nih-gov/www.ncbi.nlm.nih.gov/omim/102630

6229 lines
593 KiB
Text

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
<head>
<!--
################################# CRAWLER WARNING #################################
- The terms of service and the robots.txt file disallows crawling of this site,
please see https://omim.org/help/agreement for more information.
- A number of data files are available for download at https://omim.org/downloads.
- We have an API which you can learn about at https://omim.org/help/api and register
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
- You should feel free to contact us at https://omim.org/contact to figure out the best
approach to getting the data you need for your work.
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
DISTRIBUTED CRAWLS OF THIS SITE.
################################# CRAWLER WARNING #################################
-->
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="pragma" content="no-cache" />
<meta name="robots" content="index, follow" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
contain copious links to other genetics resources." />
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
<meta name="theme-color" content="#333333" />
<link rel="icon" href="/static/omim/favicon.png" />
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
<link rel="manifest" href="/static/omim/manifest.json" />
<script id='mimBrowserCapability'>
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
</script>
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
<link rel="preconnect" href="https://www.googletagmanager.com" />
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){window.dataLayer.push(arguments);}
gtag("js", new Date());
gtag("config", "G-HMPSQC23JJ");
</script>
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
<div id="mimBootstrapDeviceSize">
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
</div>
<title>
Entry
- *102630 - ACTIN, BETA; ACTB
- OMIM
</title>
</head>
<body>
<div id="mimBody">
<div id="mimHeader" class="hidden-print">
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
<span class="sr-only"> Toggle navigation </span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
</div>
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li>
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
</li>
<li class="dropdown">
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
<li>
<a href="/statistics/update"> Update List </a>
</li>
<li>
<a href="/statistics/entry"> Entry Statistics </a>
</li>
<li>
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
</li>
<li>
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
<li>
<a href="/downloads/"> Register for Downloads </a>
</li>
<li>
<a href="/api"> Register for API Access </a>
</li>
</ul>
</li>
<li>
<a href="/contact?mimNumber=102630"><span class="mim-navbar-menu-font"> Contact Us </span></a>
</li>
<li>
<a href="/mimmatch/">
<span class="mim-navbar-menu-font">
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
MIMmatch
</span>
</span>
</a>
</li>
<li class="dropdown">
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
<li>
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
</li>
<li>
<a href="/donors"> Donors </a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
<li>
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/search"> Search Help </a>
</li>
<li>
<a href="/help/linking"> Linking Help </a>
</li>
<li>
<a href="/help/api"> API Help </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/external"> External Links </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/help/agreement"> Use Agreement </a>
</li>
<li>
<a href="/help/copyright"> Copyright </a>
</li>
</ul>
</li>
<li>
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div id="mimSearch" class="hidden-print">
<div class="container">
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
<input type="hidden" id="mimSearchStart" name="start" value="1" />
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
<div class="row">
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
<div class="form-group">
<div class="input-group">
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
<div class="input-group-btn">
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right">
<li class="dropdown-header">
Advanced Search
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/entry"> OMIM </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
</li>
<li style="margin-left: 0.5em;">
<a href="/search/advanced/geneMap"> Gene Map </a>
</li>
<li role="separator" class="divider"></li>
<li>
<a href="/history"> Search History </a>
</li>
</ul>
</div>
</div>
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
<span class="small">
</span>
</div>
</div>
</form>
<div class="row">
<p />
</div>
</div>
</div>
<!-- <div id="mimSearch"> -->
<div id="mimContent">
<div class="container hidden-print">
<div class="row">
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
<div id="mimAlertBanner">
</div>
</div>
</div>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
<div id="mimFloatingTocMenu" class="small" role="navigation">
<p>
<span class="h4">*102630</span>
<br />
<strong>Table of Contents</strong>
</p>
<nav>
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
<li role="presentation">
<a href="#title"><strong>Title</strong></a>
</li>
<li role="presentation">
<a href="#geneMap"><strong>Gene-Phenotype Relationships</strong></a>
</li>
<li role="presentation">
<a href="#text"><strong>Text</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#description">Description</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#cloning">Cloning and Expression</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneStructure">Gene Structure</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#mapping">Mapping</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#geneFunction">Gene Function</a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="#molecularGenetics">Molecular Genetics</a>
</li>
<li role="presentation">
<a href="#allelicVariants"><strong>Allelic Variants</strong></a>
</li>
<li role="presentation" style="margin-left: 1em">
<a href="/allelicVariants/102630">Table View</a>
</li>
<li role="presentation">
<a href="#seeAlso"><strong>See Also</strong></a>
</li>
<li role="presentation">
<a href="#references"><strong>References</strong></a>
</li>
<li role="presentation">
<a href="#contributors"><strong>Contributors</strong></a>
</li>
<li role="presentation">
<a href="#creationDate"><strong>Creation Date</strong></a>
</li>
<li role="presentation">
<a href="#editHistory"><strong>Edit History</strong></a>
</li>
</ul>
</nav>
</div>
</div>
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
<div id="mimFloatingLinksMenu">
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
<h4 class="panel-title">
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
<div style="display: table-row">
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">&#9660;</div>
&nbsp;
<div style="display: table-cell;">External Links</div>
</div>
</a>
</h4>
</div>
</div>
<div id="mimExternalLinksFold" class="collapse in">
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGenome">
<span class="panel-title">
<span class="small">
<a href="#mimGenomeLinksFold" id="mimGenomeLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimGenomeLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Genome
</a>
</span>
</span>
</div>
<div id="mimGenomeLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="genome">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000075624;t=ENST00000646664" class="mim-tip-hint" title="Genome databases for vertebrates and other eukaryotic species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/genome/gdv/browser/gene/?id=60" class="mim-tip-hint" title="Detailed views of the complete genomes of selected organisms from vertebrates to protozoa." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Genome Viewer', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Genome Viewer</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=102630" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimDna">
<span class="panel-title">
<span class="small">
<a href="#mimDnaLinksFold" id="mimDnaLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimDnaLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> DNA
</a>
</span>
</span>
</div>
<div id="mimDnaLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000075624;t=ENST00000646664" class="mim-tip-hint" title="Transcript-based views for coding and noncoding DNA." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl (MANE Select)</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_001101" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_001101" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq (MANE)', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq (MANE Select)</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=102630" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimProtein">
<span class="panel-title">
<span class="small">
<a href="#mimProteinLinksFold" id="mimProteinLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimProteinLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9658;</span> Protein
</a>
</span>
</span>
</div>
<div id="mimProteinLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://hprd.org/summary?hprd_id=00032&isoform_id=00032_1&isoform_name=Isoform_1" class="mim-tip-hint" title="The Human Protein Reference Database; manually extracted and visually depicted information on human proteins." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HPRD', 'domain': 'hprd.org'})">HPRD</a></div>
<div><a href="https://www.proteinatlas.org/search/ACTB" class="mim-tip-hint" title="The Human Protein Atlas contains information for a large majority of all human protein-coding genes regarding the expression and localization of the corresponding proteins based on both RNA and protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HumanProteinAtlas', 'domain': 'proteinatlas.org'})">Human Protein Atlas</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/protein/28252,28336,177968,178024,178032,825616,4433123,4501885,12654911,12803203,13279023,14250401,15277503,15426536,15928803,16359158,30172702,45934426,46397333,62421065,62897409,62897625,62897671,66348792,89276723,93211215,117167827,118505327,119607747,119607749,134254712,194376310,194385944,210029289,213500113,221046110,229610526,1707062194,2772189835" class="mim-tip-hint" title="NCBI protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Protein', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Protein</a></div>
<div><a href="https://www.uniprot.org/uniprotkb/P60709" class="mim-tip-hint" title="Comprehensive protein sequence and functional information, including supporting data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UniProt', 'domain': 'uniprot.org'})">UniProt</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimGeneInfo">
<span class="panel-title">
<span class="small">
<a href="#mimGeneInfoLinksFold" id="mimGeneInfoLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimGeneInfoLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Gene Info</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimGeneInfoLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="http://biogps.org/#goto=genereport&id=60" class="mim-tip-hint" title="The Gene Portal Hub; customizable portal of gene and protein function information." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'BioGPS', 'domain': 'biogps.org'})">BioGPS</a></div>
<div><a href="https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000075624;t=ENST00000646664" class="mim-tip-hint" title="Orthologs, paralogs, regulatory regions, and splice variants." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
<div><a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=ACTB" class="mim-tip-hint" title="The Human Genome Compendium; web-based cards integrating automatically mined information on human genes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneCards', 'domain': 'genecards.org'})">GeneCards</a></div>
<div><a href="http://amigo.geneontology.org/amigo/search/annotation?q=ACTB" class="mim-tip-hint" title="Terms, defined using controlled vocabulary, representing gene product properties (biologic process, cellular component, molecular function) across species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneOntology', 'domain': 'amigo.geneontology.org'})">Gene Ontology</a></div>
<div><a href="https://www.genome.jp/dbget-bin/www_bget?hsa+60" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<dd><a href="http://v1.marrvel.org/search/gene/ACTB" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></dd>
<dd><a href="https://monarchinitiative.org/NCBIGene:60" class="mim-tip-hint" title="Monarch Initiative." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Monarch', 'domain': 'monarchinitiative.org'})">Monarch</a></dd>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/60" class="mim-tip-hint" title="Gene-specific map, sequence, expression, structure, function, citation, and homology data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Gene', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Gene</a></div>
<div><a href="https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_chrom=chr7&hgg_gene=ENST00000646664.1&hgg_start=5527148&hgg_end=5530601&hgg_type=knownGene" class="mim-tip-hint" title="UCSC Genome Bioinformatics; gene-specific structure and function information with links to other databases." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC', 'domain': 'genome.ucsc.edu'})">UCSC</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
<span class="panel-title">
<span class="small">
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Clinical Resources</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
<div class="panel-body small mim-panel-body">
<div><a href="https://search.clinicalgenome.org/kb/gene-dosage/HGNC:132" class="mim-tip-hint" title="A ClinGen curated resource of genes and regions of the genome that are dosage sensitive and should be targeted on a cytogenomic array." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinGen Dosage', 'domain': 'dosage.clinicalgenome.org'})">ClinGen Dosage</a></div>
<div><a href="https://search.clinicalgenome.org/kb/genes/HGNC:132" class="mim-tip-hint" title="A ClinGen curated resource of ratings for the strength of evidence supporting or refuting the clinical validity of the claim(s) that variation in a particular gene causes disease." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinGen Validity', 'domain': 'search.clinicalgenome.org'})">ClinGen Validity</a></div>
<div><a href="https://medlineplus.gov/genetics/gene/actb" class="mim-tip-hint" title="Consumer-friendly information about the effects of genetic variation on human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">MedlinePlus Genetics</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=102630[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimVariation">
<span class="panel-title">
