nih-gov/www.ncbi.nlm.nih.gov/omim/152700

8640 lines
1 MiB

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- #152700 - SYSTEMIC LUPUS ERYTHEMATOSUS; SLE
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=152700"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">#152700</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#phenotypeMap"><strong>Phenotype-Gene Relationships</strong></a>
</li>
<li role="presentation">
<a href="/clinicalSynopsis/152700"><strong>Clinical Synopsis</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#description">Description</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalFeatures">Clinical Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#otherFeatures">Other Features</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#populationGenetics">Population Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#clinicalManagement">Clinical Management</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#inheritance">Inheritance</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#genotypePhenotypeCorrelations">Genotype/Phenotype Correlations</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#pathogenesis">Pathogenesis</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#animalModel">Animal Model</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#history">History</a>
</li>
<li role="presentation">
<a href="#seeAlso"><strong>See Also</strong></a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://clinicaltrials.gov/search?cond=(SYSTEMIC LUPUS ERYTHEMATOSUS) OR (DNASE1 OR PTPN22 OR FCGR2A OR TREX1 OR CTLA4 OR FCGR2B)" class="mim-tip-hint" title="Clinical Trials" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Clinical Trials', 'domain': 'clinicaltrials.gov'})">Clinical Trials</a></div>
<div><a href="https://www.diseaseinfosearch.org/x/9373" class="mim-tip-hint" title="Network of disease-specific advocacy organizations, universities, private companies, government agencies, and public policy organizations." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Genetic Alliance', 'domain': 'diseaseinfosearch.org'})">Genetic Alliance</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=152700[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/disease/DOID:9074" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="http://www.informatics.jax.org/disease/152700" class="mim-tip-hint" title="Phenotypes, alleles, and disease models from Mouse Genome Informatics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Phenotype', 'domain': 'informatics.jax.org'})">MGI Mouse Phenotype</a></div>
<div><a href="https://omia.org/OMIA000968/" class="mim-tip-hint" title="Online Mendelian Inheritance in Animals (OMIA) is a database of genes, inherited disorders and traits in 191 animal species (other than human and mouse.)" target="_blank">OMIA</a></div>
<div><a href="https://wormbase.org/resources/disease/DOID:9074" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Wormbase Disease Ontology', 'domain': 'wormbase.org'})">Wormbase Disease Ontology</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellLines">
<span class="panel-title">
<span class="small">
<a href="#mimCellLinesLinksFold" id="mimCellLinesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellLinesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cell Lines</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellLinesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://catalog.coriell.org/Search?q=OmimNum:152700" class="definition" title="Coriell Cell Repositories; cell cultures and DNA derived from cell cultures." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'CCR', 'domain': 'ccr.coriell.org'})">Coriell</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
<a href="#" class="mim-tip-icd" qtip_title="<strong>ICD+</strong>" qtip_text="
<strong>SNOMEDCT:</strong> 55464009<br />
<strong>ICD10CM:</strong> M32, M32.9<br />
<strong>ICD9CM:</strong> 710.0<br />
<strong>DO:</strong> 9074<br />
">ICD+</a>
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Phenotype description, molecular basis known">
<span class="text-danger"><strong>#</strong></span>
152700
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
SYSTEMIC LUPUS ERYTHEMATOSUS; SLE
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="includedTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
Other entities represented in this entry:
</span>
</p>
</div>
<div>
<span class="h3 mim-font">
EXCESS LYMPHOCYTE LOW MOLECULAR WEIGHT DNA, INCLUDED
</span>
</div>
<div>
<span class="h4 mim-font">
EXCESS LMW-DNA, INCLUDED
</span>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="phenotypeMap" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/1/933?start=-3&limit=10&highlight=933">
1p13.2
</a>
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/152700"> 152700 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
PTPN22
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/600716"> 600716 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/1/1351?start=-3&limit=10&highlight=1351">
1q23.3
</a>
</span>
</td>
<td>
<span class="mim-font">
{Lupus nephritis, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/152700"> 152700 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
FCGR2A
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/146790"> 146790 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/1/1357?start=-3&limit=10&highlight=1357">
1q23.3
</a>
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/152700"> 152700 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
FCGR2B
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/604590"> 604590 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/2/934?start=-3&limit=10&highlight=934">
2q33.2
</a>
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/152700"> 152700 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
CTLA4
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/123890"> 123890 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/3/281?start=-3&limit=10&highlight=281">
3p21.31
</a>
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/152700"> 152700 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
TREX1
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/606609"> 606609 </a>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
<a href="/geneMap/16/148?start=-3&limit=10&highlight=148">
16p13.3
</a>
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/152700"> 152700 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known"> 3 </abbr>
</span>
</td>
<td>
<span class="mim-font">
DNASE1
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/125505"> 125505 </a>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group ">
<a href="/clinicalSynopsis/152700" class="btn btn-warning" role="button"> Clinical Synopsis </a>
<button type="button" id="mimPhenotypicSeriesToggle" class="btn btn-warning dropdown-toggle mimSingletonFoldToggle" data-toggle="collapse" href="#mimClinicalSynopsisFold" onclick="ga('send', 'event', 'Unfurl', 'ClinicalSynopsis', 'omim.org')">
<span class="caret"></span>
<span class="sr-only">Toggle Dropdown</span>
</button>
</div>
&nbsp;
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/152700" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/152700" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
<div>
<p />
</div>
<div id="mimClinicalSynopsisFold" class="well well-sm collapse mimSingletonToggleFold">
<div class="small" style="margin: 5px">
<div>
<div>
<span class="h5 mim-font">
<strong> INHERITANCE </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Autosomal dominant <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/263681008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">263681008</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/771269000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">771269000</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0443147&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0443147</a>, <a href="https://bioportal.bioontology.org/search?q=C1867440&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C1867440</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000006</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000006</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> CARDIOVASCULAR </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Heart </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Pericarditis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/3238004" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">3238004</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0031046&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0031046</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001701" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001701</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001701" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001701</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> RESPIRATORY </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Lung </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Pleuritis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/196075003" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">196075003</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/R09.1" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">R09.1</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/511" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">511</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0032231&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0032231</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002102" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002102</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002102" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002102</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> GENITOURINARY </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Kidneys </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Nephritis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/52845002" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">52845002</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/N05" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">N05</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/N08" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">N08</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0027697&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0027697</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000123" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000123</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000123" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000123</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> SKELETAL </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Limbs </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Arthritis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/3723001" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">3723001</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/M19.90" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">M19.90</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0003864&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0003864</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001369" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001369</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001369" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001369</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> SKIN, NAILS, & HAIR </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Skin </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Erythematous malar rash <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C3805720&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C3805720</a>]</span><br /> -
Photosensitivity <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/90128006" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">90128006</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0349506&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0349506</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000992" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000992</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000992" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000992</a>]</span><br /> -
Discoid rash <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C3805721&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C3805721</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> NEUROLOGIC </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<div>
<span class="h5 mim-font">
<em> Central Nervous System </em>
</span>
</div>
<div style="margin-left: 2em;">
<span class="mim-font">
- Seizures <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/91175000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">91175000</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0036572&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0036572</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001250" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001250</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001250" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001250</a>]</span><br /> -
Psychosis <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/191525009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">191525009</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/69322001" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">69322001</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/F29" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">F29</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/298.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">298.9</a>, <a href="https://purl.bioontology.org/ontology/ICD9CM/290-299.99" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">290-299.99</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0349204&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0349204</a>, <a href="https://bioportal.bioontology.org/search?q=C0033975&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0033975</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000709" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000709</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0000709" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0000709</a>]</span><br />
</span>
</div>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> HEMATOLOGY </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Leukopenia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/419188005" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">419188005</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/84828003" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">84828003</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/D72.819" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">D72.819</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/D72.81" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">D72.81</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/288.50" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">288.50</a>, <a href="https://purl.bioontology.org/ontology/ICD9CM/288.5" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">288.5</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0750394&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0750394</a>, <a href="https://bioportal.bioontology.org/search?q=C0023530&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0023530</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001882" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001882</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001882" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001882</a>]</span><br /> -
Thrombocytopenia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/415116008" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">415116008</a>, <a href="https://purl.bioontology.org/ontology/SNOMEDCT/302215000" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">302215000</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/D69.6" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">D69.6</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/287.5" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">287.5</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0392386&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0392386</a>, <a href="https://bioportal.bioontology.org/search?q=C0040034&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0040034</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001873" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001873</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001873" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001873</a>]</span><br /> -
Hemolytic anemia <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/61261009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">61261009</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/D55-D59" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">D55-D59</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0002878&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0002878</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001878" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001878</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0001878" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0001878</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> IMMUNOLOGY </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Systemic lupus erythematosus <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/55464009" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">55464009</a>]</span> <span class="mim-feature-ids hidden">[ICD10CM: <a href="https://purl.bioontology.org/ontology/ICD10CM/M32" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">M32</a>, <a href="https://purl.bioontology.org/ontology/ICD10CM/M32.9" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD10CM\', \'domain\': \'bioontology.org\'})">M32.9</a>]</span> <span class="mim-feature-ids hidden">[ICD9CM: <a href="https://purl.bioontology.org/ontology/ICD9CM/710.0" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'ICD9CM\', \'domain\': \'bioontology.org\'})">710.0</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0024141&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0024141</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002725" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002725</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0002725" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0002725</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> LABORATORY ABNORMALITIES </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Antiphospholipid antibody <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/259916004" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">259916004</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0162595&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0162595</a>, <a href="https://bioportal.bioontology.org/search?q=C4019436&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C4019436</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003613" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003613</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003613" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003613</a>]</span><br /> -
Anti dsDNA antibody <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C2355607&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C2355607</a>]</span><br /> -
Serum antinuclear antibody <span class="mim-feature-ids hidden">[SNOMEDCT: <a href="https://purl.bioontology.org/ontology/SNOMEDCT/165850001" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'SNOMEDCT\', \'domain\': \'bioontology.org\'})">165850001</a>]</span> <span class="mim-feature-ids hidden">[UMLS: <a href="https://bioportal.bioontology.org/search?q=C0151480&searchproperties=true" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'UMLS\', \'domain\': \'bioontology.org\'})">C0151480</a> HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003493" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003493</a>]</span> <span class="mim-feature-ids hidden">[HPO: <a href="https://hpo.jax.org/app/browse/term/HP:0003493" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'HPO\', \'domain\': \'hpo.jax.org\'})">HP:0003493</a>]</span><br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> MISCELLANEOUS </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Complement deficiency (e.g. C2 and C4 null alleles) are susceptible to developing SLE<br /> -
Association between HLA class II alleles and presence of autoantibodies<br /> -
Onset between ages 16-55<br /> -
Female to male ratio 8-13:1<br />
</span>
</div>
</div>
</div>
<div>
<div>
<span class="h5 mim-font">
<strong> MOLECULAR BASIS </strong>
</span>
</div>
<div style="margin-left: 2em;">
<div>
<span class="mim-font">
- Susceptibility to SLE caused by mutation in the tumor necrosis factor ligand superfamily, member 6 gene (TNFSF6, <a href="/entry/134638#0001">134638.0001</a>)<br /> -
Susceptibility to SLE caused by mutation in the Fc fragment of IgG receptor 2a gene (FCGR2A, <a href="/entry/146790#0001">146790.0001</a>)<br /> -
Susceptibility to SLE caused by mutation in the Fc fragment of IgG receptor 1a gene (FCGR2A, <a href="/entry/604590#0001">604590.0001</a>)<br />
</span>
</div>
</div>
</div>
<div class="text-right">
<a href="#mimClinicalSynopsisFold" data-toggle="collapse">&#9650;&nbsp;Close</a>
</div>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4 href="#mimTextFold" id="mimTextToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimTextToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div id="mimTextFold" class="collapse in ">
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because of evidence that multiple genes are involved in the causation of systemic lupus erythematosus.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="description" class="mim-anchor"></a>
<h4 href="#mimDescriptionFold" id="mimDescriptionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimDescriptionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<div id="mimDescriptionFold" class="collapse in ">
<span class="mim-text-font">
<p>Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by production of autoantibodies against nuclear, cytoplasmic, and cell surface molecules that transcend organ-specific boundaries. Tissue deposition of antibodies or immune complexes induces inflammation and subsequent injury of multiple organs and finally results in clinical manifestations of SLE, including glomerulonephritis, dermatitis, thrombosis, vasculitis, seizures, and arthritis. Evidence strongly suggests the involvement of genetic components in SLE susceptibility (summary by <a href="#95" class="mim-tip-reference" title="Oishi, T., Iida, A., Otsubo, S., Kamatani, Y., Usami, M., Takei, T., Uchida, K., Tsuchiya, K., Saito, S., Ohnisi, Y., Tokunaga, K., Nitta, K., Kawaguchi, Y., Kamatani, N., Kochi, Y., Shimane, K., Yamamoto, K., Nakamura, Y., Yumura, W., Matsuda, K. &lt;strong&gt;A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population.&lt;/strong&gt; J. Hum. Genet. 53: 151-162, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18219441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18219441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s10038-007-0233-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18219441">Oishi et al., 2008</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18219441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Genetic Heterogeneity of Systemic Lupus Erythematosus</em></strong></p><p>
An autosomal recessive form of systemic lupus erythematosus (SLEB16; <a href="/entry/614420">614420</a>) is caused by mutation in the DNASE1L3 gene (<a href="/entry/602244">602244</a>) on chromosome 3p14.3. An X-linked dominant form of SLE (SLEB17; <a href="/entry/301080">301080</a>) is caused by heterozygous mutation in the TLR7 gene (<a href="/entry/300365">300365</a>) on chromosome Xp22.</p><p>See MAPPING and MOLECULAR GENETICS sections for a discussion of genetic heterogeneity of susceptibility to SLE.</p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalFeatures" class="mim-anchor"></a>
<h4 href="#mimClinicalFeaturesFold" id="mimClinicalFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<div id="mimClinicalFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#65" class="mim-tip-reference" title="Lappat, E. J., Cawein, M. J. &lt;strong&gt;A familial study of procainamide-induced systemic lupus erythematosus: a question of pharmacogenetic polymorphism.&lt;/strong&gt; Am. J. Med. 45: 846-852, 1968.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4177546/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4177546&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0002-9343(68)90183-6&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="4177546">Lappat and Cawein (1968)</a> suggested that drug-induced, specifically procainamide-induced, systemic lupus erythematosus is an expression of a pharmacogenetic polymorphism. Among close relatives of a procainamide SLE proband, they found antinuclear antibody in the serum in 3, and in all 5, 'significant' history or laboratory findings suggesting an immunologic disorder. Three had a coagulation abnormality. The finding of complement deficiency (see <a href="/entry/120900">120900</a>) in cases of lupus as well as association with particular HLA types points to genetic factors responsible for familial aggregation of this disease. On the other hand, the evidence for viral etiology suggests nongenetic explanations. Lupus-like illness occurs (<a href="#109" class="mim-tip-reference" title="Schaller, J. &lt;strong&gt;Illness resembling lupus erythematosus in mothers of boys with chronic granulomatous disease.&lt;/strong&gt; Ann. Intern. Med. 76: 747-750, 1972.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/5025325/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;5025325&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.7326/0003-4819-76-5-747&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="5025325">Schaller, 1972</a>) in carriers of chronic granulomatous disease (<a href="/entry/306400">306400</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=4177546+5025325" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#74" class="mim-tip-reference" title="Lessard, E., Fortin, A., Belanger, P. M., Beaune, P., Hamelin, B. A., Turegon, J. &lt;strong&gt;Role of CYP2D6 in the N-hydroxylation of procainamide.&lt;/strong&gt; Pharmacogenetics 7: 381-390, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9352574/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9352574&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1097/00008571-199710000-00007&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9352574">Lessard et al. (1997)</a> demonstrated that CYP2D6 (<a href="/entry/124030">124030</a>) is the major isozyme involved in the formation of N-hydroxyprocainamide, a metabolite potentially involved in the drug-induced lupus syndrome observed with procainamide. <a href="#75" class="mim-tip-reference" title="Lessard, E., Hamelin, B. A., Labbe, L., O&#x27;Hara, G., Belanger, P. M., Turgeon, J. &lt;strong&gt;Involvement of CYP2D6 activity in the N-oxidation of procainamide in man.&lt;/strong&gt; Pharmacogenetics 9: 683-696, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10634131/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10634131&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1097/01213011-199912000-00003&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10634131">Lessard et al. (1999)</a> stated that further studies were needed to demonstrate whether genetically-determined or pharmacologically-modulated low CYP2D6 activity could prevent drug-induced lupus during procainamide therapy. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=10634131+9352574" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#101" class="mim-tip-reference" title="Reed, W. B., Bergeron, R. F., Tuffanelli, D. L., Jones, E. W. &lt;strong&gt;Hereditary inflammatory vasculitis with persistent nodules. A genetically-determined new entity probably related to lupus erythematosus.&lt;/strong&gt; Brit. J. Derm. 87: 299-307, 1972.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4507318/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4507318&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1365-2133.1972.tb07414.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="4507318">Reed et al. (1972)</a> described inflammatory vasculitis with persistent nodules in members of 2 generations. Three females in the preceding generation had rheumatoid arthritis. They noted aggravation on exposure to sunlight and suppression of lesions with chloroquine therapy. They considered this to be related to lupus erythematosus profunda (<a href="#135" class="mim-tip-reference" title="Tuffanelli, D. L. &lt;strong&gt;Lupus erythematosus panniculitis (profundus). Clinical and immunologic studies.&lt;/strong&gt; Arch. Derm. 103: 231-242, 1971.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4100949/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4100949&lt;/a&gt;]" pmid="4100949">Tuffanelli, 1971</a>), which has a familial occurrence and is probably related to SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=4507318+4100949" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#17" class="mim-tip-reference" title="Brustein, D., Rodriguez, J. M., Minkin, W., Rabhan, N. B. &lt;strong&gt;Familial lupus erythematosus.&lt;/strong&gt; JAMA 238: 2294-2296, 1977.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/578851/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;578851&lt;/a&gt;]" pmid="578851">Brustein et al. (1977)</a> described a woman with discoid lupus who had one child in whom lesions of discoid lupus began at age 2 months and a second child who developed a rash probably of lupus erythematosus at age 1 week. <a href="#115" class="mim-tip-reference" title="Sibley, J. T., Blocka, K. L. N., Sheridan, D. P., Olszynski, W. P. &lt;strong&gt;Familial systemic lupus erythematosus characterized by digital ischemia.&lt;/strong&gt; J. Rheum. 20: 299-303, 1993.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8474067/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8474067&lt;/a&gt;]" pmid="8474067">Sibley et al. (1993)</a> described a family in which a brother and sister and a niece of theirs had SLE complicated by ischemic vasculopathy. Photographs of the hands and feet of 1 patient showing gangrene of several fingers and all toes were presented. Extensive osteonecrosis occurred in the niece. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=578851+8474067" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#22" class="mim-tip-reference" title="Elcioglu, N., Hall, C. M. &lt;strong&gt;Maternal systemic lupus erythematosus and chondrodysplasia punctata in two sibs: phenocopy or coincidence?&lt;/strong&gt; J. Med. Genet. 35: 690-694, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9719382/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9719382&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.35.8.690&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9719382">Elcioglu and Hall (1998)</a> reported 2 sibs with chondrodysplasia punctata born to a mother with systemic lupus erythematosus. One child was stillborn at 36 weeks' gestation and the other miscarried at 24 weeks' gestation following the exacerbation of the mother's SLE. <a href="#3" class="mim-tip-reference" title="Austin-Ward, E., Castillo, S., Cuchacovich, M., Espinoza, A., Cofre-Beca, J., Gonzalez, S, Solivelles, X., Bloomfield, J. &lt;strong&gt;Neonatal lupus syndrome: a case with chondrodysplasia punctata and other unusual manifestations.&lt;/strong&gt; J. Med. Genet. 35: 695-697, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9719383/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9719383&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.35.8.695&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9719383">Austin-Ward et al. (1998)</a> also reported an infant with neonatal lupus and chondrodysplasia punctata born to a mother with SLE. The infant also had features similar to those seen in children exposed to oral anticoagulants, although there was no history of this. <a href="#22" class="mim-tip-reference" title="Elcioglu, N., Hall, C. M. &lt;strong&gt;Maternal systemic lupus erythematosus and chondrodysplasia punctata in two sibs: phenocopy or coincidence?&lt;/strong&gt; J. Med. Genet. 35: 690-694, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9719382/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9719382&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.35.8.690&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9719382">Elcioglu and Hall (1998)</a> and <a href="#3" class="mim-tip-reference" title="Austin-Ward, E., Castillo, S., Cuchacovich, M., Espinoza, A., Cofre-Beca, J., Gonzalez, S, Solivelles, X., Bloomfield, J. &lt;strong&gt;Neonatal lupus syndrome: a case with chondrodysplasia punctata and other unusual manifestations.&lt;/strong&gt; J. Med. Genet. 35: 695-697, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9719383/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9719383&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.35.8.695&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9719383">Austin-Ward et al. (1998)</a>, along with <a href="#133" class="mim-tip-reference" title="Toriello, H. V. &lt;strong&gt;Chondrodysplasia punctata and maternal systemic lupus erythematosus. (Commentary)&lt;/strong&gt; J. Med. Genet. 35: 698-699, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9719384/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9719384&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.35.8.698&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9719384">Toriello (1998)</a> in a commentary on these 2 papers, suggested that there is evidence for an association between maternal SLE and chondrodysplasia punctata in a fetus. The pathogenesis of this association, however, remained unclear. <a href="#54" class="mim-tip-reference" title="Kelly, T. E., Alford, B. A., Greer, K. M. &lt;strong&gt;Chondrodysplasia punctata stemming from maternal lupus erythematosus.&lt;/strong&gt; Am. J. Med. Genet. 83: 397-401, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10232751/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10232751&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/(sici)1096-8628(19990423)83:5&lt;397::aid-ajmg11&gt;3.0.co;2-y&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10232751">Kelly et al. (1999)</a> reported a male infant with neonatal lupus erythematosus manifested as a rash typical of the disorder, who also had midface hypoplasia and multiple stippled epiphyses. It was the skin abnormality in the infant that led to the diagnosis of SLE in his mother. Over a 3-year follow-up, the child demonstrated strikingly short stature, midface hypoplasia, anomalous digital development, slow resolution of the stippled epiphyses, and near-normal cognitive development. <a href="#59" class="mim-tip-reference" title="Kozlowski, K., Basel, D., Beighton, P. &lt;strong&gt;Chondrodysplasia punctata in siblings and maternal lupus erythematosus.&lt;/strong&gt; Clin. Genet. 66: 545-549, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15521983/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15521983&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.2004.00364.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15521983">Kozlowski et al. (2004)</a> described 2 brothers with chondrodysplasia punctata, whose mother had longstanding lupus erythematosus and epilepsy, for which she had been treated with chloroquine and other therapeutic agents during both pregnancies. <a href="#59" class="mim-tip-reference" title="Kozlowski, K., Basel, D., Beighton, P. &lt;strong&gt;Chondrodysplasia punctata in siblings and maternal lupus erythematosus.&lt;/strong&gt; Clin. Genet. 66: 545-549, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15521983/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15521983&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.2004.00364.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15521983">Kozlowski et al. (2004)</a> pointed to 7 reported instances of the association between chondrodysplasia punctata and maternal SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9719383+9719382+10232751+9719384+15521983" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#50" class="mim-tip-reference" title="Kamat, S. S., Pepmueller, P. H., Moore, T. L. &lt;strong&gt;Triplets with systemic lupus erythematosus.&lt;/strong&gt; Arthritis Rheum. 48: 3176-3180, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14613280/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14613280&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.11320&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14613280">Kamat et al. (2003)</a> described the first reported incidence of identical triplets who developed SLE. The diagnosis of SLE was made at ages 8, 9, and 11 years (in reverse birth order, the last born developing the disorder at age 8). Photosensitivity and skin lesions were all early manifestations. The 3 girls manifested different clinical signs and symptoms; however, all 3 had skin rash, fatigue, and biopsy-proven glomerulonephritis. The findings of laboratory studies were similar, including positivity for antinuclear antibodies, anti-native DNA, and anti-double-stranded DNA (dsDNA), as well as low levels of complement. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14613280" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>SLE and Nephritis</em></strong></p><p>
<a href="#121" class="mim-tip-reference" title="Stein, C. M., Olson, J. M., Gray-McGuire, C., Bruner, G. R., Harley, J. B., Moser, K. L. &lt;strong&gt;Increased prevalence of renal disease in systemic lupus erythematosus families with affected male relatives.&lt;/strong&gt; Arthritis Rheum. 46: 428-435, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11840445/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11840445&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.10105&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11840445">Stein et al. (2002)</a> analyzed 372 affected individuals from 160 multiplex SLE families, of which 25 contained at least 1 affected male relative. The presence of renal disease was significantly increased in female family members with an affected male relative compared to those with no affected male relative (p = 0.002); the trend remained after stratifying by race and was most pronounced in European Americans. <a href="#121" class="mim-tip-reference" title="Stein, C. M., Olson, J. M., Gray-McGuire, C., Bruner, G. R., Harley, J. B., Moser, K. L. &lt;strong&gt;Increased prevalence of renal disease in systemic lupus erythematosus families with affected male relatives.&lt;/strong&gt; Arthritis Rheum. 46: 428-435, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11840445/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11840445&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.10105&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11840445">Stein et al. (2002)</a> concluded that the increased prevalence of renal disease previously reported in men with SLE is, in large part, a familial rather than sex-based difference, at least in multiplex SLE families. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11840445" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#144" class="mim-tip-reference" title="Xing, C., Gray-McGuire, C., Kelly, J. A., Garriott, P., Bukulmez, H., Harley, J. B., Olson, J. M. &lt;strong&gt;Genetic linkage of systemic lupus erythematosus to 13q32 in African American families with affected male members.&lt;/strong&gt; Hum. Genet. 118: 309-321, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16189706/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16189706&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-005-0061-5&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16189706">Xing et al. (2005)</a> added 392 individuals from 181 new multiplex SLE families to the sample previously studied by <a href="#121" class="mim-tip-reference" title="Stein, C. M., Olson, J. M., Gray-McGuire, C., Bruner, G. R., Harley, J. B., Moser, K. L. &lt;strong&gt;Increased prevalence of renal disease in systemic lupus erythematosus families with affected male relatives.&lt;/strong&gt; Arthritis Rheum. 46: 428-435, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11840445/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11840445&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.10105&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11840445">Stein et al. (2002)</a> and replicated the finding that the prevalence of renal disease was increased in families with affected male relatives compared to families with no affected male relatives. <a href="#144" class="mim-tip-reference" title="Xing, C., Gray-McGuire, C., Kelly, J. A., Garriott, P., Bukulmez, H., Harley, J. B., Olson, J. M. &lt;strong&gt;Genetic linkage of systemic lupus erythematosus to 13q32 in African American families with affected male members.&lt;/strong&gt; Hum. Genet. 118: 309-321, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16189706/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16189706&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-005-0061-5&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16189706">Xing et al. (2005)</a> concluded that multiplex SLE families with at least 1 affected male relative constitute a distinct subpopulation of multiplex SLE families. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=11840445+16189706" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="otherFeatures" class="mim-anchor"></a>
<h4 href="#mimOtherFeaturesFold" id="mimOtherFeaturesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimOtherFeaturesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Other Features</strong>
</span>
</h4>
</div>
<div id="mimOtherFeaturesFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#20" class="mim-tip-reference" title="DeHoratius, J. R., Pillarisetty, R., Messner, R. P., Talal, N. &lt;strong&gt;Anti-nucleic acid antibodies in systemic lupus erythematosus patients and their families: incidence and correlation with lymphocytotoxic antibodies.&lt;/strong&gt; J. Clin. Invest. 56: 1149-1154, 1975.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1081099/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1081099&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI108190&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1081099">DeHoratius et al. (1975)</a> found anti-RNA antibodies in 82% of SLE cases and 16% of their relatives, as compared with 5% of control cases. The relatives who showed antibody were exclusively close household contacts of SLE cases. Anti-RNA antibody was not found in unrelated household contacts of SLE cases. The findings supported the hypothesis that both an environmental agent, perhaps a virus, and genetic response are involved in the pathogenesis of SLE. See <a href="/entry/601821">601821</a> for information about Ro ribonucleoproteins. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1081099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#10" class="mim-tip-reference" title="Beaucher, W. N., Garman, R. H., Condemi, J. J. &lt;strong&gt;Familial lupus erythematosus: antibodies to DNA in household dogs.&lt;/strong&gt; New Eng. J. Med. 296: 982-984, 1977.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/300467/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;300467&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM197704282961707&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="300467">Beaucher et al. (1977)</a> found clinical and serologic abnormalities in the household dogs of 2 families with multiple cases of clinical and serologic SLE, as well as other autoimmune disorders. Since spontaneous SLE occurs in dogs, a transmissible agent may be involved. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=300467" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#45" class="mim-tip-reference" title="Horn, J. R., Kapur, J. J., Walker, S. E. &lt;strong&gt;Mixed connective tissue disease in siblings.&lt;/strong&gt; Arthritis Rheum. 21: 709-714, 1978.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/310679/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;310679&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.1780210617&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="310679">Horn et al. (1978)</a> described mixed connective tissue disease (MCTD) in a brother and sister from a sibship of 8. They were HLA-identical (A11B12; A2B12). MCTD has characteristics overlapping SLE, scleroderma and polymyositis. Sera give positive indirect immunofluorescence tests for antinuclear antibodies with a characteristic coarse, speckled pattern. The diagnosis is confirmed by finding antibodies against ribonucleoprotein. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=310679" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#9" class="mim-tip-reference" title="Batchelor, J. R., Welsh, K. I., Tinoco, R. M., Dollery, C. T., Hughes, G. R. V., Bernstein, R., Ryan, P., Naish, P. F., Aber, G. M., Bing, R. F., Russell, G. I. &lt;strong&gt;Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on susceptibility.&lt;/strong&gt; Lancet 315: 1107-1109, 1980. Note: Originally Volume I.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6103441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6103441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0140-6736(80)91554-8&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6103441">Batchelor et al. (1980)</a> found an association of hydralazine-induced SLE with HLA-DR4. Slow acetylators without SLE and cases of nondrug-induced SLE did not show the association. Thus, spontaneous SLE may be a fundamentally different entity. In an extensive kindred in which elliptocytosis and lipomatosis (<a href="/entry/151900">151900</a>) were segregating as independent dominants, <a href="#138" class="mim-tip-reference" title="Weinberg, J. B., Hasstedt, S. J., Skolnick, M. H., Kimberling, W. J., Baty, B. &lt;strong&gt;Analysis of a large pedigree with elliptocytosis, multiple lipomatosis, and biological false-positive serological test for syphilis.&lt;/strong&gt; Am. J. Med. Genet. 5: 57-67, 1980.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7395901/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7395901&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320050108&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7395901">Weinberg et al. (1980)</a> found a high frequency of biologic false-positive serologic tests for syphilis (BFP STS). The latter trait appeared also to be a dominant, independent of the other two traits. Two female pedigree members with BFP STS developed SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7395901+6103441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#102" class="mim-tip-reference" title="Reidenberg, M. M., Levy, M., Drayer, D. E., Zylber-Katz, E., Robbins, W. C. &lt;strong&gt;Acetylator phenotype in idiopathic systemic lupus erythematosus.&lt;/strong&gt; Arthritis Rheum. 23: 569-573, 1980.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7378086/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7378086&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.1780230508&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7378086">Reidenberg et al. (1980)</a> found an excess of slow acetylator phenotype in SLE. On the other hand, <a href="#5" class="mim-tip-reference" title="Baer, A. N., Woosley, R. L., Pincus, T. &lt;strong&gt;Further evidence for the lack of association between acetylator phenotype and systemic lupus erythematosus.&lt;/strong&gt; Arthritis Rheum. 29: 508-514, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3707628/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3707628&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.1780290408&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3707628">Baer et al. (1986)</a> could find no association between acetylator phenotype and SLE and from a review of the literature concluded that most workers have had similar results. See C3b receptor (<a href="/entry/120620">120620</a>) for information on a polymorphism related to SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7378086+3707628" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#106" class="mim-tip-reference" title="Sakane, T., Murakawa, Y., Suzuki, N., Ueda, Y., Tsuchida, T., Takada, S., Yamauchi, Y., Tsunematsu, T. &lt;strong&gt;Familial occurrence of impaired interleukin-2 activity and increased peripheral blood B cells actively secreting immunoglobulins in systemic lupus erythematosus.&lt;/strong&gt; Am. J. Med. 86: 385-390, 1989.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2784626/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2784626&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0002-9343(89)90334-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2784626">Sakane et al. (1989)</a> studied T- and B-cell function, using an IL-2 activity assay and spontaneous plaque-forming cell assay, respectively, in 34 family members of 6 patients with SLE. Impaired IL2 activity was found in 15 of 29 relatives but in none of 5 unrelated persons sharing households with the probands. The B-cell assay was abnormal in 22 of 29 relatives but was also abnormal in 4 of 5 unrelated household members. The authors concluded that there is a strong genetic component to the impaired IL2 activity in relatives of patients with SLE; the evidence suggests a genetic basis for the B-cell abnormalities, but environmental influences may also play a role. <a href="#11" class="mim-tip-reference" title="Benke, P. J., Drisko, J., Ahmad, P. &lt;strong&gt;Increased oxidative activity in stimulated lymphocytes suggests that systemic lupus erythematosus is a metabolic disease. (Abstract)&lt;/strong&gt; Am. J. Hum. Genet. 45 (suppl.): A3 only, 1989."None>Benke et al. (1989)</a> observed increased oxidative metabolism in PHA-stimulated lymphocytes from a subgroup of patients with systemic lupus erythematosus. The authors suggested that the increased oxidative activity may generate a chemical change in the endogenous DNA in vivo and therefore may be a primary event in the pathogenesis of autoimmunity in some patients with SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2784626" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using EMSA analysis, <a href="#120" class="mim-tip-reference" title="Solomou, E. E., Juang, Y.-T., Gourley, M. F., Kammer, G. M., Tsokos, G. C. &lt;strong&gt;Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus.&lt;/strong&gt; J. Immun. 166: 4216-4222, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11238674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11238674&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.166.6.4216&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11238674">Solomou et al. (2001)</a> showed that whereas stimulated T cells from normal individuals had increased binding of phosphorylated CREB (<a href="/entry/123810">123810</a>) to the -180 site of the IL2 promoter, nearly all stimulated T cells from SLE patients had increased binding primarily of phosphorylated CREM (<a href="/entry/123812">123812</a>) at this site and to the transcriptional coactivators CREBBP (<a href="/entry/600140">600140</a>) and EP300 (<a href="/entry/602700">602700</a>). Increased expression of phosphorylated CREM correlated with decreased production of IL2. <a href="#120" class="mim-tip-reference" title="Solomou, E. E., Juang, Y.-T., Gourley, M. F., Kammer, G. M., Tsokos, G. C. &lt;strong&gt;Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus.&lt;/strong&gt; J. Immun. 166: 4216-4222, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11238674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11238674&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.166.6.4216&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11238674">Solomou et al. (2001)</a> concluded that transcriptional repression is responsible for the decreased production of IL2 and anergy in SLE T cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11238674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#145" class="mim-tip-reference" title="Xu, L., Zhang, L., Yi, Y., Kang, H.-K., Datta, S. K. &lt;strong&gt;Human lupus T cells resist inactivation and escape death by upregulating COX-2.&lt;/strong&gt; Nature Med. 10: 411-415, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14991050/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14991050&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1005&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14991050">Xu et al. (2004)</a> demonstrated that activated T cells of lupus patients resisted anergy and apoptosis by markedly upregulating and sustaining cyclooxygenase-2 (COX2, or PTGS2; <a href="/entry/600262">600262</a>) expression. Inhibition of COX2 caused apoptosis of the anergy-resistant lupus T cells by augmenting FAS (<a href="/entry/134637">134637</a>) signaling and markedly decreasing the survival molecule FLIP (<a href="/entry/603599">603599</a>), and this mechanism was found to involve anergy-resistant lupus T cells selectively. <a href="#145" class="mim-tip-reference" title="Xu, L., Zhang, L., Yi, Y., Kang, H.-K., Datta, S. K. &lt;strong&gt;Human lupus T cells resist inactivation and escape death by upregulating COX-2.&lt;/strong&gt; Nature Med. 10: 411-415, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14991050/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14991050&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1005&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14991050">Xu et al. (2004)</a> noted that the gene encoding COX2 is located in a lupus susceptibility region on chromosome 1. They also found that only some COX2 inhibitors were able to suppress the production of pathogenic autoantibodies to DNA by causing autoimmune T-cell apoptosis, an effect that was independent of PGE2. <a href="#145" class="mim-tip-reference" title="Xu, L., Zhang, L., Yi, Y., Kang, H.-K., Datta, S. K. &lt;strong&gt;Human lupus T cells resist inactivation and escape death by upregulating COX-2.&lt;/strong&gt; Nature Med. 10: 411-415, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14991050/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14991050&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1005&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14991050">Xu et al. (2004)</a> suggested that these findings could be useful in the design of lupus therapies. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14991050" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#149" class="mim-tip-reference" title="Zhang, J., Roschke, V., Baker, K. P., Wang, Z., Alarcon, G. S., Fessler, B. J., Bastian, H., Kimberly, R. P., Zhou, T. &lt;strong&gt;Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus.&lt;/strong&gt; J. Immun. 166: 6-10, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11123269/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11123269&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.166.1.6&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11123269">Zhang et al. (2001)</a> determined that SLE patients have increased serum levels of B-lymphocyte stimulator (BLYS, or TNFSF13B; <a href="/entry/603969">603969</a>) compared with normal controls. Immunoprecipitation and Western blot analyses revealed expression of a 17-kD soluble form of BLYS in patients but not controls. Functional analysis demonstrated that most patient serum-derived BLYS exhibited increased costimulatory activity for B-cell proliferation in vitro. Patients with higher levels of BLYS also had significantly higher levels of anti-dsDNA in IgG, IgM, and IgA classes than did patients with low levels of BLYS. Although there was no correlation between increased BLYS levels and clinical SLE activity, there were slightly higher BLYS levels in patients with antinuclear antibodies (ANA) and significantly increased BLYS levels in patients with both ANA and a clinical impression of SLE, suggesting that elevated BLYS precedes the formal fulfillment of the criteria for SLE. <a href="#149" class="mim-tip-reference" title="Zhang, J., Roschke, V., Baker, K. P., Wang, Z., Alarcon, G. S., Fessler, B. J., Bastian, H., Kimberly, R. P., Zhou, T. &lt;strong&gt;Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus.&lt;/strong&gt; J. Immun. 166: 6-10, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11123269/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11123269&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.166.1.6&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11123269">Zhang et al. (2001)</a> suggested that BLYS may play an antiapoptotic role in B-cell tolerance loss and that anti-BLYS may be a potential therapy for SLE and other autoimmune diseases. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11123269" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#4" class="mim-tip-reference" title="Baechler, E. C., Batliwalla, F. M., Karypis, G., Gaffney, P. M., Ortmann, W. A., Espe, K. J., Shark, K. B., Grande, W. J., Hughes, K. M., Kapur, V., Gregersen, P. K., Behrens, T. W. &lt;strong&gt;Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.&lt;/strong&gt; Proc. Nat. Acad. Sci. 100: 2610-2615, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12604793/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12604793&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12604793[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0337679100&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12604793">Baechler et al. (2003)</a> used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguished most SLE patients from healthy controls. Strikingly, approximately half of the patients studied showed dysregulated expression of genes in the interferon pathway. Furthermore, this interferon gene expression 'signature' served as a marker for more severe disease involving the kidneys, hematopoietic cells, and/or the central nervous system. These results provided insight into the genetic pathways underlying SLE, and identified a subgroup of patients who may benefit from therapies targeted at the interferon pathway. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12604793" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using ELISA, <a href="#6" class="mim-tip-reference" title="Balada, E., Ordi-Ros, J., Serrano-Acedo, S., Martinez-Lostao, L., Rosa-Leyva, M., Vilardell-Tarres, M. &lt;strong&gt;Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus.&lt;/strong&gt; Immunology 124: 339-347, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18194272/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18194272&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18194272[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1365-2567.2007.02771.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18194272">Balada et al. (2008)</a> determined that the DNA deoxymethylcytosine content of purified CD4 (<a href="/entry/186940">186940</a>)-positive T cells was lower in patients with SLE than in controls. RT-PCR analysis detected no differences in DNMT1 (<a href="/entry/126375">126375</a>), DNMT3A (<a href="/entry/602769">602769</a>), or DNMT3B (<a href="/entry/602900">602900</a>) transcript levels between SLE patients and controls. However, simultaneous association of low complement counts with lymphopenia, high titers of anti-dsDNA, or a high SLE disease activity index resulted in an increase in at least 1 of the DNMTs. <a href="#6" class="mim-tip-reference" title="Balada, E., Ordi-Ros, J., Serrano-Acedo, S., Martinez-Lostao, L., Rosa-Leyva, M., Vilardell-Tarres, M. &lt;strong&gt;Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus.&lt;/strong&gt; Immunology 124: 339-347, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18194272/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18194272&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18194272[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1365-2567.2007.02771.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18194272">Balada et al. (2008)</a> proposed that patients with active SLE and DNA hypomethylation have increased DNMT mRNA levels. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18194272" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="populationGenetics" class="mim-anchor"></a>
<h4 href="#mimPopulationGeneticsFold" id="mimPopulationGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimPopulationGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Population Genetics</strong>
</span>
</h4>
</div>
<div id="mimPopulationGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#53" class="mim-tip-reference" title="Kelly, J. A., Moser, K. L., Harley, J. B. &lt;strong&gt;The genetics of systemic lupus erythematosus: putting the pieces together.&lt;/strong&gt; Genes Immun. 3 (Suppl. 1): S71-S85, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12215907/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12215907&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.gene.6363885&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12215907">Kelly et al. (2002)</a> stated that SLE primarily affects women of child-bearing age (F:M ratio, 9:1) and has a prevalence of approximately 1 case/2,500. Among African American populations, SLE is 3 times more prevalent than in European Americans, manifests at a younger age, and is more severe than in other American populations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12215907" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="clinicalManagement" class="mim-anchor"></a>
<h4 href="#mimClinicalManagementFold" id="mimClinicalManagementToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimClinicalManagementToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<div id="mimClinicalManagementFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Glucocorticoids are widely used to treat patients with autoimmune diseases such as SLE. However, in the majority of SLE patients such treatment regimens cannot maintain disease control, and more aggressive approaches such as high-dose methylprednisolone pulse therapy are used to provide transient reduction in disease activity. <a href="#41" class="mim-tip-reference" title="Guiducci, C., Gong, M., Xu, Z., Gill, M., Chaussabel, D., Meeker, T., Chan, J. H., Wright, T., Punaro, M., Bolland, S., Soumelis, V., Banchereau, J., Coffman, R. L., Pascual, V., Barrat, F. J. &lt;strong&gt;TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus.&lt;/strong&gt; Nature 465: 937-941, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20559388/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20559388&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20559388[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature09102&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20559388">Guiducci et al. (2010)</a> demonstrated that, in vitro and in vivo, stimulation of plasmacytoid dendritic cells (PDCs) through TLR7 (<a href="/entry/300365">300365</a>) and TLR9 (<a href="/entry/605474">605474</a>) can account for the reduced activity of glucocorticoids to inhibit the interferon pathway in SLE patients and in 2 lupus-prone mouse strains. The triggering of PDCs through TLR7 and TLR9 by nucleic acid-containing immune complexes or by synthetic ligands activates the NF-kappa-B (see <a href="/entry/164011">164011</a>) pathway essential for PDC survival. Glucocorticoids do not affect NF-kappa-B activation in PDCs, preventing glucocorticoid induction of PDC death and the consequent reduction of systemic IFN-alpha (<a href="/entry/147660">147660</a>) levels. <a href="#41" class="mim-tip-reference" title="Guiducci, C., Gong, M., Xu, Z., Gill, M., Chaussabel, D., Meeker, T., Chan, J. H., Wright, T., Punaro, M., Bolland, S., Soumelis, V., Banchereau, J., Coffman, R. L., Pascual, V., Barrat, F. J. &lt;strong&gt;TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus.&lt;/strong&gt; Nature 465: 937-941, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20559388/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20559388&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20559388[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature09102&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20559388">Guiducci et al. (2010)</a> concluded that their findings unveiled a new role for self nucleic acid recognition by TLRs and indicated that inhibitors of TLR7 and TLR9 signaling could prove to be effective corticosteroid-sparing drugs. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20559388" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="inheritance" class="mim-anchor"></a>
<h4 href="#mimInheritanceFold" id="mimInheritanceToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimInheritanceToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Inheritance</strong>
</span>
</h4>
</div>
<div id="mimInheritanceFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#15" class="mim-tip-reference" title="Block, S. R., Winfield, J. B., Lockshin, M. D., D&#x27;Angelo, W. A., Christian, C. L. &lt;strong&gt;Studies of twins with systemic lupus erythematosus: a review of the literature and presentation of 12 additional sets.&lt;/strong&gt; Am. J. Med. 59: 533-552, 1975.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1101680/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1101680&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0002-9343(75)90261-2&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1101680">Block et al. (1975)</a> comprehensively reviewed evidence from twin studies. Higher concordance for clinical and serologic abnormality for monozygotic twins supported a significant genetic factor. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1101680" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#64" class="mim-tip-reference" title="Lahita, R. G., Chiorazzi, N., Gibofsky, A., Winchester, R. J., Kunkel, H. G. &lt;strong&gt;Familial systemic lupus erythematosus in males.&lt;/strong&gt; Arthritis Rheum. 26: 39-44, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6600612/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6600612&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.1780260107&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6600612">Lahita et al. (1983)</a> observed father-to-son transmission and noted prepubertal onset of familial SLE in males. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6600612" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#27" class="mim-tip-reference" title="Fielder, A. H. L., Walport, M. J., Batchelor, J. R., Rynes, R. I., Black, C. M., Dodi, I. A., Hughes, G. R. V. &lt;strong&gt;Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility.&lt;/strong&gt; Brit. Med. J. 286: 425-428, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6401549/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6401549&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/bmj.286.6363.425&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6401549">Fielder et al. (1983)</a> found an unexpectedly high frequency of null (silent) alleles at the C4A (<a href="/entry/120810">120810</a>), C4B (<a href="/entry/120820">120820</a>) and C2 (<a href="/entry/613927">613927</a>) loci in patients with SLE. HLA-DR3 showed a high frequency in these patients, and a strong linkage disequilibrium between DR3 and the null alleles for C4A and C4B was found. On the basis of the data reported by <a href="#27" class="mim-tip-reference" title="Fielder, A. H. L., Walport, M. J., Batchelor, J. R., Rynes, R. I., Black, C. M., Dodi, I. A., Hughes, G. R. V. &lt;strong&gt;Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility.&lt;/strong&gt; Brit. Med. J. 286: 425-428, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6401549/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6401549&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/bmj.286.6363.425&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6401549">Fielder et al. (1983)</a>, <a href="#39" class="mim-tip-reference" title="Green, J. R., Montasser, M., Woodrow, J. C. &lt;strong&gt;The association of HLA-linked genes with systemic lupus erythematosus.&lt;/strong&gt; Ann. Hum. Genet. 50: 93-96, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3501270/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3501270&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1469-1809.1986.tb01942.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3501270">Green et al. (1986)</a> concluded that association with null alleles at the C4 loci is primary and the DR3 association secondary to that. In addition to the association of SLE with MHC antigens DR2 and DR3 and with homozygous deficiency of early complement components, the fact that SLE occurs 3 to 4 times more frequently in blacks than in whites (<a href="#116" class="mim-tip-reference" title="Siegel, M., Holley, H. L., Lee, S. L. &lt;strong&gt;Epidemiologic studies on systemic lupus erythematosus: comparative data for New York City and Jefferson County, Alabama, 1956-1965.&lt;/strong&gt; Arthritis Rheum. 13: 802-811, 1970.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/5495391/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;5495391&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.1780130610&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="5495391">Siegel et al., 1970</a>; <a href="#26" class="mim-tip-reference" title="Fessel, W. J. &lt;strong&gt;Systemic lupus erythematosus in the community: incidence, prevalence, outcome, and first symptoms: the high prevalence in black women.&lt;/strong&gt; Arch. Intern. Med. 134: 1027-1035, 1974.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/4433183/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;4433183&lt;/a&gt;]" pmid="4433183">Fessel, 1974</a>) points to genetic factors. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=6401549+3501270+4433183+5495391" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="genotypePhenotypeCorrelations" class="mim-anchor"></a>
