D. M., Blake, G., Herd, R., Fogelman, I., Ralston, S. H. &lt;strong&gt;Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I-alpha 1 gene.&lt;/strong&gt; Nature Genet. 14: 203-205, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8841196/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8841196&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng1096-203&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8841196">Grant et al. (1996)</a> were confirmed and extended by <a href="#28" class="mim-tip-reference" title="Uitterlinden, A. G., Burger, H., Huang, Q., Yue, F., McGuigan, F. E. A., Grant, S. F. A., Hofman, A., van Leeuwen, J. P. T. M., Pols, H. A. P., Ralston, S. H. &lt;strong&gt;Relation of alleles of the collagen type I-alpha-1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women.&lt;/strong&gt; New Eng. J. Med. 338: 1016-1021, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9535665/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9535665&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM199804093381502&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9535665">Uitterlinden et al. (1998)</a>. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9535665+8841196" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Idiopathic osteoporosis indistinguishable from involutional or postmenopausal osteoporosis beginning at an unusually early age has been described in families on the basis of specific mutations in the COL1A1 gene (<a href="/entry/120150#0038">120150.0038</a>) on chromosome 17q and the COL1A2 gene (<a href="/entry/120160#0030">120160.0030</a>) on chromosome 7q.</p><p><a href="#15" class="mim-tip-reference" title="Jin, H., van&#x27;t Hof, R. J., Albagha, O. M. E., Ralston, S. H. &lt;strong&gt;Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis.&lt;/strong&gt; Hum. Molec. Genet. 18: 2729-2738, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19429913/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19429913&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp205&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19429913">Jin et al. (2009)</a> showed that the previously reported 5-prime untranslated region (UTR) SNPs in the COL1A1 gene (-1997G-T, <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1107946;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1107946</a>, <a href="/entry/120150#0067">120150.0067</a>; -1663indelT, <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2412298;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs2412298</a>, <a href="/entry/120150#0068">120150.0068</a>; +1245G-T, <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1800012;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1800012</a>) affected COL1A1 transcription. Transcription was 2-fold higher with the osteoporosis-associated G-del-T haplotype compared with the common G-ins-G haplotype. The region surrounding <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2412298;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs2412298</a> recognized a complex of proteins essential for osteoblast differentiation and function including NMP4 (ZNF384; <a href="/entry/609951">609951</a>) and Osterix (SP7; <a href="/entry/606633">606633</a>), and the osteoporosis-associated -1663delT allele had increased binding affinity for this complex. Further studies showed that haplotype G-del-T had higher binding affinity for RNA polymerase II, consistent with increased transcription of the G-del-T allele, and there was a significant inverse association between carriage of G-del-T and bone mineral density (BMD) in a cohort of 3,270 Caucasian women. <a href="#15" class="mim-tip-reference" title="Jin, H., van&#x27;t Hof, R. J., Albagha, O. M. E., Ralston, S. H. &lt;strong&gt;Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis.&lt;/strong&gt; Hum. Molec. Genet. 18: 2729-2738, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19429913/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19429913&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp205&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19429913">Jin et al. (2009)</a> concluded that common polymorphic variants in the 5-prime UTR of COL1A1 regulate transcription by affecting DNA-protein interactions, and that increased levels of transcription correlated with reduced BMD values in vivo by altering the normal 2:1 ratio between alpha-1(I) and alpha-2(I) chains. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19429913" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with ESR1</em></strong></p><p>
BMD, the major determinant of osteoporotic fracture risk, has a strong genetic component. The discovery that inactivation of the ESR1 gene (<a href="/entry/133430">133430</a>) is associated with low BMD indicated ESR1 as a candidate gene for osteoporosis. <a href="#3" class="mim-tip-reference" title="Becherini, L., Gennari, L., Masi, L., Mansani, R., Massart, F., Morelli, A., Falchetti, A., Gonnelli, S., Fiorelli, G., Tanini, A., Brandi, M. L. &lt;strong&gt;Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor-alpha gene and their relationship to bone mass variation in postmenopausal Italian women.&lt;/strong&gt; Hum. Molec. Genet. 9: 2043-2050, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10942433/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10942433&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/9.13.2043&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10942433">Becherini et al. (2000)</a> genotyped 610 postmenopausal women for 3 ESR1 gene polymorphisms (intron 1 RFLPs PvuII and XbaI, and a (TA)n repeat 5-prime upstream of exon 1). Although no significant relationship between intron 1 RFLPs and BMD was observed, a statistically significant correlation between (TA)n-repeat allelic variants and lumbar BMD was observed (P = 0.04, ANCOVA), with subjects having a low number of repeats (TA less than 15) showing the lowest BMD values. The authors observed a statistically significant difference in the mean +/- SD number of (TA)n repeats between 73 analyzed women with a vertebral fracture and the nonfracture group, equivalent to a 2.9-fold increased fracture risk in women with a low number of repeats. <a href="#3" class="mim-tip-reference" title="Becherini, L., Gennari, L., Masi, L., Mansani, R., Massart, F., Morelli, A., Falchetti, A., Gonnelli, S., Fiorelli, G., Tanini, A., Brandi, M. L. &lt;strong&gt;Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor-alpha gene and their relationship to bone mass variation in postmenopausal Italian women.&lt;/strong&gt; Hum. Molec. Genet. 9: 2043-2050, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10942433/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10942433&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/9.13.2043&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10942433">Becherini et al. (2000)</a> concluded that in their large sample the (TA)n polymorphism in ESR1 accounts for part of the heritable component of BMD and may prove useful in the prediction of vertebral fracture risk in postmenopausal osteoporosis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10942433" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>See <a href="/entry/601769">601769</a> for a discussion of contradictory findings concerning a relationship between bone mineral density and polymorphism of the vitamin D receptor.</p><p><a href="#5" class="mim-tip-reference" title="Colin, E. M., Uitterlinden, A. G., Meurs, J. B. J., Bergink, A. P., van de Klift, M., Fang, Y., Arp, P. P., Hofman, A., van Leeuwen, J. P. T. M., Pols, H. A. P. &lt;strong&gt;Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk.&lt;/strong&gt; J. Clin. Endocr. Metab. 88: 3777-3784, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12915669/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12915669&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2002-021861&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12915669">Colin et al. (2003)</a> studied the combined influence of polymorphisms in the ESR1 and the VDR (<a href="/entry/601769">601769</a>) genes on the susceptibility to osteoporotic vertebral fractures in 634 women aged 55 years and older. Three VDR haplotypes (1, 2, and 3) of the BsmI, ApaI, and TaqI restriction fragment length polymorphisms and 3 ESR1 haplotypes (1, 2, and 3) of the PvuII and XbaI restriction fragment length polymorphisms were identified. ESR1 haplotype 1 was dose-dependently associated with increased vertebral fracture risk corresponding to an odds ratio of 1.9 (95% confidence interval, 0.9-4.1) per copy of the risk allele. VDR haplotype 1 was overrepresented in vertebral fracture cases. There was a significant interaction (p = 0.01) between ESR1 haplotype 1 and VDR haplotype 1 in determining vertebral fracture risk. The association of ESR1 haplotype 1 with vertebral fracture risk was present only in homozygous carriers of VDR haplotype 1. The risk of fracture was 2.5 for heterozygous and 10.3 for homozygous carriers of ESR1 haplotype 1. These associations were independent of bone mineral density. The authors concluded that interaction between ESR1 and VDR gene polymorphisms leads to increased risk of osteoporotic vertebral fractures in women, largely independent of bone mineral density. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12915669" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a study of femoral neck bone loss in 945 postmenopausal Scottish women who had not received hormone replacement therapy, <a href="#1" class="mim-tip-reference" title="Albagha, O. M. E., Pettersson, U., Stewart, A., McGuigan, F. E. A., MacDonald, H. M., Reid, D. M., Ralston, S. H. &lt;strong&gt;Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone.&lt;/strong&gt; J. Med. Genet. 42: 240-246, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15744038/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15744038&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.2004.023895&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15744038">Albagha et al. (2005)</a> found that the ESR1 px haplotype was associated with reduced femoral neck BMD and increased rates of femoral neck bone loss. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15744038" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with IL6</em></strong></p><p>
Linkage studies have suggested that variation in the interleukin-6 (IL6; 147620) gene is associated with BMD and osteoporosis.</p><p><strong><em>Association with RIL</em></strong></p><p>
Association studies by <a href="#18" class="mim-tip-reference" title="Omasu, F., Ezura, Y., Kajita, M., Ishida, R., Kodaira, M., Yoshida, H., Suzuki, T., Hosoi, T., Inoue, S., Shiraki, M., Orimo, H., Emi, M. &lt;strong&gt;Association of genetic variation of the RIL gene, encoding a PDZ-LIM domain protein and localized in 5q31.1, with low bone mineral density in adult Japanese women.&lt;/strong&gt; J. Hum. Genet. 48: 342-345, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12908099/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12908099&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s10038-003-0035-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12908099">Omasu et al. (2003)</a> suggested a relationship between susceptibility to osteoporosis and genetic variation in the 5-prime flanking region of the RIL gene (<a href="/entry/603422#0001">603422.0001</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12908099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with ITGB3</em></strong></p><p>
<a href="#27" class="mim-tip-reference" title="Tofteng, C. L., Bach-Mortensen, P., Bojesen, S. E., Tybjaerg-Hansen, A., Hyldstrup, L., Nordestgaard, B. G. &lt;strong&gt;Integrin beta-3 leu33-to-pro polymorphism and risk of hip fracture: 25 years follow-up of 9233 adults from the general population.&lt;/strong&gt; Pharmacogenet. Genomics 17: 85-91, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17264806/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17264806&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1097/01.fpc.0000236327.80809.f8&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17264806">Tofteng et al. (2007)</a> analyzed the L33P polymorphism in the ITGB3 gene (<a href="/entry/173470#0006">173470.0006</a>) in 9,233 randomly selected Danish individuals, of whom 267 had a hip fracture during a 25-year follow-up period. Individuals homozygous for L33P had a 2-fold greater risk of hip fracture compared to noncarriers (p = 0.02), with risk confined primarily to postmenopausal women, in whom the hazard ratio was 2.6 after adjustment for age at menopause and use of hormone replacement therapy. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17264806" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with WNT11</em></strong></p><p>