<span class="small">
<a href="#mimVariationLinksFold" id="mimVariationLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<span id="mimVariationLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">&#9660;</span> Variation
</a>
</span>
</span>
</div>
<div id="mimVariationLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.ncbi.nlm.nih.gov/clinvar?term=102630[MIM]" class="mim-tip-hint" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a></div>
<div><a href="https://www.deciphergenomics.org/gene/ACTB/overview/clinical-info" class="mim-tip-hint" title="DECIPHER" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'DECIPHER', 'domain': 'DECIPHER'})">DECIPHER</a></div>
<div><a href="https://gnomad.broadinstitute.org/gene/ENSG00000075624" class="mim-tip-hint" title="The Genome Aggregation Database (gnomAD), Broad Institute." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'gnomAD', 'domain': 'gnomad.broadinstitute.org'})">gnomAD</a></div>
<div><a href="https://www.ebi.ac.uk/gwas/search?query=ACTB" class="mim-tip-hint" title="GWAS Catalog; NHGRI-EBI Catalog of published genome-wide association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Catalog', 'domain': 'gwascatalog.org'})">GWAS Catalog&nbsp;</a></div>
<div><a href="https://www.gwascentral.org/search?q=ACTB" class="mim-tip-hint" title="GWAS Central; summary level genotype-to-phenotype information from genetic association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Central', 'domain': 'gwascentral.org'})">GWAS Central&nbsp;</a></div>
<div><a href="http://www.hgmd.cf.ac.uk/ac/gene.php?gene=ACTB" class="mim-tip-hint" title="Human Gene Mutation Database; published mutations causing or associated with human inherited disease; disease-associated/functional polymorphisms." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGMD', 'domain': 'hgmd.cf.ac.uk'})">HGMD</a></div>
<div><a href="https://evs.gs.washington.edu/EVS/PopStatsServlet?searchBy=Gene+Hugo&target=ACTB&upstreamSize=0&downstreamSize=0&x=0&y=0" class="mim-tip-hint" title="National Heart, Lung, and Blood Institute Exome Variant Server." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NHLBI EVS', 'domain': 'evs.gs.washington.edu'})">NHLBI EVS</a></div>
<div><a href="https://www.pharmgkb.org/gene/PA24457" class="mim-tip-hint" title="Pharmacogenomics Knowledge Base; curated and annotated information regarding the effects of human genetic variations on drug response." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PharmGKB', 'domain': 'pharmgkb.org'})">PharmGKB</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
<span class="panel-title">
<span class="small">
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Animal Models</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.alliancegenome.org/gene/HGNC:132" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
<div><a href="https://flybase.org/reports/FBgn0000042.html" class="mim-tip-hint" title="A Database of Drosophila Genes and Genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'FlyBase', 'domain': 'flybase.org'})">FlyBase</a></div>
<div><a href="https://www.mousephenotype.org/data/genes/MGI:87904" class="mim-tip-hint" title="International Mouse Phenotyping Consortium." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'IMPC', 'domain': 'knockoutmouse.org'})">IMPC</a></div>
<div><a href="http://v1.marrvel.org/search/gene/ACTB#HomologGenesPanel" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></div>
<div><a href="http://www.informatics.jax.org/marker/MGI:87904" class="mim-tip-hint" title="Mouse Genome Informatics; international database resource for the laboratory mouse, including integrated genetic, genomic, and biological data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Gene', 'domain': 'informatics.jax.org'})">MGI Mouse Gene</a></div>
<div><a href="https://www.mmrrc.org/catalog/StrainCatalogSearchForm.php?search_query=" class="mim-tip-hint" title="Mutant Mouse Resource & Research Centers." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MMRRC', 'domain': 'mmrrc.org'})">MMRRC</a></div>
<div><a href="https://www.ncbi.nlm.nih.gov/gene/60/ortholog/" class="mim-tip-hint" title="Orthologous genes at NCBI." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Orthologs', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Orthologs</a></div>
<div><a href="https://www.orthodb.org/?ncbi=60" class="mim-tip-hint" title="Hierarchical catalogue of orthologs." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrthoDB', 'domain': 'orthodb.org'})">OrthoDB</a></div>
<div><a href="mim#WormbaseGeneFold" id="mimWormbaseGeneToggle" data-toggle="collapse" class="mim-tip-hint mimTriangleToggle" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes."><span id="mimWormbaseGeneToggleTriangle" class="small" style="margin-left: -0.8em;">&#9658;</span>Wormbase Gene</div>
<div id="mimWormbaseGeneFold" class="collapse">
<div style="margin-left: 0.5em;"><a href="https://wormbase.org/db/gene/gene?name=WBGene00000063;class=Gene" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Wormbase Gene', 'domain': 'wormbase.org'})">WBGene00000063&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://wormbase.org/db/gene/gene?name=WBGene00000064;class=Gene" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Wormbase Gene', 'domain': 'wormbase.org'})">WBGene00000064&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://wormbase.org/db/gene/gene?name=WBGene00000065;class=Gene" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Wormbase Gene', 'domain': 'wormbase.org'})">WBGene00000065&nbsp;</a></div><div style="margin-left: 0.5em;"><a href="https://wormbase.org/db/gene/gene?name=WBGene00000066;class=Gene" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Wormbase Gene', 'domain': 'wormbase.org'})">WBGene00000066&nbsp;</a></div>
</div>
<div><a href="https://zfin.org/ZDB-GENE-000329-1" class="mim-tip-hint" title="The Zebrafish Model Organism Database." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ZFin', 'domain': 'zfin.org'})">ZFin</a></div>
</div>
</div>
</div>
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellularPathways">
<span class="panel-title">
<span class="small">
<a href="#mimCellularPathwaysLinksFold" id="mimCellularPathwaysLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
<div style="display: table-row">
<div id="mimCellularPathwaysLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">&#9658;</div>
&nbsp;
<div style="display: table-cell;">Cellular Pathways</div>
</div>
</a>
</span>
</span>
</div>
<div id="mimCellularPathwaysLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
<div class="panel-body small mim-panel-body">
<div><a href="https://www.genome.jp/dbget-bin/get_linkdb?-t+pathway+hsa:60" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
<div><a href="https://reactome.org/content/query?q=ACTB&species=Homo+sapiens&types=Reaction&types=Pathway&cluster=true" class="definition" title="Protein-specific information in the context of relevant cellular pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {{'name': 'Reactome', 'domain': 'reactome.org'}})">Reactome</a></div>
</div>
</div>
</div>
</div>
</div>
</div>
<span>
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
&nbsp;
</span>
</span>
</div>
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
<div>
<a id="title" class="mim-anchor"></a>
<div>
<a id="number" class="mim-anchor"></a>
<div class="text-right">
&nbsp;
</div>
<div>
<span class="h3">
<span class="mim-font mim-tip-hint" title="Gene description">
<span class="text-danger"><strong>*</strong></span>
102630
</span>
</span>
</div>
</div>
<div>
<a id="preferredTitle" class="mim-anchor"></a>
<h3>
<span class="mim-font">
ACTIN, BETA; ACTB
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<a id="alternativeTitles" class="mim-anchor"></a>
<div>
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
BETA-ACTIN<br />
ACTIN, CYTOPLASMIC, 1
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<a id="approvedGeneSymbols" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: <a href="https://www.genenames.org/tools/search/#!/genes?query=ACTB" class="mim-tip-hint" title="HUGO Gene Nomenclature Committee." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGNC', 'domain': 'genenames.org'})">ACTB</a></em></strong>
</span>
</p>
</div>
<div>
<a id="cytogeneticLocation" class="mim-anchor"></a>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: <a href="/geneMap/7/46?start=-3&limit=10&highlight=46">7p22.1</a>
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : <a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr7:5527148-5530601&dgv=pack&knownGene=pack&omimGene=pack" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">7:5,527,148-5,530,601</a> </span>
</em>
</strong>
<a href="https://www.ncbi.nlm.nih.gov/" target="_blank" class="small"> (from NCBI) </a>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<a id="geneMap" class="mim-anchor"></a>
<div style="margin-bottom: 10px;">
<span class="h4 mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</div>
<div>
<table class="table table-bordered table-condensed table-hover small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
<span class="hidden-sm hidden-xs pull-right">
<a href="/clinicalSynopsis/table?mimNumber=243310,604919,620470,607371,620475" class="label label-warning" onclick="gtag('event', 'mim_link', {'source': 'Entry', 'destination': 'clinicalSynopsisTable'})">
View Clinical Synopses
</a>
</span>
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="5">
<span class="mim-font">
<a href="/geneMap/7/46?start=-3&limit=10&highlight=46">
7p22.1
</a>
</span>
</td>
<td>
<span class="mim-font">
Baraitser-Winter syndrome 1
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/243310"> 243310 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Becker nevus, syndromic or isolated, somatic mosaic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/604919"> 604919 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Congenital smooth muscle hamartoma with or without hemihypertrophy, somatic mosaic
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/620470"> 620470 </a>
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Dystonia-deafness syndrome 1
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/607371"> 607371 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Thrombocytopenia 8, with dysmorphic features and developmental delay
</span>
</td>
<td>
<span class="mim-font">
<a href="/entry/620475"> 620475 </a>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="Autosomal dominant">AD</abbr>
</span>
</td>
<td>
<span class="mim-font">
<abbr class="mim-tip-hint" title="3 - The molecular basis of the disorder is known">3</abbr>
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<div class="btn-group">
<button type="button" class="btn btn-success dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
PheneGene Graphics <span class="caret"></span>
</button>
<ul class="dropdown-menu" style="width: 17em;">
<li><a href="/graph/linear/102630" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Linear'})"> Linear </a></li>
<li><a href="/graph/radial/102630" target="_blank" onclick="gtag('event', 'mim_graph', {'destination': 'Radial'})"> Radial </a></li>
</ul>
</div>
<span class="glyphicon glyphicon-question-sign mim-tip-hint" title="OMIM PheneGene graphics depict relationships between phenotypes, groups of related phenotypes (Phenotypic Series), and genes.<br /><a href='/static/omim/pdf/OMIM_Graphics.pdf' target='_blank'>A quick reference overview and guide (PDF)</a>"></span>
</div>
<div>
<br />
</div>
<div>
<a id="text" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon &lt;span class='glyphicon glyphicon-plus-sign'&gt;&lt;/span&gt at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
<strong>TEXT</strong>
</span>
</span>
</h4>
<div>
<a id="description" class="mim-anchor"></a>
<h4 href="#mimDescriptionFold" id="mimDescriptionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimDescriptionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<div id="mimDescriptionFold" class="collapse in ">
<span class="mim-text-font">
<p>The ACTB gene encodes beta-actin, which is essential for a number of cytoplasmic functions, such as regulation of cell shape and migration, as well as nuclear functions, such as regulation of gene expression, cell division, and proliferation (summary by <a href="#5" class="mim-tip-reference" title="Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others. &lt;strong&gt;ACTB loss-of-function mutations result in a pleiotropic developmental disorder.&lt;/strong&gt; Am. J. Hum. Genet. 101: 1021-1033, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29220674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29220674&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29220674[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2017.11.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29220674">Cuvertino et al., 2017</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29220674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="cloning" class="mim-anchor"></a>