<h4 href="#mimGenotypePhenotypeCorrelationsFold" id="mimGenotypePhenotypeCorrelationsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGenotypePhenotypeCorrelationsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<div id="mimGenotypePhenotypeCorrelationsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#125" class="mim-tip-reference" title="Sturfelt, G., Truedsson, L., Johansen, P., Jonsson, H., Nived, O., Sjoholm, A. G. &lt;strong&gt;Homozygous C4A deficiency in systemic lupus erythematosus: analysis of patients from a defined population.&lt;/strong&gt; Clin. Genet. 38: 427-433, 1990.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2289315/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2289315&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1399-0004.1990.tb03608.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2289315">Sturfelt et al. (1990)</a> found homozygous C4A deficiency in 13 of 80 patients (16%). Photosensitivity was a more impressive feature in these homozygotes than in other lupus patients. The T4/Leu-3 molecule (<a href="/entry/186940">186940</a>) is a T-cell differentiation antigen expressed on the surface of T helper/inducer cells. Monoclonal antibodies that can recognize this molecule include OKT4 and anti-Leu-3a, which bind to different determinants (epitopes) on the T4/Leu-3 molecule. This molecule has an important role in the recognition of class II MHC antigens by T cells. Polymorphism of the T4 epitope had, by the time of the report of <a href="#124" class="mim-tip-reference" title="Stohl, W., Crow, M. K., Kunkel, H. G. &lt;strong&gt;Systemic lupus erythematosus with deficiency of the T4 epitope on T helper/inducer cells.&lt;/strong&gt; New Eng. J. Med. 312: 1671-1678, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2582253/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2582253&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198506273122604&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2582253">Stohl et al. (1985)</a>, been identified only in blacks. Three phenotypes, corresponding to 3 genotypes, were identified: the most common, the T4 epitope-intact phenotype, is manifest when fluorescence intensity upon staining of T cells is as great with OKT4 as with anti-Leu-3a. The T4 epitope-deficient phenotype shows no staining with OKT4, and an intermediate phenotype, representing heterozygosity for deficiency, shows fluorescence intensity with OKT4 that is half that with anti-Leu-3a. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2582253+2289315" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Genomewide Linkage Studies</em></strong></p><p>
<a href="#71" class="mim-tip-reference" title="Lee, Y. H., Nath, S. K. &lt;strong&gt;Systemic lupus erythematosus susceptibility loci defined by genome scan meta-analysis.&lt;/strong&gt; Hum. Genet. 118: 434-443, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16208513/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16208513&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-005-0073-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16208513">Lee and Nath (2005)</a> conducted a metaanalysis of 12 genome scans generated from 9 independent studies involving 605 SLE families with 1,355 affected individuals. They identified 2 loci, 6p22.3-6p21.1 and 16p12.3-16q12.2, that met genomewide significance (p less than 0.000417). <a href="#71" class="mim-tip-reference" title="Lee, Y. H., Nath, S. K. &lt;strong&gt;Systemic lupus erythematosus susceptibility loci defined by genome scan meta-analysis.&lt;/strong&gt; Hum. Genet. 118: 434-443, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16208513/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16208513&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-005-0073-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16208513">Lee and Nath (2005)</a> noted that 6p22.3-6p21.1 contains the HLA region. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16208513" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#31" class="mim-tip-reference" title="Gaffney, P. M., Kearns, G. M., Shark, K. B., Ortmann, W. A., Selby, S. A., Malmgren, M. L., Rohlf, K. E., Ockenden, T. C., Messner, R. P., King, R. A., Rich, S. S., Behrens, T. W. &lt;strong&gt;A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families.&lt;/strong&gt; Proc. Nat. Acad. Sci. 95: 14875-14879, 1998.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9843983/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9843983&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.95.25.14875&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9843983">Gaffney et al. (1998)</a> reported the results of a genomewide microsatellite marker screen in 105 SLE sib-pair families. Eighty of the families were Caucasian; 5 were African American. By using multipoint nonparametric methods, the strongest evidence for linkage was found near the HLA locus; D6S257 gave a lod score of 3.90. D16S415 at 16q13 yielded a lod score of 3.64; D14S276 at 14q21-q23 yielded a lod score of 2.81; and D20S186 at 20p12 yielded a lod score of 2.62. Another 9 regions were identified with lod scores equal to or greater than 1.00. The data supported the hypothesis that multiple genes, including 1 in the HLA region, influence susceptibility to human SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9843983" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#32" class="mim-tip-reference" title="Gaffney, P. M., Ortmann, W. A., Selby, S. A., Shark, K. B., Ockenden, T. C., Rohlf, K. E., Walgrave, N. L., Boyum, W. P., Malmgren, M. L., Miller, M. E., Kearns, G. M., Messner, R. P., King, R. A., Rich, S. S., Behrens, T. W. &lt;strong&gt;Genome screening in human systemic lupus erythematosus: results from a second Minnesota cohort and combined analyses of 187 sib-pair families.&lt;/strong&gt; Am. J. Hum. Genet. 66: 547-556, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10677315/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10677315&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/302767&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10677315">Gaffney et al. (2000)</a> performed a second genomewide screen in a 'new' cohort of 82 SLE sib-pair families. Highest evidence of linkage was found in 4 intervals: 10p13, 7p22, 7q21, and 7q36; all 4 had a lod score greater than 2.0, and the locus on 7p22 had a lod score of 2.87. A combined analysis of cohorts 1 and 2 (187 sib-pair families total) showed that markers in 6p21-p11 (D6S426, lod score of 4.19) and 16q13 (D16S415, lod score of 3.85) met the criteria for significant linkage. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10677315" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using the ABI Prism linkage mapping set, which includes 350 polymorphic markers with an average spacing of 12 cM, <a href="#113" class="mim-tip-reference" title="Shai, R., Quismorio, F. P., Jr., Li, L., Kwon, O.-J., Morrison, J., Wallace, D. J., Neuwelt, C. M., Brautbar, C., Gauderman, W. J., Jacob, C. O. &lt;strong&gt;Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families.&lt;/strong&gt; Hum. Molec. Genet. 8: 639-644, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10072432/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10072432&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/8.4.639&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10072432">Shai et al. (1999)</a> screened the human genome in a sample of 188 lupus patients belonging to 80 lupus families, each with 2 or more affected relatives per family, to localize genetic intervals that may contain lupus susceptibility loci. Nonparametric multipoint linkage analysis suggested evidence for predisposing loci on chromosomes 1 and 18. However, no single locus with overwhelming evidence for linkage was found, suggesting that there are no 'major' susceptibility genes segregating in families with SLE, and that the genetic etiology is more likely to result from the action of several genes of moderate effect. Furthermore, support for a gene in the 1q44 region, as well as for a gene in the 1p36 region, was found clearly only in Mexican American families with SLE, but not in families of Caucasian ethnicity, suggesting that consideration of each ethnic group separately is crucial. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10072432" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#79" class="mim-tip-reference" title="Lindqvist, A.-K. B., Steinsson, K., Johanneson, B., Kristjansdottir, H., Arnasson, A., Grondal, G., Jonasson, I., Magnusson, V., Sturfelt, G., Truedsson, L., Svenungsson, E., Lundberg, I., Terwilliger, J. D., Gyllensten, U. B., Alarcon-Riquelme, M. E. &lt;strong&gt;A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q.&lt;/strong&gt; J. Autoimmun. 14: 169-178, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10677248/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10677248&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1006/jaut.1999.0357&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10677248">Lindqvist et al. (2000)</a> performed genome scans in families with multiple SLE patients from Iceland and from Sweden. A number of regions gave lod scores greater than 2: among Icelandic families, 4p15-p13, Z = 3.20; 9p22, Z = 2.27; and 19q13, Z = 2.06, which are homologous to the murine regions containing the lmb2, sle2, and sle3 loci, respectively. The fourth region among Icelandic families is located on 19p13 (D19S247, Z = 2.58) and a fifth on 2q37 (D2S125, Z = 2.06). Only 2 regions showed lod scores above 2.0 in the Swedish families: 2q11 (D2S436, Z = 2.13) and 2q37 (D2S125, Z = 2.18). The combination of both family sets gave a highly significant lod score at D2S125, with a Z of 4.24 in favor of linkage for 2q37 (see <a href="/entry/605218">605218</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10677248" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#38" class="mim-tip-reference" title="Gray-McGuire, C., Moser, K. L., Gaffney, P. M., Kelly, J., Yu, H., Olson, J. M., Jedrey, C. M., Jacobs, K. B., Kimberly, R. P., Neas, B. R., Rich, S. S., Behrens, T. W., Harley, J. B. &lt;strong&gt;Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16-15.2.&lt;/strong&gt; Am. J. Hum. Genet. 67: 1460-1469, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11078476/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11078476&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=11078476[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/316891&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11078476">Gray-McGuire et al. (2000)</a> presented the result of a genome scan of 126 pedigrees with 2 or more cases of SLE, including 469 sib pairs (affected and unaffected) and 175 affected relative pairs. Using the revised multipoint Haseman-Elston regression technique for concordant and discordant sib pairs and a conditional logistic regression technique for affected relative pairs, they identified linkage to chromosome 4p16-p15.2 (P = 0.0003, lod = 3.84) and presented evidence of an epistatic interaction between 4p16-p15.2 and chromosome 5p15 in European American families. Using data from an independent pedigree collection, they confirmed the linkage to 4p16-p15.2 in European American families. The most significant linkage that they found in the African American subset was to the previously identified region on 1q (<a href="/entry/601744">601744</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11078476" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#49" class="mim-tip-reference" title="Johanneson, B., Lima, G., von Salome, J., Alarcon-Segovia, D., Collaborative Group on the Genetics of SLE, BIOMED II Collaboration on the Genetics of SLE and Sjogrens Syndrome, Alarcon-Riquelme, M. E. &lt;strong&gt;A major susceptibility locus for systemic lupus erythematosus maps to chromosome 1q31.&lt;/strong&gt; Am. J. Hum. Genet. 71: 1060-1071, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12373647/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12373647&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/344289&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12373647">Johanneson et al. (2002)</a> genotyped a set of 87 multicase families with SLE from various European countries and recently admixed populations of Mexico, Colombia, and the United States for 62 microsatellite markers on chromosome 1. By parametric 2-point linkage analysis, 6 regions previously described as being related to SLE (1p36, 1p21, 1q23, 1q25, 1q31, and 1q43) were identified that had lod scores greater than or equal to 1.50. CD45 (<a href="/entry/151460">151460</a>) was considered a strong candidate gene because of its position in 1q31-q32 and because of its involvement in the regulation of the antigen-induced signaling of naive B and T cells. <a href="#49" class="mim-tip-reference" title="Johanneson, B., Lima, G., von Salome, J., Alarcon-Segovia, D., Collaborative Group on the Genetics of SLE, BIOMED II Collaboration on the Genetics of SLE and Sjogrens Syndrome, Alarcon-Riquelme, M. E. &lt;strong&gt;A major susceptibility locus for systemic lupus erythematosus maps to chromosome 1q31.&lt;/strong&gt; Am. J. Hum. Genet. 71: 1060-1071, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12373647/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12373647&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/344289&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12373647">Johanneson et al. (2002)</a> found no association between the 77C-G (<a href="/entry/151460#0001">151460.0001</a>) mutation in the CD45 gene and SLE in the families they studied. The locus at 1q31 showed a significant 3-point lod score of 3.79 and was contributed by families from all populations, with several markers and under the same parametric model. They concluded that a locus at 1q31 contains a major susceptibility gene, important to SLE in 'general populations.' <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12373647" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#111" class="mim-tip-reference" title="Scofield, R. H., Bruner, G. R., Kelly, J. A., Kilpatrick, J., Bacino, D., Nath, S. K., Harley, J. B. &lt;strong&gt;Thrombocytopenia identifies a severe familial phenotype of systemic lupus erythematosus and reveals genetic linkages at 1q22 and 11p13.&lt;/strong&gt; Blood 101: 992-997, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12393658/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12393658&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1182/blood-2002-04-1003&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12393658">Scofield et al. (2003)</a> selected 38 pedigrees that had an SLE patient with thrombocytopenia from a collection of 184 pedigrees with multiple cases of SLE. They established linkage at chromosome 1q22-q23 (maximum lod = 3.71) in all 38 pedigrees and at 11p13 (maximum lod = 5.72) in the 13 African American pedigrees. Nephritis, serositis, neuropsychiatric involvement, autoimmune hemolytic anemia, anti-double-stranded DNA, and antiphospholipid antibody were associated with thrombocytopenia. The results showed that SLE was more severe in the families with a thrombocytopenic SLE patient, whether or not thrombocytopenia in an individual patient was considered. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12393658" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Susceptibility Loci for SLE Mapped by Linkage Studies</em></strong></p><p>
See SLEB1 (<a href="/entry/601744">601744</a>) for discussion of an SLE susceptibility locus on chromosome 1q41. Variations in the TLR5 gene (<a href="/entry/603031">603031</a>) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB2 (<a href="/entry/605218">605218</a>) for discussion of an SLE susceptibility locus on chromosome 2q37. Variations in the PDCD1 gene (<a href="/entry/605218">605218</a>) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB3 (<a href="/entry/605480">605480</a>) for discussion of an SLE susceptibility locus on chromosome 4p.</p><p>See SLEB4 (<a href="/entry/608437">608437</a>) for discussion of an SLE susceptibility locus on chromosome 12q24.</p><p>See SLEB5 (<a href="/entry/609903">609903</a>) for discussion of an SLE susceptibility locus on chromosome 13q32.</p><p>See SLEB6 (<a href="/entry/609939">609939</a>) for discussion of an SLE susceptibility locus on chromosome 16q12-q13.</p><p>See SLEB7 (<a href="/entry/610065">610065</a>) for discussion of an SLE susceptibility locus on chromosome 20p12.</p><p>See SLEB8 (<a href="/entry/610066">610066</a>) for discussion of an SLE susceptibility locus on chromosome 20q13.1.</p><p>See SLEB9 (<a href="/entry/610927">610927</a>) for discussion of an SLE susceptibility locus on chromosome 1q32.</p><p>See SLEB10 (<a href="/entry/612251">612251</a>) for discussion of an SLE susceptibility locus on chromosome 7q32. Variations in the IRF5 gene (<a href="/entry/607218">607218</a>) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB11 (<a href="/entry/612253">612253</a>) for discussion of an SLE susceptibility locus on chromosome 2q32.2-q32.3. Variations in the STAT4 gene (<a href="/entry/600558">600558</a>) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB12 (<a href="/entry/612254">612254</a>) for discussion of an SLE susceptibility locus on chromosome 8p23.1.</p><p>See SLEB13 (<a href="/entry/612378">612378</a>) for discussion of an SLE susceptibility locus on chromosome 6p23. Variations in the TNFAIP3 gene (<a href="/entry/191163">191163</a>) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB14 (<a href="/entry/613145">613145</a>) for discussion of an SLE susceptibility locus on chromosome 1q21-q23. Variations in the CRP gene (<a href="/entry/123260">123260</a>) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB15 (<a href="/entry/300809">300809</a>) for a discussion of an SLE susceptibility locus on chromosome Xq28.</p><p><strong><em>Susceptibility Loci for SLE with Nephritis</em></strong></p><p>
Renal disease occurs in 40 to 75% of SLE patients and contributes significantly to morbidity and mortality (<a href="#33" class="mim-tip-reference" title="Garcia, C. O., Molina, J. F., Gutierrez-Urena, S., Scopelitis, E., Wilson, W. A., Gharavi, A. E., Espinoza, L. R. &lt;strong&gt;Autoantibody profile in African-American patients with lupus nephritis.&lt;/strong&gt; Lupus 5: 602-605, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9116704/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9116704&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1177/096120339600500608&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9116704">Garcia et al., 1996</a>). <a href="#100" class="mim-tip-reference" title="Quintero-Del-Rio, A., Kelly, J. A., Kilpatrick, J., James, J. A., Harley, J. B. &lt;strong&gt;The genetics of systemic lupus erythematosus stratified by renal disease: linkage at 10q22.3 (SLEN1), 2q34-35 (SLEN2), and 11p15.6 (SLEN3).&lt;/strong&gt; Genes Immun. 3 (Suppl. 1): S57-S62, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12215904/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12215904&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.gene.6363901&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12215904">Quintero-Del-Rio et al. (2002)</a> used 2 pedigree stratification strategies to explore the impact of the American College of Rheumatology's renal criterion for SLE classification upon genetic linkage with SLE. They identified susceptibility loci for SLE associated with nephritis on chromosomes 10q22.3 (SLEN1; <a href="/entry/607965">607965</a>), 2q34-q35 (SLEN2; <a href="/entry/607966">607966</a>), and 11p15.6 (SLEN3; <a href="/entry/607967">607967</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=9116704+12215904" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Susceptibility Locus for SLE with Hemolytic Anemia</em></strong></p><p>
A locus for susceptibility to SLE with hemolytic anemia as an early or prominent clinical manifestation shows linkage to 11q14 (SLEH1; <a href="/entry/607279">607279</a>).</p><p><strong><em>Susceptibility Locus for SLE with Vitiligo</em></strong></p><p>
A locus for susceptibility to SLE associated with vitiligo has been mapped to 17p13 (SLEV1; <a href="/entry/606579">606579</a>).</p><p><strong><em>Association with the HLA-DRB1 Locus</em></strong></p><p>
Using a dense map of polymorphic microsatellites across the HLA region in a large collection of families with SLE, <a href="#37" class="mim-tip-reference" title="Graham, R. R., Ortmann, W. A., Langefeld, C. D., Jawaheer, D., Selby, S. A., Rodine, P. R., Baechler, E. C., Rohlf, K. E., Shark, K. B., Espe, K. J., Green, L. E., Nair, R. P., and 12 others. &lt;strong&gt;Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus.&lt;/strong&gt; Am. J. Hum. Genet. 71: 543-553, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12145745/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12145745&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12145745[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/342290&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12145745">Graham et al. (2002)</a> identified 3 distinct haplotypes that encompassed the class II region and exhibited transmission distortion. By visualizing ancestral recombinants, they narrowed the disease-associated haplotypes containing DRB1*1501 and DRB1*0801 to a region of approximately 500 kb. They concluded that HLA class II haplotypes containing DRB1 and DQB1 alleles are strong risk factors for human SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12145745" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To identify risk loci for SLE susceptibility, <a href="#34" class="mim-tip-reference" title="Gateva, V., Sandling, J. K., Hom, G., Taylor, K. E., Chung, S. A., Sun, X., Ortmann, W., Kosoy, R., Ferreira, R. C., Nordmark, G., Gunnarsson, I., Svenungsson, E., and 24 others. &lt;strong&gt;A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 41: 1228-1233, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19838195/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19838195&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19838195[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.468&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19838195">Gateva et al. (2009)</a> selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P less than 0.05) in a genomewide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This new cohort replicated the association with HLA-DRB1 at <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3135394;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3135394</a> (odds ratio = 1.98, 95% confidence interval = 1.84-2.14; combined P = 2.0 x 10(-60)). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19838195" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the TNIP1 Gene on Chromosome 5q32</em></strong></p><p>
In a study of 1,963 patients from the United States and Sweden with SLE compared with 4,329 controls, <a href="#34" class="mim-tip-reference" title="Gateva, V., Sandling, J. K., Hom, G., Taylor, K. E., Chung, S. A., Sun, X., Ortmann, W., Kosoy, R., Ferreira, R. C., Nordmark, G., Gunnarsson, I., Svenungsson, E., and 24 others. &lt;strong&gt;A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 41: 1228-1233, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19838195/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19838195&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19838195[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.468&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19838195">Gateva et al. (2009)</a> identified association with the TNIP1 gene (<a href="/entry/607714">607714</a>) at chromosome 5q32 (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs7708392;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs7708392</a>, combined P value = 3.8 x 10(-13); odds ratio = 1.27, 95% confidence interval = 1.10-1.35). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19838195" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#43" class="mim-tip-reference" title="Han, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., Xu, J.-H., Cai, Z.-M., Huang, W., Zhao, G.-P., Xie, H.-F., Fang, H., and 55 others. &lt;strong&gt;Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 41: 1234-1237, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19838193/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19838193&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.472&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19838193">Han et al. (2009)</a> performed a genomewide association study of SLE in a Chinese Han population by genotyping 1,047 cases and 1,205 controls using Illumina-Human610-Quad BeadChips and replicating 78 SNPs in 2 additional cohorts (3,152 cases and 7,050 controls). <a href="#43" class="mim-tip-reference" title="Han, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., Xu, J.-H., Cai, Z.-M., Huang, W., Zhao, G.-P., Xie, H.-F., Fang, H., and 55 others. &lt;strong&gt;Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 41: 1234-1237, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19838193/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19838193&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.472&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19838193">Han et al. (2009)</a> found association with a SNP in the TNIP1 gene, <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs10036748;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs10036748</a> (combined P = 1.67 x 10(-9); odds ratio = 0.81, 95% confidence interval = 0.75-0.87). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19838193" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Association with the PTPN22 Gene on Chromosome 1p13</em></strong></p><p>
In a study of 525 unrelated North American white individuals with SLE, <a href="#63" class="mim-tip-reference" title="Kyogoku, C., Langefeld, C. D., Ortmann, W. A., Lee, A., Selby, S., Carlton, V. E. H., Chang, M., Ramos, P., Baechler, E. C., Batliwalla, F. M., Novitzke, J., Williams, A. H., and 10 others. &lt;strong&gt;Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE.&lt;/strong&gt; Am. J. Hum. Genet. 75: 504-507, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15273934/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15273934&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/423790&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15273934">Kyogoku et al. (2004)</a> found an association with the R620W polymorphism in the PTPN22 gene (<a href="/entry/600716#0001">600716.0001</a>), with estimated minor (T) allele frequencies of 12.67% in SLE cases and 8.64% in controls. A single copy of the T allele (W620) increased risk of SLE (odds ratio = 1.37), and 2 copies of the allele more than doubled this risk (odds ratio = 4.37). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15273934" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#97" class="mim-tip-reference" title="Orru, V., Tsai, S. J., Rueda, B., Fiorillo, E., Stanford, S. M., Dasgupta, J., Hartiala, J., Zhao, L., Ortego-Centeno, N., D&#x27;Alfonso, S., Italian Collaborative Group, Arnett, F. C., and 11 others. &lt;strong&gt;A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus.&lt;/strong&gt; Hum. Molec. Genet. 18: 569-579, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18981062/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18981062&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18981062[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddn363&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18981062">Orru et al. (2009)</a> reported a 788G-A variant, resulting in an arg263-to-gln (R263Q; <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs33996649;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs33996649</a>) substitution within the catalytic domain of the PTPN22 gene, that leads to reduced phosphatase activity. They genotyped 881 SLE patients and 1,133 healthy controls from Spain and observed a significant protective effect (p = 0.006; OR, 0.58). Three replication cohorts of Italian, Argentinian, and Caucasian North American populations failed to reach significance; however, the combined analysis of 2,093 SLE patients and 2,348 controls confirmed the protective effect (p = 0.0017; OR, 0.63). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18981062" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To confirm additional risk loci for SLE susceptibility, <a href="#34" class="mim-tip-reference" title="Gateva, V., Sandling, J. K., Hom, G., Taylor, K. E., Chung, S. A., Sun, X., Ortmann, W., Kosoy, R., Ferreira, R. C., Nordmark, G., Gunnarsson, I., Svenungsson, E., and 24 others. &lt;strong&gt;A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 41: 1228-1233, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19838195/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19838195&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19838195[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.468&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19838195">Gateva et al. (2009)</a> selected SNPs from 2,466 regions that showed nominal evidence association to SLE (P less than 0.05) in a genomewide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. <a href="#34" class="mim-tip-reference" title="Gateva, V., Sandling, J. K., Hom, G., Taylor, K. E., Chung, S. A., Sun, X., Ortmann, W., Kosoy, R., Ferreira, R. C., Nordmark, G., Gunnarsson, I., Svenungsson, E., and 24 others. &lt;strong&gt;A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 41: 1228-1233, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19838195/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19838195&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19838195[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.468&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19838195">Gateva et al. (2009)</a> showed an association with PTPN22 at <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2476601;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs2476601</a> (combined P value = 3.4 x 10(-12), odds ratio = 1.35, 95% confidence interval = 1.24-1.47). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19838195" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the CRP Gene on Chromosome 1q21-q23</em></strong></p><p>
Relative deficiency of pentraxin proteins is implicated in the pathogenesis of SLE. The C-reactive protein (CRP; <a href="/entry/123260">123260</a>) response is defective in patients with acute flares of disease, and mice with targeted deletions of the APCS (<a href="/entry/104770">104770</a>) gene develop a lupus-like illness. In humans, the CRP and APCS genes are both within the 1q23-q24 interval that has been linked to SLE. Among 586 simplex SLE families, <a href="#105" class="mim-tip-reference" title="Russell, A. I., Cunninghame Graham, D. S., Shepherd, C., Roberton, C. A., Whittaker, J., Meeks, J., Powell, R. J., Isenberg, D. A., Walport, M. J., Vyse, T. J. &lt;strong&gt;Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus.&lt;/strong&gt; Hum. Molec. Genet. 13: 137-147, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14645206/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14645206&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=14645206[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14645206">Russell et al. (2004)</a> found that basal levels of CRP were influenced independently by 2 CRP polymorphisms, which they designated CRP2 (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1800947;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1800947</a>) and CRP4 (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1205;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1205</a>), and the latter was associated with SLE and antinuclear autoantibody production. <a href="#105" class="mim-tip-reference" title="Russell, A. I., Cunninghame Graham, D. S., Shepherd, C., Roberton, C. A., Whittaker, J., Meeks, J., Powell, R. J., Isenberg, D. A., Walport, M. J., Vyse, T. J. &lt;strong&gt;Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus.&lt;/strong&gt; Hum. Molec. Genet. 13: 137-147, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14645206/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14645206&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=14645206[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh021&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14645206">Russell et al. (2004)</a> hypothesized that defective disposal of potentially immunogenic material may be a contributory factor in lupus pathogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14645206" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the FCGR2B Gene on Chromosome 1q22</em></strong></p><p>
In 193 Japanese patients with SLE and 303 healthy controls, <a href="#62" class="mim-tip-reference" title="Kyogoku, C., Dijstelbloem, H. M., Tsuchiya, N., Hatta, Y., Kato, H., Yamaguchi, A., Fukazawa, T., Jansen, M. D., Hashimoto, H., van de Winkel, J. G. J., Kallenberg, C. G. M., Tokunaga, K. &lt;strong&gt;Fc-gamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility.&lt;/strong&gt; Arthritis Rheum. 46: 1242-1254, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12115230/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12115230&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.10257&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12115230">Kyogoku et al. (2002)</a> found that homozygosity for an ile232-to-thr polymorphism in the FCGR2B gene (I232T; <a href="/entry/604590#0002">604590.0002</a>) was significantly increased in SLE patients compared with controls. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12115230" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In membrane separation studies using a human monocytic cell line, <a href="#29" class="mim-tip-reference" title="Floto, R. A., Clatworthy, M. R., Heilbronn, K. R., Rosner, D. R., MacAry, P. A., Rankin, A., Lehner, P. J., Ouwehand, W. H., Allen, J. M., Watkins, N. A., Smith, K. G. C. &lt;strong&gt;Loss of function of a lupus-associated Fc-gamma-RIIb polymorphism through exclusion from lipid rafts.&lt;/strong&gt; Nature Med. 11: 1056-1058, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16170323/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16170323&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1288&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16170323">Floto et al. (2005)</a> demonstrated that although wildtype FCGR2B readily partitioned into the raft-enriched gradient fractions, FCGR2B-232T was excluded from them. <a href="#29" class="mim-tip-reference" title="Floto, R. A., Clatworthy, M. R., Heilbronn, K. R., Rosner, D. R., MacAry, P. A., Rankin, A., Lehner, P. J., Ouwehand, W. H., Allen, J. M., Watkins, N. A., Smith, K. G. C. &lt;strong&gt;Loss of function of a lupus-associated Fc-gamma-RIIb polymorphism through exclusion from lipid rafts.&lt;/strong&gt; Nature Med. 11: 1056-1058, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16170323/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16170323&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1288&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16170323">Floto et al. (2005)</a> concluded that FCGR2B-232T is unable to inhibit activating receptors because it is excluded from sphingolipid rafts, resulting in the unopposed proinflammatory signaling thought to promote SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16170323" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#126" class="mim-tip-reference" title="Su, K., Wu, J., Edberg, J. C., Li, X., Ferguson, P., Cooper, G. S., Langefeld, C. D., Kimberly, R. P. &lt;strong&gt;A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing Fc-gamma-RIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus.&lt;/strong&gt; J. Immun. 172: 7186-7191, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15153543/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15153543&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.172.11.7186&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15153543">Su et al. (2004)</a> identified 10 SNPs in the first FCGR2B promoter in 66 SLE patients and 66 controls. They determined that the proximal promoter contains 2 functionally distinct haplotypes. Luciferase promoter analysis showed that the less frequent haplotype, which had a frequency of 9%, was associated with increased gene expression. A case-control study of 243 SLE patients and 366 matched controls demonstrated that the less frequent haplotype was significantly associated with the SLE phenotype and was not in linkage disequilibrium with FCGR2A and FCGR3A (<a href="/entry/146740">146740</a>) polymorphisms. <a href="#126" class="mim-tip-reference" title="Su, K., Wu, J., Edberg, J. C., Li, X., Ferguson, P., Cooper, G. S., Langefeld, C. D., Kimberly, R. P. &lt;strong&gt;A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing Fc-gamma-RIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus.&lt;/strong&gt; J. Immun. 172: 7186-7191, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15153543/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15153543&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.172.11.7186&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15153543">Su et al. (2004)</a> concluded that an expression variant of FCGR2B is a risk factor for SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15153543" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 190 European American patients with SLE and 130 European American controls, <a href="#14" class="mim-tip-reference" title="Blank, M. C., Stefanescu, R. N., Masuda, E., Marti, F., King, P. D., Redecha, P. B., Wurzburger, R. J., Peterson, M. G. E., Tanaka, S., Pricop, L. &lt;strong&gt;Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus.&lt;/strong&gt; Hum. Genet. 117: 220-227, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15895258/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15895258&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-005-1302-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15895258">Blank et al. (2005)</a> found a significant association between homozygosity for a -343C polymorphism in the promoter region of the FCGR2B gene (<a href="/entry/604590#0001">604590.0001</a>) and SLE. The surface expression of FCGR2B receptors was significantly reduced in activated B cells from -343C/C SLE patients. <a href="#14" class="mim-tip-reference" title="Blank, M. C., Stefanescu, R. N., Masuda, E., Marti, F., King, P. D., Redecha, P. B., Wurzburger, R. J., Peterson, M. G. E., Tanaka, S., Pricop, L. &lt;strong&gt;Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus.&lt;/strong&gt; Hum. Genet. 117: 220-227, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15895258/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15895258&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-005-1302-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15895258">Blank et al. (2005)</a> suggested that deregulated expression of the mutant FCGR2B gene may play a role in the pathogenesis of human SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15895258" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By comparing genotypes of patients with SLE from Hong Kong and the UK with those of ethnically matched controls, followed by metaanalysis using with other studies on southeast Asian and Caucasian SLE patients, <a href="#139" class="mim-tip-reference" title="Willcocks, L. C., Carr, E. J., Niederer, H. A., Rayner, T. F., Williams, T. N., Yang, W., Scott, J. A. G., Urban, B. C., Peshu, N., Vyse, T. J., Lau, Y. L., Lyons, P. A., Smith, K. G. C. &lt;strong&gt;A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematous.&lt;/strong&gt; Proc. Nat. Acad. Sci. 107: 7881-7885, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20385827/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20385827&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0915133107&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20385827">Willcocks et al. (2010)</a> found that homozygosity for T232 of the I232T FCGR2B polymorphism was strongly associated with SLE in both ethnic groups. When studies in Caucasians and southeast Asians were combined, T232 homozygosity was associated with SLE with an odds ratio of 1.73 (P = 8.0 x 10(-6)). <a href="#139" class="mim-tip-reference" title="Willcocks, L. C., Carr, E. J., Niederer, H. A., Rayner, T. F., Williams, T. N., Yang, W., Scott, J. A. G., Urban, B. C., Peshu, N., Vyse, T. J., Lau, Y. L., Lyons, P. A., Smith, K. G. C. &lt;strong&gt;A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematous.&lt;/strong&gt; Proc. Nat. Acad. Sci. 107: 7881-7885, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20385827/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20385827&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0915133107&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20385827">Willcocks et al. (2010)</a> noted that the T232 allele of the SNP is more common in southeast Asians and Africans, populations where malaria (see <a href="/entry/611162">611162</a>) is endemic, than in Caucasians. Homozygosity for T232 was significantly associated with protection from severe malaria in Kenyan children (odds ratio = 0.56; P = 7.1 x 10(-5)), but no association was found with susceptibility to bacterial infection. <a href="#139" class="mim-tip-reference" title="Willcocks, L. C., Carr, E. J., Niederer, H. A., Rayner, T. F., Williams, T. N., Yang, W., Scott, J. A. G., Urban, B. C., Peshu, N., Vyse, T. J., Lau, Y. L., Lyons, P. A., Smith, K. G. C. &lt;strong&gt;A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematous.&lt;/strong&gt; Proc. Nat. Acad. Sci. 107: 7881-7885, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20385827/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20385827&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0915133107&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20385827">Willcocks et al. (2010)</a> proposed that malaria may have driven retention of a polymorphism predisposing to a polygenic autoimmune disease and thus may begin to explain the ethnic differences seen in the frequency of SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20385827" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the FCGR3B Gene on Chromosome 1q23</em></strong></p><p>
<a href="#1" class="mim-tip-reference" title="Aitman, T. J., Dong, R., Vyse, T. J., Norsworthy, P. J., Johnson, M. D., Smith, J., Mangion, J., Roberton-Lowe, C., Marshall, A. J., Petretto, E., Hodges, M. D., Bhangal, G., and 10 others. &lt;strong&gt;Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans.&lt;/strong&gt; Nature 439: 851-855, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16482158/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16482158&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature04489&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16482158">Aitman et al. (2006)</a> showed that copy number variation (CNV) of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the rat-specific Fcgr3 paralog 'Fcgr3-related sequence' (Fcgr3rs) as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B (<a href="/entry/610665">610665</a>), an ortholog of rat Fcgr3, was associated with glomerulonephritis in SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16482158" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Following up on the study of <a href="#1" class="mim-tip-reference" title="Aitman, T. J., Dong, R., Vyse, T. J., Norsworthy, P. J., Johnson, M. D., Smith, J., Mangion, J., Roberton-Lowe, C., Marshall, A. J., Petretto, E., Hodges, M. D., Bhangal, G., and 10 others. &lt;strong&gt;Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans.&lt;/strong&gt; Nature 439: 851-855, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16482158/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16482158&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature04489&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16482158">Aitman et al. (2006)</a> in a larger sample, <a href="#24" class="mim-tip-reference" title="Fanciulli, M., Norsworthy, P. J., Petretto, E., Dong, R., Harper, L., Kamesh, L., Heward, J. M., Gough, S. C. L., de Smith, A., Blakemore, A. I. F., Froguel, P., Owen, C. J., Pearce, S. H. S., Teixeira, L., Guillevin, L., Cunninghame Graham, D. S., Pusey, C. D., Cook, H. T., Vyse, T. J., Aitman, T. J. &lt;strong&gt;FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity.&lt;/strong&gt; Nature Genet. 39: 721-723, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17529978/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17529978&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng2046&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17529978">Fanciulli et al. (2007)</a> confirmed and strengthened their previous finding of an association between low FCGR3B copy number and susceptibility to glomerulonephritis in SLE patients. Low copy number was also associated with risk of systemic SLE with no known renal involvement as well as with microscopic polyangiitis and granulomatosis with polyangiitis (<a href="/entry/608710">608710</a>), but not with organ-specific Graves disease (<a href="/entry/275000">275000</a>) or Addison disease (<a href="/entry/240200">240200</a>), in British and French cohorts. <a href="#24" class="mim-tip-reference" title="Fanciulli, M., Norsworthy, P. J., Petretto, E., Dong, R., Harper, L., Kamesh, L., Heward, J. M., Gough, S. C. L., de Smith, A., Blakemore, A. I. F., Froguel, P., Owen, C. J., Pearce, S. H. S., Teixeira, L., Guillevin, L., Cunninghame Graham, D. S., Pusey, C. D., Cook, H. T., Vyse, T. J., Aitman, T. J. &lt;strong&gt;FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity.&lt;/strong&gt; Nature Genet. 39: 721-723, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17529978/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17529978&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng2046&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17529978">Fanciulli et al. (2007)</a> concluded that low FCGR3B copy number or complete FCGR3B deficiency has a key role in the development of specific autoimmunity. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=17529978+16482158" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#140" class="mim-tip-reference" title="Willcocks, L. C., Lyons, P. A., Clatworthy, M. R., Robinson, J. I., Yang, W., Newland, S. A., Plagnol, V., McGovern, N. N., Condliffe, A. M., Chilvers, E. R., Adu, D., Jolly, E. C., Watts, R., Lau, Y. L., Morgan, A. W., Nash, G., Smith, K. G. C. &lt;strong&gt;Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake.&lt;/strong&gt; J. Exp. Med. 205: 1573-1582, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18559452/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18559452&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18559452[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20072413&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18559452">Willcocks et al. (2008)</a> confirmed that low copy number of FCGR3B was associated with SLE in a Caucasian U.K. population, but they were unable to find an association in a Chinese population. Investigations of the functional effects of FCGR3B CNV revealed that FCGR3B CNV correlated with cell surface expression, soluble FCGR3B production, and neutrophil adherence to and uptake of immune complexes both in a patient family and in the general population. <a href="#140" class="mim-tip-reference" title="Willcocks, L. C., Lyons, P. A., Clatworthy, M. R., Robinson, J. I., Yang, W., Newland, S. A., Plagnol, V., McGovern, N. N., Condliffe, A. M., Chilvers, E. R., Adu, D., Jolly, E. C., Watts, R., Lau, Y. L., Morgan, A. W., Nash, G., Smith, K. G. C. &lt;strong&gt;Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake.&lt;/strong&gt; J. Exp. Med. 205: 1573-1582, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18559452/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18559452&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18559452[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.20072413&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18559452">Willcocks et al. (2008)</a> found that individuals from 3 U.K. cohorts with antineutrophil cytoplasmic antibody-associated systemic vasculitis (AASV) were more likely to have high FCGR3B CNV. They proposed that FCGR3B CNV is involved in immune complex clearance, possibly explaining the association of low CNV with SLE and high CNV with AASV. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18559452" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#94" class="mim-tip-reference" title="Niederer, H. A., Willcocks, L. C., Rayner, T. F., Yang, W., Lau, Y. L., Williams, T. N., Scott, J. A. G., Urban, B. C., Peshu, N., Dunstan, S. J., Hien, T. T., Phu, N. H., Padyukov, L., Gunnarsson, I., Svenungsson, E., Savage, C. O., Watts, R. A., Lyons, P. A., Clayton, D. G., Smith, K. G. C. &lt;strong&gt;Copy number, linkage disequilibrium and disease association in the FCGR locus.&lt;/strong&gt; Hum. Molec. Genet. 19: 3282-3294, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20508037/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20508037&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20508037[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq216&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20508037">Niederer et al. (2010)</a> noted linkage disequilibrium (LD) between multiallelic FCGR3B CNV and SLE-associated SNPs in the FCGR locus. Despite LD between FCGR3B CNV and a variant in FCGR2B (I232T; <a href="/entry/604590#0002">604590.0002</a>) that abolishes inhibitory function, both reduced CN of FCGR3B and homozygosity of the FCGR2B-232T allele were individually strongly associated with SLE risk. Thus copy number of FCGR3B, which controls immune complex responses and uptake by neutrophils, and variations in FCGR2B, which controls factors such as antibody production and macrophage activation, are important in SLE pathogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20508037" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#88" class="mim-tip-reference" title="Mueller, M., Barros, P., Witherden, A. S., Roberts, A. L., Zhang, Z., Schaschl, H., Yu, C.-Y., Hurles, M. E., Schaffner, C., Floto, R. A., Game, L., Steinberg, K. M., Wilson, R. K., Graves, T. A., Eichler, E. E., Cook, H. T., Vyse, T. J., Aitman, T. J. &lt;strong&gt;Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus.&lt;/strong&gt; Am. J. Hum. Genet. 92: 28-40, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23261299/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23261299&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23261299[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.11.013&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23261299">Mueller et al. (2013)</a> found that the increased risk of SLE associated with reduced copy number of FCGR3B can be explained by the presence of a chimeric gene, FCGR2B-prime, that occurs as a consequence of FCGR3B deletion on FCGR3B zero-copy haplotypes. The FCGR2B-prime gene consists of upstream elements and a 5-prime coding region that derive from FCGR2C, and a 3-prime coding region that derives from FCGR2B (<a href="/entry/604590">604590</a>). The coding sequence of FCGR2B-prime is identical to that of FCGR2B, but FCGR2B-prime would be expected to be under the control of 5-prime flanking sequences derived from FCGR2C. <a href="#88" class="mim-tip-reference" title="Mueller, M., Barros, P., Witherden, A. S., Roberts, A. L., Zhang, Z., Schaschl, H., Yu, C.-Y., Hurles, M. E., Schaffner, C., Floto, R. A., Game, L., Steinberg, K. M., Wilson, R. K., Graves, T. A., Eichler, E. E., Cook, H. T., Vyse, T. J., Aitman, T. J. &lt;strong&gt;Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus.&lt;/strong&gt; Am. J. Hum. Genet. 92: 28-40, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23261299/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23261299&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23261299[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.11.013&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23261299">Mueller et al. (2013)</a> found by flow cytometry, immunoblotting, and cDNA sequencing that presence of the chimeric FCGR2B-prime gene results in the ectopic presence of Fc-gamma-RIIb on natural killer cells, providing an explanation for SLE risk associated with reduced FCGR3B copy number. The 5 FCGR2/FCGR3 genes are arranged across 2 highly paralogous genomic segments on chromosome 1q23. To pursue the underlying mechanism of SLE disease association with FCGR3B copy number variation, <a href="#88" class="mim-tip-reference" title="Mueller, M., Barros, P., Witherden, A. S., Roberts, A. L., Zhang, Z., Schaschl, H., Yu, C.-Y., Hurles, M. E., Schaffner, C., Floto, R. A., Game, L., Steinberg, K. M., Wilson, R. K., Graves, T. A., Eichler, E. E., Cook, H. T., Vyse, T. J., Aitman, T. J. &lt;strong&gt;Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus.&lt;/strong&gt; Am. J. Hum. Genet. 92: 28-40, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23261299/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23261299&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23261299[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.11.013&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23261299">Mueller et al. (2013)</a> aligned the reference sequence (GRCh37) of the proximal block of the FCGR locus (chr1:161,480,906-161,564,008) to that of the distal block (chr1:161,562,570-161,645,839). Identification of informative paralogous sequence variants (PSVs) enabled <a href="#88" class="mim-tip-reference" title="Mueller, M., Barros, P., Witherden, A. S., Roberts, A. L., Zhang, Z., Schaschl, H., Yu, C.-Y., Hurles, M. E., Schaffner, C., Floto, R. A., Game, L., Steinberg, K. M., Wilson, R. K., Graves, T. A., Eichler, E. E., Cook, H. T., Vyse, T. J., Aitman, T. J. &lt;strong&gt;Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus.&lt;/strong&gt; Am. J. Hum. Genet. 92: 28-40, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23261299/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23261299&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23261299[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.11.013&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23261299">Mueller et al. (2013)</a> to narrow the potential breakpoint region to a 24.5-kb region of paralogy between then 2 ancestral duplicated blocks. The complete absence of nonpolymorphic PSVs in the 24.5-kb region prevented more precise localization of the breakpoints in FCGR3B-deleted or FCGR3B-duplicated haplotypes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23261299" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the TNFSF6 Gene on Chromosome 1q23</em></strong></p><p>
The apoptosis genes FAS (TNFRSF6; <a href="/entry/134637">134637</a>) and FASL (TNFSF6; <a href="/entry/134638">134638</a>) are candidate contributory genes in human SLE, as mutations in these genes result in autoimmunity in several murine models of this disease. In humans, FAS mutations result in a familial autoimmune lymphoproliferative syndrome (e.g., <a href="/entry/134637#0001">134637.0001</a>). <a href="#143" class="mim-tip-reference" title="Wu, J., Wilson, J., He, J., Xiang, L., Schur, P. H., Mountz, J. D. &lt;strong&gt;Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease.&lt;/strong&gt; J. Clin. Invest. 98: 1107-1113, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8787672/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8787672&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI118892&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8787672">Wu et al. (1996)</a> studied DNA from 75 patients with SLE using SSCP analysis for potential mutations of the extracellular domain of FASL. In 1 SLE patient who exhibited lymphadenopathy, they found an 84-bp deletion within exon 4 of the FASL gene, resulting in a predicted 28-amino acid in-frame deletion (see <a href="/entry/134638#0001">134638.0001</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8787672" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the TNFSF4 Gene on Chromosome 1q25</em></strong></p><p>
By use of both a family-based study and a case-control study of SLE in U.K and Minnesota populations to screen the TNFRSF4 (<a href="/entry/600315">600315</a>) and TNFSF4 (<a href="/entry/603594">603594</a>) genes, <a href="#18" class="mim-tip-reference" title="Cunninghame Graham, D. S., Graham, R. R., Manku, H., Wong, A. K., Whittaker, J. C., Gaffney, P. M., Moser, K. L., Rioux, J. D., Altshuler, D., Behrens, T. W., Vyse, T. J. &lt;strong&gt;Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 40: 83-89, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18059267/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18059267&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=18059267[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2007.47&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18059267">Cunninghame Graham et al. (2008)</a> found that an upstream region of TNFSF4 contains a single risk haplotype (GCTAATCATTTGA) for SLE that correlates with increased cell surface TNFSF4 expression and TNFSF4 transcript. The authors suggested that increased expression of TNFSF4 predisposes to SLE either by quantitatively augmenting T-cell/antigen-presenting cell (APC) interaction or by influencing the functional consequences of T-cell activation via TNFRSF4. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18059267" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#43" class="mim-tip-reference" title="Han, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., Xu, J.-H., Cai, Z.-M., Huang, W., Zhao, G.-P., Xie, H.-F., Fang, H., and 55 others. &lt;strong&gt;Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 41: 1234-1237, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19838193/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19838193&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.472&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19838193">Han et al. (2009)</a> performed a genomewide association study of SLE in a Chinese Han population by genotyping 1,047 cases and 1,205 controls using Illumina-Human610-Quad BeadChips and replicating 78 SNPs in 2 additional cohorts (3,152 cases and 7,050 controls). <a href="#43" class="mim-tip-reference" title="Han, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., Xu, J.-H., Cai, Z.-M., Huang, W., Zhao, G.-P., Xie, H.-F., Fang, H., and 55 others. &lt;strong&gt;Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 41: 1234-1237, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19838193/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19838193&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.472&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19838193">Han et al. (2009)</a> found association with the TNFSF4 gene at 2 SNPs, <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1234315;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1234315</a> (combined P value = 2.34 x 10(-26), odds ratio = 1.37, 95% confidence interval 1.29-1.45) and <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2205960;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs2205960</a> (combined P value = 2.53 x 10(-32), odds ratio = 1.46, 95% confidence interval 1.37-1.56). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19838193" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the CR2 Gene on Chromosome 1q32</em></strong></p><p>
<a href="#142" class="mim-tip-reference" title="Wu, H., Boackle, S. A., Hanvivadhanakul, P., Ulgiati, D., Grossman, J. M., Lee, Y., Shen, N., Abraham, L. J., Mercer, T. R., Park, E., Hebert, L. A., Rovin, B. H., and 13 others. &lt;strong&gt;Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 3961-3966, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17360460/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17360460&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17360460[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0609101104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17360460">Wu et al. (2007)</a> analyzed the CR2 gene, which lies in the SLEB9 (<a href="/entry/610927">610927</a>) locus region, in 1,416 individuals from 258 Caucasian and 142 Chinese SLE simplex families and demonstrated that a common 3-SNP haplotype (<a href="/entry/120650#0001">120650.0001</a>) was associated with SLE susceptibility (p = 0.00001) with a 1.54-fold increased risk for development of disease. <a href="#142" class="mim-tip-reference" title="Wu, H., Boackle, S. A., Hanvivadhanakul, P., Ulgiati, D., Grossman, J. M., Lee, Y., Shen, N., Abraham, L. J., Mercer, T. R., Park, E., Hebert, L. A., Rovin, B. H., and 13 others. &lt;strong&gt;Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 3961-3966, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17360460/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17360460&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17360460[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0609101104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17360460">Wu et al. (2007)</a> concluded that the CR2 gene is likely a susceptibility gene for SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17360460" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the TLR5 Gene on Chromosome 1q41-q42</em></strong></p><p>
A polymorphism in the TLR5 gene (R392X; <a href="/entry/603031#0001">603031.0001</a>), which maps to the SLEB1 (<a href="/entry/601744">601744</a>) locus, is associated with resistance to SLE development.</p><p><strong><em>Association with the STAT4 Gene on Chromosome 2q32</em></strong></p><p>
In 1,039 patients with SLE and 1,248 controls, <a href="#103" class="mim-tip-reference" title="Remmers, E. F., Plenge, R. M., Lee, A. T., Graham, R. R., Hom, G., Behrens, T. W., de Bakker, P. I. W., Le, J. M., Lee, H.-S., Batliwalla, F., Li, W., Masters, S. L., and 11 others. &lt;strong&gt;STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus.&lt;/strong&gt; New Eng. J. Med. 357: 977-986, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17804842/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17804842&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17804842[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa073003&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17804842">Remmers et al. (2007)</a> identified an association between SLE (SLEB11; <a href="/entry/612253">612253</a>) and the minor T allele of <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs7574865;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs7574865</a> in intron 3 of the STAT4 gene (<a href="/entry/600558#0001">600558.0001</a>). The risk allele was present in 31% of chromosomes of patients with SLE compared with 22% of those of controls (p = 1.87 x 10(-9)). Homozygosity of the risk allele (TT) compared to absence of the allele was associated with a more than doubled risk for lupus. The risk allele was also associated with susceptibility to rheumatoid arthritis (RA; <a href="/entry/180300">180300</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17804842" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the CTLA4 Gene on Chromosome 2q33</em></strong></p><p>
In a metaanalysis of 7 published studies and their own study, <a href="#8" class="mim-tip-reference" title="Barreto, M., Santos, E., Ferreira, R., Fesel, C., Fontes, M. F., Pereira, C., Martins, B., Andreia, R., Viana, J. F., Crespo, F., Vasconcelos, C., Ferreira, C., Vicente, A. M. &lt;strong&gt;Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus.&lt;/strong&gt; Europ. J. Hum. Genet. 12: 620-626, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15138458/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15138458&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.ejhg.5201214&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15138458">Barreto et al. (2004)</a> examined the association between an 49A-G polymorphism in the CTLA4 gene (<a href="/entry/123890#0001">123890.0001</a>) and SLE. The authors found that individuals with the GG genotype were at significantly higher risk of developing SLE; carriers of the A allele had a significantly lower risk of developing the disease, and the AA genotype acted as a protective genotype for SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15138458" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a metaanalysis of 14 independent studies testing association between CTLA4 polymorphisms and SLE, <a href="#69" class="mim-tip-reference" title="Lee, Y. H., Harley, J. B., Nath, S. K. &lt;strong&gt;CTLA-4 polymorphisms and systemic lupus erythematosus (SLE): a meta-analysis.&lt;/strong&gt; Hum. Genet. 116: 361-367, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15688186/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15688186&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-004-1244-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15688186">Lee et al. (2005)</a> confirmed that the 49A-G polymorphism is significantly associated with SLE susceptibility, particularly in Asians. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15688186" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the PDCD1 Gene on Chromosome 2q37</em></strong></p><p>
<a href="#99" class="mim-tip-reference" title="Prokunina, L., Castillejo-Lopez, C., Oberg, F., Gunnarsson, I., Berg, L., Magnusson, V., Brookes, A. J., Tentler, D., Kristjansdottir, H., Grondal, G., Bolstad, A. I., Svenungsson, E., and 12 others. &lt;strong&gt;A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans.&lt;/strong&gt; Nature Genet. 32: 666-669, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12402038/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12402038&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng1020&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12402038">Prokunina et al. (2002)</a> analyzed 2,510 individuals, including members of 5 independent sets of families as well as unrelated individuals affected with SLE, for SNPs that they had identified in the PDCD1 gene, which maps within the SLEB2 locus (<a href="/entry/605218">605218</a>). They showed that one intronic SNP (<a href="/entry/600244#0001">600244.0001</a>) was associated with development of SLE in Europeans and Mexicans. The associated allele of this SNP alters a binding site for the RUNT-related transcription factor-1 (RUNX1; <a href="/entry/151385">151385</a>) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12402038" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the TREX1 Gene on Chromosome 3p21</em></strong></p><p>
<a href="#72" class="mim-tip-reference" title="Lee-Kirsch, M. A., Gong, M., Chowdhury, D., Senenko, L., Engel, K., Lee, Y.-A., de Silva, U., Bailey, S. L., Witte, T., Vyse, T. J., Kere, J., Pfeiffer, C., and 12 others. &lt;strong&gt;Mutations in the gene encoding the 3-prime-5-prime DNA exonuclease TREX1 are associated with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 39: 1065-1067, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17660818/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17660818&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng2091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17660818">Lee-Kirsch et al. (2007)</a> analyzed the 3-prime repair exonuclease gene TREX1 (<a href="/entry/606609">606609</a>) in 417 patients with SLE and 1,712 controls and identified heterozygosity for a 3-prime UTR variant and 11 nonsynonymous changes in 12 patients (see, e.g., <a href="/entry/606609#0001">606609.0001</a>). They identified only 2 nonsynonymous changes in 2 controls (p = 1.7 X 10(-7), relative risk = 25.3). In vitro studies of 2 frameshift mutations revealed that both caused altered subcellular distribution. The authors concluded that TREX1 is implicated in the pathogenesis of SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17660818" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the BANK1 Gene on Chromosome 4q22-q24</em></strong></p><p>