For discussion of a possible association between osteoporosis and variation in the WNT11 gene, see <a href="/entry/603699#0001">603699.0001</a>.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalManagement" class="mim-anchor"></a>
<h4 href="#mimClinicalManagementFold" id="mimClinicalManagementToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalManagementToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<div id="mimClinicalManagementFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#17" class="mim-tip-reference" title="Kyriakidou-Himonas, M., Aloia, J. F., Yeh, J. K. &lt;strong&gt;Vitamin D supplementation in postmenopausal black women.&lt;/strong&gt; J. Clin. Endocr. Metab. 84: 3988-3990, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10566638/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10566638&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jcem.84.11.6132&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10566638">Kyriakidou-Himonas et al. (1999)</a> noted that black women have lower levels of serum 25-hydroxyvitamin D (25OHD) with higher serum parathyroid hormone (PTH; <a href="/entry/168450">168450</a>) levels than white women. They hypothesized that correction of these alterations in the vitamin D-endocrine system could lead to less bone loss in postmenopausal women and, consequently, preservation of bone mass. They gave 10 healthy postmenopausal black women 20 microg vitamin D3 daily for 3 months. At the end of the study, mean serum 25OHD levels had increased from 24 to 63 nmol/L. Serum intact PTH and nephrogenous cAMP declined significantly, and there was a 21% drop in the fasting urinary N-telopeptide of type I collagen. The authors concluded that vitamin D3 supplementation raises serum 25OHD levels in postmenopausal black women, decreases secondary hyperparathyroidism, and reduces bone turnover. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10566638" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#10" class="mim-tip-reference" title="Greenspan, S. L., Rosen, H. N., Parker, R. A. &lt;strong&gt;Early changes in serum N-telopeptide and C-telopeptide cross-linked collagen type 1 predict long-term response to alendronate therapy in elderly women.&lt;/strong&gt; J. Clin. Endocr. Metab. 85: 3537-3540, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11061497/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11061497&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jcem.85.10.6911&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11061497">Greenspan et al. (2000)</a> investigated whether early changes in serum markers of bone resorption could predict long-term responses in BMD after alendronate therapy in elderly women. One hundred and twenty women (mean age, 70 years) were randomized to alendronate or placebo in a double-blind, placebo-controlled clinical trial for 2.5 years. Outcome measures were hip and spine BMD and biochemical markers of bone resorption, including serum N-telopeptide and C-telopeptide cross-linked collagen type I (NTx and CTx, respectively). Serum NTx and CTx were highly correlated at baseline and remained so throughout the study. After treatment with alendronate, serum NTx decreased 30.4 +/- 16.0% at 6 months, reaching a nadir of -36.7 +/- 18.0% by 24 months. Serum CTx decreased 43.5 +/- 67.0% at 6 months and continued to decrease to 67.3 +/- 19.3% at 2.5 years. Moreover, decreases in serum NTx and CTx at 6 months were correlated with long-term improvements in vertebral BMD at 2.5 years in patients receiving alendronate therapy. The authors concluded that early changes in serum NTx and CTx, markers of bone resorption, predict long-term changes in vertebral BMD in elderly women receiving alendronate therapy and provide a useful tool to assess skeletal health. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11061497" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#11" class="mim-tip-reference" title="Harris, S. T., Eriksen, E. F., Davidson, M., Ettinger, M. P., Moffett, A. H., Jr., Baylink, D. J., Crusan, C. E., Chines, A. A. &lt;strong&gt;Effect of combined risedronate and hormone replacement therapies on bone mineral density in postmenopausal women.&lt;/strong&gt; J. Clin. Endocr. Metab. 86: 1890-1897, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11344179/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11344179&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jcem.86.5.7505&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11344179">Harris et al. (2001)</a> reported a 1-year, double-blind, placebo-controlled study in which 524 postmenopausal women received daily treatment with conjugated equine estrogens (0.625 mg) alone or in combination with risedronate (5 mg). Women who had not undergone hysterectomy received medroxyprogesterone acetate (up to 5 mg, daily or cyclically) at the discretion of the investigator. The primary efficacy end point was the percent change from baseline in mean lumbar spine bone mineral density (BMD) at 1 year. Changes in BMD at the proximal femur and forearm, bone turnover markers, and histology and histomorphometry were also assessed. At 12 months, significant (p less than 0.05) increases from baseline in lumbar spine BMD were observed in both treatment groups (HRT-only, 4.6%; combined risedronate-HRT, 5.2%); the difference between the 2 groups was not statistically significant. Both therapies led to significant increases in BMD at 12 months at the femoral neck (1.8% and 2.7%, respectively), femoral trochanter (3.2% and 3.7%), distal radius (1.7% and 1.6%), and midshaft radius (0.4% and 0.7%). The differences between groups were statistically significant (p less than 0.05) at the femoral neck and midshaft radius. The authors concluded that combined treatment with risedronate and HRT had a favorable effect on BMD, similar to that of HRT alone at the lumbar spine and slightly but significantly greater than that of HRT alone at the femoral neck and midshaft radius. The combined treatment was well tolerated and there were no adverse effects on the skeleton. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11344179" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#23" class="mim-tip-reference" title="Ringe, J. D., Faber, H., Dorst, A. &lt;strong&gt;Alendronate treatment of established primary osteoporosis in men: results of a 2-year prospective study.&lt;/strong&gt; J. Clin. Endocr. Metab. 86: 5252-5255, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11701687/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11701687&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jcem.86.11.7988&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11701687">Ringe et al. (2001)</a> reported the results of a therapeutic trial in men with osteoporosis. This prospective, open-label, active-controlled, randomized clinical study compared the effects of oral alendronate (10 mg daily) and alfacalcidol (1 microg daily) on bone mineral density, safety, and tolerability in 134 males with primary established osteoporosis. All men received supplemental calcium (500 mg daily). After 2 years, alfacalcidol-treated patients showed a mean 2.8% increase in lumbar spine BMD (p less than 0.01) compared with a mean increase of 10.1% in men receiving alendronate (p less than 0.001). The incidence rates of patients with new vertebral fractures were 18.2% and 7.4% for the alfacalcidol and alendronate groups, respectively (p = 0.071). Both therapies were well tolerated. The authors concluded that alendronate may be superior to alfacalcidol in the treatment of men with established primary osteoporosis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11701687" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Data obtained by <a href="#6" class="mim-tip-reference" title="Drake, W. M., Kendler, D. L., Rosen, C. J., Orwoll, E. S. &lt;strong&gt;An investigation of the predictors of bone mineral density and response to therapy with alendronate in osteoporotic men.&lt;/strong&gt; J. Clin. Endocr. Metab. 88: 5759-5765, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14671165/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14671165&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2002-021654&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14671165">Drake et al. (2003)</a> suggested that among men with osteoporosis it is not possible to identify patients who would be particularly good candidates for therapy with alendronate on the basis of biochemical or hormonal markers. The authors concluded that alendronate therapy appears to benefit osteoporotic males equally, irrespective of baseline serum testosterone, estradiol, IGF1 (<a href="/entry/147440">147440</a>), or markers of bone turnover. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14671165" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Both raloxifene (RLX) and alendronate (ALN) can treat and prevent new vertebral fractures, increase BMD, and decrease biochemical markers of bone turnover in postmenopausal women with osteoporosis. <a href="#16" class="mim-tip-reference" title="Johnell, O., Scheele, W. H., Lu, Y., Reginster, J.-Y., Need, A. G., Seeman, E. &lt;strong&gt;Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis.&lt;/strong&gt; J. Clin. Endocr. Metab. 87: 985-992, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11889149/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11889149&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jcem.87.3.8325&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11889149">Johnell et al. (2002)</a> assessed the effects of combined RLX and ALN in 331 postmenopausal women with osteoporosis. Women received placebo, RLX 60 mg per day, ALN 10 mg per day, or RLX 60 mg per day and ALN 10 mg per day combined (RLX+ALN). At baseline, 6 months, and 12 months, BMD was measured by dual x-ray absorptiometry. The bone turnover markers serum osteocalcin (<a href="/entry/112260">112260</a>), bone-specific alkaline phosphatase (see <a href="/entry/171760">171760</a>), and urinary N- and C-telopeptide corrected for creatinine were measured. All changes in BMD and bone markers at 12 months were different between placebo and each of the active treatment groups and between the RLX and RLX+ALN groups (p less than 0.05). On average, lumbar spine BMD increased by 2.1%, 4.3%, and 5.3% from baseline with RLX, ALN, and RLX+ALN, respectively. The increase in femoral neck BMD in the RLX+ALN group (3.7%) was greater than the 2.7% and 1.7% increases in the ALN (p = 0.02) and RLX (p less than 0.001) groups, respectively. The authors concluded that RLX+ALN reduced bone turnover more than either drug alone, resulting in greater BMD increment, but they did not assess whether this difference reflected better fracture risk reduction. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11889149" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#12" class="mim-tip-reference" title="Hodsman, A. B., Hanley, D. A., Ettinger, M. P., Bolognese, M. A., Fox, J., Metcalfe, A. J., Lindsay, R. &lt;strong&gt;Efficacy and safety of human parathyroid hormone-(1-84) in increasing bone mineral density in postmenopausal osteoporosis.&lt;/strong&gt; J. Clin. Endocr. Metab. 88: 5212-5220, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14602752/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14602752&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2003-030768&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14602752">Hodsman et al. (2003)</a> investigated the efficacy and safety of human parathyroid hormone-(1-84) (full-length PTH; <a href="/entry/168450">168450</a>) in the treatment of postmenopausal osteoporosis. PTH treatment induced time- and dose-related increases in lumbar spine BMD. The 100-microgram dose increased BMD significantly at 3 and 12 months. BMD underestimated the anabolic effect of PTH in lumbar spine (bone mineral content, +10.0%) because bone area increased significantly (+2.0%). Dose-related incidences of transient hypercalcemia occurred, but only 1 patient was withdrawn because of repeated hypercalcemia. The authors concluded that full-length PTH was efficacious and safe over 12 months. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14602752" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The most rapid period of skeletal development occurs over several years in childhood and adolescence, accounting for 40 to 50% of the total accrual of skeletal mass. Maximizing peak bone mass during the first few decades of life is a potentially major strategy in osteoporosis prevention. <a href="#4" class="mim-tip-reference" title="Cameron, M. A., Paton, L. M., Nowson, C. A., Margerison, C., Frame, M., Wark, J. D. &lt;strong&gt;The effect of calcium supplementation on bone density in premenarcheal females: a co-twin approach.&lt;/strong&gt; J. Clin. Endocr. Metab. 89: 4916-4922, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15472185/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15472185&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1210/jc.2003-031985&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15472185">Cameron et al. (2004)</a> presented the results of a randomized, single-blind, placebo-controlled trial of 51 pairs of premenarcheal female twins (27 monozygotic and 24 dizygotic) in which 1 twin of each pair received a 1,200-mg calcium carbonate supplement. They observed that calcium supplementation increased areal bone mineral density at regional sites over the first 12 to 18 months, but these gains were not maintained to 24 months. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15472185" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="animalModel" class="mim-anchor"></a>