<h4 href="#mimCloningFold" id="mimCloningToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimCloningToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<div id="mimCloningFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>From studies of the amino acid sequence of cytoplasmic and muscle actins, <a href="#38" class="mim-tip-reference" title="Vandekerckhove, J., Weber, K. &lt;strong&gt;Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins.&lt;/strong&gt; Proc. Nat. Acad. Sci. 75: 1106-1110, 1978.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/274701/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;274701&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.75.3.1106&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="274701">Vandekerckhove and Weber (1978)</a> concluded that mammalian cytoplasmic actins are the products of 2 different genes and differ by many amino acids from muscle actin. In a neoplastic cell line resulting from treatment of cultured human diploid fibroblasts with a chemical mutagen, <a href="#26" class="mim-tip-reference" title="Leavitt, J., Bushar, G., Kakunaga, T., Hamada, H., Hirakawa, T., Goldman, D., Merril, C. &lt;strong&gt;Variations in expression of mutant beta-actin accompanying incremental increases in human fibroblast tumorigenicity.&lt;/strong&gt; Cell 28: 259-268, 1982.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/7199389/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;7199389&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(82)90344-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="7199389">Leavitt et al. (1982)</a> observed a mutant form of beta-actin. <a href="#36" class="mim-tip-reference" title="Toyama, S., Toyama, S. &lt;strong&gt;A variant form of beta-actin in a mutant of KB cells resistant to cytochalasin B.&lt;/strong&gt; Cell 37: 609-614, 1984.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6202424/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6202424&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/0092-8674(84)90391-x&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6202424">Toyama and Toyama (1984)</a> isolated and characterized lines of KB cells resistant to cytochalasin B. They found that one resistant line had an alteration in beta-actin. Such cells bound less cytochalasin B than did parental KB cells. The authors suggested that the primary site of action of cytochalasin B on cell motility processes is beta-actin. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=7199389+6202424+274701" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using chick beta-actin cDNA as probe, <a href="#16" class="mim-tip-reference" title="Gunning, P., Ponte, P., Okayama, H., Engel, J., Blau, H., Kedes, L. &lt;strong&gt;Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed.&lt;/strong&gt; Molec. Cell. Biol. 3: 787-795, 1983.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/6865942/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;6865942&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1128/mcb.3.5.787-795.1983&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="6865942">Gunning et al. (1983)</a> cloned beta-actin and gamma-actin (ACTG1; <a href="/entry/102560">102560</a>) from a fibroblast cDNA library. They noted that the N-terminal methionine is posttranslationally removed from the mature beta- and gamma-actin proteins. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6865942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In embryonic mouse tissue at day 14, <a href="#5" class="mim-tip-reference" title="Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others. &lt;strong&gt;ACTB loss-of-function mutations result in a pleiotropic developmental disorder.&lt;/strong&gt; Am. J. Hum. Genet. 101: 1021-1033, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29220674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29220674&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29220674[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2017.11.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29220674">Cuvertino et al. (2017)</a> found prominent expression of the Actb gene in cortical neurons and choroid plexus epithelia in the brain, in differentiating tubules of the metanephric kidney, and in the epicardium, endocardium, and muscle in the outflow tract of the heart. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29220674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneStructure" class="mim-anchor"></a>
<h4 href="#mimGeneStructureFold" id="mimGeneStructureToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneStructureToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<div id="mimGeneStructureFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#25" class="mim-tip-reference" title="Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others. &lt;strong&gt;Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.&lt;/strong&gt; Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30315159/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30315159&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41467-018-06713-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30315159">Latham et al. (2018)</a> stated that the ACTB gene contains 6 exons. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30315159" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="mapping" class="mim-anchor"></a>
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><a href="#28" class="mim-tip-reference" title="Ng, S.-Y., Gunning, P., Eddy, R., Ponte, P., Leavitt, J., Kedes, L., Shows, T. &lt;strong&gt;Chromosome 7 assignment of the human beta-actin functional gene (ACTB) and the chromosomal dispersion of pseudogenes. (Abstract)&lt;/strong&gt; Cytogenet. Cell Genet. 40: 712 only, 1985."None>Ng et al. (1985)</a> assigned the ACTB gene to 7pter-q22 by Southern blot analysis of DNA from somatic cell hybrids. <a href="#17" class="mim-tip-reference" title="Habets, G. G. M., van der Kammen, R. A., Willemsen, V., Balemans, M., Wiegant, J., Collard, J. G. &lt;strong&gt;Sublocalization of an invasion-inducing locus and other genes on human chromosome 7.&lt;/strong&gt; Cytogenet. Cell Genet. 60: 200-205, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1505215/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1505215&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000133336&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1505215">Habets et al. (1992)</a> generated hybrids that harbor only specific regions of human chromosome 7 and assigned the ACTB locus to 7p15-p12. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1505215" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#37" class="mim-tip-reference" title="Ueyama, H., Inazawa, J., Nishino, H., Ohkubo, I., Miwa, T. &lt;strong&gt;FISH localization of human cytoplasmic actin genes ACTB to 7p22 and ACTG1 to 17q25 and characterization of related pseudogenes.&lt;/strong&gt; Cytogenet. Cell Genet. 74: 221-224, 1996.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/8941379/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;8941379&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000134420&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="8941379">Ueyama et al. (1996)</a> used fluorescence in situ hybridization to map ACTB to 7p22. By PCR of somatic cell hybrid DNAs, they mapped 4 ACTB pseudogenes to other chromosomes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8941379" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="geneFunction" class="mim-anchor"></a>
<h4 href="#mimGeneFunctionFold" id="mimGeneFunctionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimGeneFunctionToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<div id="mimGeneFunctionFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p>Interaction of phospholipase D (see PLD1; <a href="/entry/602382">602382</a>) with actin microfilaments regulates cell proliferation, vesicle trafficking, and secretion. <a href="#24" class="mim-tip-reference" title="Kusner, D. J., Barton, J. A., Wen, K.-K., Wang, X., Rubenstein, P. A., Iyer, S. S. &lt;strong&gt;Regulation of phospholipase D activity by actin: actin exerts bidirectional modulation of mammalian phospolipase (sic) D activity in a polymerization-dependent, isoform-specific manner.&lt;/strong&gt; J. Biol. Chem. 277: 50683-50692, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12388543/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12388543&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1074/jbc.M209221200&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12388543">Kusner et al. (2002)</a> found that highly purified globular actin (G-actin) inhibited both basal and stimulated PLD1 activity, whereas filamentous actin (F-actin) had the opposite effect. Actin-induced modulation of PLD1 activity was independent of the activating stimulus. The effects of actin on PLD1 were isoform-specific: human platelet actin, which exists in a 5:1 ratio of beta- and gamma-actin, was only 45% as potent and 40% as efficacious as rabbit skeletal muscle alpha-actin. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12388543" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Localization of beta-actin mRNA to sites of active actin polymerization modulates cell migration during embryogenesis, differentiation, and possibly carcinogenesis. This localization requires the oncofetal protein ZBP1 (<a href="/entry/608288">608288</a>), which binds to a conserved 54-nucleotide element in the 3-prime untranslated region of the beta-actin mRNA known as the 'zipcode.' ZBP1 promotes translocation of the beta-actin transcript to actin-rich protrusions in primary fibroblasts and neurons. <a href="#19" class="mim-tip-reference" title="Huttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng, X., Bassell, G. J., Condeelis, J., Singer, R. H. &lt;strong&gt;Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1.&lt;/strong&gt; Nature 438: 512-515, 2005.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16306994/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16306994&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/nature04115&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16306994">Huttelmaier et al. (2005)</a> showed that chicken ZBP1 modulates the translation of beta-actin mRNA. ZBP1 associates with the beta-actin transcript in the nucleus and prevents premature translation in the cytoplasm by blocking translation initiation. Translation occurs only when the ZBP1-RNA complex reaches its destination at the periphery of the cell. At the endpoint of mRNA transport, the protein kinase Src (<a href="/entry/190090">190090</a>) promotes translation by phosphorylating a key tyrosine residue in ZBP1 that is required for binding to RNA. These sequential events provide both temporal and spatial control over beta-actin mRNA translation, which is important for cell migration and neurite outgrowth. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16306994" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In immunoprecipitation studies of embryonic fibroblasts from wildtype and knockout mice deficient in the arginylation enzyme Ate1 (<a href="/entry/607103">607103</a>), <a href="#22" class="mim-tip-reference" title="Karakozova, M., Kozak, M., Wong, C. C. L., Bailey, A. O., Yates, J. R, III, Mogilner, A., Zebroski, H., Kashina, A. &lt;strong&gt;Arginylation of beta-actin regulates actin cytoskeleton and cell motility.&lt;/strong&gt; Science 313: 192-196, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16794040/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16794040&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1129344&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16794040">Karakozova et al. (2006)</a> found that approximately 40% of intracellular beta-actin is arginylated in vivo. In both wildtype and Ate1-null cells beta-actin was stable, suggesting that arginylation does not induce beta-actin degradation. <a href="#22" class="mim-tip-reference" title="Karakozova, M., Kozak, M., Wong, C. C. L., Bailey, A. O., Yates, J. R, III, Mogilner, A., Zebroski, H., Kashina, A. &lt;strong&gt;Arginylation of beta-actin regulates actin cytoskeleton and cell motility.&lt;/strong&gt; Science 313: 192-196, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16794040/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16794040&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1129344&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16794040">Karakozova et al. (2006)</a> found that arginylation of beta-actin regulates cell motility. The majority of Ate1-null cells appeared smaller than wildtype cells and were apparently unable to form a lamella during movement along the substrate. In addition, Ate1-null cells exhibited apparent defects in ruffling activity and cortical flow. <a href="#22" class="mim-tip-reference" title="Karakozova, M., Kozak, M., Wong, C. C. L., Bailey, A. O., Yates, J. R, III, Mogilner, A., Zebroski, H., Kashina, A. &lt;strong&gt;Arginylation of beta-actin regulates actin cytoskeleton and cell motility.&lt;/strong&gt; Science 313: 192-196, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16794040/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16794040&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1129344&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16794040">Karakozova et al. (2006)</a> concluded that arginylation of beta-actin apparently represents a critical step in the actin N-terminal processing needed for actin functioning in vivo. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16794040" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Nitric oxide (NO) is a paracrine mediator of vascular and platelet function that is produced in the vasculature by NO synthase-3 (NOS3; <a href="/entry/163729">163729</a>). Using human platelets, <a href="#20" class="mim-tip-reference" title="Ji, Y., Ferracci, G., Warley, A., Ward, M., Leung, K.-Y., Samsuddin, S., Leveque, C., Queen, L., Reebye, V., Pal, P., Gkaliagkousi, E., Seager, M., Ferro, A. &lt;strong&gt;Beta-actin regulates platelet nitric oxide synthase 3 activity through interaction with heat shock protein 90.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 8839-8844, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17502619/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17502619&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17502619[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0611416104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17502619">Ji et al. (2007)</a> demonstrated that polymerization of beta-actin regulated the activation state of NOS3, and hence NO formation, by altering its binding to heat-shock protein-90 (HSP90, or HSPCA; <a href="/entry/140571">140571</a>). NOS3 bound the globular, but not the filamentous, form of beta-actin, and the affinity of NOS3 for globular beta-actin was, in turn, increased by HSP90. Formation of this ternary complex of NOS3, globular beta-actin, and HSP90 increased NOS activity and cyclic GMP, an index of bioactive NO, and increased the rate of HSP90 degradation, thus limiting NOS3 activation. <a href="#20" class="mim-tip-reference" title="Ji, Y., Ferracci, G., Warley, A., Ward, M., Leung, K.-Y., Samsuddin, S., Leveque, C., Queen, L., Reebye, V., Pal, P., Gkaliagkousi, E., Seager, M., Ferro, A. &lt;strong&gt;Beta-actin regulates platelet nitric oxide synthase 3 activity through interaction with heat shock protein 90.&lt;/strong&gt; Proc. Nat. Acad. Sci. 104: 8839-8844, 2007.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/17502619/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;17502619&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=17502619[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.0611416104&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="17502619">Ji et al. (2007)</a> concluded that beta-actin regulates NO formation and signaling in platelets. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17502619" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The mammalian cytoskeletal proteins beta- and gamma-actin are highly homologous, but only beta-actin is N-terminally arginylated in vivo, which regulates its function. <a href="#41" class="mim-tip-reference" title="Zhang, F., Saha, S., Shabalina, S. A., Kashina, A. &lt;strong&gt;Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation.&lt;/strong&gt; Science 329: 1534-1537, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20847274/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20847274&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20847274[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1191701&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20847274">Zhang et al. (2010)</a> examined the metabolic fate of exogenously expressed arginylated and nonarginylated actin isoforms. Arginylated gamma-actin, unlike beta-actin, was highly unstable and was selectively ubiquitinated and degraded in vivo. This instability was regulated by the differences in the nucleotide coding sequence between the 2 actin isoforms, which conferred different translation rates. Gamma-actin was translated more slowly than beta-actin, and this slower processing resulted in the exposure of a normally hidden lysine residue for ubiquitination, leading to the preferential degradation of gamma-actin upon arginylation. <a href="#41" class="mim-tip-reference" title="Zhang, F., Saha, S., Shabalina, S. A., Kashina, A. &lt;strong&gt;Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation.&lt;/strong&gt; Science 329: 1534-1537, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20847274/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20847274&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=20847274[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1191701&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20847274">Zhang et al. (2010)</a> suggested that this degradation mechanism, coupled to nucleotide coding sequence, may regulate protein arginylation in vivo. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20847274" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#12" class="mim-tip-reference" title="Glinka, M., Herrmann, T., Funk, N., Havlicek, S., Rossoll, W., Winkler, C., Sendtner, M. &lt;strong&gt;The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons.&lt;/strong&gt; Hum. Molec. Genet. 19: 1951-1966, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20167579/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20167579&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq073&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20167579">Glinka et al. (2010)</a> noted that the beta-actin mRNA binding protein HNRNPR (<a href="/entry/607201">607201</a>) has been identified as a partner of the survival motor neuron protein (SMN1; <a href="/entry/600354">600354</a>) that is deficient in spinal muscular atrophy. They reported that hnRNPR and beta-actin mRNA colocalized in axons. Recombinant hnRNPR interacted directly with the 3-prime UTR of beta-actin mRNA. Suppression of hnRNPR in developing zebrafish embryos resulted in reduced axon growth in spinal motor neurons, without any alteration in motor neuron survival. ShRNA-mediated knockdown in isolated embryonic mouse motor neurons reduced beta-actin mRNA translocation to the axonal growth cone, which was paralleled by reduced axon elongation. Dendrite growth and neuronal survival were not affected by hnRNPR depletion in these neurons. The loss of beta-actin mRNA in axonal growth cones of hnRNPR-depleted motor neurons resembled that observed in Smn-deficient motor neurons, a model for the human disease spinal muscular atrophy. In particular, hnRNPR-depleted motor neurons also exhibited defects in presynaptic clustering of voltage-gated calcium channels. <a href="#12" class="mim-tip-reference" title="Glinka, M., Herrmann, T., Funk, N., Havlicek, S., Rossoll, W., Winkler, C., Sendtner, M. &lt;strong&gt;The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons.&lt;/strong&gt; Hum. Molec. Genet. 19: 1951-1966, 2010.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/20167579/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;20167579&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1093/hmg/ddq073&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="20167579">Glinka et al. (2010)</a> suggested that hnRNPR-mediated axonal beta-actin mRNA translocation may play an essential physiologic role in axon growth and presynaptic differentiation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20167579" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#2" class="mim-tip-reference" title="Buxbaum, A. R., Wu, B., Singer, R. H. &lt;strong&gt;Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability.&lt;/strong&gt; Science 343: 419-422, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24458642/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24458642&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24458642[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1242939&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24458642">Buxbaum et al. (2014)</a> used single-molecule in situ hybridization to demonstrate that dendritic beta-actin mRNA and ribosomes are in a masked, neuron-specific form. Chemically induced long-term potentiation prompts transient mRNA unmasking, which depends on factors active during synaptic activity. Ribosomes and single beta-actin mRNA motility increase after stimulation, indicative of release from complexes. <a href="#2" class="mim-tip-reference" title="Buxbaum, A. R., Wu, B., Singer, R. H. &lt;strong&gt;Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability.&lt;/strong&gt; Science 343: 419-422, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/24458642/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;24458642&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=24458642[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1126/science.1242939&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="24458642">Buxbaum et al. (2014)</a> argued that their single-molecule assays allow for the quantification of activity-induced unmasking and availability for active translation, and that their work demonstrates that beta-actin mRNA and ribosomes are in a masked state that is alleviated by stimulation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24458642" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Pseudogenes</em></strong></p><p>
Ng et al. (<a href="#28" class="mim-tip-reference" title="Ng, S.-Y., Gunning, P., Eddy, R., Ponte, P., Leavitt, J., Kedes, L., Shows, T. &lt;strong&gt;Chromosome 7 assignment of the human beta-actin functional gene (ACTB) and the chromosomal dispersion of pseudogenes. (Abstract)&lt;/strong&gt; Cytogenet. Cell Genet. 40: 712 only, 1985."None>1985</a>, <a href="#29" class="mim-tip-reference" title="Ng, S.-Y., Gunning, P., Eddy, R., Ponte, P., Leavitt, J., Shows, T., Kedes, L. &lt;strong&gt;Evolution of the functional human beta-actin gene and its multi-pseudogene family: conservation of the noncoding regions and chromosomal dispersion of pseudogenes.&lt;/strong&gt; Molec. Cell. Biol. 5: 2720-2732, 1985.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/3837182/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;3837182&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1128/mcb.5.10.2720-2732.1985&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="3837182">1985</a>) showed that there are about 20 pseudogenes widely distributed in the genome. ACTBP1 is on Xq13-q22; ACTBP2, on chromosome 5; ACTBP3, on chromosome 18; ACTBP4, on chromosome 5 and ACTBP5, on 7q22-7qter. All have been mapped in somatic cell hybrids by use of DNA clones. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3837182" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
<div>
<a id="molecularGenetics" class="mim-anchor"></a>
<h4 href="#mimMolecularGeneticsFold" id="mimMolecularGeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimMolecularGeneticsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<div id="mimMolecularGeneticsFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<p><strong><em>Dystonia-Deafness Syndrome 1</em></strong></p><p>
In the monozygotic twins reported by <a href="#11" class="mim-tip-reference" title="Gearing, M., Juncos, J. L., Procaccio, V., Gutekunst, C.-A., Marino-Rodriguez, E. M., Gyure, K. A., Ono, S., Santoianni, R., Krawiecki, N. S., Wallace, D. C., Wainer, B. H. &lt;strong&gt;Aggregation of actin and cofilin in identical twins with juvenile-onset dystonia.&lt;/strong&gt; Ann. Neurol. 52: 465-476, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12325076/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12325076&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12325076[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ana.10319&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12325076">Gearing et al. (2002)</a> with dystonia-deafness syndrome-1 (DDS1; <a href="/entry/607371">607371</a>), <a href="#31" class="mim-tip-reference" title="Procaccio, V., Salazar, G., Ono, S., Styers, M. L., Gearing, M., Davila, A., Jimenez, R., Juncos, J., Gutekunst, C.-A., Meroni, G., Fontanella, B., Sontag, E., Sontag, J. M., Faundez, V., Wainer, B. H. &lt;strong&gt;A mutation of beta-actin that alters depolymerization dynamics is associated with autosomal dominant developmental malformations, deafness, and dystonia.&lt;/strong&gt; Am. J. Hum. Genet. 78: 947-960, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16685646/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16685646&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16685646[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/504271&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16685646">Procaccio et al. (2006)</a> identified a heterozygous missense mutation in the ACTB gene (R183W; <a href="#0001">102630.0001</a>). The disease phenotype included developmental midline malformations, sensory hearing loss, and a delayed-onset generalized dystonia syndrome. Cellular studies of a lymphoblastoid cell line obtained from an affected patient demonstrated morphologic abnormalities of the actin cytoskeleton and altered actin depolymerization dynamics in response to latrunculin A, an actin monomer-sequestering drug. Resistance to latrunculin A was also observed in NIH 3T3 cells expressing the mutant actin. These findings suggested that mutations in nonmuscle actins may be associated with a broad spectrum of developmental malformations and/or neurologic abnormalities such as dystonia. <a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a> suggested that this report should be interpreted with caution given the absence of replication studies and unavailability of parental DNA. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=12325076+22366783+16685646" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 15-year-old boy, born of consanguineous Hutterite parents, with DDS1, <a href="#4" class="mim-tip-reference" title="Conboy, E., Vairo, F., Waggoner, D., Ober, C., Das, S., Dhamija, R., Klee, E. W., Pichurin, P. &lt;strong&gt;Pathogenic variant in ACTB, p.Arg183Trp, causes juvenile-onset dystonia, hearing loss, and developmental delay without midline malformation.&lt;/strong&gt; Case Rep. Genet. 2017: 9184265, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28487785/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28487785&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1155/2017/9184265&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28487785">Conboy et al. (2017)</a> identified a de novo heterozygous R183W mutation in the ACTB gene. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was not present in several public databases, including the Exome Sequencing Project and ExAC databases. Functional studies of the variant and studies of patient cells were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28487785" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 22-year-old woman with DDS1, <a href="#35" class="mim-tip-reference" title="Skogseid, I. M., Rosby, O., Konglund, A., Connelly, J. P., Nedregaard, B., Jablonski, G. E., Kvernmo, N., Stray-Pedersen, A., Glover, J. C. &lt;strong&gt;Dystonia-deafness syndrome caused by ACTB p.Arg183Trp heterozygosity shows striatal dopaminergic dysfunction and response to pallidal stimulation.&lt;/strong&gt; J Neurodev. Disord. 10: 17, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29788902/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29788902&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29788902[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1186/s11689-018-9235-z&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29788902">Skogseid et al. (2018)</a> identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29788902" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 52-year-old Brazilian woman with DDS1, <a href="#9" class="mim-tip-reference" title="Freitas, J. L., Vale, T. C., Barsottini, O. G. P., Pedroso, J. L. &lt;strong&gt;Expanding the phenotype of dystonia-deafness syndrome caused by ACTB gene mutation.&lt;/strong&gt; Mov. Disord. Clin. Pract. 7: 86-87, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31970217/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31970217&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/mdc3.12854&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31970217">Freitas et al. (2020)</a> identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing. Functional studies of the variant and studies of patient cells were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31970217" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 34-year-old Argentinian woman with DDS1, <a href="#40" class="mim-tip-reference" title="Zavala, L., Ziegler, G., Moron, D. G., Garretto, N. &lt;strong&gt;Dystonia-deafness syndrome: ACTB pathogenic variant in an Argentinean family.&lt;/strong&gt; Mov. Disord. Clin. Pract. 9: 122-124, 2022.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/35005077/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;35005077&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/mdc3.13358&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="35005077">Zavala et al. (2022)</a> identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35005077" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Baraitser-Winter Syndrome 1</em></strong></p><p>