<a href="#60" class="mim-tip-reference" title="Kozyrev, S. V., Abelson, A.-K., Wojcik, J., Zaghlool, A., Reddy, M. V., P. L., Sanchez, E., Gunnarsson, I., Svenungsson, E., Sturfelt, G., Jonsen, A., Truedsson, L., Pons-Estel, B. A., and 12 others. &lt;strong&gt;Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 40: 211-216, 2008. Note: Erratum: Nature Genet. 40: 484 only, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18204447/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18204447&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.79&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18204447">Kozyrev et al. (2008)</a> identified an association between SLE and a nonsynonymous G-to-A transition in the BANK1 gene that results in a substitution of his for arg at codon 61 (<a href="/entry/610292#0001">610292.0001</a>), with the G allele conferring risk. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18204447" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the NKX2-5 Gene on Chromosome 5q34</em></strong></p><p>
<a href="#95" class="mim-tip-reference" title="Oishi, T., Iida, A., Otsubo, S., Kamatani, Y., Usami, M., Takei, T., Uchida, K., Tsuchiya, K., Saito, S., Ohnisi, Y., Tokunaga, K., Nitta, K., Kawaguchi, Y., Kamatani, N., Kochi, Y., Shimane, K., Yamamoto, K., Nakamura, Y., Yumura, W., Matsuda, K. &lt;strong&gt;A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population.&lt;/strong&gt; J. Hum. Genet. 53: 151-162, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18219441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18219441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s10038-007-0233-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18219441">Oishi et al. (2008)</a> genotyped 3 SNPs in the NKX2-5 gene (<a href="/entry/600584">600584</a>) in 178 Japanese SLE patients and 1,425 controls and found association with <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3095870;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3095870</a> in the 5-prime flanking region of NKX2-5 (p = 0.0037; odds ratio, 1.74). Individuals having the risk genotype for both NKX2-5 and <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3748079;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3748079</a> of the ITPR3 gene (<a href="/entry/147267">147267</a>) had a higher risk for SLE (odds ratio, 5.77). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18219441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the ITPR3 Gene on Chromosome 6p21</em></strong></p><p>
<a href="#95" class="mim-tip-reference" title="Oishi, T., Iida, A., Otsubo, S., Kamatani, Y., Usami, M., Takei, T., Uchida, K., Tsuchiya, K., Saito, S., Ohnisi, Y., Tokunaga, K., Nitta, K., Kawaguchi, Y., Kamatani, N., Kochi, Y., Shimane, K., Yamamoto, K., Nakamura, Y., Yumura, W., Matsuda, K. &lt;strong&gt;A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population.&lt;/strong&gt; J. Hum. Genet. 53: 151-162, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18219441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18219441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s10038-007-0233-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18219441">Oishi et al. (2008)</a> performed a case-control association study using more than 50,000 genomewide gene-based SNPs in a total of 543 Japanese SLE patients and 2,596 controls and identified significant association with a -1009C-T transition (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3748079;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3748079</a>) located in a promoter region of the ITPR3 gene (p = 1.78 x 10(-8); odds ratio, 1.88). Studies in HEK293T cells showed that binding of NKX2-5 is specific to the nonsusceptibility -1009T allele, and individuals with the risk genotype of both ITPR3 and NKX2-5 (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3095870;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3095870</a>) had a higher risk for SLE (odds ratio, 5.77). <a href="#95" class="mim-tip-reference" title="Oishi, T., Iida, A., Otsubo, S., Kamatani, Y., Usami, M., Takei, T., Uchida, K., Tsuchiya, K., Saito, S., Ohnisi, Y., Tokunaga, K., Nitta, K., Kawaguchi, Y., Kamatani, N., Kochi, Y., Shimane, K., Yamamoto, K., Nakamura, Y., Yumura, W., Matsuda, K. &lt;strong&gt;A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population.&lt;/strong&gt; J. Hum. Genet. 53: 151-162, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18219441/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18219441&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s10038-007-0233-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18219441">Oishi et al. (2008)</a> concluded that genetic and functional interactions of ITPR3 and NKX2-5 play a crucial role in the pathogenesis of SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18219441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the TNFA Gene on Chromosome 6p21.3</em></strong></p><p>
In a metaanalysis of 19 studies, <a href="#70" class="mim-tip-reference" title="Lee, Y. H., Harley, J. B., Nath, S. K. &lt;strong&gt;Meta-analysis of TNF-alpha promoter -308A/G polymorphism and SLE susceptibility.&lt;/strong&gt; Europ. J. Hum. Genet. 14: 364-371, 2006. Note: Erratum: Europ. J. Hum. Genet. 14: 1059-1060, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16418737/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16418737&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.ejhg.5201566&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16418737">Lee et al. (2006)</a> found an association between SLE and a -308A/G promoter polymorphism in the TNFA gene (<a href="/entry/191160#0004">191160.0004</a>). The findings were significant in European-derived population (odds ratio of 4.0 for A/A and 2.1 for the A allele), but not in Asian-derived populations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16418737" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the C4A and C4B Genes on Chromosome 6p21.3</em></strong></p><p>
<a href="#146" class="mim-tip-reference" title="Yang, Y., Chung, E. K., Wu, Y. L., Savelli, S. L., Nagaraja, H. N., Zhou, B., Hebert, M., Jones, K. N., Shu, Y., Kitzmiller, K., Blanchong, C. A., McBride, K. L., and 11 others. &lt;strong&gt;Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans.&lt;/strong&gt; Am. J. Hum. Genet. 80: 1037-1054, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17503323/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17503323&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17503323[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/518257&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17503323">Yang et al. (2007)</a> investigated interindividual gene copy number variation (CNV) of complement component C4 in relation to susceptibility to SLE. They found that long C4 genes were strongly correlated with C4A (<a href="/entry/120810">120810</a>); short C4 genes were correlated with C4B (<a href="/entry/120820">120820</a>). In comparison with healthy subjects, patients with SLE clearly had the gene copy number (GCN) of total C4 and C4A shifted to the lower side. The risk of SLE disease susceptibility increased significantly among subjects with only 2 copies of total C4 (patients 9.3%; unrelated controls 1.5%) but decreased in those with 5 or more copies of C4 (patients 5.79%; controls 12%). Zero copies and 1 copy of C4A were risk factors for SLE, whereas 3 or more copies of C4A appeared to be protective. Family-based association tests suggested that a specific haplotype with a single short C4B in tight linkage disequilibrium with the -308A allele of TNFA (<a href="/entry/191160#0004">191160.0004</a>) was more likely to be transmitted to patients with SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17503323" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#16" class="mim-tip-reference" title="Boteva, L., Morris, D. L., Cortes-Hernandez, J., Martin, J., Vyse, T. J., Fernando, M. M. A. &lt;strong&gt;Genetically determined partial complement C4 deficiency states are not independent risk factors for SLE in UK and Spanish populations.&lt;/strong&gt; Am. J. Hum. Genet. 90: 445-456, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22387014/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22387014&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22387014[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.01.012&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22387014">Boteva et al. (2012)</a> genotyped 1,028 SLE cases, including 501 patients from the UK and 537 from Spain, and 1,179 controls for gene copy number of total C4, C4A, C4B, and the 2-bp insertion SNP (C4AQ0; <a href="/entry/120810#0001">120810.0001</a>) resulting in a null allele. The loss-of-function SNP in C4A was not associated with SLE in either population. <a href="#16" class="mim-tip-reference" title="Boteva, L., Morris, D. L., Cortes-Hernandez, J., Martin, J., Vyse, T. J., Fernando, M. M. A. &lt;strong&gt;Genetically determined partial complement C4 deficiency states are not independent risk factors for SLE in UK and Spanish populations.&lt;/strong&gt; Am. J. Hum. Genet. 90: 445-456, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22387014/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22387014&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22387014[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2012.01.012&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22387014">Boteva et al. (2012)</a> used multiple logistic regression to determine the independence of C4 CNV from known SNP and HLA-DRB1 associations. Overall, the findings indicated that partial C4 deficiency states are not independent risk factors for SLE in UK and Spanish populations. Although complete homozygous deficiency of complement C4 is one of the strongest genetic risk factors for SLE, partial C4 deficiency states do not independently predispose to the disease. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22387014" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#52" class="mim-tip-reference" title="Kamitaki, N., Sekar, A., Handsaker, R. E., de Rivera, H., Tooley, K., Morris, D. L., Taylor, K. E., Whelan, C. W., Tombleson, P., Loohuis, L. M. O., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Boehnke, M., and 12 others. &lt;strong&gt;Complement genes contribute sex-based vulnerability in diverse disorders.&lt;/strong&gt; Nature 582: 577-581, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32499649/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32499649&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32499649[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-020-2277-x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32499649">Kamitaki et al. (2020)</a> noted that SLE and Sjogren syndrome (see <a href="/entry/270150">270150</a>) affect 9 times more women than men, whereas schizophrenia (<a href="/entry/181500">181500</a>) affects men with greater frequency and severity than women. <a href="#52" class="mim-tip-reference" title="Kamitaki, N., Sekar, A., Handsaker, R. E., de Rivera, H., Tooley, K., Morris, D. L., Taylor, K. E., Whelan, C. W., Tombleson, P., Loohuis, L. M. O., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Boehnke, M., and 12 others. &lt;strong&gt;Complement genes contribute sex-based vulnerability in diverse disorders.&lt;/strong&gt; Nature 582: 577-581, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32499649/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32499649&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32499649[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-020-2277-x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32499649">Kamitaki et al. (2020)</a> showed that variation in the C4A and C4B genes generated 7-fold variation in risk for SLE and 16-fold variation in risk for Sjogren syndrome among individuals with common C4 genotypes, with C4A offering stronger protection than C4B in both illnesses. C4 alleles that increased risk for schizophrenia greatly reduced risk for SLE and Sjogren syndrome. In all 3 illnesses, C4 alleles acted more strongly in men than in women, with common combinations of C4A and C4B generating 14-fold variation in risk for SLE, 31-fold variation in risk for Sjogren syndrome, and 1.7-fold variation in schizophrenia risk among men versus 6-fold, 15-fold, and 1.26-fold variation in risk among women, respectively. Protein levels of both C4 and its effector C3 were higher in cerebrospinal fluid and plasma in men compared with women among adults between 20 and 50 years of age, corresponding to the ages of differential disease vulnerability. <a href="#52" class="mim-tip-reference" title="Kamitaki, N., Sekar, A., Handsaker, R. E., de Rivera, H., Tooley, K., Morris, D. L., Taylor, K. E., Whelan, C. W., Tombleson, P., Loohuis, L. M. O., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Boehnke, M., and 12 others. &lt;strong&gt;Complement genes contribute sex-based vulnerability in diverse disorders.&lt;/strong&gt; Nature 582: 577-581, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32499649/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32499649&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32499649[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41586-020-2277-x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32499649">Kamitaki et al. (2020)</a> concluded that sex differences in complement protein levels may explain the more potent effects of C4 alleles in men, the greater risk in women of SLE and Sjogren syndrome, and the greater vulnerability in men to schizophrenia. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32499649" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the TNXB Gene on Chromosome 6p21.3</em></strong></p><p>
In a genomewide case-control association study of 178 Japanese SLE patients and 899 controls, <a href="#51" class="mim-tip-reference" title="Kamatani, Y., Matsuda, K., Ohishi, T., Ohtsubo, S., Yamazaki, K., Iida, A., Hosono, N., Kubo, M., Yumura, W., Nitta, K., Katagiri, T., Kawaguchi, Y., Kamatani, N., Nakamura, Y. &lt;strong&gt;Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population.&lt;/strong&gt; J. Hum. Genet. 53: 64-73, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18058064/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18058064&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s10038-007-0219-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18058064">Kamatani et al. (2008)</a> found significant association between SLE and a SNP (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3130342;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3130342</a>) in the 5-prime flanking region of the TNXB gene (<a href="/entry/600985">600985</a>) on chromosome 6p21.3 (p = 9.3 x 10(-7); odds ratio, 3.11). The association was replicated independently with 203 cases and 294 controls (p = 0.04; odds ratio, 1.52). Analysis in their Japanese SLE patients showed that the association with <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3130342;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3130342</a> was independent of C4 copy number, suggesting that the association previously reported between SLE and CNV of the C4A gene (see <a href="#146" class="mim-tip-reference" title="Yang, Y., Chung, E. K., Wu, Y. L., Savelli, S. L., Nagaraja, H. N., Zhou, B., Hebert, M., Jones, K. N., Shu, Y., Kitzmiller, K., Blanchong, C. A., McBride, K. L., and 11 others. &lt;strong&gt;Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans.&lt;/strong&gt; Am. J. Hum. Genet. 80: 1037-1054, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17503323/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17503323&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17503323[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/518257&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17503323">Yang et al., 2007</a>) likely reflected linkage disequilibrium between C4A CNV and <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3130342;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3130342</a>. Stratified analysis also demonstrated that the association between <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs3130342;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs3130342</a> and SLE was independent of the HLA-DRB1*1501 allele association with SLE. <a href="#51" class="mim-tip-reference" title="Kamatani, Y., Matsuda, K., Ohishi, T., Ohtsubo, S., Yamazaki, K., Iida, A., Hosono, N., Kubo, M., Yumura, W., Nitta, K., Katagiri, T., Kawaguchi, Y., Kamatani, N., Nakamura, Y. &lt;strong&gt;Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population.&lt;/strong&gt; J. Hum. Genet. 53: 64-73, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18058064/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18058064&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s10038-007-0219-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18058064">Kamatani et al. (2008)</a> concluded that TNXB is a candidate gene for SLE susceptibility in the Japanese population. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=17503323+18058064" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the TNFAIP3 Gene on Chromosome 6q23</em></strong></p><p>
In separate genomewide association studies, <a href="#35" class="mim-tip-reference" title="Graham, R. R., Cotsapas, C., Davies, L., Hackett, R., Lessard, C. J., Leon, J. M., Burtt, N. P., Guiducci, C., Parkin, M., Gates, C., Plenge, R. M., Behrens, T. W., and 10 others. &lt;strong&gt;Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 40: 1059-1061, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19165918/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19165918&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19165918">Graham et al. (2008)</a> and <a href="#89" class="mim-tip-reference" title="Musone, S. L., Taylor, K. E., Lu, T. T., Nititham, J., Ferreira, R. C., Ortmann, W., Shifrin, N., Petri, M. A., Kamboh, M. I., Manzi, S., Seldin, M. F., Gregersen, P. K., Behrens, T. W., Ma, A., Kwok, P.-Y., Criswell, L. A. &lt;strong&gt;Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 40: 1062-1064, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19165919/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19165919&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.202&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19165919">Musone et al. (2008)</a> found association between single-nucleotide polymorphisms (SNPs) in the TNFAIP3 region (<a href="/entry/191163">191163</a>) and risk of SLE. <a href="#35" class="mim-tip-reference" title="Graham, R. R., Cotsapas, C., Davies, L., Hackett, R., Lessard, C. J., Leon, J. M., Burtt, N. P., Guiducci, C., Parkin, M., Gates, C., Plenge, R. M., Behrens, T. W., and 10 others. &lt;strong&gt;Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 40: 1059-1061, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19165918/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19165918&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19165918">Graham et al. (2008)</a> found association with SLE of a SNP that is also associated with rheumatoid arthritis (RA; <a href="/entry/180300">180300</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=19165918+19165919" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the IRF5 Gene on Chromosome 7q32</em></strong></p><p>
<a href="#118" class="mim-tip-reference" title="Sigurdsson, S., Nordmark, G., Goring, H. H. H., Lindroos, K., Wiman, A.-C., Sturfelt, G., Jonsen, A., Rantapaa-Dahlqvist, S., Moller, B., Kere, J., Koskenmies, S., Widen, E., Eloranta, M.-L., Julkunen, H., Kristjansdottir, H., Steinsson, K., Alm, G., Ronnblom, L., Syvanen, A.-C. &lt;strong&gt;Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus.&lt;/strong&gt; Am. J. Hum. Genet. 76: 528-537, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15657875/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15657875&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=15657875[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/428480&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15657875">Sigurdsson et al. (2005)</a> and <a href="#36" class="mim-tip-reference" title="Graham, R. R., Kozyrev, S. V., Baechler, E. C., Reddy, M. V. P. L., Plenge, R. M., Bauer, J. W., Ortmann, W. A., Koeuth, T., Gonzalez Escribano, M. F., the Argentine and Spanish Collaborative Groups, Pons-Estel, B., Petri, M., Daly, M., Gregersen, P. K., Martin, J., Altshuler, D., Behrens, T. W., Alarcon-Riquelme, M. E. &lt;strong&gt;A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 38: 550-555, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16642019/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16642019&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng1782&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16642019">Graham et al. (2006)</a> showed that a common IRF5 (<a href="/entry/607218">607218</a>) haplotype, which drives elevated expression of multiple unique forms of IRF5, is an important risk factor for SLE (SLEB10; <a href="/entry/612251">612251</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=15657875+16642019" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the DNASE1 Gene on Chromosome 16p13.3</em></strong></p><p>
In 2 unrelated females with SLE and no family history of the disorder, <a href="#147" class="mim-tip-reference" title="Yasutomo, K., Horiuchi, T., Kagami, S., Tsukamoto, H., Hashimura, C., Urushihara, M., Kuroda, Y. &lt;strong&gt;Mutation of DNASE1 in people with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 28: 313-314, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11479590/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11479590&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/91070&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11479590">Yasutomo et al. (2001)</a> identified heterozygosity for a mutation in the DNASE1 gene (<a href="/entry/125505#0001">125505.0001</a>). The patients, aged 13 and 17 years, were diagnosed as having SLE based on clinical features, high serum titers of antibodies against double-stranded DNA, and Sjogren syndrome. Both patients had substantially lower levels of DNASE1 activity in the sera than in other SLE patients without a DNASE1 mutation. However, the DNASE1 activity of SLE patients without DNASE1 mutations is lower than that of healthy controls. The patient's B cells had 30 to 50% of the DNASE1 activity of cells from controls, showing that heterozygous mutation of DNASE1 reduces the total activity of this enzyme. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11479590" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 350 Korean patients with SLE and 330 Korean controls, <a href="#114" class="mim-tip-reference" title="Shin, H. D., Park, B. L., Kim, L. H., Lee, H.-S., Kim, T.-Y., Bae, S.-C. &lt;strong&gt;Common DNase I polymorphism associated with autoantibody production among systemic lupus erythematosus patients.&lt;/strong&gt; Hum. Molec. Genet. 13: 2343-2350, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15333586/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15333586&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh275&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15333586">Shin et al. (2004)</a> identified a nonsynonymous SNP in exon 8 of the DNASE1 gene, 2373A-G (Q244R; <a href="/entry/125505#0002">125505.0002</a>), that was significantly associated with an increased risk of the production of anti-RNP and anti-dsDNA antibodies among SLE patients. The frequency of the arg/arg minor allele was much higher in patients who had the anti-RNP antibody (31%) than in patients who did not have this antibody (14%) (P = 0.0006). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15333586" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the ITGAM Gene on Chromosome 16p11.2</em></strong></p><p>
See SLEB6, <a href="/entry/609939">609939</a>.</p><p><a href="#93" class="mim-tip-reference" title="Nath, S. K., Han, S., Kim-Howard, X., Kelly, J. A., Viswanathan, P., Gilkeson, G. S., Chen, W., Zhu, C., McEver, R. P., Kimberly, R. P., Alarcon-Riquelme, M. E., Vyse, T. J., Li, Q.-Z., Wakeland, E. K., Merrill, J. T., James, J. A., Kaufman, K. M., Guthridge, J. M., Harley, J. B. &lt;strong&gt;A nonsynonymous functional variant in integrin-alpha-M (encoded by ITGAM) is associated with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 40: 152-154, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18204448/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18204448&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.71&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18204448">Nath et al. (2008)</a> identified and replicated an association between ITGAM (<a href="/entry/120980">120980</a>) at 16p11.2 and risk of SLE in 3,818 individuals of European descent. The strongest association was at a nonsynonymous SNP, <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1143679;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1143679</a> (<a href="/entry/120980#0001">120980.0001</a>). <a href="#93" class="mim-tip-reference" title="Nath, S. K., Han, S., Kim-Howard, X., Kelly, J. A., Viswanathan, P., Gilkeson, G. S., Chen, W., Zhu, C., McEver, R. P., Kimberly, R. P., Alarcon-Riquelme, M. E., Vyse, T. J., Li, Q.-Z., Wakeland, E. K., Merrill, J. T., James, J. A., Kaufman, K. M., Guthridge, J. M., Harley, J. B. &lt;strong&gt;A nonsynonymous functional variant in integrin-alpha-M (encoded by ITGAM) is associated with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 40: 152-154, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18204448/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18204448&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.71&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18204448">Nath et al. (2008)</a> further replicated this association in 2 independent samples of individuals of African descent. The <a href="#48" class="mim-tip-reference" title="International Consortium for Systemic Lupus Erythematosus Genetics, Harley, J. B., Alarcon-Riquelme, M. E., Criswell, L. A., Jacob, C. O., Kimberly, R. P., Moser, K. L., Tsao, B. P., Vyse, T. J., Langefeld, C. D. &lt;strong&gt;Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci.&lt;/strong&gt; Nature Genet. 40: 204-210, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18204446/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18204446&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.81&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18204446">International Consortium for Systemic Lupus Erythematosus Genetics et al. (2008)</a> likewise identified an association between SNPs in ITGAM in 720 women of European ancestry with SLE and in 2 additional independent sample sets. Several previously identified associations such as the strong association between SLE and the HLA region on 6p21 and the previously confirmed non-HLA locus IRF5 (<a href="/entry/607218">607218</a>) on 7q32 were found. The <a href="#48" class="mim-tip-reference" title="International Consortium for Systemic Lupus Erythematosus Genetics, Harley, J. B., Alarcon-Riquelme, M. E., Criswell, L. A., Jacob, C. O., Kimberly, R. P., Moser, K. L., Tsao, B. P., Vyse, T. J., Langefeld, C. D. &lt;strong&gt;Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci.&lt;/strong&gt; Nature Genet. 40: 204-210, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18204446/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18204446&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.81&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18204446">International Consortium for Systemic Lupus Erythematosus Genetics et al. (2008)</a> also found association with replication for KIAA1542 (<a href="/entry/611780">611780</a>) at 11p15.5, PXK (<a href="/entry/611450">611450</a>) in 3p14.3, and a SNP at 1q25.1. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=18204448+18204446" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#44" class="mim-tip-reference" title="Hom, G., Graham, R. R., Modrek, B., Taylor, K. E., Ortmann, W., Garnier, S., Lee, A. T., Chung, S. A., Ferreira, R. C., Pant, P. V. K., Ballinger, D. G., Kosoy, R., and 15 others. &lt;strong&gt;Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX.&lt;/strong&gt; New Eng. J. Med. 358: 900-909, 2008.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/18204098/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;18204098&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJMoa0707865&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="18204098">Hom et al. (2008)</a> identified SNPs near the ITGAM and ITGAX (<a href="/entry/151510">151510</a>) genes that were associated with SLE; they believed variants of ITGAM to be driving the association. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18204098" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the IL6 Gene on chromosome 7p21</em></strong></p><p>
<a href="#80" class="mim-tip-reference" title="Linker-Israeli, M., Wallace, D. J., Prehn, J., Michael, D., Honda, M., Taylor, K. D., Paul-Labrador, M., Fischel-Ghodsian, N., Fraser, P. A., Klinenberg, J. R. &lt;strong&gt;Association of IL-6 gene alleles with systemic lupus erythematosus (SLE) and with elevated IL-6 expression.&lt;/strong&gt; Genes Immun. 1: 45-52, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11197305/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11197305&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.gene.6363631&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11197305">Linker-Israeli et al. (1999)</a> used PCR and RFLP analysis to genotype the AT-rich minisatellite in the 3-prime flanking region and the 5-prime promoter-enhancer of IL6 (<a href="/entry/147620">147620</a>) in SLE patients and controls. In both African-Americans and Caucasians, short allele sizes (less than 792 bp) at the 3-prime minisatellite were found exclusively in SLE patients, whereas the 828-bp allele was overrepresented in controls. No association was found between SLE and alleles in the 5-prime region of IL6. Patients homo- or heterozygous for the SLE-associated 3-prime minisatellite alleles secreted higher levels of IL6, had higher percentages of IL6-positive monocytes, and showed significantly enhanced IL6 mRNA stability. <a href="#80" class="mim-tip-reference" title="Linker-Israeli, M., Wallace, D. J., Prehn, J., Michael, D., Honda, M., Taylor, K. D., Paul-Labrador, M., Fischel-Ghodsian, N., Fraser, P. A., Klinenberg, J. R. &lt;strong&gt;Association of IL-6 gene alleles with systemic lupus erythematosus (SLE) and with elevated IL-6 expression.&lt;/strong&gt; Genes Immun. 1: 45-52, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11197305/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11197305&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/sj.gene.6363631&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11197305">Linker-Israeli et al. (1999)</a> concluded that the AT-rich minisatellite in the 3-prime region flanking of IL6 is associated with SLE, possibly by increasing accessibility for transcription factors. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11197305" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the IL18 Gene on Chromosome 11q22</em></strong></p><p>
<a href="#107" class="mim-tip-reference" title="Sanchez, E., Palomino-Morales, R. J., Ortego-Centeno, N., Jimenez-Alonso, J., Gonzalez-Gay, M. A., Lopez-Nevot, M. A., Sanchez-Roman, J., de Ramon, E., Gonzalez-Escribano, M. F., Pons-Estel, B. A., D&#x27;Alfonso, S., Sebastiani, G. D., Italian Collaborative Group, Alarcon-Riquelme, M. E., Martin, J. &lt;strong&gt;Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus.&lt;/strong&gt; Hum. Molec. Genet. 18: 3739-3748, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19584085/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19584085&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp301&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19584085">Sanchez et al. (2009)</a> selected 9 SNPs spanning the IL18 gene (<a href="/entry/600953">600953</a>) and genotyped an independent set of 752 Spanish systemic lupus erythematosus patients and 595 Spanish controls. A -1297T-C SNP (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs360719;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs360719</a>) survived correction for multiple tests and was genotyped in 2 case-control replication cohorts from Italy and Argentina. Combined analysis for the risk C allele remained significant (pooled odds ratio = 1.37, 95% CI 1.21-1.54, corrected p = 1.16 x 10(-6)). There was a significant increase in the relative expression of IL18 mRNA in individuals carrying the risk -1297C allele; in addition, -1297C allele created a binding site for the transcriptional factor OCT1 (POU2F1; <a href="/entry/164175">164175</a>). <a href="#107" class="mim-tip-reference" title="Sanchez, E., Palomino-Morales, R. J., Ortego-Centeno, N., Jimenez-Alonso, J., Gonzalez-Gay, M. A., Lopez-Nevot, M. A., Sanchez-Roman, J., de Ramon, E., Gonzalez-Escribano, M. F., Pons-Estel, B. A., D&#x27;Alfonso, S., Sebastiani, G. D., Italian Collaborative Group, Alarcon-Riquelme, M. E., Martin, J. &lt;strong&gt;Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus.&lt;/strong&gt; Hum. Molec. Genet. 18: 3739-3748, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19584085/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19584085&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddp301&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19584085">Sanchez et al. (2009)</a> suggested that the <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs360719;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs360719</a> variant may play a role in susceptibility to SLE and in IL18 expression. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19584085" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the CSK Gene on Chromosome 15q23-q25</em></strong></p><p>
The c-Src tyrosine kinase CSK (<a href="/entry/124095">124095</a>) physically interacts with the intracellular phosphatase LYP (PTPN22; <a href="/entry/600716">600716</a>) and can modify the activation state of downstream Src kinases, such as LYN (<a href="/entry/165120">165120</a>), in lymphocytes. <a href="#82" class="mim-tip-reference" title="Manjarrez-Orduno, N., Marasco, E., Chung, S. A., Katz, M. S., Kiridly, J. F., Simpfendorfer, K. R., Freudenberg, J., Ballard, D. H., Nashi, E., Hopkins, T. J., Cunninghame Graham, D. S., Lee, A. T., and 11 others. &lt;strong&gt;CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation.&lt;/strong&gt; Nature Genet. 44: 1227-1230, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23042117/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23042117&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23042117[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2439&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23042117">Manjarrez-Orduno et al. (2012)</a> identified an association of CSK with SLE and refined its location to the intronic polymorphism <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs34933034;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs34933034</a> (odds ratio = 1.32; p = 1.04 x 10(-9)). The risk allele at this SNP is associated with increased CSK expression and augments inhibitory phosphorylation of LYN. In carriers of the risk allele, there is increased B-cell receptor-mediated activation of mature B cells, as well as higher concentrations of plasma IgM, relative to individuals in the nonrisk haplotype. Moreover, the fraction of transitional B cells is doubled in the cord blood of carriers of the risk allele, due to an expansion of late transitional cells in a stage targeted by selection mechanisms. <a href="#82" class="mim-tip-reference" title="Manjarrez-Orduno, N., Marasco, E., Chung, S. A., Katz, M. S., Kiridly, J. F., Simpfendorfer, K. R., Freudenberg, J., Ballard, D. H., Nashi, E., Hopkins, T. J., Cunninghame Graham, D. S., Lee, A. T., and 11 others. &lt;strong&gt;CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation.&lt;/strong&gt; Nature Genet. 44: 1227-1230, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23042117/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23042117&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23042117[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.2439&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23042117">Manjarrez-Orduno et al. (2012)</a> concluded that their results suggested that the LYP-CSK complex increases susceptibility to lupus at multiple maturation and activation points in B cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23042117" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the EGR2 Gene on Chromosome 10q21</em></strong></p><p>
Based on phenotypic changes in knockout mice, <a href="#90" class="mim-tip-reference" title="Myouzen, K., Kochi, Y., Shimane, K., Fujio, K., Okamura, T., Okada, Y., Suzuki, A., Atsumi, T., Ito, S., Takada, K., Mimori, A., Ikegawa, S., Yamada, R., Nakamura, Y., Yamamoto, K. &lt;strong&gt;Regulatory polymorphisms in EGR2 are associated with susceptibility to systemic lupus erythematosus.&lt;/strong&gt; Hum. Molec. Genet. 19: 2313-2320, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20194224/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20194224&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq092&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20194224">Myouzen et al. (2010)</a> evaluated if polymorphisms in the EGR2 gene (<a href="/entry/129010">129010</a>) on chromosome 10q21 influence SLE susceptibility in humans. A significant positive correlation with expression was identified in a SNP located at the 5-prime flanking region of EGR2. In a case-control association study using 3 sets of SLE cohorts by genotyping 14 tag SNPs in the EGR2 gene region, a peak of association with SLE susceptibility was observed for <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs10761670;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs10761670</a>. This SNP was also associated with susceptibility to rheumatoid arthritis (RA; <a href="/entry/180300">180300</a>), suggesting that EGR2 is a common risk factor for SLE and RA. Among the SNPs in complete linkage disequilibrium with <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs10761670;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs10761670</a>, 2 SNPs (<a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1412554;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1412554</a> and <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1509957;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs1509957</a>) affected the binding of transcription factors and transcriptional activity in vitro, suggesting that they may be candidates of causal regulatory variants in this region. The authors proposed that EGR2 may be a genetic risk factor for SLE, in which increased gene expression may contribute to SLE pathogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20194224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the NCF1 Gene on Chromosome 7q11</em></strong></p><p>
<a href="#150" class="mim-tip-reference" title="Zhao, J., Ma, J., Deng, Y., Kelly, J. A., Kim, K., Bang, S.-Y., Lee, H.-S., Li, Q.-Z., Wakeland, E. K., Qiu, R., Liu, M., Guo, J., and 13 others. &lt;strong&gt;A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases.&lt;/strong&gt; Nature Genet. 49: 433-437, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28135245/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28135245&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.3782&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28135245">Zhao et al. (2017)</a> reported a missense variant (g.74779296G-A; <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs201802880;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs201802880</a>, arg90 to his) in exon 4 of NCF1, encoding the p47-phox subunit of the phagocyte NADPH oxidase (NOX2), as the putative underlying causal variant that drives a strong SLE-associated signal detected by SNP microarray analysis in the GTF2IRD1 (<a href="/entry/604318">604318</a>)-GTF2I (<a href="/entry/601679">601679</a>) region on chromosome 7q11.23 with a complex genomic structure. <a href="#150" class="mim-tip-reference" title="Zhao, J., Ma, J., Deng, Y., Kelly, J. A., Kim, K., Bang, S.-Y., Lee, H.-S., Li, Q.-Z., Wakeland, E. K., Qiu, R., Liu, M., Guo, J., and 13 others. &lt;strong&gt;A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases.&lt;/strong&gt; Nature Genet. 49: 433-437, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28135245/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28135245&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.3782&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28135245">Zhao et al. (2017)</a> showed that the arg90-to-his (R90H) substitution, which was reported by <a href="#96" class="mim-tip-reference" title="Olsson, L. M., Nerstedt, A., Lindqvist, A.-K., Johansson, A. C. M., Medstrand, P., Olofsson, P., Holmdahl, R. &lt;strong&gt;Copy number variation of the gene NCF1 is associated with rheumatoid arthritis.&lt;/strong&gt; Antioxid. Redox Signal. 16: 71-78, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/21728841/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;21728841&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1089/ars.2011.4013&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="21728841">Olsson et al. (2012)</a> to cause reduced reactive oxygen species (ROS) production, was associated with SLE (odds ratio (OR) = 3.47 in Asians (p-meta = 3.1 x 10(-104)), OR = 2.61 in European Americans, OR = 2.02 in African Americans) and other autoimmune diseases, including primary Sjogren syndrome (OR = 2.45 in Chinese, OR = 2.35 in European Americans) and rheumatoid arthritis (OR = 1.65 in Koreans). Additionally, <a href="#150" class="mim-tip-reference" title="Zhao, J., Ma, J., Deng, Y., Kelly, J. A., Kim, K., Bang, S.-Y., Lee, H.-S., Li, Q.-Z., Wakeland, E. K., Qiu, R., Liu, M., Guo, J., and 13 others. &lt;strong&gt;A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases.&lt;/strong&gt; Nature Genet. 49: 433-437, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28135245/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28135245&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.3782&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28135245">Zhao et al. (2017)</a> found that decreased and increased copy numbers of NCF1 were associated with predisposition to and protection against SLE, respectively. These data highlighted the pathogenic role of reduced NOX2-derived ROS levels in autoimmune diseases. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=28135245+21728841" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Association with the MEF2D Gene on Chromosome 1q22</em></strong></p><p>
Using targeted sequencing of coding and conserved regulatory regions within and around 215 SLE candidate genes selected on the basis of their known role in autoimmunity and/or association with canine immune-mediated diseases, <a href="#25" class="mim-tip-reference" title="Farias, F. H. G., Dahlqvist, J., Kozyrev, S. V., Leonard, D., Wilbe, M., Abramov, S. N., Alexsson, A., Pielberg, G. R., Hansson-Hamlin, H., Andersson, G., Tandre, K., Bengtsson, A. A., and 9 others. &lt;strong&gt;A rare regulatory variant in the MEF2D gene affects gene regulation and splicing and is associated with a SLE sub-phenotype in Swedish cohorts.&lt;/strong&gt; Europ. J. Hum. Genet. 27: 432-441, 2019.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30459414/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30459414&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30459414[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41431-018-0297-x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30459414">Farias et al. (2019)</a> identified a rare regulatory variant in intron 4 of the MEF2D (<a href="/entry/600663">600663</a>) gene, <a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs200395694;toggle_HGVS_names=open" target="_blank" onclick="gtag(\'event\', \'mim_outbound\', {\'name\': \'dbSNP\', \'domain\': \'ensembl.org\'})">rs200395694</a>G-T, that was associated with SLE in Swedish cohorts (504 SLE patients and 839 healthy controls; p = 0.014, CI = 1.1-10). Fisher's exact test revealed an association between the variant and a triad of disease manifestations, including Raynaud phenomenon, anti-U1-RNP, and anti-Smith antibodies (p = 0.00037), among the patients. Functional studies revealed that the region has properties of an active cell-specific enhancer and that the risk allele affects tissue-specific splicing. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30459414" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="pathogenesis" class="mim-anchor"></a>
<h4 href="#mimPathogenesisFold" id="mimPathogenesisToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimPathogenesisToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Pathogenesis</strong>
</span>
</h4>
</div>
<div id="mimPathogenesisFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>The role of estrogen in determining female preponderance of lupus was reviewed by <a href="#129" class="mim-tip-reference" title="Talal, N. &lt;strong&gt;Systemic lupus erythematosus, autoimmunity, sex and inheritance. (Editorial)&lt;/strong&gt; New Eng. J. Med. 301: 838-839, 1979.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/314588/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;314588&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM197910113011510&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="314588">Talal (1979)</a>. Patients with the XXY Klinefelter syndrome are predisposed to lupus. <a href="#84" class="mim-tip-reference" title="Miller, K. B., Schwartz, R. S. &lt;strong&gt;Familial abnormalities of suppressor-cell function in systemic lupus erythematosus.&lt;/strong&gt; New Eng. J. Med. 301: 803-809, 1979.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/314587/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;314587&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM197910113011502&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="314587">Miller and Schwartz (1979)</a> proposed 'that the development of systemic lupus erythematosus requires the participation of at least two functionally distinct classes of genes.' <a href="https://pubmed.ncbi.nlm.nih.gov/?term=314588+314587" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#124" class="mim-tip-reference" title="Stohl, W., Crow, M. K., Kunkel, H. G. &lt;strong&gt;Systemic lupus erythematosus with deficiency of the T4 epitope on T helper/inducer cells.&lt;/strong&gt; New Eng. J. Med. 312: 1671-1678, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2582253/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2582253&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1056/NEJM198506273122604&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2582253">Stohl et al. (1985)</a> identified 3 unrelated Jamaican black patients with SLE by American Rheumatism Association criteria (<a href="#130" class="mim-tip-reference" title="Tan, E. M., Cohen, A. S., Fries, J. F., Masi, A. T., McShane, D. J., Rothfield, N. F., Schaller, J. G., Talal, N., Winchester, R. J. &lt;strong&gt;The 1982 revised criteria for the classification of systemic lupus erythematosus.&lt;/strong&gt; Arthritis Rheum. 25: 1271-1277, 1982.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7138600/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7138600&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.1780251101&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7138600">Tan et al., 1982</a>) and with homozygous T4 epitope deficiency. Lymphadenopathy was an impressive feature and was present also in an asymptomatic and otherwise apparently healthy T4-deficient brother of one of the SLE patients. In 1 family, 2 heterozygotes had Hb Constant Spring and 1 had idiopathic thrombocytopenic purpura. The anti-DNA antibodies of unrelated SLE patients share cross-reactive idiotypes. Thus, a restricted number of germline genes may encode the autoantibodies involved in the pathogenesis of SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7138600+2582253" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#119" class="mim-tip-reference" title="Solomon, G., Schiffenbauer, J., Keiser, H. D., Diamond, B. &lt;strong&gt;Use of monoclonal antibodies to identify shared idiotypes on human antibodies to native DNA from patients with systemic lupus erythematosus.&lt;/strong&gt; Proc. Nat. Acad. Sci. 80: 850-854, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6187005/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6187005&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.80.3.850&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6187005">Solomon et al. (1983)</a> described a monoclonal antibody, 3I, that recognizes a cross-reactive idiotype on anti-DNA antibodies. <a href="#42" class="mim-tip-reference" title="Halpern, R., Davidson, A., Lazo, A., Solomon, G., Lahita, R., Diamond, B. &lt;strong&gt;Familial systemic lupus erythematosus: presence of a cross-reactive idiotype in healthy family members.&lt;/strong&gt; J. Clin. Invest. 76: 731-736, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3875631/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3875631&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI112028&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3875631">Halpern et al. (1985)</a> used this monoclonal antibody to study the sera of 27 members of 3 unrelated kindreds with SLE. Some healthy family members were found to have high-titered reactivity with the antiidiotype. The antigenic specificity of 3I-reactive antibodies in the serum of healthy persons is unknown. Possibly 3I-reactive antibodies are made in response to some unknown antigen and these antibodies subsequently mutate and acquire reactivity with DNA. <a href="#21" class="mim-tip-reference" title="Diamond, B., Scharff, M. D. &lt;strong&gt;Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity.&lt;/strong&gt; Proc. Nat. Acad. Sci. 81: 5841-5844, 1984.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6435121/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6435121&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.81.18.5841&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6435121">Diamond and Scharff (1984)</a> showed that a monoclonal antiphosphorylcholine antibody that has undergone a glutamic to alanine substitution in a heavy chain hypervariable region loses affinity for phosphorylcholine and acquires reactivity with DNA and other phosphorylated macromolecules. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=3875631+6435121+6187005" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#110" class="mim-tip-reference" title="Schur, P. H. &lt;strong&gt;Genetics of systemic lupus erythematosus.&lt;/strong&gt; Lupus 4: 425-437, 1995.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8749564/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8749564&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1177/096120339500400603&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8749564">Schur (1995)</a> reviewed the genetics of SLE, with particular reference to the major histocompatibility complex. He showed that different but related genes may be associated with lupus and autoantibodies in different countries. He suggested that examination of homogeneous (clinical, immunologic, ethnic, etc.) populations offers the best possibility for unraveling the maze of multiple genes involved in the disorder. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8749564" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#57" class="mim-tip-reference" title="Kotzin, B. L. &lt;strong&gt;Systemic lupus erythematosus.&lt;/strong&gt; Cell 85: 303-306, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8616885/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8616885&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)81108-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8616885">Kotzin (1996)</a> reviewed the molecular mechanisms in the pathogenesis of SLE. <a href="#137" class="mim-tip-reference" title="Vyse, T. J., Todd, J. A. &lt;strong&gt;Genetic analysis of autoimmune disease.&lt;/strong&gt; Cell 85: 311-318, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8616887/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8616887&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0092-8674(00)81110-1&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8616887">Vyse and Todd (1996)</a> gave a general review of genetic analysis of autoimmune diseases, including this one. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=8616887+8616885" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#108" class="mim-tip-reference" title="Sanghera, D. K., Wagenknecht, D. R., McIntyre, J. A., Kamboh, M. I. &lt;strong&gt;Identification of structural mutations in the fifth domain of apolipoprotein H (beta-2-glycoprotein I) which affect phospholipid binding.&lt;/strong&gt; Hum. Molec. Genet. 6: 311-316, 1997.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/9063752/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;9063752&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/6.2.311&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="9063752">Sanghera et al. (1997)</a> noted that beta-2-glycoprotein I (B2GPI, APOH; <a href="/entry/138700">138700</a>) is a required cofactor for anionic phospholipid binding by the antiphospholipid autoantibodies found in sera of many patients with SLE and primary antiphospholipid syndrome (<a href="/entry/107320">107320</a>). These studies suggested that the apoH-phospholipid complex forms the antigen to which the autoantibodies are directed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9063752" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#147" class="mim-tip-reference" title="Yasutomo, K., Horiuchi, T., Kagami, S., Tsukamoto, H., Hashimura, C., Urushihara, M., Kuroda, Y. &lt;strong&gt;Mutation of DNASE1 in people with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 28: 313-314, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11479590/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11479590&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/91070&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11479590">Yasutomo et al. (2001)</a> identified an early termination mutation in DNASE1 in 2 teenaged girls with SLE from Japan (<a href="/entry/125505#0001">125505.0001</a>). The nonsense mutations were associated with reduced DNASE activity and extremely high immunoglobulin G titer against nucleosomal antigens. <a href="#147" class="mim-tip-reference" title="Yasutomo, K., Horiuchi, T., Kagami, S., Tsukamoto, H., Hashimura, C., Urushihara, M., Kuroda, Y. &lt;strong&gt;Mutation of DNASE1 in people with systemic lupus erythematosus.&lt;/strong&gt; Nature Genet. 28: 313-314, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11479590/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11479590&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/91070&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11479590">Yasutomo et al. (2001)</a> suggested that their data were consistent with the hypothesis that a direct connection exists between low activity of DNASE1 and progression of human SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11479590" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#13" class="mim-tip-reference" title="Blanco, P., Palucka, A. K., Gill, M., Pascual, V., Banchereau, J. &lt;strong&gt;Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus.&lt;/strong&gt; Science 294: 1540-1543, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11711679/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11711679&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1064890&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11711679">Blanco et al. (2001)</a> hypothesized that SLE may be caused by alterations in the functions of dendritic cells. Consistent with this, monocytes from the blood of SLE patients were found to function as antigen-presenting cells in vitro. Furthermore, serum from SLE patients induced normal monocytes to differentiate into dendritic cells. These dendritic cells could capture antigens from dying cells and present them to CD4-positive T cells. The capacity of SLE patients' serum to induce dendritic cell differentiation correlated with disease activity and depended on the actions of interferon-alpha (<a href="/entry/147660">147660</a>). Thus, <a href="#13" class="mim-tip-reference" title="Blanco, P., Palucka, A. K., Gill, M., Pascual, V., Banchereau, J. &lt;strong&gt;Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus.&lt;/strong&gt; Science 294: 1540-1543, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11711679/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11711679&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1064890&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11711679">Blanco et al. (2001)</a> concluded that unabated induction of dendritic cells by interferon-alpha may drive the autoimmune response in SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11711679" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using a rheumatoid factor (RF+) transgenic B cell hybridoma line originally isolated from an autoimmune MRL/lpr mouse used as a model for SLE, <a href="#68" class="mim-tip-reference" title="Leadbetter, E. A., Rifkin, I. R., Hohlbaum, A. M., Beaudette, B. C., Shlomchik, M. J., Marshak-Rothstein, A. &lt;strong&gt;Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors.&lt;/strong&gt; Nature 416: 603-607, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11948342/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11948342&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/416603a&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11948342">Leadbetter et al. (2002)</a> determined that these cells respond only to IgG2a immune complexes containing DNA and not to haptens or proteins. After ruling out complement receptors (i.e., CD21/CR2, <a href="/entry/120650">120650</a>) as a potential second receptor on B cells, screening of cells expressing the adaptor protein Myd88 (<a href="/entry/602170">602170</a>), through which all toll-like receptors signal, revealed that RF+ B cells lacking Myd88 are completely unresponsive to IgG2a antinucleosome monoclonal antibodies (mAb). TLR9 (<a href="/entry/605474">605474</a>) responsiveness to CpG oligodeoxynucleotides (ODN) is presumed to require endosome acidification. The response to stimulation of RF+ B cells by IgG2a mAb or CpG-ODN, but not by TLR2 (<a href="/entry/603028">603028</a>) or TLR4 (<a href="/entry/603030">603030</a>) agonists, was blocked by inhibitors of endosome acidification, notably chloroquine, suggesting a mechanistic basis for its efficacy in the treatment for both RA and SLE. <a href="#68" class="mim-tip-reference" title="Leadbetter, E. A., Rifkin, I. R., Hohlbaum, A. M., Beaudette, B. C., Shlomchik, M. J., Marshak-Rothstein, A. &lt;strong&gt;Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors.&lt;/strong&gt; Nature 416: 603-607, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11948342/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11948342&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/416603a&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11948342">Leadbetter et al. (2002)</a> proposed that other endogenous subcellular nucleic acid-protein autoantigens may signal through other TLRs to abrogate peripheral B-cell tolerance. They also suggested that infectious agent PAMP (patterns associated with microbial pathogens) engaging TLRs may create a synergy with autoantibody-autoantigen immune complexes, thus explaining the association between infection and autoimmune disease flares. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11948342" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Risk of SLE is higher in people of West African descent than in Europeans. <a href="#86" class="mim-tip-reference" title="Molokhia, M., Hoggart, C., Patrick, A. L., Shriver, M., Parra, E., Ye, J., Silman, A. J., McKeigue, P. M. &lt;strong&gt;Relation of risk of systemic lupus erythematosus to west African admixture in a Caribbean population.&lt;/strong&gt; Hum. Genet. 112: 310-318, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12545274/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12545274&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/s00439-002-0883-3&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12545274">Molokhia et al. (2003)</a> attempted to distinguish between genetic and environmental explanations for this ethnic difference by examining the relationship of disease risk to individual admixture (defined as the proportion of the genome that is of West African ancestry). They studied 124 cases of SLE and 219 matched controls resident in Trinidad. Analysis of admixture was restricted to 52 cases and 107 controls who reported no Indian or Chinese ancestry. These individuals were typed with a panel of 26 SNPs and 5 insertion/deletion polymorphisms chosen to have large allele frequency differentials between West African, European, and Native American populations. Mean West African admixture was 0.81 in cases and 0.74 in controls (P = 0.01). The risk ratio for SLE associated with unit change in this admixture was estimated as 32.5. Adjustment for measures of socioeconomic status (household amenities in childhood and years of education) altered this risk ratio only slightly. These results supported an additive genetic model for the ethnic difference in risk of SLE between West Africans and Europeans, rather than an environmental explanation or an 'overdominant' model in which risk is higher in heterozygous than in homozygous individuals. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12545274" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#58" class="mim-tip-reference" title="Kowal, C., DeGiorgio, L. A., Lee, J. Y., Edgar, M. A., Huerta, P. T., Volpe, B. T., Diamond, B. &lt;strong&gt;Human lupus autoantibodies against NMDA receptors mediate cognitive impairment.&lt;/strong&gt; Proc. Nat. Acad. Sci. 103: 19854-19859, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17170137/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17170137&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17170137[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0608397104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17170137">Kowal et al. (2006)</a> demonstrated that human anti-NMDA receptor antibodies isolated from patients with neuropsychiatric lupus caused hippocampal neuron damage and memory deficits when administered to mice with lipopolysaccharide to penetrate the blood-brain barrier. Postmortem brain tissue from 5 patients with neuropsychiatric lupus showed endogenous IgG that bound DNA and colocalized with NMDA receptor antibodies for NR2A (GRIN2A; <a href="/entry/138253">138253</a>) and NR2B (GRIN2B; <a href="/entry/138252">138252</a>). The findings suggested that some patients with neuropsychiatric lupus have circulating anti-NMDAR antibodies capable of causing neuronal damage and memory deficits if they breach the blood-brain barrier. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17170137" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To examine the role of defensins in SLE pathogenesis, <a href="#123" class="mim-tip-reference" title="Sthoeger, Z. M., Bezalel, S., Chapnik, N., Asher, I., Froy, O. &lt;strong&gt;High alpha-defensin levels in patients with systemic lupus erythematosus.&lt;/strong&gt; Immunology 127: 116-122, 2009.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/19191901/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;19191901&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=19191901[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1365-2567.2008.02997.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="19191901">Sthoeger et al. (2009)</a> used ELISA and real-time PCR to measure the levels of the alpha-defensin DEFA2 (<a href="/entry/125220">125220</a>) and the beta-defensin HBD2 (DEFB4; <a href="/entry/602215">602215</a>) in the blood of SLE patients. They found that HBD2 was undetectable in sera from SLE patients, and that HBD2 mRNA was low in whole blood from SLE patients, similar to controls. In contrast, DEFA2 levels were significantly higher in all SLE patients compared with controls, and 60% of patients had very high serum levels. High DEFA2 levels correlated with disease activity, but not with neutrophil numbers, suggesting that neutrophil degranulation may lead to alpha-defensin secretion in SLE patients. Reduction of DEFA2 levels to the normal range correlated with disease improvement. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19191901" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#61" class="mim-tip-reference" title="Kshirsagar, S., Riedl, M., Billing, H., Tonshoff, B., Thangavadivel, S., Steuber, C., Staude, H., Wechselberger, G., Edelbauer, M. &lt;strong&gt;Akt-dependent enhanced migratory capacity of Th17 cells from children with lupus nephritis.&lt;/strong&gt; J. Immun. 193: 4895-4903, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25339666/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25339666&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.1400044&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25339666">Kshirsagar et al. (2014)</a> reported that enhanced STAT3 (<a href="/entry/102582">102582</a>) activity in CD4 (<a href="/entry/186940">186940</a>)-positive/CD45A (see <a href="/entry/151460">151460</a>)-negative/FOXP3 (<a href="/entry/300292">300292</a>)-negative and FOXP3-low effector T cells from children with lupus nephritis (LN) correlated with increased frequency of IL17 (<a href="/entry/603149">603149</a>)-producing cells within these T-cell populations. Rapamycin treatment reduced both STAT3 activation and Th17 cell frequency in lupus patients. Th17 cells from children with LN exhibited high AKT (<a href="/entry/164730">164730</a>) activity and enhanced migratory capacity. Inhibition of AKT in cells from LN patients resulted in reduced Th17-cell migration. <a href="#61" class="mim-tip-reference" title="Kshirsagar, S., Riedl, M., Billing, H., Tonshoff, B., Thangavadivel, S., Steuber, C., Staude, H., Wechselberger, G., Edelbauer, M. &lt;strong&gt;Akt-dependent enhanced migratory capacity of Th17 cells from children with lupus nephritis.&lt;/strong&gt; J. Immun. 193: 4895-4903, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25339666/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25339666&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.1400044&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25339666">Kshirsagar et al. (2014)</a> concluded that the AKT signaling pathway plays a significant role in Th17-cell migratory activity in children with LN. They suggested that inhibition of AKT may result in suppression of chronic inflammation in LN. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25339666" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Excess Lymphocyte Low Molecular Weight DNA</em></strong></p><p>
<a href="#81" class="mim-tip-reference" title="Mackie, I. J., Colaco, C. B., Machin, S. J. &lt;strong&gt;Familial lupus anticoagulants.&lt;/strong&gt; Brit. J. Haemat. 67: 359-363, 1987.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3689698/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3689698&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/j.1365-2141.1987.tb02358.x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3689698">Mackie et al. (1987)</a> found circulating anticoagulants in multiple members of SLE families, but also found coagulation abnormalities in some spouses, suggesting that a transmissible agent or other environmental factors may be involved. All patients with SLE show 2 classes of newly synthesized DNA in sucrose density gradients of phytohemagglutinin-stimulated lymphocytes: a large-molecular-weight fraction that comigrates with control DNA and an excess low molecular weight DNA (LMW-DNA) fraction not found in control lymphocytes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3689698" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="animalModel" class="mim-anchor"></a>