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#14" class="mim-tip-reference" title="Idris, A. I., van &#x27;t Hof, R. J., Greig, I. R., Ridge, S. A., Baker, D., Ross, R. A., Ralston, S. H. &lt;strong&gt;Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors.&lt;/strong&gt; Nature Med. 11: 774-779, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15908955/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15908955&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15908955[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1255&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15908955">Idris et al. (2005)</a> demonstrated that cannabinoid receptor-1 (CNR1; <a href="/entry/114610">114610</a>)-null mice had increased bone mass and were protected from ovariectomy-induced bone loss. Pharmacologic antagonists of CNR1 and CNR2 receptors prevented ovariectomy-induced bone loss in vivo and caused osteoclast inhibition in vitro by promoting osteoclast apoptosis and inhibiting production of several osteoclast survival factors. <a href="#14" class="mim-tip-reference" title="Idris, A. I., van &#x27;t Hof, R. J., Greig, I. R., Ridge, S. A., Baker, D., Ross, R. A., Ralston, S. H. &lt;strong&gt;Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors.&lt;/strong&gt; Nature Med. 11: 774-779, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15908955/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15908955&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15908955[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1255&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15908955">Idris et al. (2005)</a> concluded that the CNR1 receptor has a role in the regulation of bone mass and ovariectomy-induced bone loss. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15908955" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Albagha2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Albagha, O. M. E., Pettersson, U., Stewart, A., McGuigan, F. E. A., MacDonald, H. M., Reid, D. M., Ralston, S. H.
<strong>Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone.</strong>
J. Med. Genet. 42: 240-246, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15744038/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15744038</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15744038" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.2004.023895" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Armamento-Villareal1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Armamento-Villareal, R., Villareal, D. T., Avioli, L. V., Civitelli, R.
<strong>Estrogen status and heredity are major determinants of premenopausal bone mass.</strong>
J. Clin. Invest. 90: 2464-2471, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1469098/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1469098</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1469098" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI116138" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Becherini2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Becherini, L., Gennari, L., Masi, L., Mansani, R., Massart, F., Morelli, A., Falchetti, A., Gonnelli, S., Fiorelli, G., Tanini, A., Brandi, M. L.
<strong>Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor-alpha gene and their relationship to bone mass variation in postmenopausal Italian women.</strong>
Hum. Molec. Genet. 9: 2043-2050, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10942433/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10942433</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10942433" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/9.13.2043" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Cameron2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cameron, M. A., Paton, L. M., Nowson, C. A., Margerison, C., Frame, M., Wark, J. D.
<strong>The effect of calcium supplementation on bone density in premenarcheal females: a co-twin approach.</strong>
J. Clin. Endocr. Metab. 89: 4916-4922, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15472185/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15472185</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15472185" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jc.2003-031985" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Colin2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Colin, E. M., Uitterlinden, A. G., Meurs, J. B. J., Bergink, A. P., van de Klift, M., Fang, Y., Arp, P. P., Hofman, A., van Leeuwen, J. P. T. M., Pols, H. A. P.
<strong>Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk.</strong>
J. Clin. Endocr. Metab. 88: 3777-3784, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12915669/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12915669</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12915669" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jc.2002-021861" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Drake2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Drake, W. M., Kendler, D. L., Rosen, C. J., Orwoll, E. S.
<strong>An investigation of the predictors of bone mineral density and response to therapy with alendronate in osteoporotic men.</strong>
J. Clin. Endocr. Metab. 88: 5759-5765, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14671165/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14671165</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14671165" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jc.2002-021654" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Estrada2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Estrada, K., Styrkarsdottir, U., Evangelou, E., Hsu, Y.-H., Duncan, E. L., Ntzani, E. E., Oei, L., Albagha, O. M. E., Amin, N., Kemp, J. P., Koller, D. L., Li, G., and 169 others.
<strong>Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.</strong>
Nature Genet. 44: 491-501, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22504420/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22504420</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22504420[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22504420" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.2249" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Giguere2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Giguere, Y., Rousseau, F.
<strong>The genetics of osteoporosis: 'complexities and difficulties.'</strong>
Clin. Genet. 57: 161-169, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10782923/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10782923</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10782923" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1034/j.1399-0004.2000.570301.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Grant1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Grant, S. F. A., Reid, D. M., Blake, G., Herd, R., Fogelman, I., Ralston, S. H.
<strong>Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I-alpha 1 gene.</strong>
Nature Genet. 14: 203-205, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8841196/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8841196</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8841196" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng1096-203" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Greenspan2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Greenspan, S. L., Rosen, H. N., Parker, R. A.
<strong>Early changes in serum N-telopeptide and C-telopeptide cross-linked collagen type 1 predict long-term response to alendronate therapy in elderly women.</strong>
J. Clin. Endocr. Metab. 85: 3537-3540, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11061497/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11061497</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11061497" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jcem.85.10.6911" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Harris2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Harris, S. T., Eriksen, E. F., Davidson, M., Ettinger, M. P., Moffett, A. H., Jr., Baylink, D. J., Crusan, C. E., Chines, A. A.
<strong>Effect of combined risedronate and hormone replacement therapies on bone mineral density in postmenopausal women.</strong>
J. Clin. Endocr. Metab. 86: 1890-1897, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11344179/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11344179</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11344179" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jcem.86.5.7505" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Hodsman2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hodsman, A. B., Hanley, D. A., Ettinger, M. P., Bolognese, M. A., Fox, J., Metcalfe, A. J., Lindsay, R.
<strong>Efficacy and safety of human parathyroid hormone-(1-84) in increasing bone mineral density in postmenopausal osteoporosis.</strong>
J. Clin. Endocr. Metab. 88: 5212-5220, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14602752/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14602752</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14602752" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jc.2003-030768" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Huang2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Huang, Q.-Y., Kung, A. W. C.
<strong>Genetics of osteoporosis (Minireview).</strong>
Molec. Genet. Metab. 88: 295-306, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16762578/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16762578</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16762578" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ymgme.2006.04.009" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Idris2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Idris, A. I., van 't Hof, R. J., Greig, I. R., Ridge, S. A., Baker, D., Ross, R. A., Ralston, S. H.
<strong>Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors.</strong>
Nature Med. 11: 774-779, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15908955/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15908955</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15908955[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15908955" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm1255" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Jin2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Jin, H., van't Hof, R. J., Albagha, O. M. E., Ralston, S. H.
<strong>Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis.</strong>
Hum. Molec. Genet. 18: 2729-2738, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19429913/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19429913</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19429913" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddp205" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Johnell2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Johnell, O., Scheele, W. H., Lu, Y., Reginster, J.-Y., Need, A. G., Seeman, E.
<strong>Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis.</strong>
J. Clin. Endocr. Metab. 87: 985-992, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11889149/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11889149</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11889149" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jcem.87.3.8325" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Kyriakidou-Himonas1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kyriakidou-Himonas, M., Aloia, J. F., Yeh, J. K.
<strong>Vitamin D supplementation in postmenopausal black women.</strong>
J. Clin. Endocr. Metab. 84: 3988-3990, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10566638/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10566638</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10566638" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jcem.84.11.6132" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Omasu2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Omasu, F., Ezura, Y., Kajita, M., Ishida, R., Kodaira, M., Yoshida, H., Suzuki, T., Hosoi, T., Inoue, S., Shiraki, M., Orimo, H., Emi, M.