<a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a> identified heterozygous missense mutations in 10 of 18 patients with Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>). In all cases in which parental DNA was available, the mutation was shown to have occurred de novo. Seven of the 10 patients carried a recurrent arg196-to-his mutation (R1906H; <a href="#0002">102630.0002</a>). One carried a different mutation at the same codon, arg196-to-cys (<a href="#0003">102630.0003</a>), and the other 2 patients carried different de novo missense mutations in the ACTB gene (<a href="#0004">102630.0004</a>-<a href="#0005">102630.0005</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22366783" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 7-year-old girl with atypical Baraitser-Winter syndrome-1, who did not exhibit lissencephaly or seizures, <a href="#21" class="mim-tip-reference" title="Johnston, J. J., Wen, K.-K., Keppler-Noreuil, K., McKane, M., Maiers, J. L., Greiner, A., Sapp, J. C., NIH Intramural Sequencing Center, DeMali K. A., Rubenstein, P. A., Biesecker, L. G. &lt;strong&gt;Functional analysis of a de novo ACTB mutation in a patient with atypical Baraitser-Winter syndrome.&lt;/strong&gt; Hum. Mutat. 34: 1242-1249, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23649928/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23649928&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23649928[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.22350&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23649928">Johnston et al. (2013)</a> identified a de novo missense mutation in the ACTB gene (E117K; <a href="#0006">102630.0006</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23649928" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 3 patients with a diagnosis of Fryns-Aftimos syndrome, <a href="#7" class="mim-tip-reference" title="Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., Krause, C., Hackmann, K., Hahn, G., Schrock, E., Verloes, A. &lt;strong&gt;Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations.&lt;/strong&gt; Europ. J. Hum. Genet. 22: 179-183, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23756437/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23756437&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23756437[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2013.130&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23756437">Di Donato et al. (2014)</a> identified mutations in the ACTB gene; see, e.g., R196C (<a href="#0003">102630.0003</a>), a recurrent mutation in patients with BRWS, and T120I (<a href="#0007">102630.0007</a>). On the basis of the ACTB mutations and analysis of the clinical findings, the authors reclassified the diagnosis of these patients as severe BRWS. In 2 patients with a severe BRWS phenotype, who were previously diagnosed with cerebrofrontofacial syndrome (<a href="#14" class="mim-tip-reference" title="Guion-Almeida, M. L., Richieri-Costa, A. &lt;strong&gt;Acrocallosal syndrome: report of a Brazilian girl.&lt;/strong&gt; Am. J. Med. Genet. 43: 938-941, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1415343/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1415343&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320430606&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1415343">Guion-Almeida and Richieri-Costa, 1992</a>; <a href="#15" class="mim-tip-reference" title="Guion-Almeida, M. L., Richieri-Costa, A. &lt;strong&gt;Frontonasal dysplasia, macroblepharon, eyelid colobomas, ear anomalies, macrostomia, mental retardation, and CNS structural anomalies: a new syndrome?&lt;/strong&gt; Clin. Dysmorph. 8: 1-4, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10327243/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10327243&lt;/a&gt;]" pmid="10327243">Guion-Almeida and Richieri-Costa, 1999</a>), <a href="#39" class="mim-tip-reference" title="Verloes, A., Di Donato, N., Masliah-Planchon, J., Jongmans, M., Abdul-Raman, O. A., Albrecht, B., Allanson, J., Brunner, H., Bertola, D., Chassaing, N., David, A., Devriendt, K., and 40 others. &lt;strong&gt;Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 292-301, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25052316/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25052316&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25052316[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.95&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25052316">Verloes et al. (2015)</a> identified the T120I mutation. <a href="#39" class="mim-tip-reference" title="Verloes, A., Di Donato, N., Masliah-Planchon, J., Jongmans, M., Abdul-Raman, O. A., Albrecht, B., Allanson, J., Brunner, H., Bertola, D., Chassaing, N., David, A., Devriendt, K., and 40 others. &lt;strong&gt;Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 292-301, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25052316/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25052316&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25052316[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.95&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25052316">Verloes et al. (2015)</a> suggested that this mutation is associated with a severe phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1415343+23756437+10327243+25052316" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 3 unrelated patients (XXIV, XXV, and XXVI) with a pleiotropic developmental disorder similar to BRWS1, <a href="#5" class="mim-tip-reference" title="Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others. &lt;strong&gt;ACTB loss-of-function mutations result in a pleiotropic developmental disorder.&lt;/strong&gt; Am. J. Hum. Genet. 101: 1021-1033, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29220674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29220674&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29220674[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2017.11.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29220674">Cuvertino et al. (2017)</a> identified de novo heterozygous loss-of-function frameshift or nonsense mutations in the ACTB gene (<a href="#0008">102630.0008</a>-<a href="#0010">102630.0010</a>), consistent with haploinsufficiency. <a href="#5" class="mim-tip-reference" title="Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others. &lt;strong&gt;ACTB loss-of-function mutations result in a pleiotropic developmental disorder.&lt;/strong&gt; Am. J. Hum. Genet. 101: 1021-1033, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29220674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29220674&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29220674[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2017.11.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29220674">Cuvertino et al. (2017)</a> also reported 30 patients from 23 unrelated families with a similar pleiotropic developmental disorder associated with heterozygous larger deletions of chromosome 7p22, all of which included or putatively affected the ACTB gene as well as additional genes. The deletions, which had different breakpoints, ranged from 0.08 to 3.64 Mb in size, and ACTB was the only gene deleted within the minimal critical region. Cells from 4 patients with larger deletions showed reduced ACTB transcript levels compared to controls. Although cytoplasmic levels of beta-actin protein in patient fibroblasts were similar to controls, the ACTB-deficient cells were significantly more circular compared to control cells; ACTB-deficient cells also showed impaired migration in an in vitro wound assay. Similar results were obtained in control fibroblasts using siRNA-mediated ACTB gene silencing. Cells derived from deletion patients showed decreased nuclear ACTB protein levels, abnormal regulation and expression of genes involved in the cell cycle, and decreased cellular proliferation. <a href="#5" class="mim-tip-reference" title="Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others. &lt;strong&gt;ACTB loss-of-function mutations result in a pleiotropic developmental disorder.&lt;/strong&gt; Am. J. Hum. Genet. 101: 1021-1033, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29220674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29220674&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29220674[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2017.11.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29220674">Cuvertino et al. (2017)</a> noted that the partial overlap of phenotypes of individuals with BRWS resulting from heterozygous ACTB missense mutations and those resulting from loss-of-function mutations suggested that the disorder may result not only from a postulated gain-of-function mechanism, as suggested by <a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a>, but might also include effects resulting from a loss-of-function or dominant-negative mechanism. The findings suggested that the phenotype resulted from haploinsufficiency of the ACTB gene, which plays a role in development, particularly of the brain, heart, and kidney. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=22366783+29220674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Becker Nevus Syndrome and Becker Nevi</em></strong></p><p>
In a 13-year-old girl with Becker nevus syndrome (BNS; <a href="/entry/604919">604919</a>), <a href="#3" class="mim-tip-reference" title="Cai, E. D., Sun, B. K., Chiang, A., Rogers, A., Bernet, L., Cheng, B., Teng, J., Rieger, K. E., Sarin, K. Y. &lt;strong&gt;Postzygotic mutations in beta-actin are associated with Becker&#x27;s nevus and Becker&#x27;s nevus syndrome.&lt;/strong&gt; J. Invest. Derm. 137: 1795-1798, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28347698/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28347698&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.jid.2017.03.017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28347698">Cai et al. (2017)</a> performed exome sequencing of affected and nonaffected skin and identified heterozygosity for a missense mutation in the ACTB gene (R147C; <a href="#0011">102630.0011</a>) in lesional skin that was absent from adjacent normal skin. Analysis of 22 nonsyndromic Becker nevi (BN) revealed that 13 contained a point mutation involving the same codon, including 10 with the R147C substitution and 3 with an R147S substitution (<a href="#0012">102630.0012</a>). Functional analysis in transfected C2C12 myoblast cells suggested a trend towards increased Hedgehog (see <a href="/entry/600726">600726</a>) pathway signaling. The authors hypothesized that Becker nevus syndrome may reflect a mutation earlier in development, affecting multiple cell lineages, compared with isolated Becker nevus. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28347698" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In affected skin from a 17-year-old French girl with Becker nevus syndrome, <a href="#32" class="mim-tip-reference" title="Ramspacher, J., Carmignac, V., Vabres, P., Mazereeuw-Hautier, J. &lt;strong&gt;Becker&#x27;s naevus syndrome with breast aplasia due to postzygotic mutation of ACTB.&lt;/strong&gt; Acta Derm. Venereol. 102: adv00806, 2022.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/35971836/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;35971836&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=35971836[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.2340/actadv.v102.1141&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="35971836">Ramspacher et al. (2022)</a> identified heterozygosity for a postzygotic mutation, the previously reported R147C substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35971836" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Congenital Smooth Muscle Hamartoma with or without Hemihypertrophy</em></strong></p><p>
In fibroblasts cultured from affected skin of a 2-year-old boy with segmental congenital smooth muscle hamartoma and hemihypertrophy (CSMH; <a href="/entry/620470">620470</a>), <a href="#1" class="mim-tip-reference" title="Atzmony, L., Ugwu, N., Zaki, T. D., Antaya, R. J., Choate, K. A. &lt;strong&gt;Post-zygotic ACTB mutations underlie congenital smooth muscle hamartomas.&lt;/strong&gt; J. Cutan. Path. 47: 681-685, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32170967/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32170967&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32170967[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/cup.13683&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32170967">Atzmony et al. (2020)</a> sequenced the ACTB gene and identified a previously reported postzygotic missense mutation, R147S, which was not found in keratinocytes from the same lesion or in patient saliva. The authors analyzed another 12 samples of CSMHs and identified somatic hotspot mutations in the ACTB gene in 8 samples, including the previously reported R147S mutation and recurrent mutations at residue G146: G146A (<a href="#0013">102630.0013</a>), G146V (<a href="#0014">102630.0014</a>), G146D (<a href="#0015">102630.0015</a>), and G146S (<a href="#0016">102630.0016</a>) The authors suggested that dissimilarities between Becker nevi and CSMHs might be determined by intrauterine environmental factors, mutation lineage or timing, and/or modifier genes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32170967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Thrombocytopenia 8 with Dysmorphic Features and Developmental Delay</em></strong></p><p>
In 6 patients from 4 unrelated families with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; <a href="/entry/620475">620475</a>), <a href="#25" class="mim-tip-reference" title="Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others. &lt;strong&gt;Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.&lt;/strong&gt; Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30315159/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30315159&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41467-018-06713-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30315159">Latham et al. (2018)</a> identified heterozygous mutations affecting exons 5 and 6 of the ACTB gene (see, e.g,. <a href="#0018">102630.0018</a>-<a href="#0020">102630.0020</a>). The mutations were found by trio-based whole-exome sequencing and confirmed by Sanger sequencing. Two mutations were inherited from mildly affected parents and 2 occurred de novo. There was 1 missense variant in exon 5 (M313R), 1 in-frame deletion in exon 6, 1 frameshift in exon 6, and 1 frameshift with protein extension in exon 6. The mutations in exon 6 affected the conserved SD1 domain, which is important for interactions with actin-binding proteins (ABPs). Studies of fibroblasts and platelets derived from affected members of 2 families showed decreased ACTB levels compared to controls. Patient-derived fibroblasts were small and demonstrated impaired migration speed, trajectories, and displacement area compared to controls. There was compensatory upregulation of ACTG1 (<a href="/entry/102560">102560</a>) and ACTA2 (<a href="/entry/102620">102620</a>) expression, and ACTB filaments bundled into abnormally thick fibers that incorporated ACTA2. Patient fibroblasts also showed increased recruitment of ABPs associated with macrothrombocytopenia phenotypes (see, e.g. ACTN1, <a href="/entry/102575">102575</a>). Patient-derived platelets, which were frequently enlarged, showed abnormal microtubule organization patterns at the platelet cortex. Abnormal microtubule organization patterns were also observed in patient megakaryocytes. The findings suggested that the ACTB mutations inhibit the final stages of platelet maturation by perturbing membrane-associated cytoskeletal filaments. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30315159" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#25" class="mim-tip-reference" title="Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others. &lt;strong&gt;Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.&lt;/strong&gt; Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30315159/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30315159&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41467-018-06713-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30315159">Latham et al. (2018)</a> referred to the report of <a href="#30" class="mim-tip-reference" title="Nunoi, H., Yamazaki, T., Tsuchiya, H., Kato, S., Malech, H. L., Matsuda, I., Kanegasaki, S. &lt;strong&gt;A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection.&lt;/strong&gt; Proc. Nat. Acad. Sci. 96: 8693-8698, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10411937/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10411937&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10411937[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.96.15.8693&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10411937">Nunoi et al. (1999)</a>, who described a 15-year-old Japanese girl with THC8 associated with a heterozygous missense mutation in exon 6 of the ACTB gene (E364K; <a href="#0017">102630.0017</a>). Studies of patient B cells showed that although the mutant actin was able to polymerize and depolymerize normally, it had decreased binding efficiency to profilin (see PFN1, <a href="/entry/176610">176610</a>). The authors postulated a dominant-negative effect. Although dysmorphic features were not noted in the original report of this child, <a href="#25" class="mim-tip-reference" title="Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others. &lt;strong&gt;Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.&lt;/strong&gt; Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30315159/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30315159&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41467-018-06713-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30315159">Latham et al. (2018)</a> stated that the phenotype in this patient was consistent with the disorder described by them. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=10411937+30315159" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 4-year-old Swedish girl with THC8, <a href="#34" class="mim-tip-reference" title="Sandestig, A., Green, A., Jonasson, J., Vogt, H., Wahlstrom, J., Pepler, A., Ellnebo, K., Biskup, S., Stefanova, M. &lt;strong&gt;Could dissimilar phenotypic effects of ACTB missense mutations reflect the actin conformational change? Two novel mutations and literature review.&lt;/strong&gt; Molec. Syndromol. 9: 259-265, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30733661/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30733661&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000492267&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30733661">Sandestig et al. (2018)</a> identified a de novo heterozygous missense mutation in the ACTB gene (L171F; <a href="#0021">102630.0021</a>). The mutation was found by trio-based whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed, but the authors noted that the mutation affects a domain involved in interactions with actin-binding proteins. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30733661" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Exclusion Studies</em></strong></p><p>
<a href="#39" class="mim-tip-reference" title="Verloes, A., Di Donato, N., Masliah-Planchon, J., Jongmans, M., Abdul-Raman, O. A., Albrecht, B., Allanson, J., Brunner, H., Bertola, D., Chassaing, N., David, A., Devriendt, K., and 40 others. &lt;strong&gt;Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 292-301, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25052316/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25052316&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25052316[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.95&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25052316">Verloes et al. (2015)</a> screened a cohort of 95 B-cell acute lymphocytic leukemia (ALL) samples and identified no somatic ACTB mutations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25052316" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="allelicVariants" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<span href="#mimAllelicVariantsFold" id="mimAllelicVariantsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span id="mimAllelicVariantsToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>ALLELIC VARIANTS (<a href="/help/faq#1_4"></strong>
</span>
<strong>21 Selected Examples</a>):</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimAllelicVariantsFold" class="collapse in mimTextToggleFold">
<div>
<a href="/allelicVariants/102630" class="btn btn-default" role="button"> Table View </a>
&nbsp;&nbsp;<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=102630[MIM]" class="btn btn-default mim-tip-hint" role="button" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a>
</div>
<div>
<p />
</div>
<div>
<div>
<a id="0001" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0001&nbsp;DYSTONIA-DEAFNESS SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, ARG183TRP
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs104894003 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs104894003;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs104894003" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs104894003" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000019937 OR RCV000503778 OR RCV000624662 OR RCV000680718 OR RCV001533046" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000019937, RCV000503778, RCV000624662, RCV000680718, RCV001533046" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000019937...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In the twins with dystonia-deafness syndrome-1 (DDS1; <a href="/entry/607371">607371</a>) originally described by <a href="#11" class="mim-tip-reference" title="Gearing, M., Juncos, J. L., Procaccio, V., Gutekunst, C.-A., Marino-Rodriguez, E. M., Gyure, K. A., Ono, S., Santoianni, R., Krawiecki, N. S., Wallace, D. C., Wainer, B. H. &lt;strong&gt;Aggregation of actin and cofilin in identical twins with juvenile-onset dystonia.&lt;/strong&gt; Ann. Neurol. 52: 465-476, 2002.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/12325076/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;12325076&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=12325076[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ana.10319&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="12325076">Gearing et al. (2002)</a>, <a href="#31" class="mim-tip-reference" title="Procaccio, V., Salazar, G., Ono, S., Styers, M. L., Gearing, M., Davila, A., Jimenez, R., Juncos, J., Gutekunst, C.-A., Meroni, G., Fontanella, B., Sontag, E., Sontag, J. M., Faundez, V., Wainer, B. H. &lt;strong&gt;A mutation of beta-actin that alters depolymerization dynamics is associated with autosomal dominant developmental malformations, deafness, and dystonia.&lt;/strong&gt; Am. J. Hum. Genet. 78: 947-960, 2006.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/16685646/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;16685646&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=16685646[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1086/504271&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="16685646">Procaccio et al. (2006)</a> detected a heterozygous arg183-to-trp (R183W) mutation in the ACTB gene. The amino acid substitution was the result of a c.547C-T transition in exon 4. The constellation of malformations exhibited by the patients resembled Opitz syndrome (<a href="/entry/300000">300000</a>), but no mutations were found in the MID1 gene (<a href="/entry/300552">300552</a>) and no evidence was found for involvement of genes causing the autosomal form of Opitz syndrome. No mutations in ACTB were identified in the mother and 2 half brothers. Paternal samples were not available for analysis. <a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a> suggested that this report should be interpreted with caution given the absence of replication studies and unavailability of parental DNA. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=12325076+22366783+16685646" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 15-year-old boy, born of consanguineous Hutterite parents, with DDS1, <a href="#4" class="mim-tip-reference" title="Conboy, E., Vairo, F., Waggoner, D., Ober, C., Das, S., Dhamija, R., Klee, E. W., Pichurin, P. &lt;strong&gt;Pathogenic variant in ACTB, p.Arg183Trp, causes juvenile-onset dystonia, hearing loss, and developmental delay without midline malformation.&lt;/strong&gt; Case Rep. Genet. 2017: 9184265, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28487785/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28487785&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1155/2017/9184265&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28487785">Conboy et al. (2017)</a> identified a de novo heterozygous R183W mutation in the ACTB gene. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was not present in several public databases, including the Exome Sequencing Project and ExAC databases. Functional studies of the variant and studies of patient cells were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28487785" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 22-year-old woman with DDS1, <a href="#35" class="mim-tip-reference" title="Skogseid, I. M., Rosby, O., Konglund, A., Connelly, J. P., Nedregaard, B., Jablonski, G. E., Kvernmo, N., Stray-Pedersen, A., Glover, J. C. &lt;strong&gt;Dystonia-deafness syndrome caused by ACTB p.Arg183Trp heterozygosity shows striatal dopaminergic dysfunction and response to pallidal stimulation.&lt;/strong&gt; J Neurodev. Disord. 10: 17, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29788902/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29788902&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29788902[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1186/s11689-018-9235-z&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29788902">Skogseid et al. (2018)</a> identified heterozygosity for the c.547C-T transition (c.547C-T, NM_001101.3) in exon 4 of the ACTB gene resulting in an R183W mutation. The mutation, which was identified by whole-exome sequencing and confirmed with Sanger sequencing, was not present in the patient's mother. The father was not available for testing. Functional studies of the variant and studies of patient cells were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29788902" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 52-year-old Brazilian woman with DDS1, <a href="#9" class="mim-tip-reference" title="Freitas, J. L., Vale, T. C., Barsottini, O. G. P., Pedroso, J. L. &lt;strong&gt;Expanding the phenotype of dystonia-deafness syndrome caused by ACTB gene mutation.&lt;/strong&gt; Mov. Disord. Clin. Pract. 7: 86-87, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/31970217/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;31970217&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/mdc3.12854&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="31970217">Freitas et al. (2020)</a> identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing. Functional studies of the variant and studies of patient cells were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31970217" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a 34-year-old Argentinian woman with DDS1, <a href="#40" class="mim-tip-reference" title="Zavala, L., Ziegler, G., Moron, D. G., Garretto, N. &lt;strong&gt;Dystonia-deafness syndrome: ACTB pathogenic variant in an Argentinean family.&lt;/strong&gt; Mov. Disord. Clin. Pract. 9: 122-124, 2022.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/35005077/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;35005077&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/mdc3.13358&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="35005077">Zavala et al. (2022)</a> identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing and confirmed by Sanger sequencing. The patient had similarly affected family members, including her deceased mother and a deceased sib, who did not undergo genetic testing. Functional studies of the variant and studies of patient cells were not performed. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35005077" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Variant Function</em></strong></p><p>
<a href="#18" class="mim-tip-reference" title="Hundt, N., Preller, M., Swolski, O., Ang, A. M., Mannherz, H. G., Manstein, D. J., Muller, M. &lt;strong&gt;Molecular mechanisms of disease-related human beta-actin mutations p.R183W and p.E364K.&lt;/strong&gt; FEBS J. 281: 5279-5291, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25255767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25255767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/febs.13068&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25255767">Hundt et al. (2014)</a> found that the R183W mutation increased the affinity of ACTB to DNase1 and resulted in slower filament growth, higher ATP hydrolysis, and faster depolymerization compared to wildtype, resulting in impaired formation of long stable filaments. The mutation also impaired the interaction of ACTB with MYH9 (<a href="/entry/160775">160775</a>). The findings suggested that the mutation induced a closed-state conformation. <a href="#18" class="mim-tip-reference" title="Hundt, N., Preller, M., Swolski, O., Ang, A. M., Mannherz, H. G., Manstein, D. J., Muller, M. &lt;strong&gt;Molecular mechanisms of disease-related human beta-actin mutations p.R183W and p.E364K.&lt;/strong&gt; FEBS J. 281: 5279-5291, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25255767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25255767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/febs.13068&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25255767">Hundt et al. (2014)</a> stated that the mutation results in a gain-of-function effect. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25255767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0002" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0002&nbsp;BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, ARG196HIS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs281875334 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs281875334;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs281875334" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs281875334" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000022439 OR RCV000059721 OR RCV004018661" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000022439, RCV000059721, RCV004018661" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000022439...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 7 of 10 patients with Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>), <a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a> identified a heterozygous G-to-A transition at nucleotide 587 of the ACTB gene, resulting in an arg-to-his substitution at codon 196 (R196H). In 2 patients from whom parental DNA was available the mutation was determined to have occurred de novo. This mutation was not identified in 212 other exomes. Lymphoblastoid cell lines established from patients carrying this mutation had greatly increased F-actin content and multiple, anomalous F-actin-rich, filopodia-like protrusions compared to control cells, resulting in an increased cell perimeter. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22366783" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>One of the patients found by <a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a> to carry the R196H mutation had been described by <a href="#10" class="mim-tip-reference" title="Fryns, J.-P., Aftimos, S. &lt;strong&gt;New MR/MCA syndrome with distinct facial appearance and general habitus, broad and webbed neck, hypoplastic inverted nipples, epilepsy, and pachygyria of the frontal lobes. (Letter)&lt;/strong&gt; J. Med. Genet. 37: 460-462, 2000.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10928857/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10928857&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1136/jmg.37.6.460&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10928857">Fryns and Aftimos (2000)</a> as patient 1 in the original report of Fryns-Aftimos syndrome. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=22366783+10928857" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0003" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0003&nbsp;BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, ARG196CYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs281875333 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs281875333;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs281875333" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs281875333" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000022440 OR RCV000059720" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000022440, RCV000059720" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000022440...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an individual with Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>), <a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a> identified a heterozygous C-to-T transition at nucleotide 586 of the ACTB gene, resulting in an arg-to-cys substitution at codon 196 (R196C). This mutation was not found in 214 other exomes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22366783" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In a patient (patient 3) with a severe BRWS1 phenotype, previously reported by <a href="#6" class="mim-tip-reference" title="Der Kaloustian, V. M., Pelletier, M., Costa, T., Blackston, D. R., Oudjhane, K. &lt;strong&gt;A new syndrome with craniofacial and skeletal dysmorphisms and developmental delay.&lt;/strong&gt; Clin. Dysmorph. 10: 87-93, 2001.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/11311002/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;11311002&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1097/00019605-200104000-00003&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="11311002">Der Kaloustian et al. (2001)</a>, <a href="#7" class="mim-tip-reference" title="Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., Krause, C., Hackmann, K., Hahn, G., Schrock, E., Verloes, A. &lt;strong&gt;Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations.&lt;/strong&gt; Europ. J. Hum. Genet. 22: 179-183, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23756437/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23756437&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23756437[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2013.130&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23756437">Di Donato et al. (2014)</a> identified a c.586C-T transition (c.586C-T, NM_001101.3) in the ACTB gene, resulting in the R196C mutation. They noted that the patient with the R196C mutation reported by <a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a> had a mild form of the disorder. <a href="#7" class="mim-tip-reference" title="Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., Krause, C., Hackmann, K., Hahn, G., Schrock, E., Verloes, A. &lt;strong&gt;Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations.&lt;/strong&gt; Europ. J. Hum. Genet. 22: 179-183, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23756437/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23756437&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23756437[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2013.130&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23756437">Di Donato et al. (2014)</a> suggested that the more severe phenotype in their patient may be due to an unknown genetic modifier that has an impact on the clinical severity and malformation spectrum. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=22366783+11311002+23756437" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0004" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0004&nbsp;BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, LEU65VAL
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs281875332 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs281875332;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs281875332" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs281875332" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000022441 OR RCV000059718" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000022441, RCV000059718" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000022441...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient with Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>), <a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a> identified a de novo mutation, a heterozygous C-to-G transversion at nucleotide 193 of the ACTB gene resulting in a leu-to-val substitution at codon 65 (L65V). This mutation was not identified in 244 other exomes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22366783" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0005" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0005&nbsp;BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, ASN12ASP
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs281875331 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs281875331;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs281875331" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs281875331" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000022442 OR RCV000059719" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000022442, RCV000059719" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000022442...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient with Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>), <a href="#33" class="mim-tip-reference" title="Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O&#x27;Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others. &lt;strong&gt;De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.&lt;/strong&gt; Nature Genet. 44: 440-444, 2012.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/22366783/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;22366783&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ng.1091&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="22366783">Riviere et al. (2012)</a> identified a de novo mutation, a heterozygous A-to-G transition at nucleotide 34 of the ACTB gene resulting in an asn-to-asp substitution at codon 12 (N12D). This mutation was not identified in 24 other exomes. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22366783" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0006" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0006&nbsp;BARAITSER-WINTER SYNDROME 1, ATYPICAL</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, GLU117LYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs397515470 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs397515470;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs397515470" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs397515470" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000056289 OR RCV003441738" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000056289, RCV003441738" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000056289...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 7-year-old girl with atypical Baraitser-Winter syndrome-1 (<a href="/entry/243310">243310</a>), who had microcephaly, intellectual disability, and facial dysmorphism but no lissencephaly or seizures, <a href="#21" class="mim-tip-reference" title="Johnston, J. J., Wen, K.-K., Keppler-Noreuil, K., McKane, M., Maiers, J. L., Greiner, A., Sapp, J. C., NIH Intramural Sequencing Center, DeMali K. A., Rubenstein, P. A., Biesecker, L. G. &lt;strong&gt;Functional analysis of a de novo ACTB mutation in a patient with atypical Baraitser-Winter syndrome.&lt;/strong&gt; Hum. Mutat. 34: 1242-1249, 2013.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23649928/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23649928&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23649928[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/humu.22350&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23649928">Johnston et al. (2013)</a> identified heterozygosity for a de novo c.349G-A transition in the ACTB gene, resulting in a glu117-to-lys (E117K) substitution. The mutation was not present in either of her unaffected parents. Patient lymphocytes demonstrated significantly decreased ability to adhere to a fibronectin-coated surface and formed few actin-rich protrusions compared to the parents' lymphocytes. Studies in yeast showed virtually complete loss of normal polarization of the cytoskeleton with the mutant, and mutant cells were almost completely resistant to the depolymerizing agent latrunculin A, suggesting that E117K might result in strengthened actin monomer-monomer interactions and increased filament stability. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23649928" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0007" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0007&nbsp;BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, THR120ILE
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs587779774 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs587779774;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs587779774" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs587779774" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000133571 OR RCV002055273" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000133571, RCV002055273" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000133571...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient (patient 1) with a severe form of Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>), who was previously diagnosed with Fryns-Aftimos syndrome, <a href="#7" class="mim-tip-reference" title="Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., Krause, C., Hackmann, K., Hahn, G., Schrock, E., Verloes, A. &lt;strong&gt;Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations.&lt;/strong&gt; Europ. J. Hum. Genet. 22: 179-183, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/23756437/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;23756437&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=23756437[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2013.130&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="23756437">Di Donato et al. (2014)</a> identified a c.359C-T transition (c.359C-T, NM_001101.3) in the ACTB gene, resulting in a thr120-to-ile (T120I) substitution. The mutation was not found in the dbSNP or Exome Variant Server databases. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23756437" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In 2 patients with severe Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>), who were previously diagnosed with cerebrofrontofacial syndrome (<a href="#14" class="mim-tip-reference" title="Guion-Almeida, M. L., Richieri-Costa, A. &lt;strong&gt;Acrocallosal syndrome: report of a Brazilian girl.&lt;/strong&gt; Am. J. Med. Genet. 43: 938-941, 1992.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/1415343/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;1415343&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1002/ajmg.1320430606&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="1415343">Guion-Almeida and Richieri-Costa, 1992</a>; <a href="#15" class="mim-tip-reference" title="Guion-Almeida, M. L., Richieri-Costa, A. &lt;strong&gt;Frontonasal dysplasia, macroblepharon, eyelid colobomas, ear anomalies, macrostomia, mental retardation, and CNS structural anomalies: a new syndrome?&lt;/strong&gt; Clin. Dysmorph. 8: 1-4, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10327243/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10327243&lt;/a&gt;]" pmid="10327243">Guion-Almeida and Richieri-Costa, 1999</a>), <a href="#39" class="mim-tip-reference" title="Verloes, A., Di Donato, N., Masliah-Planchon, J., Jongmans, M., Abdul-Raman, O. A., Albrecht, B., Allanson, J., Brunner, H., Bertola, D., Chassaing, N., David, A., Devriendt, K., and 40 others. &lt;strong&gt;Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 292-301, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25052316/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25052316&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25052316[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.95&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25052316">Verloes et al. (2015)</a> identified the T120I mutation. <a href="#39" class="mim-tip-reference" title="Verloes, A., Di Donato, N., Masliah-Planchon, J., Jongmans, M., Abdul-Raman, O. A., Albrecht, B., Allanson, J., Brunner, H., Bertola, D., Chassaing, N., David, A., Devriendt, K., and 40 others. &lt;strong&gt;Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases.&lt;/strong&gt; Europ. J. Hum. Genet. 23: 292-301, 2015.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25052316/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25052316&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=25052316[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/ejhg.2014.95&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25052316">Verloes et al. (2015)</a> suggested that this mutation is associated with a more severe BRWS phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1415343+10327243+25052316" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0008" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0008&nbsp;BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, 1-BP DUP, 1097G