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#55" class="mim-tip-reference" title="Knight, J. G., Adams, D. D. &lt;strong&gt;Three genes for lupus nephritis in NZB x NZW mice.&lt;/strong&gt; J. Exp. Med. 147: 1653-1660, 1978.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/681876/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;681876&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1084/jem.147.6.1653&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="681876">Knight and Adams (1978)</a> identified 2 genes in New Zealand white (NZW) mice that determine development of nephritis in crosses with New Zealand black (NZB) mice. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=681876" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#132" class="mim-tip-reference" title="Theofilopoulos, A. N., Dixon, F. J. &lt;strong&gt;Murine models of systemic lupus erythematosus.&lt;/strong&gt; Adv. Immun. 37: 269-390, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3890479/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3890479&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/s0065-2776(08)60342-9&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3890479">Theofilopoulos and Dixon (1985)</a> provided a review of murine models of SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3890479" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>F1 hybrids of NZB and NZW mice are a model of human SLE. These mice develop a severe immune complex-mediated nephritis, in which antinuclear autoantibodies seem to play a major role. <a href="#136" class="mim-tip-reference" title="Vyse, T. J., Drake, C. G., Rozzo, S. J., Roper, E., Izui, S., Kotzin, B. L. &lt;strong&gt;Genetic linkage of IgG autoantibody production in relation to lupus nephritis in New Zealand hybrid mice.&lt;/strong&gt; J. Clin. Invest. 98: 1762-1772, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8878426/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8878426&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI118975&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8878426">Vyse et al. (1996)</a> used a genetic analysis of a backcross between F1 hybrid mice and NZW mice to provide insight into whether different autoantibodies are subject to separate genetic influences and to determine which autoantibodies are most important in the development of lupus-like nephritis. The results showed one set of loci that coordinately regulated serum levels of IgG antibodies to double-stranded DNA, single-stranded DNA, total histones, and chromatin. These loci overlapped with loci that were linked to the production of autoantibodies to the viral glycoprotein gp70. Loci linked with anti-gp70 compared with antinuclear antibodies demonstrated the strongest linkage with renal disease, suggesting that autoantibodies to gp70 are the major pathogenic antibodies in this model of lupus nephritis. Interestingly, a locus on the distal part of mouse chromosome 4, Nba1, was linked with nephritis but not with any of the autoantibodies measured, suggesting that it contributes to renal disease at a checkpoint distal to autoantibody production. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8878426" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By linkage analysis, <a href="#87" class="mim-tip-reference" title="Morel, L., Rudofsky, U. H., Longmate, J. A., Schiffenbauer, J., Wakeland, E. K. &lt;strong&gt;Polygenic control of susceptibility to murine systemic lupus erythematosus.&lt;/strong&gt; Immunity 1: 219-229, 1994.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7889410/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7889410&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/1074-7613(94)90100-7&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7889410">Morel et al. (1994)</a> found that genomic intervals on mouse chromosomes 1 (Sle1), 4 (Sle2), 7 (Sle3) and 17 (Sle4) are strongly linked to lupus nephritis. <a href="#85" class="mim-tip-reference" title="Mohan, C., Morel, L., Yang, P., Watanabe, H., Croker, B., Gilkeson, G., Wakeland, E. K. &lt;strong&gt;Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies.&lt;/strong&gt; J. Clin. Invest. 103: 1685-1695, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10377175/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10377175&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10377175[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1172/JCI5827&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10377175">Mohan et al. (1999)</a> showed that on a normal B6 background, the introduction of Sle1, as in the monocongenic B6.NZMc1 mice, led to hyperglobulinemia, a breach in tolerance to chromatin, and a modest expansion of activated lymphocytes. However, serum autoantibodies did not target against double-stranded DNA or basement membrane antigens. When Sle1 and Sle3 were combined, as in the bicongenic B6.NZMc1/c7 mice, high titers of autoantibodies were generated which had specificity not only for the different chromatin epitopes (including dsDNA) but also for the intact glomeruli, leading to fatal lupus glomerulonephritis. These findings lent strong support to a 2-step epistatic model for the formation of pathogenic nephrophilic autoantibodies in lupus. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=10377175+7889410" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#40" class="mim-tip-reference" title="Gross, J. A., Johnston, J., Mudri, S., Enselman, R., Dillon, S. R., Madden, K., Xu, W., Parrish-Novak, J., Foster, D., Lofton-Day, C., Moore, M., Littau, A., Grossman, A., Haugen, H., Foley, K., Blumberg, H., Harrison, K., Kindsvogel, W., Clegg, C. H. &lt;strong&gt;TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease.&lt;/strong&gt; Nature 404: 995-999, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10801128/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10801128&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/35010115&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10801128">Gross et al. (2000)</a> overexpressed BAFF (BLYS, or TNFSF13B; <a href="/entry/603969">603969</a>) in lymphoid cells of transgenic mice and found that the mice develop symptoms characteristic of systemic lupus erythematosus and expand a rare population of splenic B-1a lymphocytes. Circulating BAFF was more abundant in New Zealand BWF1 and MRL lpr/lpr mice during the onset and progression of SLE. <a href="#40" class="mim-tip-reference" title="Gross, J. A., Johnston, J., Mudri, S., Enselman, R., Dillon, S. R., Madden, K., Xu, W., Parrish-Novak, J., Foster, D., Lofton-Day, C., Moore, M., Littau, A., Grossman, A., Haugen, H., Foley, K., Blumberg, H., Harrison, K., Kindsvogel, W., Clegg, C. H. &lt;strong&gt;TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease.&lt;/strong&gt; Nature 404: 995-999, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10801128/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10801128&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/35010115&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10801128">Gross et al. (2000)</a> identified 2 TNF receptor family members, TACI (<a href="/entry/604907">604907</a>) and BCMA (<a href="/entry/109545">109545</a>), that bind BAFF. Treatment of New Zealand BWF1 mice with soluble TACI-Ig fusion protein inhibited the development of proteinuria and prolonged survival of the animals. These findings demonstrated the involvement of BAFF and its receptors in the develop of SLE and identified TACI/Ig as a promising treatment of autoimmune disease in humans. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10801128" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Systemic lupus erythematosus is characterized by the presence of antinuclear antibodies (ANA) directed against naked DNA and entire nucleosomes. It was thought that the resulting immune complexes accumulate in vessel walls, glomeruli, and joints and cause a hypersensitivity reaction type III that manifests as glomerulonephritis, arthritis, and generalized vasculitis. Several studies had suggested that increased liberation or disturbed clearance of nuclear DNA-protein complexes after cell death may initiate and propagate the disease. Consequently, DNASE1 (<a href="/entry/125505">125505</a>), which is a major nuclease present in serum, urine, and secreta, may be responsible for the removal of DNA from nuclear antigens at sites of high cell turnover and thus prevent SLE. To test this hypothesis, <a href="#92" class="mim-tip-reference" title="Napirei, M., Karsunky, H., Zevnik, B., Stephan, H., Mannherz, H. G., Moroy, T. &lt;strong&gt;Features of systemic lupus erythematosus in Dnase1-deficient mice.&lt;/strong&gt; Nature Genet. 25: 177-181, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10835632/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10835632&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/76032&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10835632">Napirei et al. (2000)</a> generated Dnase1-deficient mice by gene targeting. They found that these animals show the classic symptoms of SLE, namely the presence of ANA, the deposition of immune complexes in glomeruli, and full-blown glomerulonephritis in a Dnase1 dose-dependent manner. Moreover, in agreement with earlier reports, they found Dnase1 activities in serum to be lower in SLE patients than in normal subjects. The findings suggested that lack or reduction of Dnase1 is a critical factor in the initiation of human SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10835632" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#127" class="mim-tip-reference" title="Sun, Y., Chen, H. M., Subudhi, S. K., Chen, J., Koka, R., Chen, L., Fu, Y.-X. &lt;strong&gt;Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease.&lt;/strong&gt; Nature Med. 8: 1405-1413, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12426559/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12426559&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1202-796&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12426559">Sun et al. (2002)</a> reported that treatment with 2A, an agonistic monoclonal antibody to CD137 (TNFRSF9; <a href="/entry/602250">602250</a>), blocked lymphadenopathy and spontaneous autoimmune disease in Fas-deficient mice (a model for human SLE), ultimately leading to their prolonged survival. Specifically, 2A treatment rapidly augmented interferon-gamma (IFNG; <a href="/entry/147570">147570</a>) production and induced the depletion of autoreactive B cells and abnormal double-negative T cells, possibly by increasing their apoptosis through Fas- and TNF receptor-independent mechanisms. <a href="#127" class="mim-tip-reference" title="Sun, Y., Chen, H. M., Subudhi, S. K., Chen, J., Koka, R., Chen, L., Fu, Y.-X. &lt;strong&gt;Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease.&lt;/strong&gt; Nature Med. 8: 1405-1413, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12426559/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12426559&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1202-796&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12426559">Sun et al. (2002)</a> concluded that agonistic monoclonal antibodies specific for costimulatory molecules could be used as novel therapeutic agents to deplete autoreactive lymphocytes and block autoimmune disease progression. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12426559" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>To clarify mechanisms governing the anxiety seen in lupus, <a href="#91" class="mim-tip-reference" title="Nakamura, K., Xiu, Y., Ohtsuji, M., Sugita, G., Abe, M., Ohtsuji, N., Hamano, Y., Jiang, Y., Takahashi, N., Shirai, T., Nishimura, H., Hirose, S. &lt;strong&gt;Genetic dissection of anxiety in autoimmune disease.&lt;/strong&gt; Hum. Molec. Genet. 12: 1079-1086, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12719372/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12719372&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddg128&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12719372">Nakamura et al. (2003)</a> carried out genomewide scans in mice and found that the region including interferon-alpha (IFNA; <a href="/entry/147660">147660</a>) on chromosome 4 in NZB mice was significantly linked to the anxiety-like behavior seen in SLE-prone BWF1 mice. This finding was confirmed by anxiety-like performances of mice with heterozygous NZB/NZW alleles in the susceptibility region bred onto the NZW background. In BWF1 mice, neuronal IFN-alpha levels were elevated and blockade of the mu-1 opioid receptor (OPRM1; <a href="/entry/600018">600018</a>) or corticotropin-releasing hormone receptor-1 (CRHR1; <a href="/entry/122561">122561</a>), possible downstream effectors for IFN-alpha in the brain, partially overcame the anxiety-like behavior seen in these mice. Neuronal corticotropin-releasing hormone levels were consistently higher in BWF1 than NZW mice. Furthermore, pretreatment of mu-1 opioid receptor antagonist abolished anxiety-like behavior seen in IFN-alpha-treated NZW mice. <a href="#91" class="mim-tip-reference" title="Nakamura, K., Xiu, Y., Ohtsuji, M., Sugita, G., Abe, M., Ohtsuji, N., Hamano, Y., Jiang, Y., Takahashi, N., Shirai, T., Nishimura, H., Hirose, S. &lt;strong&gt;Genetic dissection of anxiety in autoimmune disease.&lt;/strong&gt; Hum. Molec. Genet. 12: 1079-1086, 2003.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12719372/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12719372&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddg128&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12719372">Nakamura et al. (2003)</a> concluded that a genetically determined endogenous excess amount of IFN-alpha in the brain may form 1 aspect of anxiety-like behavior seen in SLE-prone mice. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12719372" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In SLE-prone NZB mice and their F1 cross with NZW mice, B cell abnormalities can be ascribed mainly to self-reactive CD5+ B1 cells. <a href="#78" class="mim-tip-reference" title="Li, N., Nakamura, K., Jiang, Y., Tsurui, H., Matsuoka, S., Abe, M., Ohtsuji, M., Nishimura, H., Kato, K., Kawai, T., Atsumi, T., Koike, T., Shirai, T., Ueno, H., Hirose, S. &lt;strong&gt;Gain-of-function polymorphism in mouse and human Ltk: implications for the pathogenesis of systemic lupus erythematosus.&lt;/strong&gt; Hum. Molec. Genet. 13: 171-179, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14695357/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14695357&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh020&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14695357">Li et al. (2004)</a> performed a genomewide scan for susceptibility genes for aberrant activation of B1 cells in F1/NZB backcross mice and identified the Ltk gene as a possible candidate. Sequence and functional analyses of the gene revealed that NZB mice have a gain-of-function polymorphism in the LTK kinase domain near YXXM, a binding motif of the p85 subunit of phosphatidylinositol 3-kinase (PIK3R1; <a href="/entry/171833">171833</a>). SLE patients had the equivalent human LTK polymorphism at a significantly higher frequency compared to healthy controls. <a href="#78" class="mim-tip-reference" title="Li, N., Nakamura, K., Jiang, Y., Tsurui, H., Matsuoka, S., Abe, M., Ohtsuji, M., Nishimura, H., Kato, K., Kawai, T., Atsumi, T., Koike, T., Shirai, T., Ueno, H., Hirose, S. &lt;strong&gt;Gain-of-function polymorphism in mouse and human Ltk: implications for the pathogenesis of systemic lupus erythematosus.&lt;/strong&gt; Hum. Molec. Genet. 13: 171-179, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/14695357/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;14695357&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh020&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="14695357">Li et al. (2004)</a> suggested that this LTK SNP may cause upregulation of the PI3K pathway and possibly form a genetic component of susceptibility to abnormal proliferation of self-reactive B cells in SLE. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14695357" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#134" class="mim-tip-reference" title="Tournoy, J., Bossuyt, X., Snellinx, A., Regent, M., Garmyn, M., Serneels, L., Saftig, P., Craessaerts, K., De Strooper, B., Hartmann, D. &lt;strong&gt;Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice.&lt;/strong&gt; Hum. Molec. Genet. 13: 1321-1331, 2004.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15128703/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15128703&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddh151&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15128703">Tournoy et al. (2004)</a> reported that in PS1 (<a href="/entry/104311">104311</a>) +/- PS2 (<a href="/entry/600759">600759</a>) -/- mice, PS1 protein concentration was considerably lowered, functionally reflected by reduced gamma-secretase activity and impaired beta-catenin (CTNNB1; <a href="/entry/116806">116806</a>) downregulation. Their phenotype was normal up to 6 months, when the majority of the mice developed an autoimmune disease characterized by dermatitis, glomerulonephritis, keratitis, and vasculitis, as seen in human systemic lupus erythematosus. Besides B cell-dominated infiltrates, the authors observed a hypergammaglobulinemia with immune complex deposits in several tissues, high-titer nuclear autoantibodies, and an increased CD4+/CD8+ ratio. The mice further developed a benign skin hyperplasia similar to human seborrheic keratosis (<a href="/entry/182000">182000</a>) as opposed to malignant keratocarcinomata observed in skin-specific PS1 'full' knockouts. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15128703" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Despite the heterogeneity of factors influencing susceptibility to lupus, <a href="#83" class="mim-tip-reference" title="McGaha, T. L., Sorrentino, B., Ravetch, J. V. &lt;strong&gt;Restoration of tolerance in lupus by targeted inhibitory receptor expression.&lt;/strong&gt; Science 307: 590-593, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15681388/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15681388&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1105160&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15681388">McGaha et al. (2005)</a> demonstrated that the partial restoration of inhibitory Fc receptor (FC-gamma-RIIB; <a href="/entry/604590">604590</a>) levels in B cells in lupus-prone mouse strains is sufficient to restore tolerance and prevent autoimmunity. Fc-gamma-RIIB regulates a common B-cell checkpoint in genetically diverse lupus-prone mouse strains, and modest changes in its expression can result in either tolerance or autoimmunity. <a href="#83" class="mim-tip-reference" title="McGaha, T. L., Sorrentino, B., Ravetch, J. V. &lt;strong&gt;Restoration of tolerance in lupus by targeted inhibitory receptor expression.&lt;/strong&gt; Science 307: 590-593, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15681388/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15681388&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1105160&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15681388">McGaha et al. (2005)</a> suggested that increasing Fc-gamma-RIIB levels in B cells may be an effective way to treat autoimmune diseases. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15681388" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In the MRL-lpr mouse, <a href="#7" class="mim-tip-reference" title="Barber, D. F., Bartolome, A., Hernandez, C., Flores, J. M., Redondo, C., Fernandez-Arias, C., Camps, M., Ruckle, T., Schwarz, M. K., Rodriguez, S., Martinez-A, C., Balomenos, D., Rommel, C., Carrera, A. C. &lt;strong&gt;PI3K-gamma inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus.&lt;/strong&gt; Nature Med. 11: 933-935, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16127435/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16127435&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1291&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16127435">Barber et al. (2005)</a> found that pharmacologic inhibition of phosphoinositide 3-kinase-gamma (PIK3CG; <a href="/entry/601232">601232</a>), a kinase that regulates inflammation, reduced CD4+ T-cell populations, reduced glomerulonephritis, and prolonged life span. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16127435" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In both mice and humans with SLE, <a href="#19" class="mim-tip-reference" title="DeGiorgio, L. A., Konstantinov, K. N., Lee, S. C., Hardin, J. A., Volpe, B. T., Diamond, B. &lt;strong&gt;A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus.&lt;/strong&gt; Nature Med. 7: 1189-1193, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11689882/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11689882&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nm1101-1189&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11689882">DeGiorgio et al. (2001)</a> found that a subset of antibodies against dsDNA recognized portions of the extracellular domain of the NMDA receptor subunits, NR2A (<a href="/entry/138253">138253</a>) and NR2B (<a href="/entry/138252">138252</a>), which are present in the hippocampus, amygdala, and hypothalamus. Murine and human anti-dsDNA/anti-NR2 antibodies mediated apoptotic death of neurons in vitro and in vivo. <a href="#46" class="mim-tip-reference" title="Huerta, P. T., Kowal, C., DeGiorgio, L. A., Volpe, B. T., Diamond, B. &lt;strong&gt;Immunity and behavior: antibodies alter emotion.&lt;/strong&gt; Proc. Nat. Acad. Sci. 103: 678-683, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16407105/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16407105&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16407105[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0510055103&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16407105">Huerta et al. (2006)</a> showed that mice immunized to produce anti-dsDNA/anti-NR2 IgG antibodies developed damage to neurons in the amygdala after being given epinephrine to induce leaks in the blood-brain barrier. The resulting neuronal insults were noninflammatory. Mice with antibody-mediated damage in the amygdala developed behavioral changes characterized by a deficient response to fear-conditioning paradigms. <a href="#46" class="mim-tip-reference" title="Huerta, P. T., Kowal, C., DeGiorgio, L. A., Volpe, B. T., Diamond, B. &lt;strong&gt;Immunity and behavior: antibodies alter emotion.&lt;/strong&gt; Proc. Nat. Acad. Sci. 103: 678-683, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16407105/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16407105&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16407105[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0510055103&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16407105">Huerta et al. (2006)</a> postulated that when the blood-brain barrier is compromised, neurotoxic antibodies can penetrate the central nervous system and result in cognitive, emotional, and behavioral changes, as seen in neuropsychiatric lupus. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=11689882+16407105" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By inserting a region from the lupus-prone NZB mouse strain into an autoimmunity-resistant strain, <a href="#128" class="mim-tip-reference" title="Talaei, N., Yu, T., Manion, K., Bremner, R., Wither, J. E. &lt;strong&gt;Identification of the SLAM adapter molecule EAT-2 as a lupus-susceptibility gene that acts through impaired negative regulation of dendritic cell signaling.&lt;/strong&gt; J. Immun. 195: 4623-4631, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26432891/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26432891&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.1500552&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26432891">Talaei et al. (2015)</a> had previously found that a locus on chromosome 1 was associated with altered DC function and synergized with T-cell functional defects to promote expansion of pathogenic proinflammatory T-cell subsets. <a href="#128" class="mim-tip-reference" title="Talaei, N., Yu, T., Manion, K., Bremner, R., Wither, J. E. &lt;strong&gt;Identification of the SLAM adapter molecule EAT-2 as a lupus-susceptibility gene that acts through impaired negative regulation of dendritic cell signaling.&lt;/strong&gt; J. Immun. 195: 4623-4631, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26432891/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26432891&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.1500552&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26432891">Talaei et al. (2015)</a> showed that Eat2 (SH2D1B; <a href="/entry/608510">608510</a>) was polymorphic in its promoter region in NZB mice, leading to a 70% reduction in Eat2 in DCs. Silencing of Eat2 in DCs lacking the NZB polymorphism resulted in increased Il12 (<a href="/entry/161560">161560</a>) production and enhanced differentiation of T cells into a Th1 phenotype, mimicking the DC phenotype in mice with the NZB polymorphism. Eat2 knockdown resulted in increased Il12 production by Cd40 (<a href="/entry/109535">109535</a>)-stimulated DCs. <a href="#128" class="mim-tip-reference" title="Talaei, N., Yu, T., Manion, K., Bremner, R., Wither, J. E. &lt;strong&gt;Identification of the SLAM adapter molecule EAT-2 as a lupus-susceptibility gene that acts through impaired negative regulation of dendritic cell signaling.&lt;/strong&gt; J. Immun. 195: 4623-4631, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/26432891/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;26432891&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.1500552&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="26432891">Talaei et al. (2015)</a> concluded that EAT2 negatively regulates cytokine production in DCs downstream of SLAM (SLAMF1; <a href="/entry/603492">603492</a>) engagement and that a genetic polymorphism disturbing this process promotes lupus development. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26432891" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="history" class="mim-anchor"></a>
<h4 href="#mimHistoryFold" id="mimHistoryToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimHistoryToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>History</strong>
</span>
</h4>
</div>
<div id="mimHistoryFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#30" class="mim-tip-reference" title="Fronek, Z., Lentz, D., Berliner, N., Duby, A. D., Klein, K. A., Seidman, J. G., Schur, P. H. &lt;strong&gt;Systemic lupus erythematosus is not genetically linked to the beta chain of the T cell receptor.&lt;/strong&gt; Arthritis Rheum. 29: 1023-1025, 1986.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3741512/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3741512&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.1780290812&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3741512">Fronek et al. (1986)</a> found that the distribution of patterns of RFLPs at the T-cell receptor beta chain locus (see <a href="/entry/186930">186930</a>) was the same in SLE patients as in their relatives and in controls. Thus, the authors concluded that the TCRB 'genes are not coinherited with genes responsible for' SLE. <a href="#141" class="mim-tip-reference" title="Wong, D. W., Bentwich, Z., Martinez-Tarquino, C., Seidman, J. G., Duby, A. D., Quertermous, T., Schur, P. H. &lt;strong&gt;Nonlinkage of the T cell receptor alpha, beta, and gamma genes to systemic lupus erythematosus in multiplex families.&lt;/strong&gt; Arthritis Rheum. 31: 1371-1376, 1988.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/2903748/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;2903748&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/art.1780311105&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="2903748">Wong et al. (1988)</a> found no linkage to the alpha (see <a href="/entry/186880">186880</a>), beta, and gamma (see <a href="/entry/186970">186970</a>) genes of the T-cell receptor. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=2903748+3741512" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#76" class="mim-tip-reference" title="Levcovitz, H., Fletcher, M. A., Phillips, P., Chertok, H. A., Altman, R., Benke, P. J. &lt;strong&gt;Segregation of lymphocyte low molecular weight DNA and antinuclear-antibodies in a family with systemic lupus erythematosus in first cousins.&lt;/strong&gt; Hum. Genet. 80: 253-258, 1988. Note: Retraction: Hum. Genet. 87: 634 only, 1991.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3263937/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3263937&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1007/BF01790093&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3263937">Levcovitz et al. (1988)</a> reported a family in which a low-molecular-weight DNA marker for systemic autoimmune disease appeared to be inherited as an autosomal dominant trait; however, the report was later retracted. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3263937" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The report of <a href="#131" class="mim-tip-reference" title="Tao, D., Shangwu, L., Qun, W., Yan, L., Wei, J., Junyan, L., Feili, G., Boquan, J., Jinquan, T. &lt;strong&gt;CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus.&lt;/strong&gt; J. Immun. 174: 1281-1290, 2005. Note: Retraction: J. Immun. 188: 5800 only, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/15661884/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;15661884&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.4049/jimmunol.174.3.1281&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="15661884">Tao et al. (2005)</a> concluding that CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus was retracted. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15661884" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The report of <a href="#12" class="mim-tip-reference" title="Bialas, A. R., Presumey, J., Das, A., van der Poel, C. E., Lapchak, P. H., Mesin, L., Victora, G., Tsokos, G. C., Mawrin, C., Herbst, R., Carroll, M. C. &lt;strong&gt;Microglia-dependent synapse loss in type I interferon-mediated lupus.&lt;/strong&gt; Nature 546: 539-543, 2017. Note: Retraction: Nature 578: 177 only, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28614301/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28614301&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature22821&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28614301">Bialas et al. (2017)</a> regarding microglia-dependent synapse loss of type I interferon-mediated lupus was retracted because the authors were unable to replicate key aspects of the results. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28614301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="seeAlso" class="mim-anchor"></a>
<h4 href="#mimSeeAlsoFold" id="mimSeeAlsoToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimSeeAlsoToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>See Also:</strong>
</span>
</h4>
<div id="mimSeeAlsoFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<a href="#Arnett1976" class="mim-tip-reference" title="Arnett, F. C., Shulman, L. E. &lt;strong&gt;Studies in familial systemic lupus erythematosus.&lt;/strong&gt; Medicine 55: 313-322, 1976.">Arnett and Shulman (1976)</a>; <a href="#Exner1980" class="mim-tip-reference" title="Exner, T., Barber, S., Kronenberg, H., Rickard, K. A. &lt;strong&gt;Familial association of the lupus anticoagulant.&lt;/strong&gt; Brit. J. Haemat. 45: 89-96, 1980.">Exner et al. (1980)</a>; <a href="#First1973" class="mim-tip-reference" title="First, M. R. &lt;strong&gt;Familial systemic lupus erythematosus.&lt;/strong&gt; S. Afr. Med. J. 47: 742-744, 1973.">First (1973)</a>; <a href="#Hughes1983" class="mim-tip-reference" title="Hughes, G. R. V., Batchelor, J. R. &lt;strong&gt;The genetics of systemic lupus erythematosus. (Editorial)&lt;/strong&gt; Brit. Med. J. 286: 416-417, 1983.">Hughes
and Batchelor (1983)</a>; <a href="#Kohler1974" class="mim-tip-reference" title="Kohler, P. F., Percy, J., Campion, W. M., Smyth, C. J. &lt;strong&gt;Hereditary angioedema and &#x27;familial lupus&#x27; erythematosus in identical twin boys.&lt;/strong&gt; Am. J. Med. 56: 406-411, 1974.">Kohler et al. (1974)</a>; <a href="#Larsen1972" class="mim-tip-reference" title="Larsen, R. A. &lt;strong&gt;Family studies in systemic lupus erythematosus (SLE). I. A proband material from central eastern Norway.&lt;/strong&gt; Acta Med. Scand. Suppl. 543: 11-19, 1972.">Larsen and Godal (1972)</a>; <a href="#Larsen1972" class="mim-tip-reference" title="Larsen, R. A. &lt;strong&gt;Family studies in systemic lupus erythematosus (SLE). I. A proband material from central eastern Norway.&lt;/strong&gt; Acta Med. Scand. Suppl. 543: 11-19, 1972.">Larsen (1972)</a>; <a href="#Leonhardt1964" class="mim-tip-reference" title="Leonhardt, T. &lt;strong&gt;Family studies in systemic lupus erythematosus.&lt;/strong&gt; Acta Med. Scand. 176 (suppl. 416): 1-156, 1964.">Leonhardt (1964)</a>; <a href="#Lewis1974" class="mim-tip-reference" title="Lewis, R., Tannenberg, W., Smith, C., Schwartz, R. &lt;strong&gt;Human systemic lupus erythematosus and C-type RNA viruses. (Abstract)&lt;/strong&gt; Clin. Res. 22: 422A only, 1974.">Lewis et al. (1974)</a>; <a href="#Pollak1964" class="mim-tip-reference" title="Pollak, V. E. &lt;strong&gt;Antinuclear antibodies in families of patients with systemic lupus erythematosus.&lt;/strong&gt; New Eng. J. Med. 271: 165-171, 1964.">Pollak (1964)</a>; <a href="#Reveille1983" class="mim-tip-reference" title="Reveille, J. D., Bias, W. B., Winkelstein, J. A., Provost, T. T., Dorsch, C. A., Arnett, F. C. &lt;strong&gt;Familial systemic lupus erythematosus: immunogenetic studies in eight families.&lt;/strong&gt; Medicine 62: 21-35, 1983.">Reveille et al. (1983)</a>; <a href="#Serdula1979" class="mim-tip-reference" title="Serdula, M. K., Rhoads, G. G. &lt;strong&gt;Frequency of systemic lupus erythematosus in different groups in Hawaii.&lt;/strong&gt; Arthritis Rheum. 22: 328-333, 1979.">Serdula and Rhoads (1979)</a>; <a href="#Siegel1965" class="mim-tip-reference" title="Siegel, M., Lee, S. L., Widelock, D., Gwon, N. V., Kravitz, H. &lt;strong&gt;A comparative family study of rheumatoid arthritis and systemic lupus erythematosus.&lt;/strong&gt; New Eng. J. Med. 273: 893-897, 1965.">Siegel et al.
(1965)</a>; <a href="#Steinberg1984" class="mim-tip-reference" title="Steinberg, A. D., Raveche, E. S., Laskin, C. A., Smith, H. R., Santoro, T., Miller, M. L., Plotz, P. H. &lt;strong&gt;NIH conference. Systemic lupus erythematosus: insights from animal models.&lt;/strong&gt; Ann. Intern. Med. 100: 714-716, 1984.">Steinberg et al. (1984)</a>; <a href="#Yocum1975" class="mim-tip-reference" title="Yocum, M. W., Grossman, J., Waterhouse, C., Abraham, G. N., May, A. G., Condemi, J. J. &lt;strong&gt;Monozygotic twins discordant for systemic lupus erythematosus: comparison of immune response, auto antibodies, viral antibody titers, gamma globulin, and light chain metabolism.&lt;/strong&gt; Arthritis Rheum. 18: 193-199, 1975.">Yocum et al. (1975)</a>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Aitman2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Aitman, T. J., Dong, R., Vyse, T. J., Norsworthy, P. J., Johnson, M. D., Smith, J., Mangion, J., Roberton-Lowe, C., Marshall, A. J., Petretto, E., Hodges, M. D., Bhangal, G., and 10 others.
<strong>Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans.</strong>
Nature 439: 851-855, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16482158/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16482158</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16482158" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature04489" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Arnett1976" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Arnett, F. C., Shulman, L. E.
<strong>Studies in familial systemic lupus erythematosus.</strong>
Medicine 55: 313-322, 1976.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/781465/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">781465</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=781465" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/00005792-197607000-00003" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Austin-Ward1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Austin-Ward, E., Castillo, S., Cuchacovich, M., Espinoza, A., Cofre-Beca, J., Gonzalez, S, Solivelles, X., Bloomfield, J.
<strong>Neonatal lupus syndrome: a case with chondrodysplasia punctata and other unusual manifestations.</strong>
J. Med. Genet. 35: 695-697, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9719383/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9719383</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9719383" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.35.8.695" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Baechler2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Baechler, E. C., Batliwalla, F. M., Karypis, G., Gaffney, P. M., Ortmann, W. A., Espe, K. J., Shark, K. B., Grande, W. J., Hughes, K. M., Kapur, V., Gregersen, P. K., Behrens, T. W.
<strong>Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.</strong>
Proc. Nat. Acad. Sci. 100: 2610-2615, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12604793/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12604793</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12604793[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12604793" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0337679100" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Baer1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Baer, A. N., Woosley, R. L., Pincus, T.
<strong>Further evidence for the lack of association between acetylator phenotype and systemic lupus erythematosus.</strong>
Arthritis Rheum. 29: 508-514, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3707628/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3707628</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3707628" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780290408" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Balada2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Balada, E., Ordi-Ros, J., Serrano-Acedo, S., Martinez-Lostao, L., Rosa-Leyva, M., Vilardell-Tarres, M.
<strong>Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus.</strong>
Immunology 124: 339-347, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18194272/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18194272</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18194272[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18194272" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1365-2567.2007.02771.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Barber2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Barber, D. F., Bartolome, A., Hernandez, C., Flores, J. M., Redondo, C., Fernandez-Arias, C., Camps, M., Ruckle, T., Schwarz, M. K., Rodriguez, S., Martinez-A, C., Balomenos, D., Rommel, C., Carrera, A. C.
<strong>PI3K-gamma inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus.</strong>
Nature Med. 11: 933-935, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16127435/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16127435</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16127435" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm1291" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Barreto2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Barreto, M., Santos, E., Ferreira, R., Fesel, C., Fontes, M. F., Pereira, C., Martins, B., Andreia, R., Viana, J. F., Crespo, F., Vasconcelos, C., Ferreira, C., Vicente, A. M.
<strong>Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus.</strong>
Europ. J. Hum. Genet. 12: 620-626, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15138458/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15138458</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15138458" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.ejhg.5201214" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Batchelor1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Batchelor, J. R., Welsh, K. I., Tinoco, R. M., Dollery, C. T., Hughes, G. R. V., Bernstein, R., Ryan, P., Naish, P. F., Aber, G. M., Bing, R. F., Russell, G. I.
<strong>Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on susceptibility.</strong>
Lancet 315: 1107-1109, 1980. Note: Originally Volume I.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6103441/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6103441</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6103441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0140-6736(80)91554-8" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Beaucher1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Beaucher, W. N., Garman, R. H., Condemi, J. J.
<strong>Familial lupus erythematosus: antibodies to DNA in household dogs.</strong>
New Eng. J. Med. 296: 982-984, 1977.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/300467/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">300467</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=300467" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM197704282961707" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Benke1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Benke, P. J., Drisko, J., Ahmad, P.
<strong>Increased oxidative activity in stimulated lymphocytes suggests that systemic lupus erythematosus is a metabolic disease. (Abstract)</strong>
Am. J. Hum. Genet. 45 (suppl.): A3 only, 1989.
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Bialas2017" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Bialas, A. R., Presumey, J., Das, A., van der Poel, C. E., Lapchak, P. H., Mesin, L., Victora, G., Tsokos, G. C., Mawrin, C., Herbst, R., Carroll, M. C.
<strong>Microglia-dependent synapse loss in type I interferon-mediated lupus.</strong>
Nature 546: 539-543, 2017. Note: Retraction: Nature 578: 177 only, 2020.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/28614301/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">28614301</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28614301" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature22821" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Blanco2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Blanco, P., Palucka, A. K., Gill, M., Pascual, V., Banchereau, J.
<strong>Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus.</strong>
Science 294: 1540-1543, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11711679/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11711679</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11711679" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1064890" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Blank2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Blank, M. C., Stefanescu, R. N., Masuda, E., Marti, F., King, P. D., Redecha, P. B., Wurzburger, R. J., Peterson, M. G. E., Tanaka, S., Pricop, L.
<strong>Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus.</strong>
Hum. Genet. 117: 220-227, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15895258/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15895258</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15895258" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00439-005-1302-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Block1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Block, S. R., Winfield, J. B., Lockshin, M. D., D'Angelo, W. A., Christian, C. L.
<strong>Studies of twins with systemic lupus erythematosus: a review of the literature and presentation of 12 additional sets.</strong>
Am. J. Med. 59: 533-552, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1101680/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1101680</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1101680" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0002-9343(75)90261-2" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Boteva2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Boteva, L., Morris, D. L., Cortes-Hernandez, J., Martin, J., Vyse, T. J., Fernando, M. M. A.
<strong>Genetically determined partial complement C4 deficiency states are not independent risk factors for SLE in UK and Spanish populations.</strong>
Am. J. Hum. Genet. 90: 445-456, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22387014/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22387014</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22387014[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22387014" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2012.01.012" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Brustein1977" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Brustein, D., Rodriguez, J. M., Minkin, W., Rabhan, N. B.
<strong>Familial lupus erythematosus.</strong>
JAMA 238: 2294-2296, 1977.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/578851/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">578851</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=578851" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Cunninghame Graham2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cunninghame Graham, D. S., Graham, R. R., Manku, H., Wong, A. K., Whittaker, J. C., Gaffney, P. M., Moser, K. L., Rioux, J. D., Altshuler, D., Behrens, T. W., Vyse, T. J.
<strong>Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus.</strong>
Nature Genet. 40: 83-89, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18059267/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18059267</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18059267[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18059267" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.2007.47" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="DeGiorgio2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
DeGiorgio, L. A., Konstantinov, K. N., Lee, S. C., Hardin, J. A., Volpe, B. T., Diamond, B.
<strong>A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus.</strong>
Nature Med. 7: 1189-1193, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11689882/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11689882</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11689882" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm1101-1189" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="DeHoratius1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
DeHoratius, J. R., Pillarisetty, R., Messner, R. P., Talal, N.
<strong>Anti-nucleic acid antibodies in systemic lupus erythematosus patients and their families: incidence and correlation with lymphocytotoxic antibodies.</strong>
J. Clin. Invest. 56: 1149-1154, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1081099/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1081099</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1081099" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI108190" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Diamond1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Diamond, B., Scharff, M. D.
<strong>Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity.</strong>
Proc. Nat. Acad. Sci. 81: 5841-5844, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6435121/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6435121</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6435121" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.81.18.5841" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Elcioglu1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Elcioglu, N., Hall, C. M.
<strong>Maternal systemic lupus erythematosus and chondrodysplasia punctata in two sibs: phenocopy or coincidence?</strong>
J. Med. Genet. 35: 690-694, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9719382/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9719382</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9719382" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.35.8.690" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Exner1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Exner, T., Barber, S., Kronenberg, H., Rickard, K. A.
<strong>Familial association of the lupus anticoagulant.</strong>
Brit. J. Haemat. 45: 89-96, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7378333/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7378333</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7378333" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1365-2141.1980.tb03814.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Fanciulli2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fanciulli, M., Norsworthy, P. J., Petretto, E., Dong, R., Harper, L., Kamesh, L., Heward, J. M., Gough, S. C. L., de Smith, A., Blakemore, A. I. F., Froguel, P., Owen, C. J., Pearce, S. H. S., Teixeira, L., Guillevin, L., Cunninghame Graham, D. S., Pusey, C. D., Cook, H. T., Vyse, T. J., Aitman, T. J.
<strong>FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity.</strong>
Nature Genet. 39: 721-723, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17529978/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17529978</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17529978" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng2046" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Farias2019" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Farias, F. H. G., Dahlqvist, J., Kozyrev, S. V., Leonard, D., Wilbe, M., Abramov, S. N., Alexsson, A., Pielberg, G. R., Hansson-Hamlin, H., Andersson, G., Tandre, K., Bengtsson, A. A., and 9 others.
<strong>A rare regulatory variant in the MEF2D gene affects gene regulation and splicing and is associated with a SLE sub-phenotype in Swedish cohorts.</strong>
Europ. J. Hum. Genet. 27: 432-441, 2019.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/30459414/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">30459414</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=30459414[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30459414" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/s41431-018-0297-x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="26" class="mim-anchor"></a>
<a id="Fessel1974" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fessel, W. J.
<strong>Systemic lupus erythematosus in the community: incidence, prevalence, outcome, and first symptoms: the high prevalence in black women.</strong>
Arch. Intern. Med. 134: 1027-1035, 1974.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4433183/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4433183</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4433183" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="27" class="mim-anchor"></a>
<a id="Fielder1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fielder, A. H. L., Walport, M. J., Batchelor, J. R., Rynes, R. I., Black, C. M., Dodi, I. A., Hughes, G. R. V.
<strong>Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility.</strong>
Brit. Med. J. 286: 425-428, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6401549/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6401549</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6401549" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/bmj.286.6363.425" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="28" class="mim-anchor"></a>
<a id="First1973" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
First, M. R.
<strong>Familial systemic lupus erythematosus.</strong>
S. Afr. Med. J. 47: 742-744, 1973.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4702299/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4702299</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4702299" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="29" class="mim-anchor"></a>
<a id="Floto2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Floto, R. A., Clatworthy, M. R., Heilbronn, K. R., Rosner, D. R., MacAry, P. A., Rankin, A., Lehner, P. J., Ouwehand, W. H., Allen, J. M., Watkins, N. A., Smith, K. G. C.
<strong>Loss of function of a lupus-associated Fc-gamma-RIIb polymorphism through exclusion from lipid rafts.</strong>
Nature Med. 11: 1056-1058, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16170323/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16170323</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16170323" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm1288" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="30" class="mim-anchor"></a>
<a id="Fronek1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fronek, Z., Lentz, D., Berliner, N., Duby, A. D., Klein, K. A., Seidman, J. G., Schur, P. H.
<strong>Systemic lupus erythematosus is not genetically linked to the beta chain of the T cell receptor.</strong>
Arthritis Rheum. 29: 1023-1025, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3741512/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3741512</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3741512" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780290812" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="31" class="mim-anchor"></a>
<a id="Gaffney1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gaffney, P. M., Kearns, G. M., Shark, K. B., Ortmann, W. A., Selby, S. A., Malmgren, M. L., Rohlf, K. E., Ockenden, T. C., Messner, R. P., King, R. A., Rich, S. S., Behrens, T. W.
<strong>A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families.</strong>
Proc. Nat. Acad. Sci. 95: 14875-14879, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9843983/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9843983</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9843983" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.95.25.14875" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="32" class="mim-anchor"></a>
<a id="Gaffney2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gaffney, P. M., Ortmann, W. A., Selby, S. A., Shark, K. B., Ockenden, T. C., Rohlf, K. E., Walgrave, N. L., Boyum, W. P., Malmgren, M. L., Miller, M. E., Kearns, G. M., Messner, R. P., King, R. A., Rich, S. S., Behrens, T. W.
<strong>Genome screening in human systemic lupus erythematosus: results from a second Minnesota cohort and combined analyses of 187 sib-pair families.</strong>
Am. J. Hum. Genet. 66: 547-556, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10677315/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10677315</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10677315" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/302767" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="33" class="mim-anchor"></a>
<a id="Garcia1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Garcia, C. O., Molina, J. F., Gutierrez-Urena, S., Scopelitis, E., Wilson, W. A., Gharavi, A. E., Espinoza, L. R.
<strong>Autoantibody profile in African-American patients with lupus nephritis.</strong>
Lupus 5: 602-605, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9116704/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9116704</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9116704" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1177/096120339600500608" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="34" class="mim-anchor"></a>
<a id="Gateva2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gateva, V., Sandling, J. K., Hom, G., Taylor, K. E., Chung, S. A., Sun, X., Ortmann, W., Kosoy, R., Ferreira, R. C., Nordmark, G., Gunnarsson, I., Svenungsson, E., and 24 others.
<strong>A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus.</strong>
Nature Genet. 41: 1228-1233, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19838195/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19838195</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19838195[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19838195" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.468" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="35" class="mim-anchor"></a>
<a id="Graham2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Graham, R. R., Cotsapas, C., Davies, L., Hackett, R., Lessard, C. J., Leon, J. M., Burtt, N. P., Guiducci, C., Parkin, M., Gates, C., Plenge, R. M., Behrens, T. W., and 10 others.
<strong>Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus.</strong>
Nature Genet. 40: 1059-1061, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19165918/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19165918</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19165918" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.200" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="36" class="mim-anchor"></a>
<a id="Graham2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Graham, R. R., Kozyrev, S. V., Baechler, E. C., Reddy, M. V. P. L., Plenge, R. M., Bauer, J. W., Ortmann, W. A., Koeuth, T., Gonzalez Escribano, M. F., the Argentine and Spanish Collaborative Groups, Pons-Estel, B., Petri, M., Daly, M., Gregersen, P. K., Martin, J., Altshuler, D., Behrens, T. W., Alarcon-Riquelme, M. E.
<strong>A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus.</strong>
Nature Genet. 38: 550-555, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16642019/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16642019</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16642019" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng1782" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="37" class="mim-anchor"></a>
<a id="Graham2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Graham, R. R., Ortmann, W. A., Langefeld, C. D., Jawaheer, D., Selby, S. A., Rodine, P. R., Baechler, E. C., Rohlf, K. E., Shark, K. B., Espe, K. J., Green, L. E., Nair, R. P., and 12 others.
<strong>Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus.</strong>
Am. J. Hum. Genet. 71: 543-553, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12145745/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12145745</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12145745[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12145745" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/342290" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="38" class="mim-anchor"></a>
<a id="Gray-McGuire2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gray-McGuire, C., Moser, K. L., Gaffney, P. M., Kelly, J., Yu, H., Olson, J. M., Jedrey, C. M., Jacobs, K. B., Kimberly, R. P., Neas, B. R., Rich, S. S., Behrens, T. W., Harley, J. B.
<strong>Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16-15.2.</strong>
Am. J. Hum. Genet. 67: 1460-1469, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11078476/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11078476</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=11078476[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11078476" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/316891" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="39" class="mim-anchor"></a>
<a id="Green1986" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Green, J. R., Montasser, M., Woodrow, J. C.
<strong>The association of HLA-linked genes with systemic lupus erythematosus.</strong>
Ann. Hum. Genet. 50: 93-96, 1986.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3501270/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3501270</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3501270" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1469-1809.1986.tb01942.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="40" class="mim-anchor"></a>
<a id="Gross2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gross, J. A., Johnston, J., Mudri, S., Enselman, R., Dillon, S. R., Madden, K., Xu, W., Parrish-Novak, J., Foster, D., Lofton-Day, C., Moore, M., Littau, A., Grossman, A., Haugen, H., Foley, K., Blumberg, H., Harrison, K., Kindsvogel, W., Clegg, C. H.
<strong>TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease.</strong>
Nature 404: 995-999, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10801128/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10801128</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10801128" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/35010115" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="41" class="mim-anchor"></a>
<a id="Guiducci2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Guiducci, C., Gong, M., Xu, Z., Gill, M., Chaussabel, D., Meeker, T., Chan, J. H., Wright, T., Punaro, M., Bolland, S., Soumelis, V., Banchereau, J., Coffman, R. L., Pascual, V., Barrat, F. J.
<strong>TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus.</strong>
Nature 465: 937-941, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20559388/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20559388</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20559388[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20559388" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature09102" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="42" class="mim-anchor"></a>
<a id="Halpern1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Halpern, R., Davidson, A., Lazo, A., Solomon, G., Lahita, R., Diamond, B.
<strong>Familial systemic lupus erythematosus: presence of a cross-reactive idiotype in healthy family members.</strong>
J. Clin. Invest. 76: 731-736, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3875631/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3875631</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3875631" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI112028" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="43" class="mim-anchor"></a>
<a id="Han2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Han, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., Xu, J.-H., Cai, Z.-M., Huang, W., Zhao, G.-P., Xie, H.-F., Fang, H., and 55 others.
<strong>Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus.</strong>
Nature Genet. 41: 1234-1237, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19838193/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19838193</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19838193" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.472" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="44" class="mim-anchor"></a>
<a id="Hom2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hom, G., Graham, R. R., Modrek, B., Taylor, K. E., Ortmann, W., Garnier, S., Lee, A. T., Chung, S. A., Ferreira, R. C., Pant, P. V. K., Ballinger, D. G., Kosoy, R., and 15 others.
<strong>Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX.</strong>
New Eng. J. Med. 358: 900-909, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18204098/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18204098</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18204098" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa0707865" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="45" class="mim-anchor"></a>
<a id="Horn1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Horn, J. R., Kapur, J. J., Walker, S. E.
<strong>Mixed connective tissue disease in siblings.</strong>
Arthritis Rheum. 21: 709-714, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/310679/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">310679</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=310679" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780210617" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="46" class="mim-anchor"></a>
<a id="Huerta2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Huerta, P. T., Kowal, C., DeGiorgio, L. A., Volpe, B. T., Diamond, B.
<strong>Immunity and behavior: antibodies alter emotion.</strong>
Proc. Nat. Acad. Sci. 103: 678-683, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16407105/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16407105</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16407105[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16407105" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0510055103" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="47" class="mim-anchor"></a>
<a id="Hughes1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hughes, G. R. V., Batchelor, J. R.
<strong>The genetics of systemic lupus erythematosus. (Editorial)</strong>
Brit. Med. J. 286: 416-417, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6401546/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6401546</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6401546" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/bmj.286.6363.416-a" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="48" class="mim-anchor"></a>
<a id="{International Consortium for Systemic Lupus Erythematosus Genetics}2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
International Consortium for Systemic Lupus Erythematosus Genetics, Harley, J. B., Alarcon-Riquelme, M. E., Criswell, L. A., Jacob, C. O., Kimberly, R. P., Moser, K. L., Tsao, B. P., Vyse, T. J., Langefeld, C. D.
<strong>Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci.</strong>
Nature Genet. 40: 204-210, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18204446/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18204446</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18204446" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.81" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="49" class="mim-anchor"></a>
<a id="Johanneson2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Johanneson, B., Lima, G., von Salome, J., Alarcon-Segovia, D., Collaborative Group on the Genetics of SLE, BIOMED II Collaboration on the Genetics of SLE and Sjogrens Syndrome, Alarcon-Riquelme, M. E.
<strong>A major susceptibility locus for systemic lupus erythematosus maps to chromosome 1q31.</strong>
Am. J. Hum. Genet. 71: 1060-1071, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12373647/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12373647</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12373647" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/344289" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="50" class="mim-anchor"></a>
<a id="Kamat2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kamat, S. S., Pepmueller, P. H., Moore, T. L.
<strong>Triplets with systemic lupus erythematosus.</strong>
Arthritis Rheum. 48: 3176-3180, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14613280/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14613280</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14613280" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.11320" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="51" class="mim-anchor"></a>
<a id="Kamatani2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kamatani, Y., Matsuda, K., Ohishi, T., Ohtsubo, S., Yamazaki, K., Iida, A., Hosono, N., Kubo, M., Yumura, W., Nitta, K., Katagiri, T., Kawaguchi, Y., Kamatani, N., Nakamura, Y.
<strong>Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population.</strong>
J. Hum. Genet. 53: 64-73, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18058064/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18058064</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18058064" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s10038-007-0219-1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="52" class="mim-anchor"></a>
<a id="Kamitaki2020" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kamitaki, N., Sekar, A., Handsaker, R. E., de Rivera, H., Tooley, K., Morris, D. L., Taylor, K. E., Whelan, C. W., Tombleson, P., Loohuis, L. M. O., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Boehnke, M., and 12 others.
<strong>Complement genes contribute sex-based vulnerability in diverse disorders.</strong>
Nature 582: 577-581, 2020.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/32499649/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">32499649</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=32499649[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32499649" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/s41586-020-2277-x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="53" class="mim-anchor"></a>
<a id="Kelly2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kelly, J. A., Moser, K. L., Harley, J. B.
<strong>The genetics of systemic lupus erythematosus: putting the pieces together.</strong>
Genes Immun. 3 (Suppl. 1): S71-S85, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12215907/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12215907</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12215907" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.gene.6363885" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="54" class="mim-anchor"></a>
<a id="Kelly1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kelly, T. E., Alford, B. A., Greer, K. M.