<strong>Association of genetic variation of the RIL gene, encoding a PDZ-LIM domain protein and localized in 5q31.1, with low bone mineral density in adult Japanese women.</strong>
J. Hum. Genet. 48: 342-345, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12908099/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12908099</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12908099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s10038-003-0035-1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Parsons2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Parsons, C. A., Mroczkowski, H. J., McGuigan, F. E. A., Albagha, O. M. E., Manolagas, S., Reid, D. M., Ralston, S. H., Reis, R. J. S.
<strong>Interspecies synteny mapping identifies a quantitative trait locus for bone mineral density on human chromosome Xp22.</strong>
Hum. Molec. Genet. 14: 3141-3148, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16183656/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16183656</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16183656" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddi346" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Pocock1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pocock, N. A., Eisman, J. A., Hopper, J. L., Yeates, M. G., Sambrook, P. N., Eberl, S.
<strong>Genetic determinants of bone mass in adults: a twin study.</strong>
J. Clin. Invest. 80: 706-710, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3624485/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3624485</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3624485" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI113125" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Prockop1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Prockop, D. J.
<strong>The genetic trail of osteoporosis. (Editorial)</strong>
New Eng. J. Med. 338: 1061-1062, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9535673/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9535673</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9535673" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM199804093381510" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Ralston2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ralston, S. H.
<strong>Genetic control of susceptibility to osteoporosis.</strong>
J. Clin. Endocr. Metab. 87: 2460-2466, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12050200/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12050200</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12050200" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jcem.87.6.8621" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Ringe2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ringe, J. D., Faber, H., Dorst, A.
<strong>Alendronate treatment of established primary osteoporosis in men: results of a 2-year prospective study.</strong>
J. Clin. Endocr. Metab. 86: 5252-5255, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11701687/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11701687</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11701687" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1210/jcem.86.11.7988" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Seeman1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Seeman, E., Hopper, J. L., Bach, L. A., Cooper, M. E., Parkinson, E., McKay, J., Jerums, G.
<strong>Reduced bone mass in daughters of women with osteoporosis.</strong>
New Eng. J. Med. 320: 554-558, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2915666/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2915666</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2915666" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM198903023200903" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Seeman1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Seeman, E., Tsalamandris, C., Formica, C., Hopper, J. L., McKay, J.
<strong>Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the pathogenesis of osteoporosis.</strong>
J. Bone Miner. Res. 9: 739-743, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8053404/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8053404</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8053404" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/jbmr.5650090520" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="26" class="mim-anchor"></a>
<a id="Styrkarsdottir2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Styrkarsdottir, U., Halldorsson, B. V., Gretarsdottir, S., Gudbjartsson, D. F., Walters, G. B., Ingvarsson, T., Jonsdottir, T., Saemundsdottir, J., Center, J. R., Nguyen, T. V., Bagger, Y., Gulcher, J. R., Eisman, J. A., Christiansen, C., Sigurdsson, G., Kong, A., Thorsteinsdottir, U., Stefansson, K.
<strong>Multiple genetic loci for bone mineral density and fractures.</strong>
New Eng. J. Med. 358: 2355-2365, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18445777/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18445777</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18445777" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa0801197" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="27" class="mim-anchor"></a>
<a id="Tofteng2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tofteng, C. L., Bach-Mortensen, P., Bojesen, S. E., Tybjaerg-Hansen, A., Hyldstrup, L., Nordestgaard, B. G.
<strong>Integrin beta-3 leu33-to-pro polymorphism and risk of hip fracture: 25 years follow-up of 9233 adults from the general population.</strong>
Pharmacogenet. Genomics 17: 85-91, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17264806/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17264806</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17264806" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/01.fpc.0000236327.80809.f8" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="28" class="mim-anchor"></a>
<a id="Uitterlinden1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Uitterlinden, A. G., Burger, H., Huang, Q., Yue, F., McGuigan, F. E. A., Grant, S. F. A., Hofman, A., van Leeuwen, J. P. T. M., Pols, H. A. P., Ralston, S. H.
<strong>Relation of alleles of the collagen type I-alpha-1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women.</strong>
New Eng. J. Med. 338: 1016-1021, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9535665/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9535665</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9535665" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM199804093381502" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="29" class="mim-anchor"></a>
<a id="Zheng2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zheng, H.-F., Forgetta, V., Hsu, Y.-H., Estrada, K., Rosello-Diez, A., Leo, P. J., Dahia, C. L., Park-Min, K. H., Tobias, J. H., Kooperberg, C., Kleinman, A., Styrkarsdottir, U., and 147 others.
<strong>Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture.</strong>
Nature 526: 112-117, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/26367794/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">26367794</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=26367794[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26367794" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature14878" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Marla J. F. O'Neill - updated : 11/05/2024
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Ada Hamosh - updated : 02/17/2016<br>George E. Tiller - updated : 6/23/2010<br>Ada Hamosh - updated : 6/10/2008<br>Marla J. F. O'Neill - updated : 1/7/2008<br>Marla J. F. O'Neill - updated : 1/2/2008<br>Ada Hamosh - updated : 6/28/2007<br>John A. Phillips, III - updated : 4/10/2006<br>Marla J. F. O'Neill - updated : 7/27/2005<br>Marla J. F. O'Neill - updated : 5/19/2005<br>John A. Phillips, III - updated : 3/30/2005<br>John A. Phillips, III - updated : 1/11/2005<br>John A. Phillips, III - updated : 10/14/2004<br>Victor A. McKusick - updated : 8/27/2003<br>John A. Phillips, III - updated : 3/13/2003<br>John A. Phillips, III - updated : 7/30/2002<br>John A. Phillips, III - updated : 6/27/2002<br>George E. Tiller - updated : 5/3/2002<br>John A. Phillips, III - updated : 9/19/2001<br>John A. Phillips, III - updated : 3/14/2001<br>John A. Phillips, III - updated : 11/16/2000<br>George E. Tiller - updated : 11/2/2000<br>Victor A. McKusick - updated : 4/21/2000<br>Victor A. McKusick - updated : 10/19/1999<br>Victor A. McKusick - updated : 1/6/1999<br>Victor A. McKusick - updated : 10/1/1998<br>Victor A. McKusick - updated : 4/15/1998
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 3/3/1990
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 11/05/2024
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
alopez : 02/17/2016<br>carol : 12/15/2014<br>wwang : 6/30/2010<br>terry : 6/23/2010<br>wwang : 8/6/2009<br>alopez : 6/16/2008<br>alopez : 6/16/2008<br>alopez : 6/10/2008<br>terry : 6/10/2008<br>wwang : 5/8/2008<br>terry : 4/29/2008<br>carol : 1/21/2008<br>carol : 1/18/2008<br>carol : 1/16/2008<br>carol : 1/7/2008<br>carol : 1/7/2008<br>carol : 1/2/2008<br>carol : 1/2/2008<br>carol : 12/7/2007<br>alopez : 7/6/2007<br>terry : 6/28/2007<br>alopez : 4/10/2006<br>wwang : 8/3/2005<br>terry : 7/27/2005<br>carol : 6/14/2005<br>wwang : 5/19/2005<br>alopez : 3/30/2005<br>wwang : 1/12/2005<br>wwang : 1/11/2005<br>alopez : 10/14/2004<br>tkritzer : 3/22/2004<br>cwells : 8/29/2003<br>terry : 8/27/2003<br>alopez : 3/13/2003<br>tkritzer : 7/31/2002<br>tkritzer : 7/30/2002<br>alopez : 6/27/2002<br>alopez : 5/10/2002<br>cwells : 5/3/2002<br>cwells : 9/28/2001<br>cwells : 9/19/2001<br>alopez : 3/14/2001<br>alopez : 1/12/2001<br>terry : 11/16/2000<br>mcapotos : 11/2/2000<br>mcapotos : 5/17/2000<br>terry : 4/21/2000<br>carol : 10/19/1999<br>carol : 1/19/1999<br>terry : 1/6/1999<br>carol : 10/5/1998<br>terry : 10/2/1998<br>terry : 10/1/1998<br>terry : 4/17/1998<br>terry : 4/15/1998<br>terry : 11/11/1997<br>terry : 11/10/1997<br>mark : 10/5/1996<br>mark : 10/5/1996<br>terry : 10/1/1996<br>mark : 6/10/1996<br>terry : 6/4/1996<br>mimadm : 1/14/1995<br>carol : 5/27/1994<br>carol : 1/22/1993<br>carol : 12/2/1992<br>supermim : 3/16/1992<br>supermim : 3/20/1990
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>#</strong> 166710
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
OSTEOPOROSIS
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
BONE MINERAL DENSITY QUANTITATIVE TRAIT LOCUS; BMND<br />
OSTEOPOROSIS, POSTMENOPAUSAL<br />
OSTEOPOROSIS, INVOLUTIONAL
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
<div>
<div>
<p>
<span class="mim-font">
Other entities represented in this entry:
</span>
</p>
</div>
<div>
<span class="h3 mim-font">
FRACTURE, HIP, SUSCEPTIBILITY TO, INCLUDED
</span>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>SNOMEDCT:</strong> 102447009, 18040001, 32369003, 64859006; &nbsp;
<strong>ICD10CM:</strong> M81.0; &nbsp;
<strong>ICD9CM:</strong> 733.0, 733.00, 733.01; &nbsp;
<strong>DO:</strong> 11476; &nbsp;
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
5q31.1
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
166710
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
RIL
</span>
</td>
<td>
<span class="mim-font">
603422
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
7q21.3
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis, postmenopausal, susceptibility}
</span>
</td>
<td>
<span class="mim-font">
166710
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
CALCR
</span>
</td>
<td>
<span class="mim-font">
114131
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
7q21.3
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis, postmenopausal}
</span>
</td>
<td>
<span class="mim-font">
166710
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
COL1A2
</span>
</td>
<td>
<span class="mim-font">
120160
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
11p12