<strong>Chondrodysplasia punctata stemming from maternal lupus erythematosus.</strong>
Am. J. Med. Genet. 83: 397-401, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10232751/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10232751</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10232751" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/(sici)1096-8628(19990423)83:5&lt;397::aid-ajmg11&gt;3.0.co;2-y" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="55" class="mim-anchor"></a>
<a id="Knight1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Knight, J. G., Adams, D. D.
<strong>Three genes for lupus nephritis in NZB x NZW mice.</strong>
J. Exp. Med. 147: 1653-1660, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/681876/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">681876</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=681876" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1084/jem.147.6.1653" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="56" class="mim-anchor"></a>
<a id="Kohler1974" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kohler, P. F., Percy, J., Campion, W. M., Smyth, C. J.
<strong>Hereditary angioedema and 'familial lupus' erythematosus in identical twin boys.</strong>
Am. J. Med. 56: 406-411, 1974.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4544343/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4544343</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4544343" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0002-9343(74)90623-8" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="57" class="mim-anchor"></a>
<a id="Kotzin1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kotzin, B. L.
<strong>Systemic lupus erythematosus.</strong>
Cell 85: 303-306, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8616885/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8616885</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8616885" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)81108-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="58" class="mim-anchor"></a>
<a id="Kowal2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kowal, C., DeGiorgio, L. A., Lee, J. Y., Edgar, M. A., Huerta, P. T., Volpe, B. T., Diamond, B.
<strong>Human lupus autoantibodies against NMDA receptors mediate cognitive impairment.</strong>
Proc. Nat. Acad. Sci. 103: 19854-19859, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17170137/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17170137</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17170137[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17170137" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0608397104" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="59" class="mim-anchor"></a>
<a id="Kozlowski2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kozlowski, K., Basel, D., Beighton, P.
<strong>Chondrodysplasia punctata in siblings and maternal lupus erythematosus.</strong>
Clin. Genet. 66: 545-549, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15521983/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15521983</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15521983" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.2004.00364.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="60" class="mim-anchor"></a>
<a id="Kozyrev2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kozyrev, S. V., Abelson, A.-K., Wojcik, J., Zaghlool, A., Reddy, M. V., P. L., Sanchez, E., Gunnarsson, I., Svenungsson, E., Sturfelt, G., Jonsen, A., Truedsson, L., Pons-Estel, B. A., and 12 others.
<strong>Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus.</strong>
Nature Genet. 40: 211-216, 2008. Note: Erratum: Nature Genet. 40: 484 only, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18204447/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18204447</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18204447" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.79" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="61" class="mim-anchor"></a>
<a id="Kshirsagar2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kshirsagar, S., Riedl, M., Billing, H., Tonshoff, B., Thangavadivel, S., Steuber, C., Staude, H., Wechselberger, G., Edelbauer, M.
<strong>Akt-dependent enhanced migratory capacity of Th17 cells from children with lupus nephritis.</strong>
J. Immun. 193: 4895-4903, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25339666/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25339666</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25339666" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.4049/jimmunol.1400044" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="62" class="mim-anchor"></a>
<a id="Kyogoku2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kyogoku, C., Dijstelbloem, H. M., Tsuchiya, N., Hatta, Y., Kato, H., Yamaguchi, A., Fukazawa, T., Jansen, M. D., Hashimoto, H., van de Winkel, J. G. J., Kallenberg, C. G. M., Tokunaga, K.
<strong>Fc-gamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility.</strong>
Arthritis Rheum. 46: 1242-1254, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12115230/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12115230</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12115230" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.10257" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="63" class="mim-anchor"></a>
<a id="Kyogoku2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kyogoku, C., Langefeld, C. D., Ortmann, W. A., Lee, A., Selby, S., Carlton, V. E. H., Chang, M., Ramos, P., Baechler, E. C., Batliwalla, F. M., Novitzke, J., Williams, A. H., and 10 others.
<strong>Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE.</strong>
Am. J. Hum. Genet. 75: 504-507, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15273934/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15273934</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15273934" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/423790" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="64" class="mim-anchor"></a>
<a id="Lahita1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lahita, R. G., Chiorazzi, N., Gibofsky, A., Winchester, R. J., Kunkel, H. G.
<strong>Familial systemic lupus erythematosus in males.</strong>
Arthritis Rheum. 26: 39-44, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6600612/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6600612</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6600612" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780260107" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="65" class="mim-anchor"></a>
<a id="Lappat1968" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lappat, E. J., Cawein, M. J.
<strong>A familial study of procainamide-induced systemic lupus erythematosus: a question of pharmacogenetic polymorphism.</strong>
Am. J. Med. 45: 846-852, 1968.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4177546/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4177546</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4177546" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0002-9343(68)90183-6" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="66" class="mim-anchor"></a>
<a id="Larsen1972" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Larsen, R. A., Godal, T.
<strong>Family studies in systemic lupus erythematosus (SLE)-IX. Thyroid diseases and antibodies.</strong>
J. Chronic Dis. 25: 225-234, 1972.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5040348/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5040348</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5040348" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0021-9681(72)90133-6" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="67" class="mim-anchor"></a>
<a id="Larsen1972" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Larsen, R. A.
<strong>Family studies in systemic lupus erythematosus (SLE). I. A proband material from central eastern Norway.</strong>
Acta Med. Scand. Suppl. 543: 11-19, 1972.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4124128/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4124128</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4124128" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="68" class="mim-anchor"></a>
<a id="Leadbetter2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Leadbetter, E. A., Rifkin, I. R., Hohlbaum, A. M., Beaudette, B. C., Shlomchik, M. J., Marshak-Rothstein, A.
<strong>Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors.</strong>
Nature 416: 603-607, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11948342/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11948342</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11948342" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/416603a" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="69" class="mim-anchor"></a>
<a id="Lee2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lee, Y. H., Harley, J. B., Nath, S. K.
<strong>CTLA-4 polymorphisms and systemic lupus erythematosus (SLE): a meta-analysis.</strong>
Hum. Genet. 116: 361-367, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15688186/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15688186</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15688186" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00439-004-1244-1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="70" class="mim-anchor"></a>
<a id="Lee2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lee, Y. H., Harley, J. B., Nath, S. K.
<strong>Meta-analysis of TNF-alpha promoter -308A/G polymorphism and SLE susceptibility.</strong>
Europ. J. Hum. Genet. 14: 364-371, 2006. Note: Erratum: Europ. J. Hum. Genet. 14: 1059-1060, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16418737/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16418737</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16418737" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.ejhg.5201566" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="71" class="mim-anchor"></a>
<a id="Lee2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lee, Y. H., Nath, S. K.
<strong>Systemic lupus erythematosus susceptibility loci defined by genome scan meta-analysis.</strong>
Hum. Genet. 118: 434-443, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16208513/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16208513</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16208513" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00439-005-0073-1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="72" class="mim-anchor"></a>
<a id="Lee-Kirsch2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lee-Kirsch, M. A., Gong, M., Chowdhury, D., Senenko, L., Engel, K., Lee, Y.-A., de Silva, U., Bailey, S. L., Witte, T., Vyse, T. J., Kere, J., Pfeiffer, C., and 12 others.
<strong>Mutations in the gene encoding the 3-prime-5-prime DNA exonuclease TREX1 are associated with systemic lupus erythematosus.</strong>
Nature Genet. 39: 1065-1067, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17660818/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17660818</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17660818" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng2091" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="73" class="mim-anchor"></a>
<a id="Leonhardt1964" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Leonhardt, T.
<strong>Family studies in systemic lupus erythematosus.</strong>
Acta Med. Scand. 176 (suppl. 416): 1-156, 1964.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14164860/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14164860</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14164860" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="74" class="mim-anchor"></a>
<a id="Lessard1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lessard, E., Fortin, A., Belanger, P. M., Beaune, P., Hamelin, B. A., Turegon, J.
<strong>Role of CYP2D6 in the N-hydroxylation of procainamide.</strong>
Pharmacogenetics 7: 381-390, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9352574/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9352574</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9352574" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/00008571-199710000-00007" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="75" class="mim-anchor"></a>
<a id="Lessard1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lessard, E., Hamelin, B. A., Labbe, L., O'Hara, G., Belanger, P. M., Turgeon, J.
<strong>Involvement of CYP2D6 activity in the N-oxidation of procainamide in man.</strong>
Pharmacogenetics 9: 683-696, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10634131/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10634131</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10634131" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/01213011-199912000-00003" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="76" class="mim-anchor"></a>
<a id="Levcovitz1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Levcovitz, H., Fletcher, M. A., Phillips, P., Chertok, H. A., Altman, R., Benke, P. J.
<strong>Segregation of lymphocyte low molecular weight DNA and antinuclear-antibodies in a family with systemic lupus erythematosus in first cousins.</strong>
Hum. Genet. 80: 253-258, 1988. Note: Retraction: Hum. Genet. 87: 634 only, 1991.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3263937/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3263937</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3263937" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/BF01790093" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="77" class="mim-anchor"></a>
<a id="Lewis1974" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lewis, R., Tannenberg, W., Smith, C., Schwartz, R.
<strong>Human systemic lupus erythematosus and C-type RNA viruses. (Abstract)</strong>
Clin. Res. 22: 422A only, 1974.
</p>
</div>
</li>
<li>
<a id="78" class="mim-anchor"></a>
<a id="Li2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Li, N., Nakamura, K., Jiang, Y., Tsurui, H., Matsuoka, S., Abe, M., Ohtsuji, M., Nishimura, H., Kato, K., Kawai, T., Atsumi, T., Koike, T., Shirai, T., Ueno, H., Hirose, S.
<strong>Gain-of-function polymorphism in mouse and human Ltk: implications for the pathogenesis of systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 13: 171-179, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14695357/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14695357</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14695357" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddh020" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="79" class="mim-anchor"></a>
<a id="Lindqvist2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Lindqvist, A.-K. B., Steinsson, K., Johanneson, B., Kristjansdottir, H., Arnasson, A., Grondal, G., Jonasson, I., Magnusson, V., Sturfelt, G., Truedsson, L., Svenungsson, E., Lundberg, I., Terwilliger, J. D., Gyllensten, U. B., Alarcon-Riquelme, M. E.
<strong>A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q.</strong>
J. Autoimmun. 14: 169-178, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10677248/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10677248</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10677248" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1006/jaut.1999.0357" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="80" class="mim-anchor"></a>
<a id="Linker-Israeli1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Linker-Israeli, M., Wallace, D. J., Prehn, J., Michael, D., Honda, M., Taylor, K. D., Paul-Labrador, M., Fischel-Ghodsian, N., Fraser, P. A., Klinenberg, J. R.
<strong>Association of IL-6 gene alleles with systemic lupus erythematosus (SLE) and with elevated IL-6 expression.</strong>
Genes Immun. 1: 45-52, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11197305/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11197305</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11197305" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.gene.6363631" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="81" class="mim-anchor"></a>
<a id="Mackie1987" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mackie, I. J., Colaco, C. B., Machin, S. J.
<strong>Familial lupus anticoagulants.</strong>
Brit. J. Haemat. 67: 359-363, 1987.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3689698/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3689698</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3689698" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1365-2141.1987.tb02358.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="82" class="mim-anchor"></a>
<a id="Manjarrez-Orduno2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Manjarrez-Orduno, N., Marasco, E., Chung, S. A., Katz, M. S., Kiridly, J. F., Simpfendorfer, K. R., Freudenberg, J., Ballard, D. H., Nashi, E., Hopkins, T. J., Cunninghame Graham, D. S., Lee, A. T., and 11 others.
<strong>CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation.</strong>
Nature Genet. 44: 1227-1230, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23042117/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23042117</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=23042117[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23042117" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.2439" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="83" class="mim-anchor"></a>
<a id="McGaha2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
McGaha, T. L., Sorrentino, B., Ravetch, J. V.
<strong>Restoration of tolerance in lupus by targeted inhibitory receptor expression.</strong>
Science 307: 590-593, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15681388/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15681388</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15681388" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1105160" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="84" class="mim-anchor"></a>
<a id="Miller1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Miller, K. B., Schwartz, R. S.
<strong>Familial abnormalities of suppressor-cell function in systemic lupus erythematosus.</strong>
New Eng. J. Med. 301: 803-809, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/314587/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">314587</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=314587" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM197910113011502" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="85" class="mim-anchor"></a>
<a id="Mohan1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mohan, C., Morel, L., Yang, P., Watanabe, H., Croker, B., Gilkeson, G., Wakeland, E. K.
<strong>Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies.</strong>
J. Clin. Invest. 103: 1685-1695, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10377175/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10377175</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=10377175[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10377175" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI5827" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="86" class="mim-anchor"></a>
<a id="Molokhia2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Molokhia, M., Hoggart, C., Patrick, A. L., Shriver, M., Parra, E., Ye, J., Silman, A. J., McKeigue, P. M.
<strong>Relation of risk of systemic lupus erythematosus to west African admixture in a Caribbean population.</strong>
Hum. Genet. 112: 310-318, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12545274/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12545274</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12545274" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00439-002-0883-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="87" class="mim-anchor"></a>
<a id="Morel1994" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Morel, L., Rudofsky, U. H., Longmate, J. A., Schiffenbauer, J., Wakeland, E. K.
<strong>Polygenic control of susceptibility to murine systemic lupus erythematosus.</strong>
Immunity 1: 219-229, 1994.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7889410/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7889410</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7889410" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/1074-7613(94)90100-7" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="88" class="mim-anchor"></a>
<a id="Mueller2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Mueller, M., Barros, P., Witherden, A. S., Roberts, A. L., Zhang, Z., Schaschl, H., Yu, C.-Y., Hurles, M. E., Schaffner, C., Floto, R. A., Game, L., Steinberg, K. M., Wilson, R. K., Graves, T. A., Eichler, E. E., Cook, H. T., Vyse, T. J., Aitman, T. J.
<strong>Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus.</strong>
Am. J. Hum. Genet. 92: 28-40, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23261299/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23261299</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=23261299[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23261299" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2012.11.013" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="89" class="mim-anchor"></a>
<a id="Musone2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Musone, S. L., Taylor, K. E., Lu, T. T., Nititham, J., Ferreira, R. C., Ortmann, W., Shifrin, N., Petri, M. A., Kamboh, M. I., Manzi, S., Seldin, M. F., Gregersen, P. K., Behrens, T. W., Ma, A., Kwok, P.-Y., Criswell, L. A.
<strong>Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus.</strong>
Nature Genet. 40: 1062-1064, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19165919/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19165919</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19165919" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.202" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="90" class="mim-anchor"></a>
<a id="Myouzen2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Myouzen, K., Kochi, Y., Shimane, K., Fujio, K., Okamura, T., Okada, Y., Suzuki, A., Atsumi, T., Ito, S., Takada, K., Mimori, A., Ikegawa, S., Yamada, R., Nakamura, Y., Yamamoto, K.
<strong>Regulatory polymorphisms in EGR2 are associated with susceptibility to systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 19: 2313-2320, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20194224/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20194224</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20194224" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddq092" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="91" class="mim-anchor"></a>
<a id="Nakamura2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Nakamura, K., Xiu, Y., Ohtsuji, M., Sugita, G., Abe, M., Ohtsuji, N., Hamano, Y., Jiang, Y., Takahashi, N., Shirai, T., Nishimura, H., Hirose, S.
<strong>Genetic dissection of anxiety in autoimmune disease.</strong>
Hum. Molec. Genet. 12: 1079-1086, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12719372/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12719372</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12719372" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddg128" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="92" class="mim-anchor"></a>
<a id="Napirei2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Napirei, M., Karsunky, H., Zevnik, B., Stephan, H., Mannherz, H. G., Moroy, T.
<strong>Features of systemic lupus erythematosus in Dnase1-deficient mice.</strong>
Nature Genet. 25: 177-181, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10835632/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10835632</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10835632" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/76032" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="93" class="mim-anchor"></a>
<a id="Nath2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Nath, S. K., Han, S., Kim-Howard, X., Kelly, J. A., Viswanathan, P., Gilkeson, G. S., Chen, W., Zhu, C., McEver, R. P., Kimberly, R. P., Alarcon-Riquelme, M. E., Vyse, T. J., Li, Q.-Z., Wakeland, E. K., Merrill, J. T., James, J. A., Kaufman, K. M., Guthridge, J. M., Harley, J. B.
<strong>A nonsynonymous functional variant in integrin-alpha-M (encoded by ITGAM) is associated with systemic lupus erythematosus.</strong>
Nature Genet. 40: 152-154, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18204448/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18204448</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18204448" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.71" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="94" class="mim-anchor"></a>
<a id="Niederer2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Niederer, H. A., Willcocks, L. C., Rayner, T. F., Yang, W., Lau, Y. L., Williams, T. N., Scott, J. A. G., Urban, B. C., Peshu, N., Dunstan, S. J., Hien, T. T., Phu, N. H., Padyukov, L., Gunnarsson, I., Svenungsson, E., Savage, C. O., Watts, R. A., Lyons, P. A., Clayton, D. G., Smith, K. G. C.
<strong>Copy number, linkage disequilibrium and disease association in the FCGR locus.</strong>
Hum. Molec. Genet. 19: 3282-3294, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20508037/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20508037</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20508037[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20508037" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddq216" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="95" class="mim-anchor"></a>
<a id="Oishi2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Oishi, T., Iida, A., Otsubo, S., Kamatani, Y., Usami, M., Takei, T., Uchida, K., Tsuchiya, K., Saito, S., Ohnisi, Y., Tokunaga, K., Nitta, K., Kawaguchi, Y., Kamatani, N., Kochi, Y., Shimane, K., Yamamoto, K., Nakamura, Y., Yumura, W., Matsuda, K.
<strong>A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population.</strong>
J. Hum. Genet. 53: 151-162, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18219441/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18219441</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18219441" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s10038-007-0233-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="96" class="mim-anchor"></a>
<a id="Olsson2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Olsson, L. M., Nerstedt, A., Lindqvist, A.-K., Johansson, A. C. M., Medstrand, P., Olofsson, P., Holmdahl, R.
<strong>Copy number variation of the gene NCF1 is associated with rheumatoid arthritis.</strong>
Antioxid. Redox Signal. 16: 71-78, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21728841/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21728841</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21728841" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1089/ars.2011.4013" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="97" class="mim-anchor"></a>
<a id="Orru2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Orru, V., Tsai, S. J., Rueda, B., Fiorillo, E., Stanford, S. M., Dasgupta, J., Hartiala, J., Zhao, L., Ortego-Centeno, N., D'Alfonso, S., Italian Collaborative Group, Arnett, F. C., and 11 others.
<strong>A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 18: 569-579, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18981062/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18981062</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18981062[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18981062" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddn363" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="98" class="mim-anchor"></a>
<a id="Pollak1964" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Pollak, V. E.
<strong>Antinuclear antibodies in families of patients with systemic lupus erythematosus.</strong>
New Eng. J. Med. 271: 165-171, 1964.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14158353/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14158353</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14158353" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM196407232710401" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="99" class="mim-anchor"></a>
<a id="Prokunina2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Prokunina, L., Castillejo-Lopez, C., Oberg, F., Gunnarsson, I., Berg, L., Magnusson, V., Brookes, A. J., Tentler, D., Kristjansdottir, H., Grondal, G., Bolstad, A. I., Svenungsson, E., and 12 others.
<strong>A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans.</strong>
Nature Genet. 32: 666-669, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12402038/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12402038</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12402038" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng1020" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="100" class="mim-anchor"></a>
<a id="Quintero-Del-Rio2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Quintero-Del-Rio, A., Kelly, J. A., Kilpatrick, J., James, J. A., Harley, J. B.
<strong>The genetics of systemic lupus erythematosus stratified by renal disease: linkage at 10q22.3 (SLEN1), 2q34-35 (SLEN2), and 11p15.6 (SLEN3).</strong>
Genes Immun. 3 (Suppl. 1): S57-S62, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12215904/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12215904</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12215904" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/sj.gene.6363901" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="101" class="mim-anchor"></a>
<a id="Reed1972" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Reed, W. B., Bergeron, R. F., Tuffanelli, D. L., Jones, E. W.
<strong>Hereditary inflammatory vasculitis with persistent nodules. A genetically-determined new entity probably related to lupus erythematosus.</strong>
Brit. J. Derm. 87: 299-307, 1972.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4507318/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4507318</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4507318" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1365-2133.1972.tb07414.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="102" class="mim-anchor"></a>
<a id="Reidenberg1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Reidenberg, M. M., Levy, M., Drayer, D. E., Zylber-Katz, E., Robbins, W. C.
<strong>Acetylator phenotype in idiopathic systemic lupus erythematosus.</strong>
Arthritis Rheum. 23: 569-573, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7378086/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7378086</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7378086" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780230508" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="103" class="mim-anchor"></a>
<a id="Remmers2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Remmers, E. F., Plenge, R. M., Lee, A. T., Graham, R. R., Hom, G., Behrens, T. W., de Bakker, P. I. W., Le, J. M., Lee, H.-S., Batliwalla, F., Li, W., Masters, S. L., and 11 others.
<strong>STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus.</strong>
New Eng. J. Med. 357: 977-986, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17804842/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17804842</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17804842[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17804842" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJMoa073003" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="104" class="mim-anchor"></a>
<a id="Reveille1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Reveille, J. D., Bias, W. B., Winkelstein, J. A., Provost, T. T., Dorsch, C. A., Arnett, F. C.
<strong>Familial systemic lupus erythematosus: immunogenetic studies in eight families.</strong>
Medicine 62: 21-35, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6600509/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6600509</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6600509" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/00005792-198301000-00002" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="105" class="mim-anchor"></a>
<a id="Russell2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Russell, A. I., Cunninghame Graham, D. S., Shepherd, C., Roberton, C. A., Whittaker, J., Meeks, J., Powell, R. J., Isenberg, D. A., Walport, M. J., Vyse, T. J.
<strong>Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 13: 137-147, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14645206/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14645206</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=14645206[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14645206" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddh021" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="106" class="mim-anchor"></a>
<a id="Sakane1989" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sakane, T., Murakawa, Y., Suzuki, N., Ueda, Y., Tsuchida, T., Takada, S., Yamauchi, Y., Tsunematsu, T.
<strong>Familial occurrence of impaired interleukin-2 activity and increased peripheral blood B cells actively secreting immunoglobulins in systemic lupus erythematosus.</strong>
Am. J. Med. 86: 385-390, 1989.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2784626/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2784626</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2784626" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0002-9343(89)90334-3" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="107" class="mim-anchor"></a>
<a id="Sanchez2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sanchez, E., Palomino-Morales, R. J., Ortego-Centeno, N., Jimenez-Alonso, J., Gonzalez-Gay, M. A., Lopez-Nevot, M. A., Sanchez-Roman, J., de Ramon, E., Gonzalez-Escribano, M. F., Pons-Estel, B. A., D'Alfonso, S., Sebastiani, G. D., Italian Collaborative Group, Alarcon-Riquelme, M. E., Martin, J.
<strong>Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 18: 3739-3748, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19584085/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19584085</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19584085" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddp301" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="108" class="mim-anchor"></a>
<a id="Sanghera1997" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sanghera, D. K., Wagenknecht, D. R., McIntyre, J. A., Kamboh, M. I.
<strong>Identification of structural mutations in the fifth domain of apolipoprotein H (beta-2-glycoprotein I) which affect phospholipid binding.</strong>
Hum. Molec. Genet. 6: 311-316, 1997.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9063752/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9063752</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9063752" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/6.2.311" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="109" class="mim-anchor"></a>
<a id="Schaller1972" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Schaller, J.
<strong>Illness resembling lupus erythematosus in mothers of boys with chronic granulomatous disease.</strong>
Ann. Intern. Med. 76: 747-750, 1972.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5025325/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5025325</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5025325" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.7326/0003-4819-76-5-747" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="110" class="mim-anchor"></a>
<a id="Schur1995" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Schur, P. H.
<strong>Genetics of systemic lupus erythematosus.</strong>
Lupus 4: 425-437, 1995.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8749564/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8749564</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8749564" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1177/096120339500400603" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="111" class="mim-anchor"></a>
<a id="Scofield2003" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Scofield, R. H., Bruner, G. R., Kelly, J. A., Kilpatrick, J., Bacino, D., Nath, S. K., Harley, J. B.
<strong>Thrombocytopenia identifies a severe familial phenotype of systemic lupus erythematosus and reveals genetic linkages at 1q22 and 11p13.</strong>
Blood 101: 992-997, 2003.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12393658/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12393658</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12393658" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1182/blood-2002-04-1003" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="112" class="mim-anchor"></a>
<a id="Serdula1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Serdula, M. K., Rhoads, G. G.
<strong>Frequency of systemic lupus erythematosus in different groups in Hawaii.</strong>
Arthritis Rheum. 22: 328-333, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/426879/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">426879</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=426879" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780220403" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="113" class="mim-anchor"></a>
<a id="Shai1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shai, R., Quismorio, F. P., Jr., Li, L., Kwon, O.-J., Morrison, J., Wallace, D. J., Neuwelt, C. M., Brautbar, C., Gauderman, W. J., Jacob, C. O.
<strong>Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families.</strong>
Hum. Molec. Genet. 8: 639-644, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10072432/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10072432</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10072432" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/8.4.639" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="114" class="mim-anchor"></a>
<a id="Shin2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Shin, H. D., Park, B. L., Kim, L. H., Lee, H.-S., Kim, T.-Y., Bae, S.-C.
<strong>Common DNase I polymorphism associated with autoantibody production among systemic lupus erythematosus patients.</strong>
Hum. Molec. Genet. 13: 2343-2350, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15333586/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15333586</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15333586" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddh275" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="115" class="mim-anchor"></a>
<a id="Sibley1993" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sibley, J. T., Blocka, K. L. N., Sheridan, D. P., Olszynski, W. P.
<strong>Familial systemic lupus erythematosus characterized by digital ischemia.</strong>
J. Rheum. 20: 299-303, 1993.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8474067/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8474067</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8474067" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="116" class="mim-anchor"></a>
<a id="Siegel1970" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Siegel, M., Holley, H. L., Lee, S. L.
<strong>Epidemiologic studies on systemic lupus erythematosus: comparative data for New York City and Jefferson County, Alabama, 1956-1965.</strong>
Arthritis Rheum. 13: 802-811, 1970.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/5495391/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">5495391</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=5495391" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780130610" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="117" class="mim-anchor"></a>
<a id="Siegel1965" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Siegel, M., Lee, S. L., Widelock, D., Gwon, N. V., Kravitz, H.
<strong>A comparative family study of rheumatoid arthritis and systemic lupus erythematosus.</strong>
New Eng. J. Med. 273: 893-897, 1965.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4157928/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4157928</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4157928" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM196510212731702" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="118" class="mim-anchor"></a>
<a id="Sigurdsson2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sigurdsson, S., Nordmark, G., Goring, H. H. H., Lindroos, K., Wiman, A.-C., Sturfelt, G., Jonsen, A., Rantapaa-Dahlqvist, S., Moller, B., Kere, J., Koskenmies, S., Widen, E., Eloranta, M.-L., Julkunen, H., Kristjansdottir, H., Steinsson, K., Alm, G., Ronnblom, L., Syvanen, A.-C.
<strong>Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus.</strong>
Am. J. Hum. Genet. 76: 528-537, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15657875/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15657875</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=15657875[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15657875" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/428480" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="119" class="mim-anchor"></a>
<a id="Solomon1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Solomon, G., Schiffenbauer, J., Keiser, H. D., Diamond, B.
<strong>Use of monoclonal antibodies to identify shared idiotypes on human antibodies to native DNA from patients with systemic lupus erythematosus.</strong>
Proc. Nat. Acad. Sci. 80: 850-854, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6187005/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6187005</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6187005" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.80.3.850" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="120" class="mim-anchor"></a>
<a id="Solomou2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Solomou, E. E., Juang, Y.-T., Gourley, M. F., Kammer, G. M., Tsokos, G. C.
<strong>Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus.</strong>
J. Immun. 166: 4216-4222, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11238674/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11238674</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11238674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.4049/jimmunol.166.6.4216" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="121" class="mim-anchor"></a>
<a id="Stein2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Stein, C. M., Olson, J. M., Gray-McGuire, C., Bruner, G. R., Harley, J. B., Moser, K. L.
<strong>Increased prevalence of renal disease in systemic lupus erythematosus families with affected male relatives.</strong>
Arthritis Rheum. 46: 428-435, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11840445/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11840445</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11840445" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.10105" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="122" class="mim-anchor"></a>
<a id="Steinberg1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Steinberg, A. D., Raveche, E. S., Laskin, C. A., Smith, H. R., Santoro, T., Miller, M. L., Plotz, P. H.
<strong>NIH conference. Systemic lupus erythematosus: insights from animal models.</strong>
Ann. Intern. Med. 100: 714-716, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6370068/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6370068</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6370068" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.7326/0003-4819-100-5-714" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="123" class="mim-anchor"></a>
<a id="Sthoeger2009" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sthoeger, Z. M., Bezalel, S., Chapnik, N., Asher, I., Froy, O.
<strong>High alpha-defensin levels in patients with systemic lupus erythematosus.</strong>
Immunology 127: 116-122, 2009.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/19191901/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">19191901</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=19191901[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=19191901" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1365-2567.2008.02997.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="124" class="mim-anchor"></a>
<a id="Stohl1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Stohl, W., Crow, M. K., Kunkel, H. G.
<strong>Systemic lupus erythematosus with deficiency of the T4 epitope on T helper/inducer cells.</strong>
New Eng. J. Med. 312: 1671-1678, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2582253/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2582253</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2582253" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM198506273122604" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="125" class="mim-anchor"></a>
<a id="Sturfelt1990" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sturfelt, G., Truedsson, L., Johansen, P., Jonsson, H., Nived, O., Sjoholm, A. G.
<strong>Homozygous C4A deficiency in systemic lupus erythematosus: analysis of patients from a defined population.</strong>
Clin. Genet. 38: 427-433, 1990.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2289315/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2289315</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2289315" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/j.1399-0004.1990.tb03608.x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="126" class="mim-anchor"></a>
<a id="Su2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Su, K., Wu, J., Edberg, J. C., Li, X., Ferguson, P., Cooper, G. S., Langefeld, C. D., Kimberly, R. P.
<strong>A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing Fc-gamma-RIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus.</strong>
J. Immun. 172: 7186-7191, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15153543/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15153543</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15153543" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.4049/jimmunol.172.11.7186" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="127" class="mim-anchor"></a>
<a id="Sun2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sun, Y., Chen, H. M., Subudhi, S. K., Chen, J., Koka, R., Chen, L., Fu, Y.-X.
<strong>Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease.</strong>
Nature Med. 8: 1405-1413, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12426559/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12426559</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12426559" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm1202-796" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="128" class="mim-anchor"></a>
<a id="Talaei2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Talaei, N., Yu, T., Manion, K., Bremner, R., Wither, J. E.
<strong>Identification of the SLAM adapter molecule EAT-2 as a lupus-susceptibility gene that acts through impaired negative regulation of dendritic cell signaling.</strong>
J. Immun. 195: 4623-4631, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/26432891/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">26432891</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=26432891" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.4049/jimmunol.1500552" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="129" class="mim-anchor"></a>
<a id="Talal1979" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Talal, N.
<strong>Systemic lupus erythematosus, autoimmunity, sex and inheritance. (Editorial)</strong>
New Eng. J. Med. 301: 838-839, 1979.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/314588/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">314588</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=314588" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1056/NEJM197910113011510" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="130" class="mim-anchor"></a>
<a id="Tan1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tan, E. M., Cohen, A. S., Fries, J. F., Masi, A. T., McShane, D. J., Rothfield, N. F., Schaller, J. G., Talal, N., Winchester, R. J.
<strong>The 1982 revised criteria for the classification of systemic lupus erythematosus.</strong>
Arthritis Rheum. 25: 1271-1277, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7138600/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7138600</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7138600" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780251101" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="131" class="mim-anchor"></a>
<a id="Tao2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tao, D., Shangwu, L., Qun, W., Yan, L., Wei, J., Junyan, L., Feili, G., Boquan, J., Jinquan, T.
<strong>CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus.</strong>
J. Immun. 174: 1281-1290, 2005. Note: Retraction: J. Immun. 188: 5800 only, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15661884/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15661884</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15661884" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.4049/jimmunol.174.3.1281" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="132" class="mim-anchor"></a>
<a id="Theofilopoulos1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Theofilopoulos, A. N., Dixon, F. J.
<strong>Murine models of systemic lupus erythematosus.</strong>
Adv. Immun. 37: 269-390, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3890479/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3890479</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3890479" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0065-2776(08)60342-9" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="133" class="mim-anchor"></a>
<a id="Toriello1998" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Toriello, H. V.
<strong>Chondrodysplasia punctata and maternal systemic lupus erythematosus. (Commentary)</strong>
J. Med. Genet. 35: 698-699, 1998.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9719384/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9719384</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9719384" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.35.8.698" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="134" class="mim-anchor"></a>
<a id="Tournoy2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tournoy, J., Bossuyt, X., Snellinx, A., Regent, M., Garmyn, M., Serneels, L., Saftig, P., Craessaerts, K., De Strooper, B., Hartmann, D.
<strong>Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice.</strong>
Hum. Molec. Genet. 13: 1321-1331, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15128703/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15128703</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15128703" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddh151" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="135" class="mim-anchor"></a>
<a id="Tuffanelli1971" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Tuffanelli, D. L.
<strong>Lupus erythematosus panniculitis (profundus). Clinical and immunologic studies.</strong>
Arch. Derm. 103: 231-242, 1971.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/4100949/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">4100949</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=4100949" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="136" class="mim-anchor"></a>
<a id="Vyse1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Vyse, T. J., Drake, C. G., Rozzo, S. J., Roper, E., Izui, S., Kotzin, B. L.
<strong>Genetic linkage of IgG autoantibody production in relation to lupus nephritis in New Zealand hybrid mice.</strong>
J. Clin. Invest. 98: 1762-1772, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8878426/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8878426</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8878426" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI118975" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="137" class="mim-anchor"></a>
<a id="Vyse1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Vyse, T. J., Todd, J. A.
<strong>Genetic analysis of autoimmune disease.</strong>
Cell 85: 311-318, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8616887/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8616887</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8616887" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/s0092-8674(00)81110-1" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="138" class="mim-anchor"></a>
<a id="Weinberg1980" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Weinberg, J. B., Hasstedt, S. J., Skolnick, M. H., Kimberling, W. J., Baty, B.
<strong>Analysis of a large pedigree with elliptocytosis, multiple lipomatosis, and biological false-positive serological test for syphilis.</strong>
Am. J. Med. Genet. 5: 57-67, 1980.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7395901/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7395901</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7395901" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320050108" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="139" class="mim-anchor"></a>
<a id="Willcocks2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Willcocks, L. C., Carr, E. J., Niederer, H. A., Rayner, T. F., Williams, T. N., Yang, W., Scott, J. A. G., Urban, B. C., Peshu, N., Vyse, T. J., Lau, Y. L., Lyons, P. A., Smith, K. G. C.
<strong>A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematous.</strong>
Proc. Nat. Acad. Sci. 107: 7881-7885, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20385827/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20385827</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20385827" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0915133107" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="140" class="mim-anchor"></a>
<a id="Willcocks2008" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Willcocks, L. C., Lyons, P. A., Clatworthy, M. R., Robinson, J. I., Yang, W., Newland, S. A., Plagnol, V., McGovern, N. N., Condliffe, A. M., Chilvers, E. R., Adu, D., Jolly, E. C., Watts, R., Lau, Y. L., Morgan, A. W., Nash, G., Smith, K. G. C.
<strong>Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake.</strong>
J. Exp. Med. 205: 1573-1582, 2008.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18559452/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18559452</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18559452[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18559452" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1084/jem.20072413" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="141" class="mim-anchor"></a>
<a id="Wong1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wong, D. W., Bentwich, Z., Martinez-Tarquino, C., Seidman, J. G., Duby, A. D., Quertermous, T., Schur, P. H.
<strong>Nonlinkage of the T cell receptor alpha, beta, and gamma genes to systemic lupus erythematosus in multiplex families.</strong>
Arthritis Rheum. 31: 1371-1376, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2903748/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2903748</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2903748" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780311105" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="142" class="mim-anchor"></a>
<a id="Wu2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wu, H., Boackle, S. A., Hanvivadhanakul, P., Ulgiati, D., Grossman, J. M., Lee, Y., Shen, N., Abraham, L. J., Mercer, T. R., Park, E., Hebert, L. A., Rovin, B. H., and 13 others.
<strong>Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus.</strong>
Proc. Nat. Acad. Sci. 104: 3961-3966, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17360460/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17360460</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17360460[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17360460" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0609101104" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="143" class="mim-anchor"></a>
<a id="Wu1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Wu, J., Wilson, J., He, J., Xiang, L., Schur, P. H., Mountz, J. D.
<strong>Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease.</strong>
J. Clin. Invest. 98: 1107-1113, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8787672/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8787672</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8787672" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1172/JCI118892" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="144" class="mim-anchor"></a>
<a id="Xing2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Xing, C., Gray-McGuire, C., Kelly, J. A., Garriott, P., Bukulmez, H., Harley, J. B., Olson, J. M.
<strong>Genetic linkage of systemic lupus erythematosus to 13q32 in African American families with affected male members.</strong>
Hum. Genet. 118: 309-321, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16189706/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16189706</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16189706" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1007/s00439-005-0061-5" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="145" class="mim-anchor"></a>
<a id="Xu2004" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Xu, L., Zhang, L., Yi, Y., Kang, H.-K., Datta, S. K.
<strong>Human lupus T cells resist inactivation and escape death by upregulating COX-2.</strong>
Nature Med. 10: 411-415, 2004.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14991050/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14991050</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14991050" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nm1005" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="146" class="mim-anchor"></a>
<a id="Yang2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yang, Y., Chung, E. K., Wu, Y. L., Savelli, S. L., Nagaraja, H. N., Zhou, B., Hebert, M., Jones, K. N., Shu, Y., Kitzmiller, K., Blanchong, C. A., McBride, K. L., and 11 others.
<strong>Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans.</strong>
Am. J. Hum. Genet. 80: 1037-1054, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17503323/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17503323</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17503323[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17503323" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/518257" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="147" class="mim-anchor"></a>
<a id="Yasutomo2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yasutomo, K., Horiuchi, T., Kagami, S., Tsukamoto, H., Hashimura, C., Urushihara, M., Kuroda, Y.
<strong>Mutation of DNASE1 in people with systemic lupus erythematosus.</strong>
Nature Genet. 28: 313-314, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11479590/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11479590</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11479590" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/91070" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="148" class="mim-anchor"></a>
<a id="Yocum1975" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Yocum, M. W., Grossman, J., Waterhouse, C., Abraham, G. N., May, A. G., Condemi, J. J.
<strong>Monozygotic twins discordant for systemic lupus erythematosus: comparison of immune response, auto antibodies, viral antibody titers, gamma globulin, and light chain metabolism.</strong>
Arthritis Rheum. 18: 193-199, 1975.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/49185/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">49185</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=49185" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/art.1780180301" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="149" class="mim-anchor"></a>
<a id="Zhang2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zhang, J., Roschke, V., Baker, K. P., Wang, Z., Alarcon, G. S., Fessler, B. J., Bastian, H., Kimberly, R. P., Zhou, T.
<strong>Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus.</strong>
J. Immun. 166: 6-10, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11123269/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11123269</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11123269" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.4049/jimmunol.166.1.6" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="150" class="mim-anchor"></a>
<a id="Zhao2017" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zhao, J., Ma, J., Deng, Y., Kelly, J. A., Kim, K., Bang, S.-Y., Lee, H.-S., Li, Q.-Z., Wakeland, E. K., Qiu, R., Liu, M., Guo, J., and 13 others.
<strong>A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases.</strong>
Nature Genet. 49: 433-437, 2017.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/28135245/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">28135245</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28135245" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.3782" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Ada Hamosh - updated : 10/30/2020
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Ada Hamosh - updated : 01/09/2020<br>Ada Hamosh - updated : 04/04/2018<br>Ada Hamosh - updated : 04/25/2017<br>Paul J. Converse - updated : 3/14/2016<br>Paul J. Converse - updated : 7/24/2015<br>George E. Tiller - updated : 9/17/2013<br>George E. Tiller - updated : 8/26/2013<br>Paul J. Converse - updated : 5/1/2013<br>Ada Hamosh - updated : 2/25/2013<br>Ada Hamosh - updated : 1/15/2013<br>Paul J. Converse - updated : 9/24/2012<br>Paul J. Converse - updated : 8/3/2012<br>Cassandra L. Kniffin - updated : 3/29/2012<br>Marla J. F. O'Neill - updated : 1/9/2012<br>Paul J. Converse - updated : 4/29/2011<br>Cassandra L. Kniffin - updated : 1/14/2011<br>George E. Tiller - updated : 7/8/2010<br>Ada Hamosh - updated : 7/1/2010<br>Ada Hamosh - updated : 2/17/2010<br>Paul J. Converse - updated : 11/25/2009<br>Marla J. F. O'Neill - updated : 11/12/2009<br>George E. Tiller - updated : 7/31/2009<br>Marla J. F. O'Neill - updated : 11/18/2008<br>Ada Hamosh - updated : 10/22/2008<br>Paul J. Converse - updated : 7/31/2008<br>Paul J. Converse - updated : 5/27/2008<br>Marla J. F. O'Neill - updated : 9/24/2007<br>Marla J. F. O'Neill - updated : 9/20/2007<br>George E. Tiller - updated : 6/21/2007<br>Victor A. McKusick - updated : 5/23/2007<br>Cassandra L. Kniffin - updated : 4/12/2007<br>Paul J. Converse - updated : 10/27/2006<br>Cassandra L. Kniffin - updated : 9/29/2006<br>George E. Tiller - updated : 9/11/2006<br>Victor A. McKusick - updated : 4/26/2006<br>Cassandra L. Kniffin - updated : 4/5/2006<br>George E. Tiller - updated : 3/21/2006<br>George E. Tiller - updated : 3/20/2006<br>Cassandra L. Kniffin - updated : 3/2/2006<br>Marla J. F. O'Neill - updated : 2/15/2006<br>Paul J. Converse - updated : 11/11/2005<br>Marla J. F. O'Neill - updated : 10/26/2005<br>Cassandra L. Kniffin - updated : 10/4/2005<br>Marla J. F. O'Neill - updated : 7/21/2005<br>Marla J. F. O'Neill - updated : 6/21/2005<br>Victor A. McKusick - updated : 3/31/2005<br>Ada Hamosh - updated : 3/7/2005<br>George E. Tiller - updated : 2/23/2005<br>Marla J. F. O'Neill - updated : 10/18/2004<br>Marla J. F. O'Neill - updated : 9/30/2004<br>Victor A. McKusick - updated : 9/8/2004<br>Marla J. F. O'Neill - updated : 4/27/2004<br>Marla J. F. O'Neill - updated : 3/15/2004<br>Victor A. McKusick - updated : 1/16/2004<br>Victor A. McKusick - updated : 7/21/2003<br>Victor A. McKusick - updated : 5/19/2003<br>Victor A. McKusick - updated : 4/28/2003<br>Victor A. McKusick - updated : 3/25/2003<br>Victor A. McKusick - updated : 12/23/2002<br>Victor A. McKusick - updated : 10/8/2002<br>Victor A. McKusick - updated : 10/8/2002<br>Paul J. Converse - updated : 4/10/2002<br>Ada Hamosh - updated : 11/26/2001<br>Paul J. Converse - updated : 4/27/2001<br>Ada Hamosh - updated : 4/12/2001<br>Ada Hamosh - updated : 4/12/2001<br>Paul J. Converse - updated : 2/21/2001<br>Victor A. McKusick - updated : 12/13/2000<br>Victor A. McKusick - updated : 11/16/2000<br>Ada Hamosh - updated : 8/14/2000<br>Wilson H. Y. Lo - updated : 9/1/1999<br>Victor A. McKusick - updated : 5/19/1999<br>Victor A. McKusick - updated : 5/6/1999<br>Victor A. McKusick - updated : 2/4/1999<br>Victor A. McKusick - updated : 12/18/1998<br>Michael J. Wright - updated : 11/16/1998<br>Mark H. Paalman - updated : 4/10/1997
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/2/1986
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 01/02/2024
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 12/18/2023<br>alopez : 05/10/2022<br>ckniffin : 05/05/2022<br>mgross : 10/30/2020<br>carol : 03/13/2020<br>alopez : 01/09/2020<br>carol : 09/07/2018<br>alopez : 05/15/2018<br>alopez : 04/04/2018<br>carol : 11/13/2017<br>carol : 04/26/2017<br>alopez : 04/25/2017<br>alopez : 04/25/2017<br>carol : 08/12/2016<br>carol : 03/15/2016<br>mgross : 3/14/2016<br>mgross : 7/24/2015<br>joanna : 12/8/2014<br>mcolton : 11/13/2014<br>carol : 10/7/2014<br>mgross : 10/4/2013<br>alopez : 9/17/2013<br>alopez : 8/26/2013<br>mgross : 5/1/2013<br>alopez : 2/27/2013<br>terry : 2/25/2013<br>alopez : 1/15/2013<br>carol : 11/8/2012<br>mgross : 9/25/2012<br>terry : 9/24/2012<br>mgross : 8/3/2012<br>terry : 8/3/2012<br>mgross : 6/25/2012<br>terry : 5/3/2012<br>carol : 4/13/2012<br>terry : 4/3/2012<br>ckniffin : 3/29/2012<br>carol : 1/10/2012<br>terry : 1/9/2012<br>mgross : 5/3/2011<br>mgross : 5/3/2011<br>terry : 4/29/2011<br>carol : 4/25/2011<br>carol : 1/24/2011<br>ckniffin : 1/14/2011<br>terry : 9/8/2010<br>carol : 8/5/2010<br>wwang : 8/5/2010<br>wwang : 7/23/2010<br>terry : 7/8/2010<br>alopez : 7/2/2010<br>terry : 7/1/2010<br>alopez : 3/1/2010<br>terry : 2/17/2010<br>wwang : 1/5/2010<br>ckniffin : 12/29/2009<br>terry : 12/16/2009<br>mgross : 12/4/2009<br>terry : 11/25/2009<br>wwang : 11/25/2009<br>terry : 11/12/2009<br>ckniffin : 8/18/2009<br>wwang : 8/17/2009<br>terry : 7/31/2009<br>terry : 6/3/2009<br>terry : 1/30/2009<br>wwang : 11/24/2008<br>terry : 11/18/2008<br>alopez : 10/29/2008<br>alopez : 10/29/2008<br>terry : 10/22/2008<br>alopez : 8/26/2008<br>mgross : 8/14/2008<br>terry : 7/31/2008<br>carol : 6/16/2008<br>carol : 6/2/2008<br>carol : 5/30/2008<br>carol : 5/30/2008<br>carol : 5/27/2008<br>terry : 5/27/2008<br>alopez : 3/11/2008<br>alopez : 3/11/2008<br>alopez : 3/11/2008<br>wwang : 10/1/2007<br>terry : 9/24/2007<br>alopez : 9/20/2007<br>wwang : 6/22/2007<br>terry : 6/21/2007<br>alopez : 5/29/2007<br>terry : 5/23/2007<br>wwang : 4/19/2007<br>ckniffin : 4/12/2007<br>wwang : 4/12/2007<br>mgross : 1/18/2007<br>mgross : 10/27/2006<br>wwang : 10/2/2006<br>ckniffin : 9/29/2006<br>alopez : 9/11/2006<br>wwang : 5/4/2006<br>wwang : 5/1/2006<br>terry : 4/26/2006<br>wwang : 4/7/2006<br>ckniffin : 4/5/2006<br>wwang : 3/21/2006<br>wwang : 3/20/2006<br>wwang : 3/20/2006<br>ckniffin : 3/2/2006<br>wwang : 2/28/2006<br>wwang : 2/21/2006<br>terry : 2/15/2006<br>mgross : 11/14/2005<br>terry : 11/11/2005<br>wwang : 10/31/2005<br>wwang : 10/28/2005<br>terry : 10/26/2005<br>carol : 10/11/2005<br>ckniffin : 10/4/2005<br>wwang : 7/22/2005<br>terry : 7/21/2005<br>carol : 7/19/2005<br>wwang : 6/29/2005<br>terry : 6/21/2005<br>wwang : 4/6/2005<br>wwang : 4/6/2005<br>wwang : 3/31/2005<br>terry : 3/31/2005<br>wwang : 3/9/2005<br>wwang : 3/7/2005<br>tkritzer : 3/3/2005<br>terry : 3/1/2005<br>terry : 2/23/2005<br>carol : 1/25/2005<br>carol : 10/18/2004<br>tkritzer : 9/30/2004<br>terry : 9/8/2004<br>carol : 4/27/2004<br>alopez : 4/2/2004<br>carol : 3/15/2004<br>cwells : 1/16/2004<br>terry : 1/16/2004<br>alopez : 12/3/2003<br>tkritzer : 8/21/2003<br>carol : 7/23/2003<br>carol : 7/23/2003<br>terry : 7/21/2003<br>tkritzer : 5/29/2003<br>terry : 5/20/2003<br>tkritzer : 5/19/2003<br>alopez : 5/7/2003<br>tkritzer : 5/2/2003<br>terry : 4/28/2003<br>tkritzer : 4/8/2003<br>tkritzer : 4/2/2003<br>terry : 3/25/2003<br>tkritzer : 1/3/2003<br>tkritzer : 12/26/2002<br>terry : 12/23/2002<br>mgross : 10/8/2002<br>carol : 10/8/2002<br>alopez : 4/10/2002<br>alopez : 11/26/2001<br>terry : 11/26/2001<br>terry : 7/26/2001<br>mgross : 4/27/2001<br>mgross : 4/27/2001<br>alopez : 4/12/2001<br>alopez : 4/12/2001<br>alopez : 4/12/2001<br>carol : 3/28/2001<br>mgross : 2/21/2001<br>terry : 2/21/2001<br>carol : 2/16/2001<br>carol : 12/19/2000<br>terry : 12/13/2000<br>mgross : 11/16/2000<br>alopez : 8/18/2000<br>alopez : 8/18/2000<br>terry : 8/14/2000<br>mcapotos : 3/3/2000<br>alopez : 11/22/1999<br>carol : 9/1/1999<br>kayiaros : 7/13/1999<br>kayiaros : 7/13/1999<br>mgross : 5/19/1999<br>mgross : 5/17/1999<br>mgross : 5/12/1999<br>terry : 5/6/1999<br>carol : 2/6/1999<br>terry : 2/4/1999<br>carol : 12/29/1998<br>terry : 12/18/1998<br>dkim : 12/15/1998<br>alopez : 12/8/1998<br>terry : 11/16/1998<br>carol : 6/9/1998<br>terry : 6/1/1998<br>terry : 11/5/1997<br>alopez : 7/29/1997<br>alopez : 5/21/1997<br>mark : 4/10/1997<br>mark : 4/10/1997<br>jenny : 12/9/1996<br>terry : 11/25/1996<br>mark : 10/17/1996<br>mark : 10/9/1996<br>terry : 8/19/1996<br>marlene : 8/6/1996<br>terry : 8/2/1996<br>terry : 6/28/1996<br>terry : 6/26/1996<br>pfoster : 11/10/1995<br>mark : 5/5/1995<br>carol : 10/19/1994<br>jason : 7/18/1994<br>terry : 5/11/1994<br>warfield : 3/28/1994
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>#</strong> 152700
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
SYSTEMIC LUPUS ERYTHEMATOSUS; SLE
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div>
<p>
<span class="mim-font">
Other entities represented in this entry:
</span>
</p>
</div>
<div>
<span class="h3 mim-font">
EXCESS LYMPHOCYTE LOW MOLECULAR WEIGHT DNA, INCLUDED
</span>
</div>
<div>
<span class="h4 mim-font">
EXCESS LMW-DNA, INCLUDED
</span>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>SNOMEDCT:</strong> 55464009; &nbsp;
<strong>ICD10CM:</strong> M32, M32.9; &nbsp;
<strong>ICD9CM:</strong> 710.0; &nbsp;
<strong>DO:</strong> 9074; &nbsp;
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Phenotype-Gene Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
<th>
Gene/Locus
</th>
<th>
Gene/Locus <br /> MIM number
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<span class="mim-font">
1p13.2
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
152700
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
PTPN22
</span>
</td>
<td>
<span class="mim-font">
600716
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
1q23.3
</span>
</td>
<td>
<span class="mim-font">
{Lupus nephritis, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
152700
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
FCGR2A
</span>
</td>
<td>
<span class="mim-font">
146790
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
1q23.3
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
152700
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
FCGR2B
</span>
</td>
<td>
<span class="mim-font">
604590
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
2q33.2
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
152700
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
CTLA4
</span>
</td>
<td>
<span class="mim-font">
123890
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
3p21.31
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
152700
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
TREX1
</span>
</td>
<td>
<span class="mim-font">
606609
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
16p13.3
</span>
</td>
<td>
<span class="mim-font">
{Systemic lupus erythematosus, susceptibility to}
</span>
</td>
<td>
<span class="mim-font">
152700
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
<td>
<span class="mim-font">
DNASE1
</span>
</td>
<td>
<span class="mim-font">
125505
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<span class="mim-text-font">
<p>A number sign (#) is used with this entry because of evidence that multiple genes are involved in the causation of systemic lupus erythematosus.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by production of autoantibodies against nuclear, cytoplasmic, and cell surface molecules that transcend organ-specific boundaries. Tissue deposition of antibodies or immune complexes induces inflammation and subsequent injury of multiple organs and finally results in clinical manifestations of SLE, including glomerulonephritis, dermatitis, thrombosis, vasculitis, seizures, and arthritis. Evidence strongly suggests the involvement of genetic components in SLE susceptibility (summary by Oishi et al., 2008). </p><p><strong><em>Genetic Heterogeneity of Systemic Lupus Erythematosus</em></strong></p><p>
An autosomal recessive form of systemic lupus erythematosus (SLEB16; 614420) is caused by mutation in the DNASE1L3 gene (602244) on chromosome 3p14.3. An X-linked dominant form of SLE (SLEB17; 301080) is caused by heterozygous mutation in the TLR7 gene (300365) on chromosome Xp22.</p><p>See MAPPING and MOLECULAR GENETICS sections for a discussion of genetic heterogeneity of susceptibility to SLE.</p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Lappat and Cawein (1968) suggested that drug-induced, specifically procainamide-induced, systemic lupus erythematosus is an expression of a pharmacogenetic polymorphism. Among close relatives of a procainamide SLE proband, they found antinuclear antibody in the serum in 3, and in all 5, 'significant' history or laboratory findings suggesting an immunologic disorder. Three had a coagulation abnormality. The finding of complement deficiency (see 120900) in cases of lupus as well as association with particular HLA types points to genetic factors responsible for familial aggregation of this disease. On the other hand, the evidence for viral etiology suggests nongenetic explanations. Lupus-like illness occurs (Schaller, 1972) in carriers of chronic granulomatous disease (306400). </p><p>Lessard et al. (1997) demonstrated that CYP2D6 (124030) is the major isozyme involved in the formation of N-hydroxyprocainamide, a metabolite potentially involved in the drug-induced lupus syndrome observed with procainamide. Lessard et al. (1999) stated that further studies were needed to demonstrate whether genetically-determined or pharmacologically-modulated low CYP2D6 activity could prevent drug-induced lupus during procainamide therapy. </p><p>Reed et al. (1972) described inflammatory vasculitis with persistent nodules in members of 2 generations. Three females in the preceding generation had rheumatoid arthritis. They noted aggravation on exposure to sunlight and suppression of lesions with chloroquine therapy. They considered this to be related to lupus erythematosus profunda (Tuffanelli, 1971), which has a familial occurrence and is probably related to SLE. </p><p>Brustein et al. (1977) described a woman with discoid lupus who had one child in whom lesions of discoid lupus began at age 2 months and a second child who developed a rash probably of lupus erythematosus at age 1 week. Sibley et al. (1993) described a family in which a brother and sister and a niece of theirs had SLE complicated by ischemic vasculopathy. Photographs of the hands and feet of 1 patient showing gangrene of several fingers and all toes were presented. Extensive osteonecrosis occurred in the niece. </p><p>Elcioglu and Hall (1998) reported 2 sibs with chondrodysplasia punctata born to a mother with systemic lupus erythematosus. One child was stillborn at 36 weeks' gestation and the other miscarried at 24 weeks' gestation following the exacerbation of the mother's SLE. Austin-Ward et al. (1998) also reported an infant with neonatal lupus and chondrodysplasia punctata born to a mother with SLE. The infant also had features similar to those seen in children exposed to oral anticoagulants, although there was no history of this. Elcioglu and Hall (1998) and Austin-Ward et al. (1998), along with Toriello (1998) in a commentary on these 2 papers, suggested that there is evidence for an association between maternal SLE and chondrodysplasia punctata in a fetus. The pathogenesis of this association, however, remained unclear. Kelly et al. (1999) reported a male infant with neonatal lupus erythematosus manifested as a rash typical of the disorder, who also had midface hypoplasia and multiple stippled epiphyses. It was the skin abnormality in the infant that led to the diagnosis of SLE in his mother. Over a 3-year follow-up, the child demonstrated strikingly short stature, midface hypoplasia, anomalous digital development, slow resolution of the stippled epiphyses, and near-normal cognitive development. Kozlowski et al. (2004) described 2 brothers with chondrodysplasia punctata, whose mother had longstanding lupus erythematosus and epilepsy, for which she had been treated with chloroquine and other therapeutic agents during both pregnancies. Kozlowski et al. (2004) pointed to 7 reported instances of the association between chondrodysplasia punctata and maternal SLE. </p><p>Kamat et al. (2003) described the first reported incidence of identical triplets who developed SLE. The diagnosis of SLE was made at ages 8, 9, and 11 years (in reverse birth order, the last born developing the disorder at age 8). Photosensitivity and skin lesions were all early manifestations. The 3 girls manifested different clinical signs and symptoms; however, all 3 had skin rash, fatigue, and biopsy-proven glomerulonephritis. The findings of laboratory studies were similar, including positivity for antinuclear antibodies, anti-native DNA, and anti-double-stranded DNA (dsDNA), as well as low levels of complement. </p><p><strong><em>SLE and Nephritis</em></strong></p><p>
Stein et al. (2002) analyzed 372 affected individuals from 160 multiplex SLE families, of which 25 contained at least 1 affected male relative. The presence of renal disease was significantly increased in female family members with an affected male relative compared to those with no affected male relative (p = 0.002); the trend remained after stratifying by race and was most pronounced in European Americans. Stein et al. (2002) concluded that the increased prevalence of renal disease previously reported in men with SLE is, in large part, a familial rather than sex-based difference, at least in multiplex SLE families. </p><p>Xing et al. (2005) added 392 individuals from 181 new multiplex SLE families to the sample previously studied by Stein et al. (2002) and replicated the finding that the prevalence of renal disease was increased in families with affected male relatives compared to families with no affected male relatives. Xing et al. (2005) concluded that multiplex SLE families with at least 1 affected male relative constitute a distinct subpopulation of multiplex SLE families. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Other Features</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>DeHoratius et al. (1975) found anti-RNA antibodies in 82% of SLE cases and 16% of their relatives, as compared with 5% of control cases. The relatives who showed antibody were exclusively close household contacts of SLE cases. Anti-RNA antibody was not found in unrelated household contacts of SLE cases. The findings supported the hypothesis that both an environmental agent, perhaps a virus, and genetic response are involved in the pathogenesis of SLE. See 601821 for information about Ro ribonucleoproteins. </p><p>Beaucher et al. (1977) found clinical and serologic abnormalities in the household dogs of 2 families with multiple cases of clinical and serologic SLE, as well as other autoimmune disorders. Since spontaneous SLE occurs in dogs, a transmissible agent may be involved. </p><p>Horn et al. (1978) described mixed connective tissue disease (MCTD) in a brother and sister from a sibship of 8. They were HLA-identical (A11B12; A2B12). MCTD has characteristics overlapping SLE, scleroderma and polymyositis. Sera give positive indirect immunofluorescence tests for antinuclear antibodies with a characteristic coarse, speckled pattern. The diagnosis is confirmed by finding antibodies against ribonucleoprotein. </p><p>Batchelor et al. (1980) found an association of hydralazine-induced SLE with HLA-DR4. Slow acetylators without SLE and cases of nondrug-induced SLE did not show the association. Thus, spontaneous SLE may be a fundamentally different entity. In an extensive kindred in which elliptocytosis and lipomatosis (151900) were segregating as independent dominants, Weinberg et al. (1980) found a high frequency of biologic false-positive serologic tests for syphilis (BFP STS). The latter trait appeared also to be a dominant, independent of the other two traits. Two female pedigree members with BFP STS developed SLE. </p><p>Reidenberg et al. (1980) found an excess of slow acetylator phenotype in SLE. On the other hand, Baer et al. (1986) could find no association between acetylator phenotype and SLE and from a review of the literature concluded that most workers have had similar results. See C3b receptor (120620) for information on a polymorphism related to SLE. </p><p>Sakane et al. (1989) studied T- and B-cell function, using an IL-2 activity assay and spontaneous plaque-forming cell assay, respectively, in 34 family members of 6 patients with SLE. Impaired IL2 activity was found in 15 of 29 relatives but in none of 5 unrelated persons sharing households with the probands. The B-cell assay was abnormal in 22 of 29 relatives but was also abnormal in 4 of 5 unrelated household members. The authors concluded that there is a strong genetic component to the impaired IL2 activity in relatives of patients with SLE; the evidence suggests a genetic basis for the B-cell abnormalities, but environmental influences may also play a role. Benke et al. (1989) observed increased oxidative metabolism in PHA-stimulated lymphocytes from a subgroup of patients with systemic lupus erythematosus. The authors suggested that the increased oxidative activity may generate a chemical change in the endogenous DNA in vivo and therefore may be a primary event in the pathogenesis of autoimmunity in some patients with SLE. </p><p>Using EMSA analysis, Solomou et al. (2001) showed that whereas stimulated T cells from normal individuals had increased binding of phosphorylated CREB (123810) to the -180 site of the IL2 promoter, nearly all stimulated T cells from SLE patients had increased binding primarily of phosphorylated CREM (123812) at this site and to the transcriptional coactivators CREBBP (600140) and EP300 (602700). Increased expression of phosphorylated CREM correlated with decreased production of IL2. Solomou et al. (2001) concluded that transcriptional repression is responsible for the decreased production of IL2 and anergy in SLE T cells. </p><p>Xu et al. (2004) demonstrated that activated T cells of lupus patients resisted anergy and apoptosis by markedly upregulating and sustaining cyclooxygenase-2 (COX2, or PTGS2; 600262) expression. Inhibition of COX2 caused apoptosis of the anergy-resistant lupus T cells by augmenting FAS (134637) signaling and markedly decreasing the survival molecule FLIP (603599), and this mechanism was found to involve anergy-resistant lupus T cells selectively. Xu et al. (2004) noted that the gene encoding COX2 is located in a lupus susceptibility region on chromosome 1. They also found that only some COX2 inhibitors were able to suppress the production of pathogenic autoantibodies to DNA by causing autoimmune T-cell apoptosis, an effect that was independent of PGE2. Xu et al. (2004) suggested that these findings could be useful in the design of lupus therapies. </p><p>Zhang et al. (2001) determined that SLE patients have increased serum levels of B-lymphocyte stimulator (BLYS, or TNFSF13B; 603969) compared with normal controls. Immunoprecipitation and Western blot analyses revealed expression of a 17-kD soluble form of BLYS in patients but not controls. Functional analysis demonstrated that most patient serum-derived BLYS exhibited increased costimulatory activity for B-cell proliferation in vitro. Patients with higher levels of BLYS also had significantly higher levels of anti-dsDNA in IgG, IgM, and IgA classes than did patients with low levels of BLYS. Although there was no correlation between increased BLYS levels and clinical SLE activity, there were slightly higher BLYS levels in patients with antinuclear antibodies (ANA) and significantly increased BLYS levels in patients with both ANA and a clinical impression of SLE, suggesting that elevated BLYS precedes the formal fulfillment of the criteria for SLE. Zhang et al. (2001) suggested that BLYS may play an antiapoptotic role in B-cell tolerance loss and that anti-BLYS may be a potential therapy for SLE and other autoimmune diseases. </p><p>Baechler et al. (2003) used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguished most SLE patients from healthy controls. Strikingly, approximately half of the patients studied showed dysregulated expression of genes in the interferon pathway. Furthermore, this interferon gene expression 'signature' served as a marker for more severe disease involving the kidneys, hematopoietic cells, and/or the central nervous system. These results provided insight into the genetic pathways underlying SLE, and identified a subgroup of patients who may benefit from therapies targeted at the interferon pathway. </p><p>Using ELISA, Balada et al. (2008) determined that the DNA deoxymethylcytosine content of purified CD4 (186940)-positive T cells was lower in patients with SLE than in controls. RT-PCR analysis detected no differences in DNMT1 (126375), DNMT3A (602769), or DNMT3B (602900) transcript levels between SLE patients and controls. However, simultaneous association of low complement counts with lymphopenia, high titers of anti-dsDNA, or a high SLE disease activity index resulted in an increase in at least 1 of the DNMTs. Balada et al. (2008) proposed that patients with active SLE and DNA hypomethylation have increased DNMT mRNA levels. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Population Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Kelly et al. (2002) stated that SLE primarily affects women of child-bearing age (F:M ratio, 9:1) and has a prevalence of approximately 1 case/2,500. Among African American populations, SLE is 3 times more prevalent than in European Americans, manifests at a younger age, and is more severe than in other American populations. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Clinical Management</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Glucocorticoids are widely used to treat patients with autoimmune diseases such as SLE. However, in the majority of SLE patients such treatment regimens cannot maintain disease control, and more aggressive approaches such as high-dose methylprednisolone pulse therapy are used to provide transient reduction in disease activity. Guiducci et al. (2010) demonstrated that, in vitro and in vivo, stimulation of plasmacytoid dendritic cells (PDCs) through TLR7 (300365) and TLR9 (605474) can account for the reduced activity of glucocorticoids to inhibit the interferon pathway in SLE patients and in 2 lupus-prone mouse strains. The triggering of PDCs through TLR7 and TLR9 by nucleic acid-containing immune complexes or by synthetic ligands activates the NF-kappa-B (see 164011) pathway essential for PDC survival. Glucocorticoids do not affect NF-kappa-B activation in PDCs, preventing glucocorticoid induction of PDC death and the consequent reduction of systemic IFN-alpha (147660) levels. Guiducci et al. (2010) concluded that their findings unveiled a new role for self nucleic acid recognition by TLRs and indicated that inhibitors of TLR7 and TLR9 signaling could prove to be effective corticosteroid-sparing drugs. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Inheritance</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Block et al. (1975) comprehensively reviewed evidence from twin studies. Higher concordance for clinical and serologic abnormality for monozygotic twins supported a significant genetic factor. </p><p>Lahita et al. (1983) observed father-to-son transmission and noted prepubertal onset of familial SLE in males. </p><p>Fielder et al. (1983) found an unexpectedly high frequency of null (silent) alleles at the C4A (120810), C4B (120820) and C2 (613927) loci in patients with SLE. HLA-DR3 showed a high frequency in these patients, and a strong linkage disequilibrium between DR3 and the null alleles for C4A and C4B was found. On the basis of the data reported by Fielder et al. (1983), Green et al. (1986) concluded that association with null alleles at the C4 loci is primary and the DR3 association secondary to that. In addition to the association of SLE with MHC antigens DR2 and DR3 and with homozygous deficiency of early complement components, the fact that SLE occurs 3 to 4 times more frequently in blacks than in whites (Siegel et al., 1970; Fessel, 1974) points to genetic factors. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Genotype/Phenotype Correlations</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Sturfelt et al. (1990) found homozygous C4A deficiency in 13 of 80 patients (16%). Photosensitivity was a more impressive feature in these homozygotes than in other lupus patients. The T4/Leu-3 molecule (186940) is a T-cell differentiation antigen expressed on the surface of T helper/inducer cells. Monoclonal antibodies that can recognize this molecule include OKT4 and anti-Leu-3a, which bind to different determinants (epitopes) on the T4/Leu-3 molecule. This molecule has an important role in the recognition of class II MHC antigens by T cells. Polymorphism of the T4 epitope had, by the time of the report of Stohl et al. (1985), been identified only in blacks. Three phenotypes, corresponding to 3 genotypes, were identified: the most common, the T4 epitope-intact phenotype, is manifest when fluorescence intensity upon staining of T cells is as great with OKT4 as with anti-Leu-3a. The T4 epitope-deficient phenotype shows no staining with OKT4, and an intermediate phenotype, representing heterozygosity for deficiency, shows fluorescence intensity with OKT4 that is half that with anti-Leu-3a. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Genomewide Linkage Studies</em></strong></p><p>
Lee and Nath (2005) conducted a metaanalysis of 12 genome scans generated from 9 independent studies involving 605 SLE families with 1,355 affected individuals. They identified 2 loci, 6p22.3-6p21.1 and 16p12.3-16q12.2, that met genomewide significance (p less than 0.000417). Lee and Nath (2005) noted that 6p22.3-6p21.1 contains the HLA region. </p><p>Gaffney et al. (1998) reported the results of a genomewide microsatellite marker screen in 105 SLE sib-pair families. Eighty of the families were Caucasian; 5 were African American. By using multipoint nonparametric methods, the strongest evidence for linkage was found near the HLA locus; D6S257 gave a lod score of 3.90. D16S415 at 16q13 yielded a lod score of 3.64; D14S276 at 14q21-q23 yielded a lod score of 2.81; and D20S186 at 20p12 yielded a lod score of 2.62. Another 9 regions were identified with lod scores equal to or greater than 1.00. The data supported the hypothesis that multiple genes, including 1 in the HLA region, influence susceptibility to human SLE. </p><p>Gaffney et al. (2000) performed a second genomewide screen in a 'new' cohort of 82 SLE sib-pair families. Highest evidence of linkage was found in 4 intervals: 10p13, 7p22, 7q21, and 7q36; all 4 had a lod score greater than 2.0, and the locus on 7p22 had a lod score of 2.87. A combined analysis of cohorts 1 and 2 (187 sib-pair families total) showed that markers in 6p21-p11 (D6S426, lod score of 4.19) and 16q13 (D16S415, lod score of 3.85) met the criteria for significant linkage. </p><p>Using the ABI Prism linkage mapping set, which includes 350 polymorphic markers with an average spacing of 12 cM, Shai et al. (1999) screened the human genome in a sample of 188 lupus patients belonging to 80 lupus families, each with 2 or more affected relatives per family, to localize genetic intervals that may contain lupus susceptibility loci. Nonparametric multipoint linkage analysis suggested evidence for predisposing loci on chromosomes 1 and 18. However, no single locus with overwhelming evidence for linkage was found, suggesting that there are no 'major' susceptibility genes segregating in families with SLE, and that the genetic etiology is more likely to result from the action of several genes of moderate effect. Furthermore, support for a gene in the 1q44 region, as well as for a gene in the 1p36 region, was found clearly only in Mexican American families with SLE, but not in families of Caucasian ethnicity, suggesting that consideration of each ethnic group separately is crucial. </p><p>Lindqvist et al. (2000) performed genome scans in families with multiple SLE patients from Iceland and from Sweden. A number of regions gave lod scores greater than 2: among Icelandic families, 4p15-p13, Z = 3.20; 9p22, Z = 2.27; and 19q13, Z = 2.06, which are homologous to the murine regions containing the lmb2, sle2, and sle3 loci, respectively. The fourth region among Icelandic families is located on 19p13 (D19S247, Z = 2.58) and a fifth on 2q37 (D2S125, Z = 2.06). Only 2 regions showed lod scores above 2.0 in the Swedish families: 2q11 (D2S436, Z = 2.13) and 2q37 (D2S125, Z = 2.18). The combination of both family sets gave a highly significant lod score at D2S125, with a Z of 4.24 in favor of linkage for 2q37 (see 605218). </p><p>Gray-McGuire et al. (2000) presented the result of a genome scan of 126 pedigrees with 2 or more cases of SLE, including 469 sib pairs (affected and unaffected) and 175 affected relative pairs. Using the revised multipoint Haseman-Elston regression technique for concordant and discordant sib pairs and a conditional logistic regression technique for affected relative pairs, they identified linkage to chromosome 4p16-p15.2 (P = 0.0003, lod = 3.84) and presented evidence of an epistatic interaction between 4p16-p15.2 and chromosome 5p15 in European American families. Using data from an independent pedigree collection, they confirmed the linkage to 4p16-p15.2 in European American families. The most significant linkage that they found in the African American subset was to the previously identified region on 1q (601744). </p><p>Johanneson et al. (2002) genotyped a set of 87 multicase families with SLE from various European countries and recently admixed populations of Mexico, Colombia, and the United States for 62 microsatellite markers on chromosome 1. By parametric 2-point linkage analysis, 6 regions previously described as being related to SLE (1p36, 1p21, 1q23, 1q25, 1q31, and 1q43) were identified that had lod scores greater than or equal to 1.50. CD45 (151460) was considered a strong candidate gene because of its position in 1q31-q32 and because of its involvement in the regulation of the antigen-induced signaling of naive B and T cells. Johanneson et al. (2002) found no association between the 77C-G (151460.0001) mutation in the CD45 gene and SLE in the families they studied. The locus at 1q31 showed a significant 3-point lod score of 3.79 and was contributed by families from all populations, with several markers and under the same parametric model. They concluded that a locus at 1q31 contains a major susceptibility gene, important to SLE in 'general populations.' </p><p>Scofield et al. (2003) selected 38 pedigrees that had an SLE patient with thrombocytopenia from a collection of 184 pedigrees with multiple cases of SLE. They established linkage at chromosome 1q22-q23 (maximum lod = 3.71) in all 38 pedigrees and at 11p13 (maximum lod = 5.72) in the 13 African American pedigrees. Nephritis, serositis, neuropsychiatric involvement, autoimmune hemolytic anemia, anti-double-stranded DNA, and antiphospholipid antibody were associated with thrombocytopenia. The results showed that SLE was more severe in the families with a thrombocytopenic SLE patient, whether or not thrombocytopenia in an individual patient was considered. </p><p><strong><em>Susceptibility Loci for SLE Mapped by Linkage Studies</em></strong></p><p>
See SLEB1 (601744) for discussion of an SLE susceptibility locus on chromosome 1q41. Variations in the TLR5 gene (603031) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB2 (605218) for discussion of an SLE susceptibility locus on chromosome 2q37. Variations in the PDCD1 gene (605218) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB3 (605480) for discussion of an SLE susceptibility locus on chromosome 4p.</p><p>See SLEB4 (608437) for discussion of an SLE susceptibility locus on chromosome 12q24.</p><p>See SLEB5 (609903) for discussion of an SLE susceptibility locus on chromosome 13q32.</p><p>See SLEB6 (609939) for discussion of an SLE susceptibility locus on chromosome 16q12-q13.</p><p>See SLEB7 (610065) for discussion of an SLE susceptibility locus on chromosome 20p12.</p><p>See SLEB8 (610066) for discussion of an SLE susceptibility locus on chromosome 20q13.1.</p><p>See SLEB9 (610927) for discussion of an SLE susceptibility locus on chromosome 1q32.</p><p>See SLEB10 (612251) for discussion of an SLE susceptibility locus on chromosome 7q32. Variations in the IRF5 gene (607218) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB11 (612253) for discussion of an SLE susceptibility locus on chromosome 2q32.2-q32.3. Variations in the STAT4 gene (600558) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB12 (612254) for discussion of an SLE susceptibility locus on chromosome 8p23.1.</p><p>See SLEB13 (612378) for discussion of an SLE susceptibility locus on chromosome 6p23. Variations in the TNFAIP3 gene (191163) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB14 (613145) for discussion of an SLE susceptibility locus on chromosome 1q21-q23. Variations in the CRP gene (123260) have been associated with SLE at this locus; see MOLECULAR GENETICS.</p><p>See SLEB15 (300809) for a discussion of an SLE susceptibility locus on chromosome Xq28.</p><p><strong><em>Susceptibility Loci for SLE with Nephritis</em></strong></p><p>
Renal disease occurs in 40 to 75% of SLE patients and contributes significantly to morbidity and mortality (Garcia et al., 1996). Quintero-Del-Rio et al. (2002) used 2 pedigree stratification strategies to explore the impact of the American College of Rheumatology's renal criterion for SLE classification upon genetic linkage with SLE. They identified susceptibility loci for SLE associated with nephritis on chromosomes 10q22.3 (SLEN1; 607965), 2q34-q35 (SLEN2; 607966), and 11p15.6 (SLEN3; 607967). </p><p><strong><em>Susceptibility Locus for SLE with Hemolytic Anemia</em></strong></p><p>
A locus for susceptibility to SLE with hemolytic anemia as an early or prominent clinical manifestation shows linkage to 11q14 (SLEH1; 607279).</p><p><strong><em>Susceptibility Locus for SLE with Vitiligo</em></strong></p><p>
A locus for susceptibility to SLE associated with vitiligo has been mapped to 17p13 (SLEV1; 606579).</p><p><strong><em>Association with the HLA-DRB1 Locus</em></strong></p><p>
Using a dense map of polymorphic microsatellites across the HLA region in a large collection of families with SLE, Graham et al. (2002) identified 3 distinct haplotypes that encompassed the class II region and exhibited transmission distortion. By visualizing ancestral recombinants, they narrowed the disease-associated haplotypes containing DRB1*1501 and DRB1*0801 to a region of approximately 500 kb. They concluded that HLA class II haplotypes containing DRB1 and DQB1 alleles are strong risk factors for human SLE. </p><p>To identify risk loci for SLE susceptibility, Gateva et al. (2009) selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P less than 0.05) in a genomewide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This new cohort replicated the association with HLA-DRB1 at rs3135394 (odds ratio = 1.98, 95% confidence interval = 1.84-2.14; combined P = 2.0 x 10(-60)). </p><p><strong><em>Association with the TNIP1 Gene on Chromosome 5q32</em></strong></p><p>
In a study of 1,963 patients from the United States and Sweden with SLE compared with 4,329 controls, Gateva et al. (2009) identified association with the TNIP1 gene (607714) at chromosome 5q32 (rs7708392, combined P value = 3.8 x 10(-13); odds ratio = 1.27, 95% confidence interval = 1.10-1.35). </p><p>Han et al. (2009) performed a genomewide association study of SLE in a Chinese Han population by genotyping 1,047 cases and 1,205 controls using Illumina-Human610-Quad BeadChips and replicating 78 SNPs in 2 additional cohorts (3,152 cases and 7,050 controls). Han et al. (2009) found association with a SNP in the TNIP1 gene, rs10036748 (combined P = 1.67 x 10(-9); odds ratio = 0.81, 95% confidence interval = 0.75-0.87). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Association with the PTPN22 Gene on Chromosome 1p13</em></strong></p><p>
In a study of 525 unrelated North American white individuals with SLE, Kyogoku et al. (2004) found an association with the R620W polymorphism in the PTPN22 gene (600716.0001), with estimated minor (T) allele frequencies of 12.67% in SLE cases and 8.64% in controls. A single copy of the T allele (W620) increased risk of SLE (odds ratio = 1.37), and 2 copies of the allele more than doubled this risk (odds ratio = 4.37). </p><p>Orru et al. (2009) reported a 788G-A variant, resulting in an arg263-to-gln (R263Q; rs33996649) substitution within the catalytic domain of the PTPN22 gene, that leads to reduced phosphatase activity. They genotyped 881 SLE patients and 1,133 healthy controls from Spain and observed a significant protective effect (p = 0.006; OR, 0.58). Three replication cohorts of Italian, Argentinian, and Caucasian North American populations failed to reach significance; however, the combined analysis of 2,093 SLE patients and 2,348 controls confirmed the protective effect (p = 0.0017; OR, 0.63). </p><p>To confirm additional risk loci for SLE susceptibility, Gateva et al. (2009) selected SNPs from 2,466 regions that showed nominal evidence association to SLE (P less than 0.05) in a genomewide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. Gateva et al. (2009) showed an association with PTPN22 at rs2476601 (combined P value = 3.4 x 10(-12), odds ratio = 1.35, 95% confidence interval = 1.24-1.47). </p><p><strong><em>Association with the CRP Gene on Chromosome 1q21-q23</em></strong></p><p>
Relative deficiency of pentraxin proteins is implicated in the pathogenesis of SLE. The C-reactive protein (CRP; 123260) response is defective in patients with acute flares of disease, and mice with targeted deletions of the APCS (104770) gene develop a lupus-like illness. In humans, the CRP and APCS genes are both within the 1q23-q24 interval that has been linked to SLE. Among 586 simplex SLE families, Russell et al. (2004) found that basal levels of CRP were influenced independently by 2 CRP polymorphisms, which they designated CRP2 (rs1800947) and CRP4 (rs1205), and the latter was associated with SLE and antinuclear autoantibody production. Russell et al. (2004) hypothesized that defective disposal of potentially immunogenic material may be a contributory factor in lupus pathogenesis. </p><p><strong><em>Association with the FCGR2B Gene on Chromosome 1q22</em></strong></p><p>
In 193 Japanese patients with SLE and 303 healthy controls, Kyogoku et al. (2002) found that homozygosity for an ile232-to-thr polymorphism in the FCGR2B gene (I232T; 604590.0002) was significantly increased in SLE patients compared with controls. </p><p>In membrane separation studies using a human monocytic cell line, Floto et al. (2005) demonstrated that although wildtype FCGR2B readily partitioned into the raft-enriched gradient fractions, FCGR2B-232T was excluded from them. Floto et al. (2005) concluded that FCGR2B-232T is unable to inhibit activating receptors because it is excluded from sphingolipid rafts, resulting in the unopposed proinflammatory signaling thought to promote SLE. </p><p>Su et al. (2004) identified 10 SNPs in the first FCGR2B promoter in 66 SLE patients and 66 controls. They determined that the proximal promoter contains 2 functionally distinct haplotypes. Luciferase promoter analysis showed that the less frequent haplotype, which had a frequency of 9%, was associated with increased gene expression. A case-control study of 243 SLE patients and 366 matched controls demonstrated that the less frequent haplotype was significantly associated with the SLE phenotype and was not in linkage disequilibrium with FCGR2A and FCGR3A (146740) polymorphisms. Su et al. (2004) concluded that an expression variant of FCGR2B is a risk factor for SLE. </p><p>In 190 European American patients with SLE and 130 European American controls, Blank et al. (2005) found a significant association between homozygosity for a -343C polymorphism in the promoter region of the FCGR2B gene (604590.0001) and SLE. The surface expression of FCGR2B receptors was significantly reduced in activated B cells from -343C/C SLE patients. Blank et al. (2005) suggested that deregulated expression of the mutant FCGR2B gene may play a role in the pathogenesis of human SLE. </p><p>By comparing genotypes of patients with SLE from Hong Kong and the UK with those of ethnically matched controls, followed by metaanalysis using with other studies on southeast Asian and Caucasian SLE patients, Willcocks et al. (2010) found that homozygosity for T232 of the I232T FCGR2B polymorphism was strongly associated with SLE in both ethnic groups. When studies in Caucasians and southeast Asians were combined, T232 homozygosity was associated with SLE with an odds ratio of 1.73 (P = 8.0 x 10(-6)). Willcocks et al. (2010) noted that the T232 allele of the SNP is more common in southeast Asians and Africans, populations where malaria (see 611162) is endemic, than in Caucasians. Homozygosity for T232 was significantly associated with protection from severe malaria in Kenyan children (odds ratio = 0.56; P = 7.1 x 10(-5)), but no association was found with susceptibility to bacterial infection. Willcocks et al. (2010) proposed that malaria may have driven retention of a polymorphism predisposing to a polygenic autoimmune disease and thus may begin to explain the ethnic differences seen in the frequency of SLE. </p><p><strong><em>Association with the FCGR3B Gene on Chromosome 1q23</em></strong></p><p>
Aitman et al. (2006) showed that copy number variation (CNV) of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the rat-specific Fcgr3 paralog 'Fcgr3-related sequence' (Fcgr3rs) as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B (610665), an ortholog of rat Fcgr3, was associated with glomerulonephritis in SLE. </p><p>Following up on the study of Aitman et al. (2006) in a larger sample, Fanciulli et al. (2007) confirmed and strengthened their previous finding of an association between low FCGR3B copy number and susceptibility to glomerulonephritis in SLE patients. Low copy number was also associated with risk of systemic SLE with no known renal involvement as well as with microscopic polyangiitis and granulomatosis with polyangiitis (608710), but not with organ-specific Graves disease (275000) or Addison disease (240200), in British and French cohorts. Fanciulli et al. (2007) concluded that low FCGR3B copy number or complete FCGR3B deficiency has a key role in the development of specific autoimmunity. </p><p>Willcocks et al. (2008) confirmed that low copy number of FCGR3B was associated with SLE in a Caucasian U.K. population, but they were unable to find an association in a Chinese population. Investigations of the functional effects of FCGR3B CNV revealed that FCGR3B CNV correlated with cell surface expression, soluble FCGR3B production, and neutrophil adherence to and uptake of immune complexes both in a patient family and in the general population. Willcocks et al. (2008) found that individuals from 3 U.K. cohorts with antineutrophil cytoplasmic antibody-associated systemic vasculitis (AASV) were more likely to have high FCGR3B CNV. They proposed that FCGR3B CNV is involved in immune complex clearance, possibly explaining the association of low CNV with SLE and high CNV with AASV. </p><p>Niederer et al. (2010) noted linkage disequilibrium (LD) between multiallelic FCGR3B CNV and SLE-associated SNPs in the FCGR locus. Despite LD between FCGR3B CNV and a variant in FCGR2B (I232T; 604590.0002) that abolishes inhibitory function, both reduced CN of FCGR3B and homozygosity of the FCGR2B-232T allele were individually strongly associated with SLE risk. Thus copy number of FCGR3B, which controls immune complex responses and uptake by neutrophils, and variations in FCGR2B, which controls factors such as antibody production and macrophage activation, are important in SLE pathogenesis. </p><p>Mueller et al. (2013) found that the increased risk of SLE associated with reduced copy number of FCGR3B can be explained by the presence of a chimeric gene, FCGR2B-prime, that occurs as a consequence of FCGR3B deletion on FCGR3B zero-copy haplotypes. The FCGR2B-prime gene consists of upstream elements and a 5-prime coding region that derive from FCGR2C, and a 3-prime coding region that derives from FCGR2B (604590). The coding sequence of FCGR2B-prime is identical to that of FCGR2B, but FCGR2B-prime would be expected to be under the control of 5-prime flanking sequences derived from FCGR2C. Mueller et al. (2013) found by flow cytometry, immunoblotting, and cDNA sequencing that presence of the chimeric FCGR2B-prime gene results in the ectopic presence of Fc-gamma-RIIb on natural killer cells, providing an explanation for SLE risk associated with reduced FCGR3B copy number. The 5 FCGR2/FCGR3 genes are arranged across 2 highly paralogous genomic segments on chromosome 1q23. To pursue the underlying mechanism of SLE disease association with FCGR3B copy number variation, Mueller et al. (2013) aligned the reference sequence (GRCh37) of the proximal block of the FCGR locus (chr1:161,480,906-161,564,008) to that of the distal block (chr1:161,562,570-161,645,839). Identification of informative paralogous sequence variants (PSVs) enabled Mueller et al. (2013) to narrow the potential breakpoint region to a 24.5-kb region of paralogy between then 2 ancestral duplicated blocks. The complete absence of nonpolymorphic PSVs in the 24.5-kb region prevented more precise localization of the breakpoints in FCGR3B-deleted or FCGR3B-duplicated haplotypes. </p><p><strong><em>Association with the TNFSF6 Gene on Chromosome 1q23</em></strong></p><p>
The apoptosis genes FAS (TNFRSF6; 134637) and FASL (TNFSF6; 134638) are candidate contributory genes in human SLE, as mutations in these genes result in autoimmunity in several murine models of this disease. In humans, FAS mutations result in a familial autoimmune lymphoproliferative syndrome (e.g., 134637.0001). Wu et al. (1996) studied DNA from 75 patients with SLE using SSCP analysis for potential mutations of the extracellular domain of FASL. In 1 SLE patient who exhibited lymphadenopathy, they found an 84-bp deletion within exon 4 of the FASL gene, resulting in a predicted 28-amino acid in-frame deletion (see 134638.0001). </p><p><strong><em>Association with the TNFSF4 Gene on Chromosome 1q25</em></strong></p><p>
By use of both a family-based study and a case-control study of SLE in U.K and Minnesota populations to screen the TNFRSF4 (600315) and TNFSF4 (603594) genes, Cunninghame Graham et al. (2008) found that an upstream region of TNFSF4 contains a single risk haplotype (GCTAATCATTTGA) for SLE that correlates with increased cell surface TNFSF4 expression and TNFSF4 transcript. The authors suggested that increased expression of TNFSF4 predisposes to SLE either by quantitatively augmenting T-cell/antigen-presenting cell (APC) interaction or by influencing the functional consequences of T-cell activation via TNFRSF4. </p><p>Han et al. (2009) performed a genomewide association study of SLE in a Chinese Han population by genotyping 1,047 cases and 1,205 controls using Illumina-Human610-Quad BeadChips and replicating 78 SNPs in 2 additional cohorts (3,152 cases and 7,050 controls). Han et al. (2009) found association with the TNFSF4 gene at 2 SNPs, rs1234315 (combined P value = 2.34 x 10(-26), odds ratio = 1.37, 95% confidence interval 1.29-1.45) and rs2205960 (combined P value = 2.53 x 10(-32), odds ratio = 1.46, 95% confidence interval 1.37-1.56). </p><p><strong><em>Association with the CR2 Gene on Chromosome 1q32</em></strong></p><p>
Wu et al. (2007) analyzed the CR2 gene, which lies in the SLEB9 (610927) locus region, in 1,416 individuals from 258 Caucasian and 142 Chinese SLE simplex families and demonstrated that a common 3-SNP haplotype (120650.0001) was associated with SLE susceptibility (p = 0.00001) with a 1.54-fold increased risk for development of disease. Wu et al. (2007) concluded that the CR2 gene is likely a susceptibility gene for SLE. </p><p><strong><em>Association with the TLR5 Gene on Chromosome 1q41-q42</em></strong></p><p>
A polymorphism in the TLR5 gene (R392X; 603031.0001), which maps to the SLEB1 (601744) locus, is associated with resistance to SLE development.</p><p><strong><em>Association with the STAT4 Gene on Chromosome 2q32</em></strong></p><p>
In 1,039 patients with SLE and 1,248 controls, Remmers et al. (2007) identified an association between SLE (SLEB11; 612253) and the minor T allele of rs7574865 in intron 3 of the STAT4 gene (600558.0001). The risk allele was present in 31% of chromosomes of patients with SLE compared with 22% of those of controls (p = 1.87 x 10(-9)). Homozygosity of the risk allele (TT) compared to absence of the allele was associated with a more than doubled risk for lupus. The risk allele was also associated with susceptibility to rheumatoid arthritis (RA; 180300). </p><p><strong><em>Association with the CTLA4 Gene on Chromosome 2q33</em></strong></p><p>
In a metaanalysis of 7 published studies and their own study, Barreto et al. (2004) examined the association between an 49A-G polymorphism in the CTLA4 gene (123890.0001) and SLE. The authors found that individuals with the GG genotype were at significantly higher risk of developing SLE; carriers of the A allele had a significantly lower risk of developing the disease, and the AA genotype acted as a protective genotype for SLE. </p><p>In a metaanalysis of 14 independent studies testing association between CTLA4 polymorphisms and SLE, Lee et al. (2005) confirmed that the 49A-G polymorphism is significantly associated with SLE susceptibility, particularly in Asians. </p><p><strong><em>Association with the PDCD1 Gene on Chromosome 2q37</em></strong></p><p>
Prokunina et al. (2002) analyzed 2,510 individuals, including members of 5 independent sets of families as well as unrelated individuals affected with SLE, for SNPs that they had identified in the PDCD1 gene, which maps within the SLEB2 locus (605218). They showed that one intronic SNP (600244.0001) was associated with development of SLE in Europeans and Mexicans. The associated allele of this SNP alters a binding site for the RUNT-related transcription factor-1 (RUNX1; 151385) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans. </p><p><strong><em>Association with the TREX1 Gene on Chromosome 3p21</em></strong></p><p>
Lee-Kirsch et al. (2007) analyzed the 3-prime repair exonuclease gene TREX1 (606609) in 417 patients with SLE and 1,712 controls and identified heterozygosity for a 3-prime UTR variant and 11 nonsynonymous changes in 12 patients (see, e.g., 606609.0001). They identified only 2 nonsynonymous changes in 2 controls (p = 1.7 X 10(-7), relative risk = 25.3). In vitro studies of 2 frameshift mutations revealed that both caused altered subcellular distribution. The authors concluded that TREX1 is implicated in the pathogenesis of SLE. </p><p><strong><em>Association with the BANK1 Gene on Chromosome 4q22-q24</em></strong></p><p>
Kozyrev et al. (2008) identified an association between SLE and a nonsynonymous G-to-A transition in the BANK1 gene that results in a substitution of his for arg at codon 61 (610292.0001), with the G allele conferring risk. </p><p><strong><em>Association with the NKX2-5 Gene on Chromosome 5q34</em></strong></p><p>
Oishi et al. (2008) genotyped 3 SNPs in the NKX2-5 gene (600584) in 178 Japanese SLE patients and 1,425 controls and found association with rs3095870 in the 5-prime flanking region of NKX2-5 (p = 0.0037; odds ratio, 1.74). Individuals having the risk genotype for both NKX2-5 and rs3748079 of the ITPR3 gene (147267) had a higher risk for SLE (odds ratio, 5.77). </p><p><strong><em>Association with the ITPR3 Gene on Chromosome 6p21</em></strong></p><p>
Oishi et al. (2008) performed a case-control association study using more than 50,000 genomewide gene-based SNPs in a total of 543 Japanese SLE patients and 2,596 controls and identified significant association with a -1009C-T transition (rs3748079) located in a promoter region of the ITPR3 gene (p = 1.78 x 10(-8); odds ratio, 1.88). Studies in HEK293T cells showed that binding of NKX2-5 is specific to the nonsusceptibility -1009T allele, and individuals with the risk genotype of both ITPR3 and NKX2-5 (rs3095870) had a higher risk for SLE (odds ratio, 5.77). Oishi et al. (2008) concluded that genetic and functional interactions of ITPR3 and NKX2-5 play a crucial role in the pathogenesis of SLE. </p><p><strong><em>Association with the TNFA Gene on Chromosome 6p21.3</em></strong></p><p>
In a metaanalysis of 19 studies, Lee et al. (2006) found an association between SLE and a -308A/G promoter polymorphism in the TNFA gene (191160.0004). The findings were significant in European-derived population (odds ratio of 4.0 for A/A and 2.1 for the A allele), but not in Asian-derived populations. </p><p><strong><em>Association with the C4A and C4B Genes on Chromosome 6p21.3</em></strong></p><p>