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis}
</span>
</td>
<td>
<span class="mim-font">
166710
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
2
</span>
</td>
<td>
<span class="mim-font">
BMND8
</span>
</td>
<td>
<span class="mim-font">
611739
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
17q21.33
</span>
</td>
<td>
<span class="mim-font">
{Bone mineral density variation QTL, osteoporosis}
</span>
</td>
<td>
<span class="mim-font">
166710
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
COL1A1
</span>
</td>
<td>
<span class="mim-font">
120150
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
20p12.3
</span>
</td>
<td>
<span class="mim-font">
{Osteoporosis}
</span>
</td>
<td>
<span class="mim-font">
166710
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
2
</span>
</td>
<td>
<span class="mim-font">
BMND7
</span>
</td>
<td>
<span class="mim-font">
611738
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because of evidence that polymorphisms in the COL1A1 gene (120150.0051), the calcitonin receptor gene (CALCR; 114131), and the RIL gene (603422) are associated with osteoporosis. There is evidence that a polymorphism in the ITGB3 gene (173470) is associated with hip fracture.</p><p>See BMND1 (601884) for a list of bone mineral density (BMD) quantitative trait loci, some of which have been associated with susceptibility to osteoporosis. Association has been suggested between variation in the ESR1 gene (133430) and BMD.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Using dual-photon absorptiometry, Seeman et al. (1989) demonstrated reduced bone mass in the lumbar spine and perhaps in the femoral neck of premenopausal daughters of postmenopausal women with osteoporotic compression fractures. The findings suggested that genetic factors, expressed as low peak bone mass, may have a role in the development of postmenopausal osteoporosis. Pocock et al. (1987) found in a twin study that the heritability of bone mass was approximately 90% in the lumbar spine and 70% in the femoral neck. Defects in type I collagen of the sort that may lead to osteogenesis imperfecta may produce a picture suggesting idiopathic osteoporosis (see 120150.0038). In studies of vertebral bone density (VBD) in 63 premenopausal women, aged 19 to 40 years, Armamento-Villareal et al. (1992) found a higher proportion of subjects with irregular menses (52% vs 23%, p = 0.03) and a positive family history of osteoporosis (86% vs 61%, p = 0.04) among subjects with low VBD when compared to subjects with normal bone density. They concluded that premenopausal estrogen exposure and possibly genetic predisposition, rather than environmental factors, are the major determinants of peak bone mass before menopause. Seeman et al. (1994) found that the daughters of women with hip fractures show reduced bone density, suggesting that low peak bone density is a leading factor in hip fracture. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Bone Mineral Density QTLs</em></strong></p><p>
Styrkarsdottir et al. (2008) performed a quantitative trait analysis of data from 5,861 Icelandic subjects, testing for an association between 301,019 single-nucleotide polymorphisms (SNPs) and bone mineral density of the hip or lumbar spine. The authors then tested for an association between 74 SNPs (most of which were implicated in the discovery set) at 32 loci in replication sets of Icelandic, Danish, and Australian subjects (4165, 2269, and 1491 subjects, respectively). Sequence variants in 5 genomic regions were significantly associated with bone mineral density in the discovery set and were confirmed in the replication sets (combined P values, 1.2 x 10(-7) to 2.0 x 10(-21)). Three regions are close to or within genes previously shown to be important to the biologic characteristics of bone: the receptor activator of nuclear factor-kappa-beta ligand gene (RANKL; 602642) on chromosome 13q14 (BMND9; 612110), the osteoprotegerin gene (OPG; 602643) on chromosome 8q24 (BMND10; 612113), and the estrogen receptor-1 gene (ESR1; 133430) on chromosome 6q25 (BMND11; 612114). The 2 other regions are close to the zinc finger- and BTB domain-containing protein-40 gene (ZBTB40; 612106), located at chromosome 1p36 and previously implicated as a region associated with bone mineral density (BMND3; 606928), and the major histocompatibility complex region at chromosome 6p21. The 1p36, 8q24, and 6p21 loci were also associated with osteoporotic fractures, as were loci at 18q21, close to the receptor activator of the nuclear factor-kappa-beta gene (RANK; 603499), and loci at 2p16 and 11p11. Styrkarsdottir et al. (2008) concluded that they discovered common sequence variants that are consistently associated with bone mineral density and with low-trauma fractures in 3 populations of European descent. They noted that although these variants alone were not considered clinically useful in the prediction of risk to individual persons, they provide insight into the biochemical pathways underlying osteoporosis. </p><p><strong><em>Bone Mineral Density QTL Associations Pending Confirmation</em></strong></p><p>
Parsons et al. (2005) used a cross-species strategy to identify genes that regulate BMD. A BMD quantitative trait locus was identified on the mouse X chromosome for postmaturity change in spine BMD in a cross of SAMP6 and AKR/J mice. They genotyped 76 SNPs from the syntenic 10.7-Mb human region on chromosome Xp22 in 2 sets of DNA pools prepared from individuals with lumbar spine-BMD (LS-BMD) values falling into the top and bottom 13th percentiles of a population-based study of 3,100 postmenopausal women. They identified a region of significant association (p less than 0.001) for 2 adjacent SNPs, rs234494 and rs234495, in intron 6 of the PIR gene (300931). Individual genotyping for rs234494 in the BMD pools confirmed the presence of an association for alleles (p = 0.018) and genotypes (p = 0.008). Analysis of rs234494 and rs234495 in 1,053 women derived from the same population who were not selected for BMD values showed an association with LS-BMD for rs234495 (p = 0.01) and for haplotypes defined by both SNPs (p = 0.002). </p><p>Zheng et al. (2015) identified novel noncoding genetic variants with large effect on bone mineral density (n total = 53,236) and fracture (n total = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K, a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). Zheng et al. (2015) identified a low-frequency noncoding variant near EN1 (131290), with an effect size 4-fold larger than the mean of previously reported (Estrada et al., 2012) common variants for lumbar spine BMD (rs11692564T, MAF = 1.6%, replication effect size = +0.20 SD, p meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; p = 2 x 10(-11); n cases = 98,742 and n controls = 409,511). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Prockop (1998) reviewed the search for the genetic basis of osteoporosis. In a review of the genetics of osteoporosis, Giguere and Rousseau (2000) stated that twin studies had shown that genetic factors account for up to 80% of the variance in bone mineral density. They suggested that, considering that the effect of each candidate gene is expected to be modest, discrepancies among the several allelic association studies may have arisen because different populations carry different genetic backgrounds and exposure to environmental factors. They expected that the development of population-specific at-risk profiles for osteoporosis would include genetic and environmental factors, as well as their interactions. </p><p>In a review of progress in the elucidation of genetic control of susceptibility to osteoporosis, Ralston (2002) noted that BMD, ultrasound properties of bone, skeletal geometry, bone turnover, and pathogenesis of osteoporotic fracture are determined by the combined effects of several genes and environmental influences, but that occasionally osteoporosis or unusually high bone mass can occur as the result of mutations in a single gene. Examples are the osteoporosis-pseudoglioma syndrome (259770) and the high bone mass syndrome (601884), caused by inactivating and activating mutations, respectively, in the LRP5 gene (603506). </p><p>Huang and Kung (2006) reviewed the genes implicated in osteoporosis. </p><p><strong><em>Association with COL1A1</em></strong></p><p>
Grant et al. (1996) described a novel G-to-T polymorphism in a regulatory region of the COL1A1 gene (rs1800012; 120150.0051). They found that the polymorphism was significantly related to bone mass and osteoporotic fracture. G/T heterozygotes at the polymorphic Sp1 site (Ss) had significantly lower bone mineral density (BMD) than G/G homozygotes (SS) in 2 populations of British women, 1 from Aberdeen and 1 from London, and BMD was lower still in T/T homozygotes (ss). The unfavorable Ss and ss genotypes were overrepresented in patients with severe osteoporosis and vertebral fractures (54%), as compared with controls (27%), equivalent to a relative risk of 2.97 (95% confidence interval 1.63-9.56) for vertebral fracture in individuals who carried the 's' allele. While the mechanisms that underlie this association remained to be defined, the COL1A1 Sp1 polymorphism appeared to be an important marker for low bone mass and vertebral fracture, raising the possibility that genotyping at this site may be of value in identifying women who are at risk of osteoporosis. The findings of Grant et al. (1996) were confirmed and extended by Uitterlinden et al. (1998). </p><p>Idiopathic osteoporosis indistinguishable from involutional or postmenopausal osteoporosis beginning at an unusually early age has been described in families on the basis of specific mutations in the COL1A1 gene (120150.0038) on chromosome 17q and the COL1A2 gene (120160.0030) on chromosome 7q.</p><p>Jin et al. (2009) showed that the previously reported 5-prime untranslated region (UTR) SNPs in the COL1A1 gene (-1997G-T, rs1107946, 120150.0067; -1663indelT, rs2412298, 120150.0068; +1245G-T, rs1800012) affected COL1A1 transcription. Transcription was 2-fold higher with the osteoporosis-associated G-del-T haplotype compared with the common G-ins-G haplotype. The region surrounding rs2412298 recognized a complex of proteins essential for osteoblast differentiation and function including NMP4 (ZNF384; 609951) and Osterix (SP7; 606633), and the osteoporosis-associated -1663delT allele had increased binding affinity for this complex. Further studies showed that haplotype G-del-T had higher binding affinity for RNA polymerase II, consistent with increased transcription of the G-del-T allele, and there was a significant inverse association between carriage of G-del-T and bone mineral density (BMD) in a cohort of 3,270 Caucasian women. Jin et al. (2009) concluded that common polymorphic variants in the 5-prime UTR of COL1A1 regulate transcription by affecting DNA-protein interactions, and that increased levels of transcription correlated with reduced BMD values in vivo by altering the normal 2:1 ratio between alpha-1(I) and alpha-2(I) chains. </p><p><strong><em>Association with ESR1</em></strong></p><p>