Yang et al. (2007) investigated interindividual gene copy number variation (CNV) of complement component C4 in relation to susceptibility to SLE. They found that long C4 genes were strongly correlated with C4A (120810); short C4 genes were correlated with C4B (120820). In comparison with healthy subjects, patients with SLE clearly had the gene copy number (GCN) of total C4 and C4A shifted to the lower side. The risk of SLE disease susceptibility increased significantly among subjects with only 2 copies of total C4 (patients 9.3%; unrelated controls 1.5%) but decreased in those with 5 or more copies of C4 (patients 5.79%; controls 12%). Zero copies and 1 copy of C4A were risk factors for SLE, whereas 3 or more copies of C4A appeared to be protective. Family-based association tests suggested that a specific haplotype with a single short C4B in tight linkage disequilibrium with the -308A allele of TNFA (191160.0004) was more likely to be transmitted to patients with SLE. </p><p>Boteva et al. (2012) genotyped 1,028 SLE cases, including 501 patients from the UK and 537 from Spain, and 1,179 controls for gene copy number of total C4, C4A, C4B, and the 2-bp insertion SNP (C4AQ0; 120810.0001) resulting in a null allele. The loss-of-function SNP in C4A was not associated with SLE in either population. Boteva et al. (2012) used multiple logistic regression to determine the independence of C4 CNV from known SNP and HLA-DRB1 associations. Overall, the findings indicated that partial C4 deficiency states are not independent risk factors for SLE in UK and Spanish populations. Although complete homozygous deficiency of complement C4 is one of the strongest genetic risk factors for SLE, partial C4 deficiency states do not independently predispose to the disease. </p><p>Kamitaki et al. (2020) noted that SLE and Sjogren syndrome (see 270150) affect 9 times more women than men, whereas schizophrenia (181500) affects men with greater frequency and severity than women. Kamitaki et al. (2020) showed that variation in the C4A and C4B genes generated 7-fold variation in risk for SLE and 16-fold variation in risk for Sjogren syndrome among individuals with common C4 genotypes, with C4A offering stronger protection than C4B in both illnesses. C4 alleles that increased risk for schizophrenia greatly reduced risk for SLE and Sjogren syndrome. In all 3 illnesses, C4 alleles acted more strongly in men than in women, with common combinations of C4A and C4B generating 14-fold variation in risk for SLE, 31-fold variation in risk for Sjogren syndrome, and 1.7-fold variation in schizophrenia risk among men versus 6-fold, 15-fold, and 1.26-fold variation in risk among women, respectively. Protein levels of both C4 and its effector C3 were higher in cerebrospinal fluid and plasma in men compared with women among adults between 20 and 50 years of age, corresponding to the ages of differential disease vulnerability. Kamitaki et al. (2020) concluded that sex differences in complement protein levels may explain the more potent effects of C4 alleles in men, the greater risk in women of SLE and Sjogren syndrome, and the greater vulnerability in men to schizophrenia. </p><p><strong><em>Association with the TNXB Gene on Chromosome 6p21.3</em></strong></p><p>
In a genomewide case-control association study of 178 Japanese SLE patients and 899 controls, Kamatani et al. (2008) found significant association between SLE and a SNP (rs3130342) in the 5-prime flanking region of the TNXB gene (600985) on chromosome 6p21.3 (p = 9.3 x 10(-7); odds ratio, 3.11). The association was replicated independently with 203 cases and 294 controls (p = 0.04; odds ratio, 1.52). Analysis in their Japanese SLE patients showed that the association with rs3130342 was independent of C4 copy number, suggesting that the association previously reported between SLE and CNV of the C4A gene (see Yang et al., 2007) likely reflected linkage disequilibrium between C4A CNV and rs3130342. Stratified analysis also demonstrated that the association between rs3130342 and SLE was independent of the HLA-DRB1*1501 allele association with SLE. Kamatani et al. (2008) concluded that TNXB is a candidate gene for SLE susceptibility in the Japanese population. </p><p><strong><em>Association with the TNFAIP3 Gene on Chromosome 6q23</em></strong></p><p>
In separate genomewide association studies, Graham et al. (2008) and Musone et al. (2008) found association between single-nucleotide polymorphisms (SNPs) in the TNFAIP3 region (191163) and risk of SLE. Graham et al. (2008) found association with SLE of a SNP that is also associated with rheumatoid arthritis (RA; 180300). </p><p><strong><em>Association with the IRF5 Gene on Chromosome 7q32</em></strong></p><p>
Sigurdsson et al. (2005) and Graham et al. (2006) showed that a common IRF5 (607218) haplotype, which drives elevated expression of multiple unique forms of IRF5, is an important risk factor for SLE (SLEB10; 612251). </p><p><strong><em>Association with the DNASE1 Gene on Chromosome 16p13.3</em></strong></p><p>
In 2 unrelated females with SLE and no family history of the disorder, Yasutomo et al. (2001) identified heterozygosity for a mutation in the DNASE1 gene (125505.0001). The patients, aged 13 and 17 years, were diagnosed as having SLE based on clinical features, high serum titers of antibodies against double-stranded DNA, and Sjogren syndrome. Both patients had substantially lower levels of DNASE1 activity in the sera than in other SLE patients without a DNASE1 mutation. However, the DNASE1 activity of SLE patients without DNASE1 mutations is lower than that of healthy controls. The patient's B cells had 30 to 50% of the DNASE1 activity of cells from controls, showing that heterozygous mutation of DNASE1 reduces the total activity of this enzyme. </p><p>In 350 Korean patients with SLE and 330 Korean controls, Shin et al. (2004) identified a nonsynonymous SNP in exon 8 of the DNASE1 gene, 2373A-G (Q244R; 125505.0002), that was significantly associated with an increased risk of the production of anti-RNP and anti-dsDNA antibodies among SLE patients. The frequency of the arg/arg minor allele was much higher in patients who had the anti-RNP antibody (31%) than in patients who did not have this antibody (14%) (P = 0.0006). </p><p><strong><em>Association with the ITGAM Gene on Chromosome 16p11.2</em></strong></p><p>
See SLEB6, 609939.</p><p>Nath et al. (2008) identified and replicated an association between ITGAM (120980) at 16p11.2 and risk of SLE in 3,818 individuals of European descent. The strongest association was at a nonsynonymous SNP, rs1143679 (120980.0001). Nath et al. (2008) further replicated this association in 2 independent samples of individuals of African descent. The International Consortium for Systemic Lupus Erythematosus Genetics et al. (2008) likewise identified an association between SNPs in ITGAM in 720 women of European ancestry with SLE and in 2 additional independent sample sets. Several previously identified associations such as the strong association between SLE and the HLA region on 6p21 and the previously confirmed non-HLA locus IRF5 (607218) on 7q32 were found. The International Consortium for Systemic Lupus Erythematosus Genetics et al. (2008) also found association with replication for KIAA1542 (611780) at 11p15.5, PXK (611450) in 3p14.3, and a SNP at 1q25.1. </p><p>Hom et al. (2008) identified SNPs near the ITGAM and ITGAX (151510) genes that were associated with SLE; they believed variants of ITGAM to be driving the association. </p><p><strong><em>Association with the IL6 Gene on chromosome 7p21</em></strong></p><p>
Linker-Israeli et al. (1999) used PCR and RFLP analysis to genotype the AT-rich minisatellite in the 3-prime flanking region and the 5-prime promoter-enhancer of IL6 (147620) in SLE patients and controls. In both African-Americans and Caucasians, short allele sizes (less than 792 bp) at the 3-prime minisatellite were found exclusively in SLE patients, whereas the 828-bp allele was overrepresented in controls. No association was found between SLE and alleles in the 5-prime region of IL6. Patients homo- or heterozygous for the SLE-associated 3-prime minisatellite alleles secreted higher levels of IL6, had higher percentages of IL6-positive monocytes, and showed significantly enhanced IL6 mRNA stability. Linker-Israeli et al. (1999) concluded that the AT-rich minisatellite in the 3-prime region flanking of IL6 is associated with SLE, possibly by increasing accessibility for transcription factors. </p><p><strong><em>Association with the IL18 Gene on Chromosome 11q22</em></strong></p><p>
Sanchez et al. (2009) selected 9 SNPs spanning the IL18 gene (600953) and genotyped an independent set of 752 Spanish systemic lupus erythematosus patients and 595 Spanish controls. A -1297T-C SNP (rs360719) survived correction for multiple tests and was genotyped in 2 case-control replication cohorts from Italy and Argentina. Combined analysis for the risk C allele remained significant (pooled odds ratio = 1.37, 95% CI 1.21-1.54, corrected p = 1.16 x 10(-6)). There was a significant increase in the relative expression of IL18 mRNA in individuals carrying the risk -1297C allele; in addition, -1297C allele created a binding site for the transcriptional factor OCT1 (POU2F1; 164175). Sanchez et al. (2009) suggested that the rs360719 variant may play a role in susceptibility to SLE and in IL18 expression. </p><p><strong><em>Association with the CSK Gene on Chromosome 15q23-q25</em></strong></p><p>
The c-Src tyrosine kinase CSK (124095) physically interacts with the intracellular phosphatase LYP (PTPN22; 600716) and can modify the activation state of downstream Src kinases, such as LYN (165120), in lymphocytes. Manjarrez-Orduno et al. (2012) identified an association of CSK with SLE and refined its location to the intronic polymorphism rs34933034 (odds ratio = 1.32; p = 1.04 x 10(-9)). The risk allele at this SNP is associated with increased CSK expression and augments inhibitory phosphorylation of LYN. In carriers of the risk allele, there is increased B-cell receptor-mediated activation of mature B cells, as well as higher concentrations of plasma IgM, relative to individuals in the nonrisk haplotype. Moreover, the fraction of transitional B cells is doubled in the cord blood of carriers of the risk allele, due to an expansion of late transitional cells in a stage targeted by selection mechanisms. Manjarrez-Orduno et al. (2012) concluded that their results suggested that the LYP-CSK complex increases susceptibility to lupus at multiple maturation and activation points in B cells. </p><p><strong><em>Association with the EGR2 Gene on Chromosome 10q21</em></strong></p><p>
Based on phenotypic changes in knockout mice, Myouzen et al. (2010) evaluated if polymorphisms in the EGR2 gene (129010) on chromosome 10q21 influence SLE susceptibility in humans. A significant positive correlation with expression was identified in a SNP located at the 5-prime flanking region of EGR2. In a case-control association study using 3 sets of SLE cohorts by genotyping 14 tag SNPs in the EGR2 gene region, a peak of association with SLE susceptibility was observed for rs10761670. This SNP was also associated with susceptibility to rheumatoid arthritis (RA; 180300), suggesting that EGR2 is a common risk factor for SLE and RA. Among the SNPs in complete linkage disequilibrium with rs10761670, 2 SNPs (rs1412554 and rs1509957) affected the binding of transcription factors and transcriptional activity in vitro, suggesting that they may be candidates of causal regulatory variants in this region. The authors proposed that EGR2 may be a genetic risk factor for SLE, in which increased gene expression may contribute to SLE pathogenesis. </p><p><strong><em>Association with the NCF1 Gene on Chromosome 7q11</em></strong></p><p>
Zhao et al. (2017) reported a missense variant (g.74779296G-A; rs201802880, arg90 to his) in exon 4 of NCF1, encoding the p47-phox subunit of the phagocyte NADPH oxidase (NOX2), as the putative underlying causal variant that drives a strong SLE-associated signal detected by SNP microarray analysis in the GTF2IRD1 (604318)-GTF2I (601679) region on chromosome 7q11.23 with a complex genomic structure. Zhao et al. (2017) showed that the arg90-to-his (R90H) substitution, which was reported by Olsson et al. (2012) to cause reduced reactive oxygen species (ROS) production, was associated with SLE (odds ratio (OR) = 3.47 in Asians (p-meta = 3.1 x 10(-104)), OR = 2.61 in European Americans, OR = 2.02 in African Americans) and other autoimmune diseases, including primary Sjogren syndrome (OR = 2.45 in Chinese, OR = 2.35 in European Americans) and rheumatoid arthritis (OR = 1.65 in Koreans). Additionally, Zhao et al. (2017) found that decreased and increased copy numbers of NCF1 were associated with predisposition to and protection against SLE, respectively. These data highlighted the pathogenic role of reduced NOX2-derived ROS levels in autoimmune diseases. </p><p><strong><em>Association with the MEF2D Gene on Chromosome 1q22</em></strong></p><p>
Using targeted sequencing of coding and conserved regulatory regions within and around 215 SLE candidate genes selected on the basis of their known role in autoimmunity and/or association with canine immune-mediated diseases, Farias et al. (2019) identified a rare regulatory variant in intron 4 of the MEF2D (600663) gene, rs200395694G-T, that was associated with SLE in Swedish cohorts (504 SLE patients and 839 healthy controls; p = 0.014, CI = 1.1-10). Fisher's exact test revealed an association between the variant and a triad of disease manifestations, including Raynaud phenomenon, anti-U1-RNP, and anti-Smith antibodies (p = 0.00037), among the patients. Functional studies revealed that the region has properties of an active cell-specific enhancer and that the risk allele affects tissue-specific splicing. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Pathogenesis</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>The role of estrogen in determining female preponderance of lupus was reviewed by Talal (1979). Patients with the XXY Klinefelter syndrome are predisposed to lupus. Miller and Schwartz (1979) proposed 'that the development of systemic lupus erythematosus requires the participation of at least two functionally distinct classes of genes.' </p><p>Stohl et al. (1985) identified 3 unrelated Jamaican black patients with SLE by American Rheumatism Association criteria (Tan et al., 1982) and with homozygous T4 epitope deficiency. Lymphadenopathy was an impressive feature and was present also in an asymptomatic and otherwise apparently healthy T4-deficient brother of one of the SLE patients. In 1 family, 2 heterozygotes had Hb Constant Spring and 1 had idiopathic thrombocytopenic purpura. The anti-DNA antibodies of unrelated SLE patients share cross-reactive idiotypes. Thus, a restricted number of germline genes may encode the autoantibodies involved in the pathogenesis of SLE. </p><p>Solomon et al. (1983) described a monoclonal antibody, 3I, that recognizes a cross-reactive idiotype on anti-DNA antibodies. Halpern et al. (1985) used this monoclonal antibody to study the sera of 27 members of 3 unrelated kindreds with SLE. Some healthy family members were found to have high-titered reactivity with the antiidiotype. The antigenic specificity of 3I-reactive antibodies in the serum of healthy persons is unknown. Possibly 3I-reactive antibodies are made in response to some unknown antigen and these antibodies subsequently mutate and acquire reactivity with DNA. Diamond and Scharff (1984) showed that a monoclonal antiphosphorylcholine antibody that has undergone a glutamic to alanine substitution in a heavy chain hypervariable region loses affinity for phosphorylcholine and acquires reactivity with DNA and other phosphorylated macromolecules. </p><p>Schur (1995) reviewed the genetics of SLE, with particular reference to the major histocompatibility complex. He showed that different but related genes may be associated with lupus and autoantibodies in different countries. He suggested that examination of homogeneous (clinical, immunologic, ethnic, etc.) populations offers the best possibility for unraveling the maze of multiple genes involved in the disorder. </p><p>Kotzin (1996) reviewed the molecular mechanisms in the pathogenesis of SLE. Vyse and Todd (1996) gave a general review of genetic analysis of autoimmune diseases, including this one. </p><p>Sanghera et al. (1997) noted that beta-2-glycoprotein I (B2GPI, APOH; 138700) is a required cofactor for anionic phospholipid binding by the antiphospholipid autoantibodies found in sera of many patients with SLE and primary antiphospholipid syndrome (107320). These studies suggested that the apoH-phospholipid complex forms the antigen to which the autoantibodies are directed. </p><p>Yasutomo et al. (2001) identified an early termination mutation in DNASE1 in 2 teenaged girls with SLE from Japan (125505.0001). The nonsense mutations were associated with reduced DNASE activity and extremely high immunoglobulin G titer against nucleosomal antigens. Yasutomo et al. (2001) suggested that their data were consistent with the hypothesis that a direct connection exists between low activity of DNASE1 and progression of human SLE. </p><p>Blanco et al. (2001) hypothesized that SLE may be caused by alterations in the functions of dendritic cells. Consistent with this, monocytes from the blood of SLE patients were found to function as antigen-presenting cells in vitro. Furthermore, serum from SLE patients induced normal monocytes to differentiate into dendritic cells. These dendritic cells could capture antigens from dying cells and present them to CD4-positive T cells. The capacity of SLE patients' serum to induce dendritic cell differentiation correlated with disease activity and depended on the actions of interferon-alpha (147660). Thus, Blanco et al. (2001) concluded that unabated induction of dendritic cells by interferon-alpha may drive the autoimmune response in SLE. </p><p>Using a rheumatoid factor (RF+) transgenic B cell hybridoma line originally isolated from an autoimmune MRL/lpr mouse used as a model for SLE, Leadbetter et al. (2002) determined that these cells respond only to IgG2a immune complexes containing DNA and not to haptens or proteins. After ruling out complement receptors (i.e., CD21/CR2, 120650) as a potential second receptor on B cells, screening of cells expressing the adaptor protein Myd88 (602170), through which all toll-like receptors signal, revealed that RF+ B cells lacking Myd88 are completely unresponsive to IgG2a antinucleosome monoclonal antibodies (mAb). TLR9 (605474) responsiveness to CpG oligodeoxynucleotides (ODN) is presumed to require endosome acidification. The response to stimulation of RF+ B cells by IgG2a mAb or CpG-ODN, but not by TLR2 (603028) or TLR4 (603030) agonists, was blocked by inhibitors of endosome acidification, notably chloroquine, suggesting a mechanistic basis for its efficacy in the treatment for both RA and SLE. Leadbetter et al. (2002) proposed that other endogenous subcellular nucleic acid-protein autoantigens may signal through other TLRs to abrogate peripheral B-cell tolerance. They also suggested that infectious agent PAMP (patterns associated with microbial pathogens) engaging TLRs may create a synergy with autoantibody-autoantigen immune complexes, thus explaining the association between infection and autoimmune disease flares. </p><p>Risk of SLE is higher in people of West African descent than in Europeans. Molokhia et al. (2003) attempted to distinguish between genetic and environmental explanations for this ethnic difference by examining the relationship of disease risk to individual admixture (defined as the proportion of the genome that is of West African ancestry). They studied 124 cases of SLE and 219 matched controls resident in Trinidad. Analysis of admixture was restricted to 52 cases and 107 controls who reported no Indian or Chinese ancestry. These individuals were typed with a panel of 26 SNPs and 5 insertion/deletion polymorphisms chosen to have large allele frequency differentials between West African, European, and Native American populations. Mean West African admixture was 0.81 in cases and 0.74 in controls (P = 0.01). The risk ratio for SLE associated with unit change in this admixture was estimated as 32.5. Adjustment for measures of socioeconomic status (household amenities in childhood and years of education) altered this risk ratio only slightly. These results supported an additive genetic model for the ethnic difference in risk of SLE between West Africans and Europeans, rather than an environmental explanation or an 'overdominant' model in which risk is higher in heterozygous than in homozygous individuals. </p><p>Kowal et al. (2006) demonstrated that human anti-NMDA receptor antibodies isolated from patients with neuropsychiatric lupus caused hippocampal neuron damage and memory deficits when administered to mice with lipopolysaccharide to penetrate the blood-brain barrier. Postmortem brain tissue from 5 patients with neuropsychiatric lupus showed endogenous IgG that bound DNA and colocalized with NMDA receptor antibodies for NR2A (GRIN2A; 138253) and NR2B (GRIN2B; 138252). The findings suggested that some patients with neuropsychiatric lupus have circulating anti-NMDAR antibodies capable of causing neuronal damage and memory deficits if they breach the blood-brain barrier. </p><p>To examine the role of defensins in SLE pathogenesis, Sthoeger et al. (2009) used ELISA and real-time PCR to measure the levels of the alpha-defensin DEFA2 (125220) and the beta-defensin HBD2 (DEFB4; 602215) in the blood of SLE patients. They found that HBD2 was undetectable in sera from SLE patients, and that HBD2 mRNA was low in whole blood from SLE patients, similar to controls. In contrast, DEFA2 levels were significantly higher in all SLE patients compared with controls, and 60% of patients had very high serum levels. High DEFA2 levels correlated with disease activity, but not with neutrophil numbers, suggesting that neutrophil degranulation may lead to alpha-defensin secretion in SLE patients. Reduction of DEFA2 levels to the normal range correlated with disease improvement. </p><p>Kshirsagar et al. (2014) reported that enhanced STAT3 (102582) activity in CD4 (186940)-positive/CD45A (see 151460)-negative/FOXP3 (300292)-negative and FOXP3-low effector T cells from children with lupus nephritis (LN) correlated with increased frequency of IL17 (603149)-producing cells within these T-cell populations. Rapamycin treatment reduced both STAT3 activation and Th17 cell frequency in lupus patients. Th17 cells from children with LN exhibited high AKT (164730) activity and enhanced migratory capacity. Inhibition of AKT in cells from LN patients resulted in reduced Th17-cell migration. Kshirsagar et al. (2014) concluded that the AKT signaling pathway plays a significant role in Th17-cell migratory activity in children with LN. They suggested that inhibition of AKT may result in suppression of chronic inflammation in LN. </p><p><strong><em>Excess Lymphocyte Low Molecular Weight DNA</em></strong></p><p>
Mackie et al. (1987) found circulating anticoagulants in multiple members of SLE families, but also found coagulation abnormalities in some spouses, suggesting that a transmissible agent or other environmental factors may be involved. All patients with SLE show 2 classes of newly synthesized DNA in sucrose density gradients of phytohemagglutinin-stimulated lymphocytes: a large-molecular-weight fraction that comigrates with control DNA and an excess low molecular weight DNA (LMW-DNA) fraction not found in control lymphocytes. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Animal Model</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Knight and Adams (1978) identified 2 genes in New Zealand white (NZW) mice that determine development of nephritis in crosses with New Zealand black (NZB) mice. </p><p>Theofilopoulos and Dixon (1985) provided a review of murine models of SLE. </p><p>F1 hybrids of NZB and NZW mice are a model of human SLE. These mice develop a severe immune complex-mediated nephritis, in which antinuclear autoantibodies seem to play a major role. Vyse et al. (1996) used a genetic analysis of a backcross between F1 hybrid mice and NZW mice to provide insight into whether different autoantibodies are subject to separate genetic influences and to determine which autoantibodies are most important in the development of lupus-like nephritis. The results showed one set of loci that coordinately regulated serum levels of IgG antibodies to double-stranded DNA, single-stranded DNA, total histones, and chromatin. These loci overlapped with loci that were linked to the production of autoantibodies to the viral glycoprotein gp70. Loci linked with anti-gp70 compared with antinuclear antibodies demonstrated the strongest linkage with renal disease, suggesting that autoantibodies to gp70 are the major pathogenic antibodies in this model of lupus nephritis. Interestingly, a locus on the distal part of mouse chromosome 4, Nba1, was linked with nephritis but not with any of the autoantibodies measured, suggesting that it contributes to renal disease at a checkpoint distal to autoantibody production. </p><p>By linkage analysis, Morel et al. (1994) found that genomic intervals on mouse chromosomes 1 (Sle1), 4 (Sle2), 7 (Sle3) and 17 (Sle4) are strongly linked to lupus nephritis. Mohan et al. (1999) showed that on a normal B6 background, the introduction of Sle1, as in the monocongenic B6.NZMc1 mice, led to hyperglobulinemia, a breach in tolerance to chromatin, and a modest expansion of activated lymphocytes. However, serum autoantibodies did not target against double-stranded DNA or basement membrane antigens. When Sle1 and Sle3 were combined, as in the bicongenic B6.NZMc1/c7 mice, high titers of autoantibodies were generated which had specificity not only for the different chromatin epitopes (including dsDNA) but also for the intact glomeruli, leading to fatal lupus glomerulonephritis. These findings lent strong support to a 2-step epistatic model for the formation of pathogenic nephrophilic autoantibodies in lupus. </p><p>Gross et al. (2000) overexpressed BAFF (BLYS, or TNFSF13B; 603969) in lymphoid cells of transgenic mice and found that the mice develop symptoms characteristic of systemic lupus erythematosus and expand a rare population of splenic B-1a lymphocytes. Circulating BAFF was more abundant in New Zealand BWF1 and MRL lpr/lpr mice during the onset and progression of SLE. Gross et al. (2000) identified 2 TNF receptor family members, TACI (604907) and BCMA (109545), that bind BAFF. Treatment of New Zealand BWF1 mice with soluble TACI-Ig fusion protein inhibited the development of proteinuria and prolonged survival of the animals. These findings demonstrated the involvement of BAFF and its receptors in the develop of SLE and identified TACI/Ig as a promising treatment of autoimmune disease in humans. </p><p>Systemic lupus erythematosus is characterized by the presence of antinuclear antibodies (ANA) directed against naked DNA and entire nucleosomes. It was thought that the resulting immune complexes accumulate in vessel walls, glomeruli, and joints and cause a hypersensitivity reaction type III that manifests as glomerulonephritis, arthritis, and generalized vasculitis. Several studies had suggested that increased liberation or disturbed clearance of nuclear DNA-protein complexes after cell death may initiate and propagate the disease. Consequently, DNASE1 (125505), which is a major nuclease present in serum, urine, and secreta, may be responsible for the removal of DNA from nuclear antigens at sites of high cell turnover and thus prevent SLE. To test this hypothesis, Napirei et al. (2000) generated Dnase1-deficient mice by gene targeting. They found that these animals show the classic symptoms of SLE, namely the presence of ANA, the deposition of immune complexes in glomeruli, and full-blown glomerulonephritis in a Dnase1 dose-dependent manner. Moreover, in agreement with earlier reports, they found Dnase1 activities in serum to be lower in SLE patients than in normal subjects. The findings suggested that lack or reduction of Dnase1 is a critical factor in the initiation of human SLE. </p><p>Sun et al. (2002) reported that treatment with 2A, an agonistic monoclonal antibody to CD137 (TNFRSF9; 602250), blocked lymphadenopathy and spontaneous autoimmune disease in Fas-deficient mice (a model for human SLE), ultimately leading to their prolonged survival. Specifically, 2A treatment rapidly augmented interferon-gamma (IFNG; 147570) production and induced the depletion of autoreactive B cells and abnormal double-negative T cells, possibly by increasing their apoptosis through Fas- and TNF receptor-independent mechanisms. Sun et al. (2002) concluded that agonistic monoclonal antibodies specific for costimulatory molecules could be used as novel therapeutic agents to deplete autoreactive lymphocytes and block autoimmune disease progression. </p><p>To clarify mechanisms governing the anxiety seen in lupus, Nakamura et al. (2003) carried out genomewide scans in mice and found that the region including interferon-alpha (IFNA; 147660) on chromosome 4 in NZB mice was significantly linked to the anxiety-like behavior seen in SLE-prone BWF1 mice. This finding was confirmed by anxiety-like performances of mice with heterozygous NZB/NZW alleles in the susceptibility region bred onto the NZW background. In BWF1 mice, neuronal IFN-alpha levels were elevated and blockade of the mu-1 opioid receptor (OPRM1; 600018) or corticotropin-releasing hormone receptor-1 (CRHR1; 122561), possible downstream effectors for IFN-alpha in the brain, partially overcame the anxiety-like behavior seen in these mice. Neuronal corticotropin-releasing hormone levels were consistently higher in BWF1 than NZW mice. Furthermore, pretreatment of mu-1 opioid receptor antagonist abolished anxiety-like behavior seen in IFN-alpha-treated NZW mice. Nakamura et al. (2003) concluded that a genetically determined endogenous excess amount of IFN-alpha in the brain may form 1 aspect of anxiety-like behavior seen in SLE-prone mice. </p><p>In SLE-prone NZB mice and their F1 cross with NZW mice, B cell abnormalities can be ascribed mainly to self-reactive CD5+ B1 cells. Li et al. (2004) performed a genomewide scan for susceptibility genes for aberrant activation of B1 cells in F1/NZB backcross mice and identified the Ltk gene as a possible candidate. Sequence and functional analyses of the gene revealed that NZB mice have a gain-of-function polymorphism in the LTK kinase domain near YXXM, a binding motif of the p85 subunit of phosphatidylinositol 3-kinase (PIK3R1; 171833). SLE patients had the equivalent human LTK polymorphism at a significantly higher frequency compared to healthy controls. Li et al. (2004) suggested that this LTK SNP may cause upregulation of the PI3K pathway and possibly form a genetic component of susceptibility to abnormal proliferation of self-reactive B cells in SLE. </p><p>Tournoy et al. (2004) reported that in PS1 (104311) +/- PS2 (600759) -/- mice, PS1 protein concentration was considerably lowered, functionally reflected by reduced gamma-secretase activity and impaired beta-catenin (CTNNB1; 116806) downregulation. Their phenotype was normal up to 6 months, when the majority of the mice developed an autoimmune disease characterized by dermatitis, glomerulonephritis, keratitis, and vasculitis, as seen in human systemic lupus erythematosus. Besides B cell-dominated infiltrates, the authors observed a hypergammaglobulinemia with immune complex deposits in several tissues, high-titer nuclear autoantibodies, and an increased CD4+/CD8+ ratio. The mice further developed a benign skin hyperplasia similar to human seborrheic keratosis (182000) as opposed to malignant keratocarcinomata observed in skin-specific PS1 'full' knockouts. </p><p>Despite the heterogeneity of factors influencing susceptibility to lupus, McGaha et al. (2005) demonstrated that the partial restoration of inhibitory Fc receptor (FC-gamma-RIIB; 604590) levels in B cells in lupus-prone mouse strains is sufficient to restore tolerance and prevent autoimmunity. Fc-gamma-RIIB regulates a common B-cell checkpoint in genetically diverse lupus-prone mouse strains, and modest changes in its expression can result in either tolerance or autoimmunity. McGaha et al. (2005) suggested that increasing Fc-gamma-RIIB levels in B cells may be an effective way to treat autoimmune diseases. </p><p>In the MRL-lpr mouse, Barber et al. (2005) found that pharmacologic inhibition of phosphoinositide 3-kinase-gamma (PIK3CG; 601232), a kinase that regulates inflammation, reduced CD4+ T-cell populations, reduced glomerulonephritis, and prolonged life span. </p><p>In both mice and humans with SLE, DeGiorgio et al. (2001) found that a subset of antibodies against dsDNA recognized portions of the extracellular domain of the NMDA receptor subunits, NR2A (138253) and NR2B (138252), which are present in the hippocampus, amygdala, and hypothalamus. Murine and human anti-dsDNA/anti-NR2 antibodies mediated apoptotic death of neurons in vitro and in vivo. Huerta et al. (2006) showed that mice immunized to produce anti-dsDNA/anti-NR2 IgG antibodies developed damage to neurons in the amygdala after being given epinephrine to induce leaks in the blood-brain barrier. The resulting neuronal insults were noninflammatory. Mice with antibody-mediated damage in the amygdala developed behavioral changes characterized by a deficient response to fear-conditioning paradigms. Huerta et al. (2006) postulated that when the blood-brain barrier is compromised, neurotoxic antibodies can penetrate the central nervous system and result in cognitive, emotional, and behavioral changes, as seen in neuropsychiatric lupus. </p><p>By inserting a region from the lupus-prone NZB mouse strain into an autoimmunity-resistant strain, Talaei et al. (2015) had previously found that a locus on chromosome 1 was associated with altered DC function and synergized with T-cell functional defects to promote expansion of pathogenic proinflammatory T-cell subsets. Talaei et al. (2015) showed that Eat2 (SH2D1B; 608510) was polymorphic in its promoter region in NZB mice, leading to a 70% reduction in Eat2 in DCs. Silencing of Eat2 in DCs lacking the NZB polymorphism resulted in increased Il12 (161560) production and enhanced differentiation of T cells into a Th1 phenotype, mimicking the DC phenotype in mice with the NZB polymorphism. Eat2 knockdown resulted in increased Il12 production by Cd40 (109535)-stimulated DCs. Talaei et al. (2015) concluded that EAT2 negatively regulates cytokine production in DCs downstream of SLAM (SLAMF1; 603492) engagement and that a genetic polymorphism disturbing this process promotes lupus development. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>History</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Fronek et al. (1986) found that the distribution of patterns of RFLPs at the T-cell receptor beta chain locus (see 186930) was the same in SLE patients as in their relatives and in controls. Thus, the authors concluded that the TCRB 'genes are not coinherited with genes responsible for' SLE. Wong et al. (1988) found no linkage to the alpha (see 186880), beta, and gamma (see 186970) genes of the T-cell receptor. </p><p>Levcovitz et al. (1988) reported a family in which a low-molecular-weight DNA marker for systemic autoimmune disease appeared to be inherited as an autosomal dominant trait; however, the report was later retracted. </p><p>The report of Tao et al. (2005) concluding that CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus was retracted. </p><p>The report of Bialas et al. (2017) regarding microglia-dependent synapse loss of type I interferon-mediated lupus was retracted because the authors were unable to replicate key aspects of the results. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>See Also:</strong>
</span>
</h4>
<span class="mim-text-font">
Arnett and Shulman (1976); Exner et al. (1980); First (1973); Hughes
and Batchelor (1983); Kohler et al. (1974); Larsen and Godal (1972);
Larsen (1972); Leonhardt (1964); Lewis et al. (1974); Pollak (1964);
Reveille et al. (1983); Serdula and Rhoads (1979); Siegel et al.
(1965); Steinberg et al. (1984); Yocum et al. (1975)
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Aitman, T. J., Dong, R., Vyse, T. J., Norsworthy, P. J., Johnson, M. D., Smith, J., Mangion, J., Roberton-Lowe, C., Marshall, A. J., Petretto, E., Hodges, M. D., Bhangal, G., and 10 others.
<strong>Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans.</strong>
Nature 439: 851-855, 2006.
[PubMed: 16482158]
[Full Text: https://doi.org/10.1038/nature04489]
</p>
</li>
<li>
<p class="mim-text-font">
Arnett, F. C., Shulman, L. E.
<strong>Studies in familial systemic lupus erythematosus.</strong>
Medicine 55: 313-322, 1976.
[PubMed: 781465]
[Full Text: https://doi.org/10.1097/00005792-197607000-00003]
</p>
</li>
<li>
<p class="mim-text-font">
Austin-Ward, E., Castillo, S., Cuchacovich, M., Espinoza, A., Cofre-Beca, J., Gonzalez, S, Solivelles, X., Bloomfield, J.
<strong>Neonatal lupus syndrome: a case with chondrodysplasia punctata and other unusual manifestations.</strong>
J. Med. Genet. 35: 695-697, 1998.
[PubMed: 9719383]
[Full Text: https://doi.org/10.1136/jmg.35.8.695]
</p>
</li>
<li>
<p class="mim-text-font">
Baechler, E. C., Batliwalla, F. M., Karypis, G., Gaffney, P. M., Ortmann, W. A., Espe, K. J., Shark, K. B., Grande, W. J., Hughes, K. M., Kapur, V., Gregersen, P. K., Behrens, T. W.
<strong>Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.</strong>
Proc. Nat. Acad. Sci. 100: 2610-2615, 2003.
[PubMed: 12604793]
[Full Text: https://doi.org/10.1073/pnas.0337679100]
</p>
</li>
<li>
<p class="mim-text-font">
Baer, A. N., Woosley, R. L., Pincus, T.
<strong>Further evidence for the lack of association between acetylator phenotype and systemic lupus erythematosus.</strong>
Arthritis Rheum. 29: 508-514, 1986.
[PubMed: 3707628]
[Full Text: https://doi.org/10.1002/art.1780290408]
</p>
</li>
<li>
<p class="mim-text-font">
Balada, E., Ordi-Ros, J., Serrano-Acedo, S., Martinez-Lostao, L., Rosa-Leyva, M., Vilardell-Tarres, M.
<strong>Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus.</strong>
Immunology 124: 339-347, 2008.
[PubMed: 18194272]
[Full Text: https://doi.org/10.1111/j.1365-2567.2007.02771.x]
</p>
</li>
<li>
<p class="mim-text-font">
Barber, D. F., Bartolome, A., Hernandez, C., Flores, J. M., Redondo, C., Fernandez-Arias, C., Camps, M., Ruckle, T., Schwarz, M. K., Rodriguez, S., Martinez-A, C., Balomenos, D., Rommel, C., Carrera, A. C.
<strong>PI3K-gamma inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus.</strong>
Nature Med. 11: 933-935, 2005.
[PubMed: 16127435]
[Full Text: https://doi.org/10.1038/nm1291]
</p>
</li>
<li>
<p class="mim-text-font">
Barreto, M., Santos, E., Ferreira, R., Fesel, C., Fontes, M. F., Pereira, C., Martins, B., Andreia, R., Viana, J. F., Crespo, F., Vasconcelos, C., Ferreira, C., Vicente, A. M.
<strong>Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus.</strong>
Europ. J. Hum. Genet. 12: 620-626, 2004.
[PubMed: 15138458]
[Full Text: https://doi.org/10.1038/sj.ejhg.5201214]
</p>
</li>
<li>
<p class="mim-text-font">
Batchelor, J. R., Welsh, K. I., Tinoco, R. M., Dollery, C. T., Hughes, G. R. V., Bernstein, R., Ryan, P., Naish, P. F., Aber, G. M., Bing, R. F., Russell, G. I.
<strong>Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on susceptibility.</strong>
Lancet 315: 1107-1109, 1980. Note: Originally Volume I.
[PubMed: 6103441]
[Full Text: https://doi.org/10.1016/s0140-6736(80)91554-8]
</p>
</li>
<li>
<p class="mim-text-font">
Beaucher, W. N., Garman, R. H., Condemi, J. J.
<strong>Familial lupus erythematosus: antibodies to DNA in household dogs.</strong>
New Eng. J. Med. 296: 982-984, 1977.
[PubMed: 300467]
[Full Text: https://doi.org/10.1056/NEJM197704282961707]
</p>
</li>
<li>
<p class="mim-text-font">
Benke, P. J., Drisko, J., Ahmad, P.
<strong>Increased oxidative activity in stimulated lymphocytes suggests that systemic lupus erythematosus is a metabolic disease. (Abstract)</strong>
Am. J. Hum. Genet. 45 (suppl.): A3 only, 1989.
</p>
</li>
<li>
<p class="mim-text-font">
Bialas, A. R., Presumey, J., Das, A., van der Poel, C. E., Lapchak, P. H., Mesin, L., Victora, G., Tsokos, G. C., Mawrin, C., Herbst, R., Carroll, M. C.
<strong>Microglia-dependent synapse loss in type I interferon-mediated lupus.</strong>
Nature 546: 539-543, 2017. Note: Retraction: Nature 578: 177 only, 2020.
[PubMed: 28614301]
[Full Text: https://doi.org/10.1038/nature22821]
</p>
</li>
<li>
<p class="mim-text-font">
Blanco, P., Palucka, A. K., Gill, M., Pascual, V., Banchereau, J.
<strong>Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus.</strong>
Science 294: 1540-1543, 2001.
[PubMed: 11711679]
[Full Text: https://doi.org/10.1126/science.1064890]
</p>
</li>
<li>
<p class="mim-text-font">
Blank, M. C., Stefanescu, R. N., Masuda, E., Marti, F., King, P. D., Redecha, P. B., Wurzburger, R. J., Peterson, M. G. E., Tanaka, S., Pricop, L.
<strong>Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus.</strong>
Hum. Genet. 117: 220-227, 2005.
[PubMed: 15895258]
[Full Text: https://doi.org/10.1007/s00439-005-1302-3]
</p>
</li>
<li>
<p class="mim-text-font">
Block, S. R., Winfield, J. B., Lockshin, M. D., D'Angelo, W. A., Christian, C. L.
<strong>Studies of twins with systemic lupus erythematosus: a review of the literature and presentation of 12 additional sets.</strong>
Am. J. Med. 59: 533-552, 1975.
[PubMed: 1101680]
[Full Text: https://doi.org/10.1016/0002-9343(75)90261-2]
</p>
</li>
<li>
<p class="mim-text-font">
Boteva, L., Morris, D. L., Cortes-Hernandez, J., Martin, J., Vyse, T. J., Fernando, M. M. A.
<strong>Genetically determined partial complement C4 deficiency states are not independent risk factors for SLE in UK and Spanish populations.</strong>
Am. J. Hum. Genet. 90: 445-456, 2012.
[PubMed: 22387014]
[Full Text: https://doi.org/10.1016/j.ajhg.2012.01.012]
</p>
</li>
<li>
<p class="mim-text-font">
Brustein, D., Rodriguez, J. M., Minkin, W., Rabhan, N. B.
<strong>Familial lupus erythematosus.</strong>
JAMA 238: 2294-2296, 1977.
[PubMed: 578851]
</p>
</li>
<li>
<p class="mim-text-font">
Cunninghame Graham, D. S., Graham, R. R., Manku, H., Wong, A. K., Whittaker, J. C., Gaffney, P. M., Moser, K. L., Rioux, J. D., Altshuler, D., Behrens, T. W., Vyse, T. J.
<strong>Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus.</strong>
Nature Genet. 40: 83-89, 2008.
[PubMed: 18059267]
[Full Text: https://doi.org/10.1038/ng.2007.47]
</p>
</li>
<li>
<p class="mim-text-font">
DeGiorgio, L. A., Konstantinov, K. N., Lee, S. C., Hardin, J. A., Volpe, B. T., Diamond, B.
<strong>A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus.</strong>
Nature Med. 7: 1189-1193, 2001.
[PubMed: 11689882]
[Full Text: https://doi.org/10.1038/nm1101-1189]
</p>
</li>
<li>
<p class="mim-text-font">
DeHoratius, J. R., Pillarisetty, R., Messner, R. P., Talal, N.
<strong>Anti-nucleic acid antibodies in systemic lupus erythematosus patients and their families: incidence and correlation with lymphocytotoxic antibodies.</strong>
J. Clin. Invest. 56: 1149-1154, 1975.
[PubMed: 1081099]
[Full Text: https://doi.org/10.1172/JCI108190]
</p>
</li>
<li>
<p class="mim-text-font">
Diamond, B., Scharff, M. D.
<strong>Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity.</strong>
Proc. Nat. Acad. Sci. 81: 5841-5844, 1984.
[PubMed: 6435121]
[Full Text: https://doi.org/10.1073/pnas.81.18.5841]
</p>
</li>
<li>
<p class="mim-text-font">
Elcioglu, N., Hall, C. M.
<strong>Maternal systemic lupus erythematosus and chondrodysplasia punctata in two sibs: phenocopy or coincidence?</strong>
J. Med. Genet. 35: 690-694, 1998.
[PubMed: 9719382]
[Full Text: https://doi.org/10.1136/jmg.35.8.690]
</p>
</li>
<li>
<p class="mim-text-font">
Exner, T., Barber, S., Kronenberg, H., Rickard, K. A.
<strong>Familial association of the lupus anticoagulant.</strong>
Brit. J. Haemat. 45: 89-96, 1980.
[PubMed: 7378333]
[Full Text: https://doi.org/10.1111/j.1365-2141.1980.tb03814.x]
</p>
</li>
<li>
<p class="mim-text-font">
Fanciulli, M., Norsworthy, P. J., Petretto, E., Dong, R., Harper, L., Kamesh, L., Heward, J. M., Gough, S. C. L., de Smith, A., Blakemore, A. I. F., Froguel, P., Owen, C. J., Pearce, S. H. S., Teixeira, L., Guillevin, L., Cunninghame Graham, D. S., Pusey, C. D., Cook, H. T., Vyse, T. J., Aitman, T. J.
<strong>FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity.</strong>
Nature Genet. 39: 721-723, 2007.
[PubMed: 17529978]
[Full Text: https://doi.org/10.1038/ng2046]
</p>
</li>
<li>
<p class="mim-text-font">
Farias, F. H. G., Dahlqvist, J., Kozyrev, S. V., Leonard, D., Wilbe, M., Abramov, S. N., Alexsson, A., Pielberg, G. R., Hansson-Hamlin, H., Andersson, G., Tandre, K., Bengtsson, A. A., and 9 others.
<strong>A rare regulatory variant in the MEF2D gene affects gene regulation and splicing and is associated with a SLE sub-phenotype in Swedish cohorts.</strong>
Europ. J. Hum. Genet. 27: 432-441, 2019.
[PubMed: 30459414]
[Full Text: https://doi.org/10.1038/s41431-018-0297-x]
</p>
</li>
<li>
<p class="mim-text-font">
Fessel, W. J.
<strong>Systemic lupus erythematosus in the community: incidence, prevalence, outcome, and first symptoms: the high prevalence in black women.</strong>
Arch. Intern. Med. 134: 1027-1035, 1974.
[PubMed: 4433183]
</p>
</li>
<li>
<p class="mim-text-font">
Fielder, A. H. L., Walport, M. J., Batchelor, J. R., Rynes, R. I., Black, C. M., Dodi, I. A., Hughes, G. R. V.
<strong>Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility.</strong>
Brit. Med. J. 286: 425-428, 1983.
[PubMed: 6401549]
[Full Text: https://doi.org/10.1136/bmj.286.6363.425]
</p>
</li>
<li>
<p class="mim-text-font">
First, M. R.
<strong>Familial systemic lupus erythematosus.</strong>
S. Afr. Med. J. 47: 742-744, 1973.
[PubMed: 4702299]
</p>
</li>
<li>
<p class="mim-text-font">
Floto, R. A., Clatworthy, M. R., Heilbronn, K. R., Rosner, D. R., MacAry, P. A., Rankin, A., Lehner, P. J., Ouwehand, W. H., Allen, J. M., Watkins, N. A., Smith, K. G. C.
<strong>Loss of function of a lupus-associated Fc-gamma-RIIb polymorphism through exclusion from lipid rafts.</strong>
Nature Med. 11: 1056-1058, 2005.
[PubMed: 16170323]
[Full Text: https://doi.org/10.1038/nm1288]
</p>
</li>
<li>
<p class="mim-text-font">
Fronek, Z., Lentz, D., Berliner, N., Duby, A. D., Klein, K. A., Seidman, J. G., Schur, P. H.
<strong>Systemic lupus erythematosus is not genetically linked to the beta chain of the T cell receptor.</strong>
Arthritis Rheum. 29: 1023-1025, 1986.
[PubMed: 3741512]
[Full Text: https://doi.org/10.1002/art.1780290812]
</p>
</li>
<li>
<p class="mim-text-font">
Gaffney, P. M., Kearns, G. M., Shark, K. B., Ortmann, W. A., Selby, S. A., Malmgren, M. L., Rohlf, K. E., Ockenden, T. C., Messner, R. P., King, R. A., Rich, S. S., Behrens, T. W.
<strong>A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families.</strong>
Proc. Nat. Acad. Sci. 95: 14875-14879, 1998.
[PubMed: 9843983]
[Full Text: https://doi.org/10.1073/pnas.95.25.14875]
</p>
</li>
<li>
<p class="mim-text-font">
Gaffney, P. M., Ortmann, W. A., Selby, S. A., Shark, K. B., Ockenden, T. C., Rohlf, K. E., Walgrave, N. L., Boyum, W. P., Malmgren, M. L., Miller, M. E., Kearns, G. M., Messner, R. P., King, R. A., Rich, S. S., Behrens, T. W.
<strong>Genome screening in human systemic lupus erythematosus: results from a second Minnesota cohort and combined analyses of 187 sib-pair families.</strong>
Am. J. Hum. Genet. 66: 547-556, 2000.
[PubMed: 10677315]
[Full Text: https://doi.org/10.1086/302767]
</p>
</li>
<li>
<p class="mim-text-font">
Garcia, C. O., Molina, J. F., Gutierrez-Urena, S., Scopelitis, E., Wilson, W. A., Gharavi, A. E., Espinoza, L. R.
<strong>Autoantibody profile in African-American patients with lupus nephritis.</strong>
Lupus 5: 602-605, 1996.
[PubMed: 9116704]
[Full Text: https://doi.org/10.1177/096120339600500608]
</p>
</li>
<li>
<p class="mim-text-font">
Gateva, V., Sandling, J. K., Hom, G., Taylor, K. E., Chung, S. A., Sun, X., Ortmann, W., Kosoy, R., Ferreira, R. C., Nordmark, G., Gunnarsson, I., Svenungsson, E., and 24 others.
<strong>A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus.</strong>
Nature Genet. 41: 1228-1233, 2009.
[PubMed: 19838195]
[Full Text: https://doi.org/10.1038/ng.468]
</p>
</li>
<li>
<p class="mim-text-font">
Graham, R. R., Cotsapas, C., Davies, L., Hackett, R., Lessard, C. J., Leon, J. M., Burtt, N. P., Guiducci, C., Parkin, M., Gates, C., Plenge, R. M., Behrens, T. W., and 10 others.
<strong>Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus.</strong>
Nature Genet. 40: 1059-1061, 2008.
[PubMed: 19165918]
[Full Text: https://doi.org/10.1038/ng.200]
</p>
</li>
<li>
<p class="mim-text-font">
Graham, R. R., Kozyrev, S. V., Baechler, E. C., Reddy, M. V. P. L., Plenge, R. M., Bauer, J. W., Ortmann, W. A., Koeuth, T., Gonzalez Escribano, M. F., the Argentine and Spanish Collaborative Groups, Pons-Estel, B., Petri, M., Daly, M., Gregersen, P. K., Martin, J., Altshuler, D., Behrens, T. W., Alarcon-Riquelme, M. E.
<strong>A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus.</strong>
Nature Genet. 38: 550-555, 2006.
[PubMed: 16642019]
[Full Text: https://doi.org/10.1038/ng1782]
</p>
</li>
<li>
<p class="mim-text-font">
Graham, R. R., Ortmann, W. A., Langefeld, C. D., Jawaheer, D., Selby, S. A., Rodine, P. R., Baechler, E. C., Rohlf, K. E., Shark, K. B., Espe, K. J., Green, L. E., Nair, R. P., and 12 others.
<strong>Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus.</strong>
Am. J. Hum. Genet. 71: 543-553, 2002.
[PubMed: 12145745]
[Full Text: https://doi.org/10.1086/342290]
</p>
</li>
<li>
<p class="mim-text-font">
Gray-McGuire, C., Moser, K. L., Gaffney, P. M., Kelly, J., Yu, H., Olson, J. M., Jedrey, C. M., Jacobs, K. B., Kimberly, R. P., Neas, B. R., Rich, S. S., Behrens, T. W., Harley, J. B.
<strong>Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16-15.2.</strong>
Am. J. Hum. Genet. 67: 1460-1469, 2000.
[PubMed: 11078476]
[Full Text: https://doi.org/10.1086/316891]
</p>
</li>
<li>
<p class="mim-text-font">
Green, J. R., Montasser, M., Woodrow, J. C.
<strong>The association of HLA-linked genes with systemic lupus erythematosus.</strong>
Ann. Hum. Genet. 50: 93-96, 1986.
[PubMed: 3501270]
[Full Text: https://doi.org/10.1111/j.1469-1809.1986.tb01942.x]
</p>
</li>
<li>
<p class="mim-text-font">
Gross, J. A., Johnston, J., Mudri, S., Enselman, R., Dillon, S. R., Madden, K., Xu, W., Parrish-Novak, J., Foster, D., Lofton-Day, C., Moore, M., Littau, A., Grossman, A., Haugen, H., Foley, K., Blumberg, H., Harrison, K., Kindsvogel, W., Clegg, C. H.
<strong>TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease.</strong>
Nature 404: 995-999, 2000.
[PubMed: 10801128]
[Full Text: https://doi.org/10.1038/35010115]
</p>
</li>
<li>
<p class="mim-text-font">
Guiducci, C., Gong, M., Xu, Z., Gill, M., Chaussabel, D., Meeker, T., Chan, J. H., Wright, T., Punaro, M., Bolland, S., Soumelis, V., Banchereau, J., Coffman, R. L., Pascual, V., Barrat, F. J.
<strong>TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus.</strong>
Nature 465: 937-941, 2010.
[PubMed: 20559388]
[Full Text: https://doi.org/10.1038/nature09102]
</p>
</li>
<li>
<p class="mim-text-font">
Halpern, R., Davidson, A., Lazo, A., Solomon, G., Lahita, R., Diamond, B.
<strong>Familial systemic lupus erythematosus: presence of a cross-reactive idiotype in healthy family members.</strong>
J. Clin. Invest. 76: 731-736, 1985.
[PubMed: 3875631]
[Full Text: https://doi.org/10.1172/JCI112028]
</p>
</li>
<li>
<p class="mim-text-font">
Han, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., Xu, J.-H., Cai, Z.-M., Huang, W., Zhao, G.-P., Xie, H.-F., Fang, H., and 55 others.
<strong>Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus.</strong>
Nature Genet. 41: 1234-1237, 2009.
[PubMed: 19838193]
[Full Text: https://doi.org/10.1038/ng.472]
</p>
</li>
<li>
<p class="mim-text-font">
Hom, G., Graham, R. R., Modrek, B., Taylor, K. E., Ortmann, W., Garnier, S., Lee, A. T., Chung, S. A., Ferreira, R. C., Pant, P. V. K., Ballinger, D. G., Kosoy, R., and 15 others.
<strong>Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX.</strong>
New Eng. J. Med. 358: 900-909, 2008.
[PubMed: 18204098]
[Full Text: https://doi.org/10.1056/NEJMoa0707865]
</p>
</li>
<li>
<p class="mim-text-font">
Horn, J. R., Kapur, J. J., Walker, S. E.
<strong>Mixed connective tissue disease in siblings.</strong>
Arthritis Rheum. 21: 709-714, 1978.
[PubMed: 310679]
[Full Text: https://doi.org/10.1002/art.1780210617]
</p>
</li>
<li>
<p class="mim-text-font">
Huerta, P. T., Kowal, C., DeGiorgio, L. A., Volpe, B. T., Diamond, B.
<strong>Immunity and behavior: antibodies alter emotion.</strong>
Proc. Nat. Acad. Sci. 103: 678-683, 2006.
[PubMed: 16407105]
[Full Text: https://doi.org/10.1073/pnas.0510055103]
</p>
</li>
<li>
<p class="mim-text-font">
Hughes, G. R. V., Batchelor, J. R.
<strong>The genetics of systemic lupus erythematosus. (Editorial)</strong>
Brit. Med. J. 286: 416-417, 1983.
[PubMed: 6401546]
[Full Text: https://doi.org/10.1136/bmj.286.6363.416-a]
</p>
</li>
<li>
<p class="mim-text-font">
International Consortium for Systemic Lupus Erythematosus Genetics, Harley, J. B., Alarcon-Riquelme, M. E., Criswell, L. A., Jacob, C. O., Kimberly, R. P., Moser, K. L., Tsao, B. P., Vyse, T. J., Langefeld, C. D.
<strong>Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci.</strong>
Nature Genet. 40: 204-210, 2008.
[PubMed: 18204446]
[Full Text: https://doi.org/10.1038/ng.81]
</p>
</li>
<li>
<p class="mim-text-font">
Johanneson, B., Lima, G., von Salome, J., Alarcon-Segovia, D., Collaborative Group on the Genetics of SLE, BIOMED II Collaboration on the Genetics of SLE and Sjogrens Syndrome, Alarcon-Riquelme, M. E.
<strong>A major susceptibility locus for systemic lupus erythematosus maps to chromosome 1q31.</strong>
Am. J. Hum. Genet. 71: 1060-1071, 2002.
[PubMed: 12373647]
[Full Text: https://doi.org/10.1086/344289]
</p>
</li>
<li>
<p class="mim-text-font">
Kamat, S. S., Pepmueller, P. H., Moore, T. L.
<strong>Triplets with systemic lupus erythematosus.</strong>
Arthritis Rheum. 48: 3176-3180, 2003.
[PubMed: 14613280]
[Full Text: https://doi.org/10.1002/art.11320]
</p>
</li>
<li>
<p class="mim-text-font">
Kamatani, Y., Matsuda, K., Ohishi, T., Ohtsubo, S., Yamazaki, K., Iida, A., Hosono, N., Kubo, M., Yumura, W., Nitta, K., Katagiri, T., Kawaguchi, Y., Kamatani, N., Nakamura, Y.
<strong>Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population.</strong>
J. Hum. Genet. 53: 64-73, 2008.
[PubMed: 18058064]
[Full Text: https://doi.org/10.1007/s10038-007-0219-1]
</p>
</li>
<li>
<p class="mim-text-font">
Kamitaki, N., Sekar, A., Handsaker, R. E., de Rivera, H., Tooley, K., Morris, D. L., Taylor, K. E., Whelan, C. W., Tombleson, P., Loohuis, L. M. O., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Boehnke, M., and 12 others.
<strong>Complement genes contribute sex-based vulnerability in diverse disorders.</strong>
Nature 582: 577-581, 2020.
[PubMed: 32499649]
[Full Text: https://doi.org/10.1038/s41586-020-2277-x]
</p>
</li>
<li>
<p class="mim-text-font">
Kelly, J. A., Moser, K. L., Harley, J. B.
<strong>The genetics of systemic lupus erythematosus: putting the pieces together.</strong>
Genes Immun. 3 (Suppl. 1): S71-S85, 2002.
[PubMed: 12215907]
[Full Text: https://doi.org/10.1038/sj.gene.6363885]
</p>
</li>
<li>
<p class="mim-text-font">
Kelly, T. E., Alford, B. A., Greer, K. M.
<strong>Chondrodysplasia punctata stemming from maternal lupus erythematosus.</strong>
Am. J. Med. Genet. 83: 397-401, 1999.
[PubMed: 10232751]
[Full Text: https://doi.org/10.1002/(sici)1096-8628(19990423)83:5&lt;397::aid-ajmg11&gt;3.0.co;2-y]
</p>
</li>
<li>
<p class="mim-text-font">
Knight, J. G., Adams, D. D.
<strong>Three genes for lupus nephritis in NZB x NZW mice.</strong>
J. Exp. Med. 147: 1653-1660, 1978.
[PubMed: 681876]
[Full Text: https://doi.org/10.1084/jem.147.6.1653]
</p>
</li>
<li>
<p class="mim-text-font">
Kohler, P. F., Percy, J., Campion, W. M., Smyth, C. J.
<strong>Hereditary angioedema and &#x27;familial lupus&#x27; erythematosus in identical twin boys.</strong>
Am. J. Med. 56: 406-411, 1974.
[PubMed: 4544343]
[Full Text: https://doi.org/10.1016/0002-9343(74)90623-8]
</p>
</li>
<li>
<p class="mim-text-font">
Kotzin, B. L.
<strong>Systemic lupus erythematosus.</strong>
Cell 85: 303-306, 1996.
[PubMed: 8616885]
[Full Text: https://doi.org/10.1016/s0092-8674(00)81108-3]
</p>
</li>
<li>
<p class="mim-text-font">
Kowal, C., DeGiorgio, L. A., Lee, J. Y., Edgar, M. A., Huerta, P. T., Volpe, B. T., Diamond, B.
<strong>Human lupus autoantibodies against NMDA receptors mediate cognitive impairment.</strong>
Proc. Nat. Acad. Sci. 103: 19854-19859, 2006.
[PubMed: 17170137]
[Full Text: https://doi.org/10.1073/pnas.0608397104]
</p>
</li>
<li>
<p class="mim-text-font">
Kozlowski, K., Basel, D., Beighton, P.
<strong>Chondrodysplasia punctata in siblings and maternal lupus erythematosus.</strong>
Clin. Genet. 66: 545-549, 2004.
[PubMed: 15521983]
[Full Text: https://doi.org/10.1111/j.1399-0004.2004.00364.x]
</p>
</li>
<li>
<p class="mim-text-font">
Kozyrev, S. V., Abelson, A.-K., Wojcik, J., Zaghlool, A., Reddy, M. V., P. L., Sanchez, E., Gunnarsson, I., Svenungsson, E., Sturfelt, G., Jonsen, A., Truedsson, L., Pons-Estel, B. A., and 12 others.
<strong>Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus.</strong>
Nature Genet. 40: 211-216, 2008. Note: Erratum: Nature Genet. 40: 484 only, 2008.
[PubMed: 18204447]
[Full Text: https://doi.org/10.1038/ng.79]
</p>
</li>
<li>
<p class="mim-text-font">
Kshirsagar, S., Riedl, M., Billing, H., Tonshoff, B., Thangavadivel, S., Steuber, C., Staude, H., Wechselberger, G., Edelbauer, M.
<strong>Akt-dependent enhanced migratory capacity of Th17 cells from children with lupus nephritis.</strong>
J. Immun. 193: 4895-4903, 2014.
[PubMed: 25339666]
[Full Text: https://doi.org/10.4049/jimmunol.1400044]
</p>
</li>
<li>
<p class="mim-text-font">
Kyogoku, C., Dijstelbloem, H. M., Tsuchiya, N., Hatta, Y., Kato, H., Yamaguchi, A., Fukazawa, T., Jansen, M. D., Hashimoto, H., van de Winkel, J. G. J., Kallenberg, C. G. M., Tokunaga, K.
<strong>Fc-gamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility.</strong>
Arthritis Rheum. 46: 1242-1254, 2002.
[PubMed: 12115230]
[Full Text: https://doi.org/10.1002/art.10257]
</p>
</li>
<li>
<p class="mim-text-font">
Kyogoku, C., Langefeld, C. D., Ortmann, W. A., Lee, A., Selby, S., Carlton, V. E. H., Chang, M., Ramos, P., Baechler, E. C., Batliwalla, F. M., Novitzke, J., Williams, A. H., and 10 others.
<strong>Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE.</strong>
Am. J. Hum. Genet. 75: 504-507, 2004.
[PubMed: 15273934]
[Full Text: https://doi.org/10.1086/423790]
</p>
</li>
<li>
<p class="mim-text-font">
Lahita, R. G., Chiorazzi, N., Gibofsky, A., Winchester, R. J., Kunkel, H. G.
<strong>Familial systemic lupus erythematosus in males.</strong>
Arthritis Rheum. 26: 39-44, 1983.
[PubMed: 6600612]
[Full Text: https://doi.org/10.1002/art.1780260107]
</p>
</li>
<li>
<p class="mim-text-font">
Lappat, E. J., Cawein, M. J.
<strong>A familial study of procainamide-induced systemic lupus erythematosus: a question of pharmacogenetic polymorphism.</strong>
Am. J. Med. 45: 846-852, 1968.
[PubMed: 4177546]
[Full Text: https://doi.org/10.1016/0002-9343(68)90183-6]
</p>
</li>
<li>
<p class="mim-text-font">
Larsen, R. A., Godal, T.
<strong>Family studies in systemic lupus erythematosus (SLE)-IX. Thyroid diseases and antibodies.</strong>
J. Chronic Dis. 25: 225-234, 1972.
[PubMed: 5040348]
[Full Text: https://doi.org/10.1016/0021-9681(72)90133-6]
</p>
</li>
<li>
<p class="mim-text-font">
Larsen, R. A.
<strong>Family studies in systemic lupus erythematosus (SLE). I. A proband material from central eastern Norway.</strong>
Acta Med. Scand. Suppl. 543: 11-19, 1972.
[PubMed: 4124128]
</p>
</li>
<li>
<p class="mim-text-font">
Leadbetter, E. A., Rifkin, I. R., Hohlbaum, A. M., Beaudette, B. C., Shlomchik, M. J., Marshak-Rothstein, A.
<strong>Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors.</strong>
Nature 416: 603-607, 2002.
[PubMed: 11948342]
[Full Text: https://doi.org/10.1038/416603a]
</p>
</li>
<li>
<p class="mim-text-font">
Lee, Y. H., Harley, J. B., Nath, S. K.
<strong>CTLA-4 polymorphisms and systemic lupus erythematosus (SLE): a meta-analysis.</strong>
Hum. Genet. 116: 361-367, 2005.
[PubMed: 15688186]
[Full Text: https://doi.org/10.1007/s00439-004-1244-1]
</p>
</li>
<li>
<p class="mim-text-font">
Lee, Y. H., Harley, J. B., Nath, S. K.
<strong>Meta-analysis of TNF-alpha promoter -308A/G polymorphism and SLE susceptibility.</strong>
Europ. J. Hum. Genet. 14: 364-371, 2006. Note: Erratum: Europ. J. Hum. Genet. 14: 1059-1060, 2006.
[PubMed: 16418737]
[Full Text: https://doi.org/10.1038/sj.ejhg.5201566]
</p>
</li>
<li>
<p class="mim-text-font">
Lee, Y. H., Nath, S. K.
<strong>Systemic lupus erythematosus susceptibility loci defined by genome scan meta-analysis.</strong>
Hum. Genet. 118: 434-443, 2005.
[PubMed: 16208513]
[Full Text: https://doi.org/10.1007/s00439-005-0073-1]
</p>
</li>
<li>
<p class="mim-text-font">
Lee-Kirsch, M. A., Gong, M., Chowdhury, D., Senenko, L., Engel, K., Lee, Y.-A., de Silva, U., Bailey, S. L., Witte, T., Vyse, T. J., Kere, J., Pfeiffer, C., and 12 others.
<strong>Mutations in the gene encoding the 3-prime-5-prime DNA exonuclease TREX1 are associated with systemic lupus erythematosus.</strong>
Nature Genet. 39: 1065-1067, 2007.
[PubMed: 17660818]
[Full Text: https://doi.org/10.1038/ng2091]
</p>
</li>
<li>
<p class="mim-text-font">
Leonhardt, T.
<strong>Family studies in systemic lupus erythematosus.</strong>
Acta Med. Scand. 176 (suppl. 416): 1-156, 1964.
[PubMed: 14164860]
</p>
</li>
<li>
<p class="mim-text-font">
Lessard, E., Fortin, A., Belanger, P. M., Beaune, P., Hamelin, B. A., Turegon, J.
<strong>Role of CYP2D6 in the N-hydroxylation of procainamide.</strong>
Pharmacogenetics 7: 381-390, 1997.
[PubMed: 9352574]
[Full Text: https://doi.org/10.1097/00008571-199710000-00007]
</p>
</li>
<li>
<p class="mim-text-font">
Lessard, E., Hamelin, B. A., Labbe, L., O'Hara, G., Belanger, P. M., Turgeon, J.
<strong>Involvement of CYP2D6 activity in the N-oxidation of procainamide in man.</strong>
Pharmacogenetics 9: 683-696, 1999.
[PubMed: 10634131]
[Full Text: https://doi.org/10.1097/01213011-199912000-00003]
</p>
</li>
<li>
<p class="mim-text-font">
Levcovitz, H., Fletcher, M. A., Phillips, P., Chertok, H. A., Altman, R., Benke, P. J.
<strong>Segregation of lymphocyte low molecular weight DNA and antinuclear-antibodies in a family with systemic lupus erythematosus in first cousins.</strong>
Hum. Genet. 80: 253-258, 1988. Note: Retraction: Hum. Genet. 87: 634 only, 1991.
[PubMed: 3263937]
[Full Text: https://doi.org/10.1007/BF01790093]
</p>
</li>
<li>
<p class="mim-text-font">
Lewis, R., Tannenberg, W., Smith, C., Schwartz, R.
<strong>Human systemic lupus erythematosus and C-type RNA viruses. (Abstract)</strong>
Clin. Res. 22: 422A only, 1974.
</p>
</li>
<li>
<p class="mim-text-font">
Li, N., Nakamura, K., Jiang, Y., Tsurui, H., Matsuoka, S., Abe, M., Ohtsuji, M., Nishimura, H., Kato, K., Kawai, T., Atsumi, T., Koike, T., Shirai, T., Ueno, H., Hirose, S.
<strong>Gain-of-function polymorphism in mouse and human Ltk: implications for the pathogenesis of systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 13: 171-179, 2004.
[PubMed: 14695357]
[Full Text: https://doi.org/10.1093/hmg/ddh020]
</p>
</li>
<li>
<p class="mim-text-font">
Lindqvist, A.-K. B., Steinsson, K., Johanneson, B., Kristjansdottir, H., Arnasson, A., Grondal, G., Jonasson, I., Magnusson, V., Sturfelt, G., Truedsson, L., Svenungsson, E., Lundberg, I., Terwilliger, J. D., Gyllensten, U. B., Alarcon-Riquelme, M. E.
<strong>A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q.</strong>
J. Autoimmun. 14: 169-178, 2000.
[PubMed: 10677248]
[Full Text: https://doi.org/10.1006/jaut.1999.0357]
</p>
</li>
<li>
<p class="mim-text-font">
Linker-Israeli, M., Wallace, D. J., Prehn, J., Michael, D., Honda, M., Taylor, K. D., Paul-Labrador, M., Fischel-Ghodsian, N., Fraser, P. A., Klinenberg, J. R.
<strong>Association of IL-6 gene alleles with systemic lupus erythematosus (SLE) and with elevated IL-6 expression.</strong>
Genes Immun. 1: 45-52, 1999.
[PubMed: 11197305]
[Full Text: https://doi.org/10.1038/sj.gene.6363631]
</p>
</li>
<li>
<p class="mim-text-font">
Mackie, I. J., Colaco, C. B., Machin, S. J.
<strong>Familial lupus anticoagulants.</strong>
Brit. J. Haemat. 67: 359-363, 1987.
[PubMed: 3689698]
[Full Text: https://doi.org/10.1111/j.1365-2141.1987.tb02358.x]
</p>
</li>
<li>
<p class="mim-text-font">
Manjarrez-Orduno, N., Marasco, E., Chung, S. A., Katz, M. S., Kiridly, J. F., Simpfendorfer, K. R., Freudenberg, J., Ballard, D. H., Nashi, E., Hopkins, T. J., Cunninghame Graham, D. S., Lee, A. T., and 11 others.
<strong>CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation.</strong>
Nature Genet. 44: 1227-1230, 2012.
[PubMed: 23042117]
[Full Text: https://doi.org/10.1038/ng.2439]
</p>
</li>
<li>
<p class="mim-text-font">
McGaha, T. L., Sorrentino, B., Ravetch, J. V.
<strong>Restoration of tolerance in lupus by targeted inhibitory receptor expression.</strong>
Science 307: 590-593, 2005.
[PubMed: 15681388]
[Full Text: https://doi.org/10.1126/science.1105160]
</p>
</li>
<li>
<p class="mim-text-font">
Miller, K. B., Schwartz, R. S.
<strong>Familial abnormalities of suppressor-cell function in systemic lupus erythematosus.</strong>
New Eng. J. Med. 301: 803-809, 1979.
[PubMed: 314587]
[Full Text: https://doi.org/10.1056/NEJM197910113011502]
</p>
</li>
<li>
<p class="mim-text-font">
Mohan, C., Morel, L., Yang, P., Watanabe, H., Croker, B., Gilkeson, G., Wakeland, E. K.
<strong>Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies.</strong>
J. Clin. Invest. 103: 1685-1695, 1999.
[PubMed: 10377175]
[Full Text: https://doi.org/10.1172/JCI5827]
</p>
</li>
<li>
<p class="mim-text-font">
Molokhia, M., Hoggart, C., Patrick, A. L., Shriver, M., Parra, E., Ye, J., Silman, A. J., McKeigue, P. M.
<strong>Relation of risk of systemic lupus erythematosus to west African admixture in a Caribbean population.</strong>
Hum. Genet. 112: 310-318, 2003.
[PubMed: 12545274]
[Full Text: https://doi.org/10.1007/s00439-002-0883-3]
</p>
</li>
<li>
<p class="mim-text-font">
Morel, L., Rudofsky, U. H., Longmate, J. A., Schiffenbauer, J., Wakeland, E. K.
<strong>Polygenic control of susceptibility to murine systemic lupus erythematosus.</strong>
Immunity 1: 219-229, 1994.
[PubMed: 7889410]
[Full Text: https://doi.org/10.1016/1074-7613(94)90100-7]
</p>
</li>
<li>
<p class="mim-text-font">
Mueller, M., Barros, P., Witherden, A. S., Roberts, A. L., Zhang, Z., Schaschl, H., Yu, C.-Y., Hurles, M. E., Schaffner, C., Floto, R. A., Game, L., Steinberg, K. M., Wilson, R. K., Graves, T. A., Eichler, E. E., Cook, H. T., Vyse, T. J., Aitman, T. J.
<strong>Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus.</strong>
Am. J. Hum. Genet. 92: 28-40, 2013.
[PubMed: 23261299]
[Full Text: https://doi.org/10.1016/j.ajhg.2012.11.013]
</p>
</li>
<li>
<p class="mim-text-font">
Musone, S. L., Taylor, K. E., Lu, T. T., Nititham, J., Ferreira, R. C., Ortmann, W., Shifrin, N., Petri, M. A., Kamboh, M. I., Manzi, S., Seldin, M. F., Gregersen, P. K., Behrens, T. W., Ma, A., Kwok, P.-Y., Criswell, L. A.
<strong>Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus.</strong>
Nature Genet. 40: 1062-1064, 2008.
[PubMed: 19165919]
[Full Text: https://doi.org/10.1038/ng.202]
</p>
</li>
<li>
<p class="mim-text-font">
Myouzen, K., Kochi, Y., Shimane, K., Fujio, K., Okamura, T., Okada, Y., Suzuki, A., Atsumi, T., Ito, S., Takada, K., Mimori, A., Ikegawa, S., Yamada, R., Nakamura, Y., Yamamoto, K.
<strong>Regulatory polymorphisms in EGR2 are associated with susceptibility to systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 19: 2313-2320, 2010.
[PubMed: 20194224]
[Full Text: https://doi.org/10.1093/hmg/ddq092]
</p>
</li>
<li>
<p class="mim-text-font">
Nakamura, K., Xiu, Y., Ohtsuji, M., Sugita, G., Abe, M., Ohtsuji, N., Hamano, Y., Jiang, Y., Takahashi, N., Shirai, T., Nishimura, H., Hirose, S.
<strong>Genetic dissection of anxiety in autoimmune disease.</strong>
Hum. Molec. Genet. 12: 1079-1086, 2003.
[PubMed: 12719372]
[Full Text: https://doi.org/10.1093/hmg/ddg128]
</p>
</li>
<li>
<p class="mim-text-font">
Napirei, M., Karsunky, H., Zevnik, B., Stephan, H., Mannherz, H. G., Moroy, T.
<strong>Features of systemic lupus erythematosus in Dnase1-deficient mice.</strong>
Nature Genet. 25: 177-181, 2000.
[PubMed: 10835632]
[Full Text: https://doi.org/10.1038/76032]
</p>
</li>
<li>
<p class="mim-text-font">
Nath, S. K., Han, S., Kim-Howard, X., Kelly, J. A., Viswanathan, P., Gilkeson, G. S., Chen, W., Zhu, C., McEver, R. P., Kimberly, R. P., Alarcon-Riquelme, M. E., Vyse, T. J., Li, Q.-Z., Wakeland, E. K., Merrill, J. T., James, J. A., Kaufman, K. M., Guthridge, J. M., Harley, J. B.
<strong>A nonsynonymous functional variant in integrin-alpha-M (encoded by ITGAM) is associated with systemic lupus erythematosus.</strong>
Nature Genet. 40: 152-154, 2008.
[PubMed: 18204448]
[Full Text: https://doi.org/10.1038/ng.71]
</p>
</li>
<li>
<p class="mim-text-font">
Niederer, H. A., Willcocks, L. C., Rayner, T. F., Yang, W., Lau, Y. L., Williams, T. N., Scott, J. A. G., Urban, B. C., Peshu, N., Dunstan, S. J., Hien, T. T., Phu, N. H., Padyukov, L., Gunnarsson, I., Svenungsson, E., Savage, C. O., Watts, R. A., Lyons, P. A., Clayton, D. G., Smith, K. G. C.
<strong>Copy number, linkage disequilibrium and disease association in the FCGR locus.</strong>
Hum. Molec. Genet. 19: 3282-3294, 2010.
[PubMed: 20508037]
[Full Text: https://doi.org/10.1093/hmg/ddq216]
</p>
</li>
<li>
<p class="mim-text-font">
Oishi, T., Iida, A., Otsubo, S., Kamatani, Y., Usami, M., Takei, T., Uchida, K., Tsuchiya, K., Saito, S., Ohnisi, Y., Tokunaga, K., Nitta, K., Kawaguchi, Y., Kamatani, N., Kochi, Y., Shimane, K., Yamamoto, K., Nakamura, Y., Yumura, W., Matsuda, K.
<strong>A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population.</strong>
J. Hum. Genet. 53: 151-162, 2008.
[PubMed: 18219441]
[Full Text: https://doi.org/10.1007/s10038-007-0233-3]
</p>
</li>
<li>
<p class="mim-text-font">
Olsson, L. M., Nerstedt, A., Lindqvist, A.-K., Johansson, A. C. M., Medstrand, P., Olofsson, P., Holmdahl, R.
<strong>Copy number variation of the gene NCF1 is associated with rheumatoid arthritis.</strong>
Antioxid. Redox Signal. 16: 71-78, 2012.
[PubMed: 21728841]
[Full Text: https://doi.org/10.1089/ars.2011.4013]
</p>
</li>
<li>
<p class="mim-text-font">
Orru, V., Tsai, S. J., Rueda, B., Fiorillo, E., Stanford, S. M., Dasgupta, J., Hartiala, J., Zhao, L., Ortego-Centeno, N., D'Alfonso, S., Italian Collaborative Group, Arnett, F. C., and 11 others.
<strong>A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 18: 569-579, 2009.
[PubMed: 18981062]
[Full Text: https://doi.org/10.1093/hmg/ddn363]
</p>
</li>
<li>
<p class="mim-text-font">
Pollak, V. E.
<strong>Antinuclear antibodies in families of patients with systemic lupus erythematosus.</strong>
New Eng. J. Med. 271: 165-171, 1964.
[PubMed: 14158353]
[Full Text: https://doi.org/10.1056/NEJM196407232710401]
</p>
</li>
<li>
<p class="mim-text-font">
Prokunina, L., Castillejo-Lopez, C., Oberg, F., Gunnarsson, I., Berg, L., Magnusson, V., Brookes, A. J., Tentler, D., Kristjansdottir, H., Grondal, G., Bolstad, A. I., Svenungsson, E., and 12 others.
<strong>A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans.</strong>
Nature Genet. 32: 666-669, 2002.
[PubMed: 12402038]
[Full Text: https://doi.org/10.1038/ng1020]
</p>
</li>
<li>
<p class="mim-text-font">
Quintero-Del-Rio, A., Kelly, J. A., Kilpatrick, J., James, J. A., Harley, J. B.
<strong>The genetics of systemic lupus erythematosus stratified by renal disease: linkage at 10q22.3 (SLEN1), 2q34-35 (SLEN2), and 11p15.6 (SLEN3).</strong>
Genes Immun. 3 (Suppl. 1): S57-S62, 2002.
[PubMed: 12215904]
[Full Text: https://doi.org/10.1038/sj.gene.6363901]
</p>
</li>
<li>
<p class="mim-text-font">
Reed, W. B., Bergeron, R. F., Tuffanelli, D. L., Jones, E. W.
<strong>Hereditary inflammatory vasculitis with persistent nodules. A genetically-determined new entity probably related to lupus erythematosus.</strong>
Brit. J. Derm. 87: 299-307, 1972.
[PubMed: 4507318]
[Full Text: https://doi.org/10.1111/j.1365-2133.1972.tb07414.x]
</p>
</li>
<li>
<p class="mim-text-font">
Reidenberg, M. M., Levy, M., Drayer, D. E., Zylber-Katz, E., Robbins, W. C.
<strong>Acetylator phenotype in idiopathic systemic lupus erythematosus.</strong>
Arthritis Rheum. 23: 569-573, 1980.
[PubMed: 7378086]
[Full Text: https://doi.org/10.1002/art.1780230508]
</p>
</li>
<li>
<p class="mim-text-font">
Remmers, E. F., Plenge, R. M., Lee, A. T., Graham, R. R., Hom, G., Behrens, T. W., de Bakker, P. I. W., Le, J. M., Lee, H.-S., Batliwalla, F., Li, W., Masters, S. L., and 11 others.
<strong>STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus.</strong>
New Eng. J. Med. 357: 977-986, 2007.
[PubMed: 17804842]
[Full Text: https://doi.org/10.1056/NEJMoa073003]
</p>
</li>
<li>
<p class="mim-text-font">
Reveille, J. D., Bias, W. B., Winkelstein, J. A., Provost, T. T., Dorsch, C. A., Arnett, F. C.
<strong>Familial systemic lupus erythematosus: immunogenetic studies in eight families.</strong>
Medicine 62: 21-35, 1983.
[PubMed: 6600509]
[Full Text: https://doi.org/10.1097/00005792-198301000-00002]
</p>
</li>
<li>
<p class="mim-text-font">
Russell, A. I., Cunninghame Graham, D. S., Shepherd, C., Roberton, C. A., Whittaker, J., Meeks, J., Powell, R. J., Isenberg, D. A., Walport, M. J., Vyse, T. J.
<strong>Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 13: 137-147, 2004.
[PubMed: 14645206]
[Full Text: https://doi.org/10.1093/hmg/ddh021]
</p>
</li>
<li>
<p class="mim-text-font">
Sakane, T., Murakawa, Y., Suzuki, N., Ueda, Y., Tsuchida, T., Takada, S., Yamauchi, Y., Tsunematsu, T.
<strong>Familial occurrence of impaired interleukin-2 activity and increased peripheral blood B cells actively secreting immunoglobulins in systemic lupus erythematosus.</strong>
Am. J. Med. 86: 385-390, 1989.
[PubMed: 2784626]
[Full Text: https://doi.org/10.1016/0002-9343(89)90334-3]
</p>
</li>
<li>
<p class="mim-text-font">
Sanchez, E., Palomino-Morales, R. J., Ortego-Centeno, N., Jimenez-Alonso, J., Gonzalez-Gay, M. A., Lopez-Nevot, M. A., Sanchez-Roman, J., de Ramon, E., Gonzalez-Escribano, M. F., Pons-Estel, B. A., D'Alfonso, S., Sebastiani, G. D., Italian Collaborative Group, Alarcon-Riquelme, M. E., Martin, J.
<strong>Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus.</strong>
Hum. Molec. Genet. 18: 3739-3748, 2009.
[PubMed: 19584085]
[Full Text: https://doi.org/10.1093/hmg/ddp301]
</p>
</li>
<li>
<p class="mim-text-font">
Sanghera, D. K., Wagenknecht, D. R., McIntyre, J. A., Kamboh, M. I.
<strong>Identification of structural mutations in the fifth domain of apolipoprotein H (beta-2-glycoprotein I) which affect phospholipid binding.</strong>
Hum. Molec. Genet. 6: 311-316, 1997.
[PubMed: 9063752]
[Full Text: https://doi.org/10.1093/hmg/6.2.311]
</p>
</li>
<li>
<p class="mim-text-font">
Schaller, J.
<strong>Illness resembling lupus erythematosus in mothers of boys with chronic granulomatous disease.</strong>
Ann. Intern. Med. 76: 747-750, 1972.
[PubMed: 5025325]
[Full Text: https://doi.org/10.7326/0003-4819-76-5-747]
</p>
</li>
<li>
<p class="mim-text-font">
Schur, P. H.
<strong>Genetics of systemic lupus erythematosus.</strong>
Lupus 4: 425-437, 1995.
[PubMed: 8749564]
[Full Text: https://doi.org/10.1177/096120339500400603]
</p>
</li>
<li>
<p class="mim-text-font">
Scofield, R. H., Bruner, G. R., Kelly, J. A., Kilpatrick, J., Bacino, D., Nath, S. K., Harley, J. B.
<strong>Thrombocytopenia identifies a severe familial phenotype of systemic lupus erythematosus and reveals genetic linkages at 1q22 and 11p13.</strong>
Blood 101: 992-997, 2003.
[PubMed: 12393658]
[Full Text: https://doi.org/10.1182/blood-2002-04-1003]
</p>
</li>
<li>
<p class="mim-text-font">
Serdula, M. K., Rhoads, G. G.
<strong>Frequency of systemic lupus erythematosus in different groups in Hawaii.</strong>
Arthritis Rheum. 22: 328-333, 1979.
[PubMed: 426879]
[Full Text: https://doi.org/10.1002/art.1780220403]
</p>
</li>
<li>
<p class="mim-text-font">
Shai, R., Quismorio, F. P., Jr., Li, L., Kwon, O.-J., Morrison, J., Wallace, D. J., Neuwelt, C. M., Brautbar, C., Gauderman, W. J., Jacob, C. O.
<strong>Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families.</strong>
Hum. Molec. Genet. 8: 639-644, 1999.
[PubMed: 10072432]
[Full Text: https://doi.org/10.1093/hmg/8.4.639]
</p>
</li>
<li>
<p class="mim-text-font">
Shin, H. D., Park, B. L., Kim, L. H., Lee, H.-S., Kim, T.-Y., Bae, S.-C.
<strong>Common DNase I polymorphism associated with autoantibody production among systemic lupus erythematosus patients.</strong>
Hum. Molec. Genet. 13: 2343-2350, 2004.
[PubMed: 15333586]
[Full Text: https://doi.org/10.1093/hmg/ddh275]
</p>
</li>
<li>
<p class="mim-text-font">
Sibley, J. T., Blocka, K. L. N., Sheridan, D. P., Olszynski, W. P.
<strong>Familial systemic lupus erythematosus characterized by digital ischemia.</strong>
J. Rheum. 20: 299-303, 1993.
[PubMed: 8474067]
</p>
</li>
<li>
<p class="mim-text-font">
Siegel, M., Holley, H. L., Lee, S. L.
<strong>Epidemiologic studies on systemic lupus erythematosus: comparative data for New York City and Jefferson County, Alabama, 1956-1965.</strong>
Arthritis Rheum. 13: 802-811, 1970.
[PubMed: 5495391]
[Full Text: https://doi.org/10.1002/art.1780130610]
</p>
</li>
<li>
<p class="mim-text-font">
Siegel, M., Lee, S. L., Widelock, D., Gwon, N. V., Kravitz, H.
<strong>A comparative family study of rheumatoid arthritis and systemic lupus erythematosus.</strong>
New Eng. J. Med. 273: 893-897, 1965.
[PubMed: 4157928]
[Full Text: https://doi.org/10.1056/NEJM196510212731702]
</p>
</li>
<li>
<p class="mim-text-font">
Sigurdsson, S., Nordmark, G., Goring, H. H. H., Lindroos, K., Wiman, A.-C., Sturfelt, G., Jonsen, A., Rantapaa-Dahlqvist, S., Moller, B., Kere, J., Koskenmies, S., Widen, E., Eloranta, M.-L., Julkunen, H., Kristjansdottir, H., Steinsson, K., Alm, G., Ronnblom, L., Syvanen, A.-C.
<strong>Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus.</strong>
Am. J. Hum. Genet. 76: 528-537, 2005.
[PubMed: 15657875]
[Full Text: https://doi.org/10.1086/428480]
</p>
</li>
<li>
<p class="mim-text-font">
Solomon, G., Schiffenbauer, J., Keiser, H. D., Diamond, B.
<strong>Use of monoclonal antibodies to identify shared idiotypes on human antibodies to native DNA from patients with systemic lupus erythematosus.</strong>
Proc. Nat. Acad. Sci. 80: 850-854, 1983.
[PubMed: 6187005]
[Full Text: https://doi.org/10.1073/pnas.80.3.850]
</p>
</li>
<li>
<p class="mim-text-font">
Solomou, E. E., Juang, Y.-T., Gourley, M. F., Kammer, G. M., Tsokos, G. C.
<strong>Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus.</strong>
J. Immun. 166: 4216-4222, 2001.
[PubMed: 11238674]
[Full Text: https://doi.org/10.4049/jimmunol.166.6.4216]
</p>
</li>
<li>
<p class="mim-text-font">
Stein, C. M., Olson, J. M., Gray-McGuire, C., Bruner, G. R., Harley, J. B., Moser, K. L.
<strong>Increased prevalence of renal disease in systemic lupus erythematosus families with affected male relatives.</strong>
Arthritis Rheum. 46: 428-435, 2002.
[PubMed: 11840445]
[Full Text: https://doi.org/10.1002/art.10105]
</p>
</li>
<li>
<p class="mim-text-font">
Steinberg, A. D., Raveche, E. S., Laskin, C. A., Smith, H. R., Santoro, T., Miller, M. L., Plotz, P. H.
<strong>NIH conference. Systemic lupus erythematosus: insights from animal models.</strong>
Ann. Intern. Med. 100: 714-716, 1984.
[PubMed: 6370068]
[Full Text: https://doi.org/10.7326/0003-4819-100-5-714]
</p>
</li>
<li>
<p class="mim-text-font">
Sthoeger, Z. M., Bezalel, S., Chapnik, N., Asher, I., Froy, O.
<strong>High alpha-defensin levels in patients with systemic lupus erythematosus.</strong>
Immunology 127: 116-122, 2009.
[PubMed: 19191901]
[Full Text: https://doi.org/10.1111/j.1365-2567.2008.02997.x]
</p>
</li>
<li>
<p class="mim-text-font">
Stohl, W., Crow, M. K., Kunkel, H. G.
<strong>Systemic lupus erythematosus with deficiency of the T4 epitope on T helper/inducer cells.</strong>
New Eng. J. Med. 312: 1671-1678, 1985.
[PubMed: 2582253]
[Full Text: https://doi.org/10.1056/NEJM198506273122604]
</p>
</li>
<li>
<p class="mim-text-font">
Sturfelt, G., Truedsson, L., Johansen, P., Jonsson, H., Nived, O., Sjoholm, A. G.
<strong>Homozygous C4A deficiency in systemic lupus erythematosus: analysis of patients from a defined population.</strong>
Clin. Genet. 38: 427-433, 1990.
[PubMed: 2289315]
[Full Text: https://doi.org/10.1111/j.1399-0004.1990.tb03608.x]
</p>
</li>
<li>
<p class="mim-text-font">
Su, K., Wu, J., Edberg, J. C., Li, X., Ferguson, P., Cooper, G. S., Langefeld, C. D., Kimberly, R. P.
<strong>A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing Fc-gamma-RIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus.</strong>
J. Immun. 172: 7186-7191, 2004.
[PubMed: 15153543]
[Full Text: https://doi.org/10.4049/jimmunol.172.11.7186]
</p>
</li>
<li>
<p class="mim-text-font">
Sun, Y., Chen, H. M., Subudhi, S. K., Chen, J., Koka, R., Chen, L., Fu, Y.-X.
<strong>Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease.</strong>
Nature Med. 8: 1405-1413, 2002.
[PubMed: 12426559]
[Full Text: https://doi.org/10.1038/nm1202-796]
</p>
</li>
<li>
<p class="mim-text-font">
Talaei, N., Yu, T., Manion, K., Bremner, R., Wither, J. E.
<strong>Identification of the SLAM adapter molecule EAT-2 as a lupus-susceptibility gene that acts through impaired negative regulation of dendritic cell signaling.</strong>
J. Immun. 195: 4623-4631, 2015.
[PubMed: 26432891]
[Full Text: https://doi.org/10.4049/jimmunol.1500552]
</p>
</li>
<li>
<p class="mim-text-font">
Talal, N.
<strong>Systemic lupus erythematosus, autoimmunity, sex and inheritance. (Editorial)</strong>
New Eng. J. Med. 301: 838-839, 1979.
[PubMed: 314588]
[Full Text: https://doi.org/10.1056/NEJM197910113011510]
</p>
</li>
<li>
<p class="mim-text-font">
Tan, E. M., Cohen, A. S., Fries, J. F., Masi, A. T., McShane, D. J., Rothfield, N. F., Schaller, J. G., Talal, N., Winchester, R. J.
<strong>The 1982 revised criteria for the classification of systemic lupus erythematosus.</strong>
Arthritis Rheum. 25: 1271-1277, 1982.
[PubMed: 7138600]
[Full Text: https://doi.org/10.1002/art.1780251101]
</p>
</li>
<li>
<p class="mim-text-font">
Tao, D., Shangwu, L., Qun, W., Yan, L., Wei, J., Junyan, L., Feili, G., Boquan, J., Jinquan, T.
<strong>CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus.</strong>
J. Immun. 174: 1281-1290, 2005. Note: Retraction: J. Immun. 188: 5800 only, 2012.
[PubMed: 15661884]
[Full Text: https://doi.org/10.4049/jimmunol.174.3.1281]
</p>
</li>
<li>
<p class="mim-text-font">
Theofilopoulos, A. N., Dixon, F. J.
<strong>Murine models of systemic lupus erythematosus.</strong>
Adv. Immun. 37: 269-390, 1985.
[PubMed: 3890479]
[Full Text: https://doi.org/10.1016/s0065-2776(08)60342-9]
</p>
</li>
<li>
<p class="mim-text-font">
Toriello, H. V.
<strong>Chondrodysplasia punctata and maternal systemic lupus erythematosus. (Commentary)</strong>
J. Med. Genet. 35: 698-699, 1998.
[PubMed: 9719384]
[Full Text: https://doi.org/10.1136/jmg.35.8.698]
</p>
</li>
<li>
<p class="mim-text-font">
Tournoy, J., Bossuyt, X., Snellinx, A., Regent, M., Garmyn, M., Serneels, L., Saftig, P., Craessaerts, K., De Strooper, B., Hartmann, D.
<strong>Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice.</strong>
Hum. Molec. Genet. 13: 1321-1331, 2004.
[PubMed: 15128703]
[Full Text: https://doi.org/10.1093/hmg/ddh151]
</p>
</li>
<li>
<p class="mim-text-font">
Tuffanelli, D. L.
<strong>Lupus erythematosus panniculitis (profundus). Clinical and immunologic studies.</strong>
Arch. Derm. 103: 231-242, 1971.
[PubMed: 4100949]
</p>
</li>
<li>
<p class="mim-text-font">
Vyse, T. J., Drake, C. G., Rozzo, S. J., Roper, E., Izui, S., Kotzin, B. L.
<strong>Genetic linkage of IgG autoantibody production in relation to lupus nephritis in New Zealand hybrid mice.</strong>
J. Clin. Invest. 98: 1762-1772, 1996.
[PubMed: 8878426]
[Full Text: https://doi.org/10.1172/JCI118975]
</p>
</li>
<li>
<p class="mim-text-font">
Vyse, T. J., Todd, J. A.
<strong>Genetic analysis of autoimmune disease.</strong>
Cell 85: 311-318, 1996.
[PubMed: 8616887]
[Full Text: https://doi.org/10.1016/s0092-8674(00)81110-1]
</p>
</li>
<li>
<p class="mim-text-font">
Weinberg, J. B., Hasstedt, S. J., Skolnick, M. H., Kimberling, W. J., Baty, B.
<strong>Analysis of a large pedigree with elliptocytosis, multiple lipomatosis, and biological false-positive serological test for syphilis.</strong>
Am. J. Med. Genet. 5: 57-67, 1980.
[PubMed: 7395901]
[Full Text: https://doi.org/10.1002/ajmg.1320050108]
</p>
</li>
<li>
<p class="mim-text-font">
Willcocks, L. C., Carr, E. J., Niederer, H. A., Rayner, T. F., Williams, T. N., Yang, W., Scott, J. A. G., Urban, B. C., Peshu, N., Vyse, T. J., Lau, Y. L., Lyons, P. A., Smith, K. G. C.
<strong>A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematous.</strong>
Proc. Nat. Acad. Sci. 107: 7881-7885, 2010.
[PubMed: 20385827]
[Full Text: https://doi.org/10.1073/pnas.0915133107]
</p>
</li>
<li>
<p class="mim-text-font">
Willcocks, L. C., Lyons, P. A., Clatworthy, M. R., Robinson, J. I., Yang, W., Newland, S. A., Plagnol, V., McGovern, N. N., Condliffe, A. M., Chilvers, E. R., Adu, D., Jolly, E. C., Watts, R., Lau, Y. L., Morgan, A. W., Nash, G., Smith, K. G. C.
<strong>Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake.</strong>
J. Exp. Med. 205: 1573-1582, 2008.
[PubMed: 18559452]
[Full Text: https://doi.org/10.1084/jem.20072413]
</p>
</li>
<li>
<p class="mim-text-font">
Wong, D. W., Bentwich, Z., Martinez-Tarquino, C., Seidman, J. G., Duby, A. D., Quertermous, T., Schur, P. H.
<strong>Nonlinkage of the T cell receptor alpha, beta, and gamma genes to systemic lupus erythematosus in multiplex families.</strong>
Arthritis Rheum. 31: 1371-1376, 1988.
[PubMed: 2903748]
[Full Text: https://doi.org/10.1002/art.1780311105]
</p>
</li>
<li>
<p class="mim-text-font">
Wu, H., Boackle, S. A., Hanvivadhanakul, P., Ulgiati, D., Grossman, J. M., Lee, Y., Shen, N., Abraham, L. J., Mercer, T. R., Park, E., Hebert, L. A., Rovin, B. H., and 13 others.
<strong>Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus.</strong>
Proc. Nat. Acad. Sci. 104: 3961-3966, 2007.
[PubMed: 17360460]
[Full Text: https://doi.org/10.1073/pnas.0609101104]
</p>
</li>
<li>
<p class="mim-text-font">
Wu, J., Wilson, J., He, J., Xiang, L., Schur, P. H., Mountz, J. D.
<strong>Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease.</strong>
J. Clin. Invest. 98: 1107-1113, 1996.
[PubMed: 8787672]
[Full Text: https://doi.org/10.1172/JCI118892]
</p>
</li>
<li>
<p class="mim-text-font">
Xing, C., Gray-McGuire, C., Kelly, J. A., Garriott, P., Bukulmez, H., Harley, J. B., Olson, J. M.
<strong>Genetic linkage of systemic lupus erythematosus to 13q32 in African American families with affected male members.</strong>
Hum. Genet. 118: 309-321, 2005.
[PubMed: 16189706]
[Full Text: https://doi.org/10.1007/s00439-005-0061-5]
</p>
</li>
<li>
<p class="mim-text-font">
Xu, L., Zhang, L., Yi, Y., Kang, H.-K., Datta, S. K.
<strong>Human lupus T cells resist inactivation and escape death by upregulating COX-2.</strong>
Nature Med. 10: 411-415, 2004.
[PubMed: 14991050]
[Full Text: https://doi.org/10.1038/nm1005]
</p>
</li>
<li>
<p class="mim-text-font">
Yang, Y., Chung, E. K., Wu, Y. L., Savelli, S. L., Nagaraja, H. N., Zhou, B., Hebert, M., Jones, K. N., Shu, Y., Kitzmiller, K., Blanchong, C. A., McBride, K. L., and 11 others.
<strong>Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans.</strong>
Am. J. Hum. Genet. 80: 1037-1054, 2007.
[PubMed: 17503323]
[Full Text: https://doi.org/10.1086/518257]
</p>
</li>
<li>
<p class="mim-text-font">
Yasutomo, K., Horiuchi, T., Kagami, S., Tsukamoto, H., Hashimura, C., Urushihara, M., Kuroda, Y.
<strong>Mutation of DNASE1 in people with systemic lupus erythematosus.</strong>
Nature Genet. 28: 313-314, 2001.
[PubMed: 11479590]
[Full Text: https://doi.org/10.1038/91070]
</p>
</li>
<li>
<p class="mim-text-font">
Yocum, M. W., Grossman, J., Waterhouse, C., Abraham, G. N., May, A. G., Condemi, J. J.
<strong>Monozygotic twins discordant for systemic lupus erythematosus: comparison of immune response, auto antibodies, viral antibody titers, gamma globulin, and light chain metabolism.</strong>
Arthritis Rheum. 18: 193-199, 1975.
[PubMed: 49185]
[Full Text: https://doi.org/10.1002/art.1780180301]
</p>
</li>
<li>
<p class="mim-text-font">
Zhang, J., Roschke, V., Baker, K. P., Wang, Z., Alarcon, G. S., Fessler, B. J., Bastian, H., Kimberly, R. P., Zhou, T.
<strong>Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus.</strong>
J. Immun. 166: 6-10, 2001.
[PubMed: 11123269]
[Full Text: https://doi.org/10.4049/jimmunol.166.1.6]
</p>
</li>
<li>
<p class="mim-text-font">
Zhao, J., Ma, J., Deng, Y., Kelly, J. A., Kim, K., Bang, S.-Y., Lee, H.-S., Li, Q.-Z., Wakeland, E. K., Qiu, R., Liu, M., Guo, J., and 13 others.
<strong>A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases.</strong>
Nature Genet. 49: 433-437, 2017.
[PubMed: 28135245]
[Full Text: https://doi.org/10.1038/ng.3782]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Ada Hamosh - updated : 10/30/2020<br>Ada Hamosh - updated : 01/09/2020<br>Ada Hamosh - updated : 04/04/2018<br>Ada Hamosh - updated : 04/25/2017<br>Paul J. Converse - updated : 3/14/2016<br>Paul J. Converse - updated : 7/24/2015<br>George E. Tiller - updated : 9/17/2013<br>George E. Tiller - updated : 8/26/2013<br>Paul J. Converse - updated : 5/1/2013<br>Ada Hamosh - updated : 2/25/2013<br>Ada Hamosh - updated : 1/15/2013<br>Paul J. Converse - updated : 9/24/2012<br>Paul J. Converse - updated : 8/3/2012<br>Cassandra L. Kniffin - updated : 3/29/2012<br>Marla J. F. O&#x27;Neill - updated : 1/9/2012<br>Paul J. Converse - updated : 4/29/2011<br>Cassandra L. Kniffin - updated : 1/14/2011<br>George E. Tiller - updated : 7/8/2010<br>Ada Hamosh - updated : 7/1/2010<br>Ada Hamosh - updated : 2/17/2010<br>Paul J. Converse - updated : 11/25/2009<br>Marla J. F. O&#x27;Neill - updated : 11/12/2009<br>George E. Tiller - updated : 7/31/2009<br>Marla J. F. O&#x27;Neill - updated : 11/18/2008<br>Ada Hamosh - updated : 10/22/2008<br>Paul J. Converse - updated : 7/31/2008<br>Paul J. Converse - updated : 5/27/2008<br>Marla J. F. O&#x27;Neill - updated : 9/24/2007<br>Marla J. F. O&#x27;Neill - updated : 9/20/2007<br>George E. Tiller - updated : 6/21/2007<br>Victor A. McKusick - updated : 5/23/2007<br>Cassandra L. Kniffin - updated : 4/12/2007<br>Paul J. Converse - updated : 10/27/2006<br>Cassandra L. Kniffin - updated : 9/29/2006<br>George E. Tiller - updated : 9/11/2006<br>Victor A. McKusick - updated : 4/26/2006<br>Cassandra L. Kniffin - updated : 4/5/2006<br>George E. Tiller - updated : 3/21/2006<br>George E. Tiller - updated : 3/20/2006<br>Cassandra L. Kniffin - updated : 3/2/2006<br>Marla J. F. O&#x27;Neill - updated : 2/15/2006<br>Paul J. Converse - updated : 11/11/2005<br>Marla J. F. O&#x27;Neill - updated : 10/26/2005<br>Cassandra L. Kniffin - updated : 10/4/2005<br>Marla J. F. O&#x27;Neill - updated : 7/21/2005<br>Marla J. F. O&#x27;Neill - updated : 6/21/2005<br>Victor A. McKusick - updated : 3/31/2005<br>Ada Hamosh - updated : 3/7/2005<br>George E. Tiller - updated : 2/23/2005<br>Marla J. F. O&#x27;Neill - updated : 10/18/2004<br>Marla J. F. O&#x27;Neill - updated : 9/30/2004<br>Victor A. McKusick - updated : 9/8/2004<br>Marla J. F. O&#x27;Neill - updated : 4/27/2004<br>Marla J. F. O&#x27;Neill - updated : 3/15/2004<br>Victor A. McKusick - updated : 1/16/2004<br>Victor A. McKusick - updated : 7/21/2003<br>Victor A. McKusick - updated : 5/19/2003<br>Victor A. McKusick - updated : 4/28/2003<br>Victor A. McKusick - updated : 3/25/2003<br>Victor A. McKusick - updated : 12/23/2002<br>Victor A. McKusick - updated : 10/8/2002<br>Victor A. McKusick - updated : 10/8/2002<br>Paul J. Converse - updated : 4/10/2002<br>Ada Hamosh - updated : 11/26/2001<br>Paul J. Converse - updated : 4/27/2001<br>Ada Hamosh - updated : 4/12/2001<br>Ada Hamosh - updated : 4/12/2001<br>Paul J. Converse - updated : 2/21/2001<br>Victor A. McKusick - updated : 12/13/2000<br>Victor A. McKusick - updated : 11/16/2000<br>Ada Hamosh - updated : 8/14/2000<br>Wilson H. Y. Lo - updated : 9/1/1999<br>Victor A. McKusick - updated : 5/19/1999<br>Victor A. McKusick - updated : 5/6/1999<br>Victor A. McKusick - updated : 2/4/1999<br>Victor A. McKusick - updated : 12/18/1998<br>Michael J. Wright - updated : 11/16/1998<br>Mark H. Paalman - updated : 4/10/1997
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/2/1986
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 01/02/2024<br>carol : 12/18/2023<br>alopez : 05/10/2022<br>ckniffin : 05/05/2022<br>mgross : 10/30/2020<br>carol : 03/13/2020<br>alopez : 01/09/2020<br>carol : 09/07/2018<br>alopez : 05/15/2018<br>alopez : 04/04/2018<br>carol : 11/13/2017<br>carol : 04/26/2017<br>alopez : 04/25/2017<br>alopez : 04/25/2017<br>carol : 08/12/2016<br>carol : 03/15/2016<br>mgross : 3/14/2016<br>mgross : 7/24/2015<br>joanna : 12/8/2014<br>mcolton : 11/13/2014<br>carol : 10/7/2014<br>mgross : 10/4/2013<br>alopez : 9/17/2013<br>alopez : 8/26/2013<br>mgross : 5/1/2013<br>alopez : 2/27/2013<br>terry : 2/25/2013<br>alopez : 1/15/2013<br>carol : 11/8/2012<br>mgross : 9/25/2012<br>terry : 9/24/2012<br>mgross : 8/3/2012<br>terry : 8/3/2012<br>mgross : 6/25/2012<br>terry : 5/3/2012<br>carol : 4/13/2012<br>terry : 4/3/2012<br>ckniffin : 3/29/2012<br>carol : 1/10/2012<br>terry : 1/9/2012<br>mgross : 5/3/2011<br>mgross : 5/3/2011<br>terry : 4/29/2011<br>carol : 4/25/2011<br>carol : 1/24/2011<br>ckniffin : 1/14/2011<br>terry : 9/8/2010<br>carol : 8/5/2010<br>wwang : 8/5/2010<br>wwang : 7/23/2010<br>terry : 7/8/2010<br>alopez : 7/2/2010<br>terry : 7/1/2010<br>alopez : 3/1/2010<br>terry : 2/17/2010<br>wwang : 1/5/2010<br>ckniffin : 12/29/2009<br>terry : 12/16/2009<br>mgross : 12/4/2009<br>terry : 11/25/2009<br>wwang : 11/25/2009<br>terry : 11/12/2009<br>ckniffin : 8/18/2009<br>wwang : 8/17/2009<br>terry : 7/31/2009<br>terry : 6/3/2009<br>terry : 1/30/2009<br>wwang : 11/24/2008<br>terry : 11/18/2008<br>alopez : 10/29/2008<br>alopez : 10/29/2008<br>terry : 10/22/2008<br>alopez : 8/26/2008<br>mgross : 8/14/2008<br>terry : 7/31/2008<br>carol : 6/16/2008<br>carol : 6/2/2008<br>carol : 5/30/2008<br>carol : 5/30/2008<br>carol : 5/27/2008<br>terry : 5/27/2008<br>alopez : 3/11/2008<br>alopez : 3/11/2008<br>alopez : 3/11/2008<br>wwang : 10/1/2007<br>terry : 9/24/2007<br>alopez : 9/20/2007<br>wwang : 6/22/2007<br>terry : 6/21/2007<br>alopez : 5/29/2007<br>terry : 5/23/2007<br>wwang : 4/19/2007<br>ckniffin : 4/12/2007<br>wwang : 4/12/2007<br>mgross : 1/18/2007<br>mgross : 10/27/2006<br>wwang : 10/2/2006<br>ckniffin : 9/29/2006<br>alopez : 9/11/2006<br>wwang : 5/4/2006<br>wwang : 5/1/2006<br>terry : 4/26/2006<br>wwang : 4/7/2006<br>ckniffin : 4/5/2006<br>wwang : 3/21/2006<br>wwang : 3/20/2006<br>wwang : 3/20/2006<br>ckniffin : 3/2/2006<br>wwang : 2/28/2006<br>wwang : 2/21/2006<br>terry : 2/15/2006<br>mgross : 11/14/2005<br>terry : 11/11/2005<br>wwang : 10/31/2005<br>wwang : 10/28/2005<br>terry : 10/26/2005<br>carol : 10/11/2005<br>ckniffin : 10/4/2005<br>wwang : 7/22/2005<br>terry : 7/21/2005<br>carol : 7/19/2005<br>wwang : 6/29/2005<br>terry : 6/21/2005<br>wwang : 4/6/2005<br>wwang : 4/6/2005<br>wwang : 3/31/2005<br>terry : 3/31/2005<br>wwang : 3/9/2005<br>wwang : 3/7/2005<br>tkritzer : 3/3/2005<br>terry : 3/1/2005<br>terry : 2/23/2005<br>carol : 1/25/2005<br>carol : 10/18/2004<br>tkritzer : 9/30/2004<br>terry : 9/8/2004<br>carol : 4/27/2004<br>alopez : 4/2/2004<br>carol : 3/15/2004<br>cwells : 1/16/2004<br>terry : 1/16/2004<br>alopez : 12/3/2003<br>tkritzer : 8/21/2003<br>carol : 7/23/2003<br>carol : 7/23/2003<br>terry : 7/21/2003<br>tkritzer : 5/29/2003<br>terry : 5/20/2003<br>tkritzer : 5/19/2003<br>alopez : 5/7/2003<br>tkritzer : 5/2/2003<br>terry : 4/28/2003<br>tkritzer : 4/8/2003<br>tkritzer : 4/2/2003<br>terry : 3/25/2003<br>tkritzer : 1/3/2003<br>tkritzer : 12/26/2002<br>terry : 12/23/2002<br>mgross : 10/8/2002<br>carol : 10/8/2002<br>alopez : 4/10/2002<br>alopez : 11/26/2001<br>terry : 11/26/2001<br>terry : 7/26/2001<br>mgross : 4/27/2001<br>mgross : 4/27/2001<br>alopez : 4/12/2001<br>alopez : 4/12/2001<br>alopez : 4/12/2001<br>carol : 3/28/2001<br>mgross : 2/21/2001<br>terry : 2/21/2001<br>carol : 2/16/2001<br>carol : 12/19/2000<br>terry : 12/13/2000<br>mgross : 11/16/2000<br>alopez : 8/18/2000<br>alopez : 8/18/2000<br>terry : 8/14/2000<br>mcapotos : 3/3/2000<br>alopez : 11/22/1999<br>carol : 9/1/1999<br>kayiaros : 7/13/1999<br>kayiaros : 7/13/1999<br>mgross : 5/19/1999<br>mgross : 5/17/1999<br>mgross : 5/12/1999<br>terry : 5/6/1999<br>carol : 2/6/1999<br>terry : 2/4/1999<br>carol : 12/29/1998<br>terry : 12/18/1998<br>dkim : 12/15/1998<br>alopez : 12/8/1998<br>terry : 11/16/1998<br>carol : 6/9/1998<br>terry : 6/1/1998<br>terry : 11/5/1997<br>alopez : 7/29/1997<br>alopez : 5/21/1997<br>mark : 4/10/1997<br>mark : 4/10/1997<br>jenny : 12/9/1996<br>terry : 11/25/1996<br>mark : 10/17/1996<br>mark : 10/9/1996<br>terry : 8/19/1996<br>marlene : 8/6/1996<br>terry : 8/2/1996<br>terry : 6/28/1996<br>terry : 6/26/1996<br>pfoster : 11/10/1995<br>mark : 5/5/1995<br>carol : 10/19/1994<br>jason : 7/18/1994<br>terry : 5/11/1994<br>warfield : 3/28/1994
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 13, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>