BMD, the major determinant of osteoporotic fracture risk, has a strong genetic component. The discovery that inactivation of the ESR1 gene (133430) is associated with low BMD indicated ESR1 as a candidate gene for osteoporosis. Becherini et al. (2000) genotyped 610 postmenopausal women for 3 ESR1 gene polymorphisms (intron 1 RFLPs PvuII and XbaI, and a (TA)n repeat 5-prime upstream of exon 1). Although no significant relationship between intron 1 RFLPs and BMD was observed, a statistically significant correlation between (TA)n-repeat allelic variants and lumbar BMD was observed (P = 0.04, ANCOVA), with subjects having a low number of repeats (TA less than 15) showing the lowest BMD values. The authors observed a statistically significant difference in the mean +/- SD number of (TA)n repeats between 73 analyzed women with a vertebral fracture and the nonfracture group, equivalent to a 2.9-fold increased fracture risk in women with a low number of repeats. Becherini et al. (2000) concluded that in their large sample the (TA)n polymorphism in ESR1 accounts for part of the heritable component of BMD and may prove useful in the prediction of vertebral fracture risk in postmenopausal osteoporosis. </p><p>See 601769 for a discussion of contradictory findings concerning a relationship between bone mineral density and polymorphism of the vitamin D receptor.</p><p>Colin et al. (2003) studied the combined influence of polymorphisms in the ESR1 and the VDR (601769) genes on the susceptibility to osteoporotic vertebral fractures in 634 women aged 55 years and older. Three VDR haplotypes (1, 2, and 3) of the BsmI, ApaI, and TaqI restriction fragment length polymorphisms and 3 ESR1 haplotypes (1, 2, and 3) of the PvuII and XbaI restriction fragment length polymorphisms were identified. ESR1 haplotype 1 was dose-dependently associated with increased vertebral fracture risk corresponding to an odds ratio of 1.9 (95% confidence interval, 0.9-4.1) per copy of the risk allele. VDR haplotype 1 was overrepresented in vertebral fracture cases. There was a significant interaction (p = 0.01) between ESR1 haplotype 1 and VDR haplotype 1 in determining vertebral fracture risk. The association of ESR1 haplotype 1 with vertebral fracture risk was present only in homozygous carriers of VDR haplotype 1. The risk of fracture was 2.5 for heterozygous and 10.3 for homozygous carriers of ESR1 haplotype 1. These associations were independent of bone mineral density. The authors concluded that interaction between ESR1 and VDR gene polymorphisms leads to increased risk of osteoporotic vertebral fractures in women, largely independent of bone mineral density. </p><p>In a study of femoral neck bone loss in 945 postmenopausal Scottish women who had not received hormone replacement therapy, Albagha et al. (2005) found that the ESR1 px haplotype was associated with reduced femoral neck BMD and increased rates of femoral neck bone loss. </p><p><strong><em>Association with IL6</em></strong></p><p>
Linkage studies have suggested that variation in the interleukin-6 (IL6; 147620) gene is associated with BMD and osteoporosis.</p><p><strong><em>Association with RIL</em></strong></p><p>
Association studies by Omasu et al. (2003) suggested a relationship between susceptibility to osteoporosis and genetic variation in the 5-prime flanking region of the RIL gene (603422.0001). </p><p><strong><em>Association with ITGB3</em></strong></p><p>
Tofteng et al. (2007) analyzed the L33P polymorphism in the ITGB3 gene (173470.0006) in 9,233 randomly selected Danish individuals, of whom 267 had a hip fracture during a 25-year follow-up period. Individuals homozygous for L33P had a 2-fold greater risk of hip fracture compared to noncarriers (p = 0.02), with risk confined primarily to postmenopausal women, in whom the hazard ratio was 2.6 after adjustment for age at menopause and use of hormone replacement therapy. </p><p><strong><em>Association with WNT11</em></strong></p><p>
For discussion of a possible association between osteoporosis and variation in the WNT11 gene, see 603699.0001.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Kyriakidou-Himonas et al. (1999) noted that black women have lower levels of serum 25-hydroxyvitamin D (25OHD) with higher serum parathyroid hormone (PTH; 168450) levels than white women. They hypothesized that correction of these alterations in the vitamin D-endocrine system could lead to less bone loss in postmenopausal women and, consequently, preservation of bone mass. They gave 10 healthy postmenopausal black women 20 microg vitamin D3 daily for 3 months. At the end of the study, mean serum 25OHD levels had increased from 24 to 63 nmol/L. Serum intact PTH and nephrogenous cAMP declined significantly, and there was a 21% drop in the fasting urinary N-telopeptide of type I collagen. The authors concluded that vitamin D3 supplementation raises serum 25OHD levels in postmenopausal black women, decreases secondary hyperparathyroidism, and reduces bone turnover. </p><p>Greenspan et al. (2000) investigated whether early changes in serum markers of bone resorption could predict long-term responses in BMD after alendronate therapy in elderly women. One hundred and twenty women (mean age, 70 years) were randomized to alendronate or placebo in a double-blind, placebo-controlled clinical trial for 2.5 years. Outcome measures were hip and spine BMD and biochemical markers of bone resorption, including serum N-telopeptide and C-telopeptide cross-linked collagen type I (NTx and CTx, respectively). Serum NTx and CTx were highly correlated at baseline and remained so throughout the study. After treatment with alendronate, serum NTx decreased 30.4 +/- 16.0% at 6 months, reaching a nadir of -36.7 +/- 18.0% by 24 months. Serum CTx decreased 43.5 +/- 67.0% at 6 months and continued to decrease to 67.3 +/- 19.3% at 2.5 years. Moreover, decreases in serum NTx and CTx at 6 months were correlated with long-term improvements in vertebral BMD at 2.5 years in patients receiving alendronate therapy. The authors concluded that early changes in serum NTx and CTx, markers of bone resorption, predict long-term changes in vertebral BMD in elderly women receiving alendronate therapy and provide a useful tool to assess skeletal health. </p><p>Harris et al. (2001) reported a 1-year, double-blind, placebo-controlled study in which 524 postmenopausal women received daily treatment with conjugated equine estrogens (0.625 mg) alone or in combination with risedronate (5 mg). Women who had not undergone hysterectomy received medroxyprogesterone acetate (up to 5 mg, daily or cyclically) at the discretion of the investigator. The primary efficacy end point was the percent change from baseline in mean lumbar spine bone mineral density (BMD) at 1 year. Changes in BMD at the proximal femur and forearm, bone turnover markers, and histology and histomorphometry were also assessed. At 12 months, significant (p less than 0.05) increases from baseline in lumbar spine BMD were observed in both treatment groups (HRT-only, 4.6%; combined risedronate-HRT, 5.2%); the difference between the 2 groups was not statistically significant. Both therapies led to significant increases in BMD at 12 months at the femoral neck (1.8% and 2.7%, respectively), femoral trochanter (3.2% and 3.7%), distal radius (1.7% and 1.6%), and midshaft radius (0.4% and 0.7%). The differences between groups were statistically significant (p less than 0.05) at the femoral neck and midshaft radius. The authors concluded that combined treatment with risedronate and HRT had a favorable effect on BMD, similar to that of HRT alone at the lumbar spine and slightly but significantly greater than that of HRT alone at the femoral neck and midshaft radius. The combined treatment was well tolerated and there were no adverse effects on the skeleton. </p><p>Ringe et al. (2001) reported the results of a therapeutic trial in men with osteoporosis. This prospective, open-label, active-controlled, randomized clinical study compared the effects of oral alendronate (10 mg daily) and alfacalcidol (1 microg daily) on bone mineral density, safety, and tolerability in 134 males with primary established osteoporosis. All men received supplemental calcium (500 mg daily). After 2 years, alfacalcidol-treated patients showed a mean 2.8% increase in lumbar spine BMD (p less than 0.01) compared with a mean increase of 10.1% in men receiving alendronate (p less than 0.001). The incidence rates of patients with new vertebral fractures were 18.2% and 7.4% for the alfacalcidol and alendronate groups, respectively (p = 0.071). Both therapies were well tolerated. The authors concluded that alendronate may be superior to alfacalcidol in the treatment of men with established primary osteoporosis. </p><p>Data obtained by Drake et al. (2003) suggested that among men with osteoporosis it is not possible to identify patients who would be particularly good candidates for therapy with alendronate on the basis of biochemical or hormonal markers. The authors concluded that alendronate therapy appears to benefit osteoporotic males equally, irrespective of baseline serum testosterone, estradiol, IGF1 (147440), or markers of bone turnover. </p><p>Both raloxifene (RLX) and alendronate (ALN) can treat and prevent new vertebral fractures, increase BMD, and decrease biochemical markers of bone turnover in postmenopausal women with osteoporosis. Johnell et al. (2002) assessed the effects of combined RLX and ALN in 331 postmenopausal women with osteoporosis. Women received placebo, RLX 60 mg per day, ALN 10 mg per day, or RLX 60 mg per day and ALN 10 mg per day combined (RLX+ALN). At baseline, 6 months, and 12 months, BMD was measured by dual x-ray absorptiometry. The bone turnover markers serum osteocalcin (112260), bone-specific alkaline phosphatase (see 171760), and urinary N- and C-telopeptide corrected for creatinine were measured. All changes in BMD and bone markers at 12 months were different between placebo and each of the active treatment groups and between the RLX and RLX+ALN groups (p less than 0.05). On average, lumbar spine BMD increased by 2.1%, 4.3%, and 5.3% from baseline with RLX, ALN, and RLX+ALN, respectively. The increase in femoral neck BMD in the RLX+ALN group (3.7%) was greater than the 2.7% and 1.7% increases in the ALN (p = 0.02) and RLX (p less than 0.001) groups, respectively. The authors concluded that RLX+ALN reduced bone turnover more than either drug alone, resulting in greater BMD increment, but they did not assess whether this difference reflected better fracture risk reduction. </p><p>Hodsman et al. (2003) investigated the efficacy and safety of human parathyroid hormone-(1-84) (full-length PTH; 168450) in the treatment of postmenopausal osteoporosis. PTH treatment induced time- and dose-related increases in lumbar spine BMD. The 100-microgram dose increased BMD significantly at 3 and 12 months. BMD underestimated the anabolic effect of PTH in lumbar spine (bone mineral content, +10.0%) because bone area increased significantly (+2.0%). Dose-related incidences of transient hypercalcemia occurred, but only 1 patient was withdrawn because of repeated hypercalcemia. The authors concluded that full-length PTH was efficacious and safe over 12 months. </p><p>The most rapid period of skeletal development occurs over several years in childhood and adolescence, accounting for 40 to 50% of the total accrual of skeletal mass. Maximizing peak bone mass during the first few decades of life is a potentially major strategy in osteoporosis prevention. Cameron et al. (2004) presented the results of a randomized, single-blind, placebo-controlled trial of 51 pairs of premenarcheal female twins (27 monozygotic and 24 dizygotic) in which 1 twin of each pair received a 1,200-mg calcium carbonate supplement. They observed that calcium supplementation increased areal bone mineral density at regional sites over the first 12 to 18 months, but these gains were not maintained to 24 months. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Idris et al. (2005) demonstrated that cannabinoid receptor-1 (CNR1; 114610)-null mice had increased bone mass and were protected from ovariectomy-induced bone loss. Pharmacologic antagonists of CNR1 and CNR2 receptors prevented ovariectomy-induced bone loss in vivo and caused osteoclast inhibition in vitro by promoting osteoclast apoptosis and inhibiting production of several osteoclast survival factors. Idris et al. (2005) concluded that the CNR1 receptor has a role in the regulation of bone mass and ovariectomy-induced bone loss. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Albagha, O. M. E., Pettersson, U., Stewart, A., McGuigan, F. E. A., MacDonald, H. M., Reid, D. M., Ralston, S. H.
<strong>Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone.</strong>
J. Med. Genet. 42: 240-246, 2005.
[PubMed: 15744038]
[Full Text: https://doi.org/10.1136/jmg.2004.023895]
</p>
</li>
<li>
<p class="mim-text-font">
Armamento-Villareal, R., Villareal, D. T., Avioli, L. V., Civitelli, R.
<strong>Estrogen status and heredity are major determinants of premenopausal bone mass.</strong>
J. Clin. Invest. 90: 2464-2471, 1992.
[PubMed: 1469098]
[Full Text: https://doi.org/10.1172/JCI116138]
</p>
</li>
<li>
<p class="mim-text-font">
Becherini, L., Gennari, L., Masi, L., Mansani, R., Massart, F., Morelli, A., Falchetti, A., Gonnelli, S., Fiorelli, G., Tanini, A., Brandi, M. L.
<strong>Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor-alpha gene and their relationship to bone mass variation in postmenopausal Italian women.</strong>
Hum. Molec. Genet. 9: 2043-2050, 2000.
[PubMed: 10942433]
[Full Text: https://doi.org/10.1093/hmg/9.13.2043]
</p>
</li>
<li>
<p class="mim-text-font">
Cameron, M. A., Paton, L. M., Nowson, C. A., Margerison, C., Frame, M., Wark, J. D.
<strong>The effect of calcium supplementation on bone density in premenarcheal females: a co-twin approach.</strong>
J. Clin. Endocr. Metab. 89: 4916-4922, 2004.
[PubMed: 15472185]
[Full Text: https://doi.org/10.1210/jc.2003-031985]
</p>
</li>
<li>
<p class="mim-text-font">
Colin, E. M., Uitterlinden, A. G., Meurs, J. B. J., Bergink, A. P., van de Klift, M., Fang, Y., Arp, P. P., Hofman, A., van Leeuwen, J. P. T. M., Pols, H. A. P.
<strong>Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk.</strong>
J. Clin. Endocr. Metab. 88: 3777-3784, 2003.
[PubMed: 12915669]
[Full Text: https://doi.org/10.1210/jc.2002-021861]
</p>
</li>
<li>
<p class="mim-text-font">
Drake, W. M., Kendler, D. L., Rosen, C. J., Orwoll, E. S.
<strong>An investigation of the predictors of bone mineral density and response to therapy with alendronate in osteoporotic men.</strong>
J. Clin. Endocr. Metab. 88: 5759-5765, 2003.
[PubMed: 14671165]
[Full Text: https://doi.org/10.1210/jc.2002-021654]
</p>
</li>
<li>
<p class="mim-text-font">
Estrada, K., Styrkarsdottir, U., Evangelou, E., Hsu, Y.-H., Duncan, E. L., Ntzani, E. E., Oei, L., Albagha, O. M. E., Amin, N., Kemp, J. P., Koller, D. L., Li, G., and 169 others.
<strong>Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.</strong>
Nature Genet. 44: 491-501, 2012.
[PubMed: 22504420]
[Full Text: https://doi.org/10.1038/ng.2249]
</p>
</li>
<li>
<p class="mim-text-font">
Giguere, Y., Rousseau, F.
<strong>The genetics of osteoporosis: &#x27;complexities and difficulties.&#x27;</strong>
Clin. Genet. 57: 161-169, 2000.
[PubMed: 10782923]
[Full Text: https://doi.org/10.1034/j.1399-0004.2000.570301.x]
</p>
</li>
<li>
<p class="mim-text-font">
Grant, S. F. A., Reid, D. M., Blake, G., Herd, R., Fogelman, I., Ralston, S. H.
<strong>Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I-alpha 1 gene.</strong>
Nature Genet. 14: 203-205, 1996.
[PubMed: 8841196]
[Full Text: https://doi.org/10.1038/ng1096-203]
</p>
</li>
<li>
<p class="mim-text-font">
Greenspan, S. L., Rosen, H. N., Parker, R. A.
<strong>Early changes in serum N-telopeptide and C-telopeptide cross-linked collagen type 1 predict long-term response to alendronate therapy in elderly women.</strong>
J. Clin. Endocr. Metab. 85: 3537-3540, 2000.
[PubMed: 11061497]
[Full Text: https://doi.org/10.1210/jcem.85.10.6911]
</p>
</li>
<li>
<p class="mim-text-font">
Harris, S. T., Eriksen, E. F., Davidson, M., Ettinger, M. P., Moffett, A. H., Jr., Baylink, D. J., Crusan, C. E., Chines, A. A.
<strong>Effect of combined risedronate and hormone replacement therapies on bone mineral density in postmenopausal women.</strong>
J. Clin. Endocr. Metab. 86: 1890-1897, 2001.
[PubMed: 11344179]
[Full Text: https://doi.org/10.1210/jcem.86.5.7505]
</p>
</li>
<li>
<p class="mim-text-font">
Hodsman, A. B., Hanley, D. A., Ettinger, M. P., Bolognese, M. A., Fox, J., Metcalfe, A. J., Lindsay, R.
<strong>Efficacy and safety of human parathyroid hormone-(1-84) in increasing bone mineral density in postmenopausal osteoporosis.</strong>
J. Clin. Endocr. Metab. 88: 5212-5220, 2003.
[PubMed: 14602752]
[Full Text: https://doi.org/10.1210/jc.2003-030768]
</p>
</li>
<li>
<p class="mim-text-font">
Huang, Q.-Y., Kung, A. W. C.
<strong>Genetics of osteoporosis (Minireview).</strong>
Molec. Genet. Metab. 88: 295-306, 2006.
[PubMed: 16762578]
[Full Text: https://doi.org/10.1016/j.ymgme.2006.04.009]
</p>
</li>
<li>
<p class="mim-text-font">
Idris, A. I., van 't Hof, R. J., Greig, I. R., Ridge, S. A., Baker, D., Ross, R. A., Ralston, S. H.
<strong>Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors.</strong>
Nature Med. 11: 774-779, 2005.
[PubMed: 15908955]
[Full Text: https://doi.org/10.1038/nm1255]
</p>
</li>
<li>
<p class="mim-text-font">
Jin, H., van't Hof, R. J., Albagha, O. M. E., Ralston, S. H.
<strong>Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis.</strong>
Hum. Molec. Genet. 18: 2729-2738, 2009.
[PubMed: 19429913]
[Full Text: https://doi.org/10.1093/hmg/ddp205]
</p>
</li>
<li>
<p class="mim-text-font">
Johnell, O., Scheele, W. H., Lu, Y., Reginster, J.-Y., Need, A. G., Seeman, E.
<strong>Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis.</strong>
J. Clin. Endocr. Metab. 87: 985-992, 2002.
[PubMed: 11889149]
[Full Text: https://doi.org/10.1210/jcem.87.3.8325]
</p>
</li>
<li>
<p class="mim-text-font">
Kyriakidou-Himonas, M., Aloia, J. F., Yeh, J. K.
<strong>Vitamin D supplementation in postmenopausal black women.</strong>
J. Clin. Endocr. Metab. 84: 3988-3990, 1999.
[PubMed: 10566638]
[Full Text: https://doi.org/10.1210/jcem.84.11.6132]
</p>
</li>
<li>
<p class="mim-text-font">
Omasu, F., Ezura, Y., Kajita, M., Ishida, R., Kodaira, M., Yoshida, H., Suzuki, T., Hosoi, T., Inoue, S., Shiraki, M., Orimo, H., Emi, M.
<strong>Association of genetic variation of the RIL gene, encoding a PDZ-LIM domain protein and localized in 5q31.1, with low bone mineral density in adult Japanese women.</strong>
J. Hum. Genet. 48: 342-345, 2003.
[PubMed: 12908099]
[Full Text: https://doi.org/10.1007/s10038-003-0035-1]
</p>
</li>
<li>
<p class="mim-text-font">
Parsons, C. A., Mroczkowski, H. J., McGuigan, F. E. A., Albagha, O. M. E., Manolagas, S., Reid, D. M., Ralston, S. H., Reis, R. J. S.
<strong>Interspecies synteny mapping identifies a quantitative trait locus for bone mineral density on human chromosome Xp22.</strong>
Hum. Molec. Genet. 14: 3141-3148, 2005.
[PubMed: 16183656]
[Full Text: https://doi.org/10.1093/hmg/ddi346]
</p>
</li>
<li>
<p class="mim-text-font">
Pocock, N. A., Eisman, J. A., Hopper, J. L., Yeates, M. G., Sambrook, P. N., Eberl, S.
<strong>Genetic determinants of bone mass in adults: a twin study.</strong>
J. Clin. Invest. 80: 706-710, 1987.
[PubMed: 3624485]
[Full Text: https://doi.org/10.1172/JCI113125]
</p>
</li>
<li>
<p class="mim-text-font">
Prockop, D. J.
<strong>The genetic trail of osteoporosis. (Editorial)</strong>
New Eng. J. Med. 338: 1061-1062, 1998.
[PubMed: 9535673]
[Full Text: https://doi.org/10.1056/NEJM199804093381510]
</p>
</li>
<li>
<p class="mim-text-font">
Ralston, S. H.
<strong>Genetic control of susceptibility to osteoporosis.</strong>
J. Clin. Endocr. Metab. 87: 2460-2466, 2002.
[PubMed: 12050200]
[Full Text: https://doi.org/10.1210/jcem.87.6.8621]
</p>
</li>
<li>
<p class="mim-text-font">
Ringe, J. D., Faber, H., Dorst, A.
<strong>Alendronate treatment of established primary osteoporosis in men: results of a 2-year prospective study.</strong>
J. Clin. Endocr. Metab. 86: 5252-5255, 2001.
[PubMed: 11701687]
[Full Text: https://doi.org/10.1210/jcem.86.11.7988]
</p>
</li>
<li>
<p class="mim-text-font">
Seeman, E., Hopper, J. L., Bach, L. A., Cooper, M. E., Parkinson, E., McKay, J., Jerums, G.
<strong>Reduced bone mass in daughters of women with osteoporosis.</strong>
New Eng. J. Med. 320: 554-558, 1989.
[PubMed: 2915666]
[Full Text: https://doi.org/10.1056/NEJM198903023200903]
</p>
</li>
<li>
<p class="mim-text-font">
Seeman, E., Tsalamandris, C., Formica, C., Hopper, J. L., McKay, J.
<strong>Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the pathogenesis of osteoporosis.</strong>
J. Bone Miner. Res. 9: 739-743, 1994.
[PubMed: 8053404]
[Full Text: https://doi.org/10.1002/jbmr.5650090520]
</p>
</li>
<li>
<p class="mim-text-font">
Styrkarsdottir, U., Halldorsson, B. V., Gretarsdottir, S., Gudbjartsson, D. F., Walters, G. B., Ingvarsson, T., Jonsdottir, T., Saemundsdottir, J., Center, J. R., Nguyen, T. V., Bagger, Y., Gulcher, J. R., Eisman, J. A., Christiansen, C., Sigurdsson, G., Kong, A., Thorsteinsdottir, U., Stefansson, K.
<strong>Multiple genetic loci for bone mineral density and fractures.</strong>
New Eng. J. Med. 358: 2355-2365, 2008.
[PubMed: 18445777]
[Full Text: https://doi.org/10.1056/NEJMoa0801197]
</p>
</li>
<li>
<p class="mim-text-font">
Tofteng, C. L., Bach-Mortensen, P., Bojesen, S. E., Tybjaerg-Hansen, A., Hyldstrup, L., Nordestgaard, B. G.
<strong>Integrin beta-3 leu33-to-pro polymorphism and risk of hip fracture: 25 years follow-up of 9233 adults from the general population.</strong>
Pharmacogenet. Genomics 17: 85-91, 2007.
[PubMed: 17264806]
[Full Text: https://doi.org/10.1097/01.fpc.0000236327.80809.f8]
</p>
</li>
<li>
<p class="mim-text-font">
Uitterlinden, A. G., Burger, H., Huang, Q., Yue, F., McGuigan, F. E. A., Grant, S. F. A., Hofman, A., van Leeuwen, J. P. T. M., Pols, H. A. P., Ralston, S. H.
<strong>Relation of alleles of the collagen type I-alpha-1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women.</strong>
New Eng. J. Med. 338: 1016-1021, 1998.
[PubMed: 9535665]
[Full Text: https://doi.org/10.1056/NEJM199804093381502]
</p>
</li>
<li>
<p class="mim-text-font">
Zheng, H.-F., Forgetta, V., Hsu, Y.-H., Estrada, K., Rosello-Diez, A., Leo, P. J., Dahia, C. L., Park-Min, K. H., Tobias, J. H., Kooperberg, C., Kleinman, A., Styrkarsdottir, U., and 147 others.
<strong>Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture.</strong>
Nature 526: 112-117, 2015.
[PubMed: 26367794]
[Full Text: https://doi.org/10.1038/nature14878]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Marla J. F. O&#x27;Neill - updated : 11/05/2024<br>Ada Hamosh - updated : 02/17/2016<br>George E. Tiller - updated : 6/23/2010<br>Ada Hamosh - updated : 6/10/2008<br>Marla J. F. O&#x27;Neill - updated : 1/7/2008<br>Marla J. F. O&#x27;Neill - updated : 1/2/2008<br>Ada Hamosh - updated : 6/28/2007<br>John A. Phillips, III - updated : 4/10/2006<br>Marla J. F. O&#x27;Neill - updated : 7/27/2005<br>Marla J. F. O&#x27;Neill - updated : 5/19/2005<br>John A. Phillips, III - updated : 3/30/2005<br>John A. Phillips, III - updated : 1/11/2005<br>John A. Phillips, III - updated : 10/14/2004<br>Victor A. McKusick - updated : 8/27/2003<br>John A. Phillips, III - updated : 3/13/2003<br>John A. Phillips, III - updated : 7/30/2002<br>John A. Phillips, III - updated : 6/27/2002<br>George E. Tiller - updated : 5/3/2002<br>John A. Phillips, III - updated : 9/19/2001<br>John A. Phillips, III - updated : 3/14/2001<br>John A. Phillips, III - updated : 11/16/2000<br>George E. Tiller - updated : 11/2/2000<br>Victor A. McKusick - updated : 4/21/2000<br>Victor A. McKusick - updated : 10/19/1999<br>Victor A. McKusick - updated : 1/6/1999<br>Victor A. McKusick - updated : 10/1/1998<br>Victor A. McKusick - updated : 4/15/1998
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 3/3/1990
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 11/05/2024<br>alopez : 02/17/2016<br>carol : 12/15/2014<br>wwang : 6/30/2010<br>terry : 6/23/2010<br>wwang : 8/6/2009<br>alopez : 6/16/2008<br>alopez : 6/16/2008<br>alopez : 6/10/2008<br>terry : 6/10/2008<br>wwang : 5/8/2008<br>terry : 4/29/2008<br>carol : 1/21/2008<br>carol : 1/18/2008<br>carol : 1/16/2008<br>carol : 1/7/2008<br>carol : 1/7/2008<br>carol : 1/2/2008<br>carol : 1/2/2008<br>carol : 12/7/2007<br>alopez : 7/6/2007<br>terry : 6/28/2007<br>alopez : 4/10/2006<br>wwang : 8/3/2005<br>terry : 7/27/2005<br>carol : 6/14/2005<br>wwang : 5/19/2005<br>alopez : 3/30/2005<br>wwang : 1/12/2005<br>wwang : 1/11/2005<br>alopez : 10/14/2004<br>tkritzer : 3/22/2004<br>cwells : 8/29/2003<br>terry : 8/27/2003<br>alopez : 3/13/2003<br>tkritzer : 7/31/2002<br>tkritzer : 7/30/2002<br>alopez : 6/27/2002<br>alopez : 5/10/2002<br>cwells : 5/3/2002<br>cwells : 9/28/2001<br>cwells : 9/19/2001<br>alopez : 3/14/2001<br>alopez : 1/12/2001<br>terry : 11/16/2000<br>mcapotos : 11/2/2000<br>mcapotos : 5/17/2000<br>terry : 4/21/2000<br>carol : 10/19/1999<br>carol : 1/19/1999<br>terry : 1/6/1999<br>carol : 10/5/1998<br>terry : 10/2/1998<br>terry : 10/1/1998<br>terry : 4/17/1998<br>terry : 4/15/1998<br>terry : 11/11/1997<br>terry : 11/10/1997<br>mark : 10/5/1996<br>mark : 10/5/1996<br>terry : 10/1/1996<br>mark : 6/10/1996<br>terry : 6/4/1996<br>mimadm : 1/14/1995<br>carol : 5/27/1994<br>carol : 1/22/1993<br>carol : 12/2/1992<br>supermim : 3/16/1992<br>supermim : 3/20/1990
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 13, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>