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1554329078 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1554329078;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1554329078" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1554329078" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000585890 OR RCV000624638" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000585890, RCV000624638" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000585890...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 12-year-old boy (patient XXIV) with Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>), <a href="#5" class="mim-tip-reference" title="Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others. &lt;strong&gt;ACTB loss-of-function mutations result in a pleiotropic developmental disorder.&lt;/strong&gt; Am. J. Hum. Genet. 101: 1021-1033, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29220674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29220674&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29220674[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2017.11.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29220674">Cuvertino et al. (2017)</a> identified a de novo heterozygous 1-bp duplication (c.1097dupG, NM_001101.3) in exon 6 of the ACTB gene, predicted to result in a frameshift (Ser368LeufsTer13). The mutation, which was found by exome sequencing of a cohort of 4,293 trios in which the offspring had a developmental disorder, was predicted to escape nonsense-mediated mRNA decay, and to result in a loss of function and haploinsufficiency of the ACTB gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29220674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#13" class="mim-tip-reference" title="Greve, J. N., Schwabe, F. V., Pokrant, T., Faix, J., Di Donato, N., Taft, M. H., Manstein, D. J. &lt;strong&gt;Frameshift mutation S368fs in the gene encoding cytoskeletal beta-actin leads to ACTB-associated syndromic thrombocytopenia by impairing actin dynamics.&lt;/strong&gt; Europ. J. Cell Biol. 101: 151216, 2022.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/35313204/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;35313204&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ejcb.2022.151216&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="35313204">Greve et al. (2022)</a> noted that the mutation results in an altered C-terminal region of ACTB that includes replacement of the last 8 residues and elongation of the molecule by 4 residues. A different mutation in the ACTB gene (<a href="#0020">102630.0020</a>) results in the same protein alteration. In vitro studies showed that the mutation perturbed the interaction of ACTB with profilin-1 (<a href="/entry/176610">176610</a>) and impaired actin dynamics. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35313204" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0009" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0009&nbsp;BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, LYS373TER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1554329068 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1554329068;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1554329068" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1554329068" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000585888" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000585888" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000585888</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 14-year-old girl (patient XXV) with Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>), <a href="#5" class="mim-tip-reference" title="Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others. &lt;strong&gt;ACTB loss-of-function mutations result in a pleiotropic developmental disorder.&lt;/strong&gt; Am. J. Hum. Genet. 101: 1021-1033, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29220674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29220674&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29220674[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2017.11.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29220674">Cuvertino et al. (2017)</a> identified a de novo heterozygous c.1117A-T transversion (c.1117A-T, NM_001101.3) in exon 6 of the ACTB gene, resulting in a lys373-to-ter (K373X) substitution. The mutation, which was found by exome sequencing of a cohort of 4,293 trios in which the offspring had a developmental disorder, was predicted to escape nonsense-mediated mRNA decay, and to result in loss of function and haploinsufficiency of the ACTB gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29220674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0010" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0010&nbsp;BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, 1-BP DEL, 329T
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs1554329523 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs1554329523;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs1554329523" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs1554329523" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000585889 OR RCV003238783" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000585889, RCV003238783" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000585889...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an 18-year-old man (patient XXVI) with Baraitser-Winter syndrome-1 (BRWS1; <a href="/entry/243310">243310</a>), <a href="#5" class="mim-tip-reference" title="Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others. &lt;strong&gt;ACTB loss-of-function mutations result in a pleiotropic developmental disorder.&lt;/strong&gt; Am. J. Hum. Genet. 101: 1021-1033, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/29220674/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;29220674&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=29220674[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ajhg.2017.11.006&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="29220674">Cuvertino et al. (2017)</a> identified a de novo heterozygous 1-bp deletion (c.329delT, NM_001101.3) in exon 3 of the ACTB gene, predicted to result in a frameshift and premature termination (Leu110ArgfsTer10). The mutation, which was found by exome sequencing of a cohort of 4,293 trios in which the offspring had a developmental disorder, was predicted to result in a loss of function and haploinsufficiency of the ACTB gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29220674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0011" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0011&nbsp;BECKER NEVUS SYNDROME, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
BECKER NEVUS, SOMATIC, MOSAIC, INCLUDED<br />
CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, ARG147CYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs2128241302 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2128241302;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs2128241302" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs2128241302" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001814893 OR RCV003320379 OR RCV003320380 OR RCV003320381" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001814893, RCV003320379, RCV003320380, RCV003320381" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001814893...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Becker Nevus Syndrome and Becker Nevus</em></strong></p><p>
In a 13-year-old girl with Becker nevus syndrome (BNS; <a href="/entry/604919">604919</a>), <a href="#3" class="mim-tip-reference" title="Cai, E. D., Sun, B. K., Chiang, A., Rogers, A., Bernet, L., Cheng, B., Teng, J., Rieger, K. E., Sarin, K. Y. &lt;strong&gt;Postzygotic mutations in beta-actin are associated with Becker&#x27;s nevus and Becker&#x27;s nevus syndrome.&lt;/strong&gt; J. Invest. Derm. 137: 1795-1798, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28347698/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28347698&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.jid.2017.03.017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28347698">Cai et al. (2017)</a> performed exome sequencing of affected and nonaffected skin and identified heterozygosity for a c.439C-T transition, resulting in an arg147-to-cys (R147C) substitution in lesional skin that was absent from adjacent normal skin. The variant, which affects a highly conserved residue, was not found in the COSMIC, ExAC, or EVS databases. Analysis of 22 nonsyndromic Becker nevi (BN) revealed that 13 contained a point mutation involving the same codon, including 10 with the R147C substitution and 3 with an R147S substitution (<a href="#0012">102630.0012</a>). Functional analysis in transfected C2C12 myoblast cells suggested a trend towards increased Hedgehog (see <a href="/entry/600726">600726</a>) pathway signaling. The authors hypothesized that Becker nevus syndrome may reflect a mutation earlier in development, affecting multiple cell lineages, compared with isolated Becker nevus. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28347698" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Congenital Smooth Muscle Hamartoma</em></strong></p><p>
In affected skin from the left lower back of a 1-year-old girl (MOS4) with congenital smooth muscle hamartoma (CSMH; <a href="/entry/620470">620470</a>), <a href="#1" class="mim-tip-reference" title="Atzmony, L., Ugwu, N., Zaki, T. D., Antaya, R. J., Choate, K. A. &lt;strong&gt;Post-zygotic ACTB mutations underlie congenital smooth muscle hamartomas.&lt;/strong&gt; J. Cutan. Path. 47: 681-685, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32170967/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32170967&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32170967[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/cup.13683&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32170967">Atzmony et al. (2020)</a> identified heterozygosity for the previously reported R147C somatic missense mutation in the ACTB gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32170967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0012" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0012&nbsp;BECKER NEVUS, ISOLATED, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CONGENITAL SMOOTH MUSCLE HAMARTOMA WITH HEMIHYPERTROPHY, SOMATIC, MOSAIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, ARG147SER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs2128241302 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2128241302;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs2128241302" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs2128241302" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001849711 OR RCV003320383 OR RCV003320384" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001849711, RCV003320383, RCV003320384" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001849711...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Becker Nevus</em></strong></p><p>
In 3 Becker nevi (BN; <a href="/entry/604919">604919</a>) specimens, <a href="#3" class="mim-tip-reference" title="Cai, E. D., Sun, B. K., Chiang, A., Rogers, A., Bernet, L., Cheng, B., Teng, J., Rieger, K. E., Sarin, K. Y. &lt;strong&gt;Postzygotic mutations in beta-actin are associated with Becker&#x27;s nevus and Becker&#x27;s nevus syndrome.&lt;/strong&gt; J. Invest. Derm. 137: 1795-1798, 2017.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/28347698/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;28347698&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.jid.2017.03.017&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="28347698">Cai et al. (2017)</a> identified heterozygosity for a c.439C-A transversion, resulting in an arg147-to-ser (R147S) substitution at a highly conserved residue. The variant was not found in the COSMIC, ExAC, or EVS databases. Functional analysis in transfected C2C12 myoblast cells suggested a trend towards increased Hedgehog (see <a href="/entry/600726">600726</a>) pathway signaling. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28347698" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Congenital Smooth Muscle Hamartoma With Hemihypertrophy</em></strong></p><p>
In fibroblasts cultured from affected skin of a 2-year-old boy (MOS1) who had congenital smooth muscle hamartoma with hemihypertrophy of the right upper limb and back (CSMH; <a href="/entry/620470">620470</a>), <a href="#1" class="mim-tip-reference" title="Atzmony, L., Ugwu, N., Zaki, T. D., Antaya, R. J., Choate, K. A. &lt;strong&gt;Post-zygotic ACTB mutations underlie congenital smooth muscle hamartomas.&lt;/strong&gt; J. Cutan. Path. 47: 681-685, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32170967/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32170967&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32170967[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/cup.13683&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32170967">Atzmony et al. (2020)</a> identified heterozygosity for a somatic R147S mutation in the ACTB gene. The variant was not found in keratinocytes from the same lesion or in patient saliva. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32170967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0013" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0013&nbsp;CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, GLY146ALA
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs2128241303 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2128241303;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs2128241303" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs2128241303" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001849713 OR RCV003320385" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001849713, RCV003320385" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001849713...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected skin from the back of a 5-month-old boy (MOS7) and an 8-month-old boy (MOS13) with congenital smooth muscle hamartoma (CSMH; <a href="/entry/620470">620470</a>), <a href="#1" class="mim-tip-reference" title="Atzmony, L., Ugwu, N., Zaki, T. D., Antaya, R. J., Choate, K. A. &lt;strong&gt;Post-zygotic ACTB mutations underlie congenital smooth muscle hamartomas.&lt;/strong&gt; J. Cutan. Path. 47: 681-685, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32170967/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32170967&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32170967[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/cup.13683&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32170967">Atzmony et al. (2020)</a> identified heterozygosity for a somatic c.437G-C transversion at a mutation hotspot in the ACTB gene, resulting in a gly146-to-ala (G146A) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32170967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0014" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0014&nbsp;CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, GLY146VAL
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV003320402" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV003320402" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV003320402</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected skin from the left back of a 2-year-old boy (MOS8) with congenital smooth muscle hamartoma (CSMH; <a href="/entry/620470">620470</a>), <a href="#1" class="mim-tip-reference" title="Atzmony, L., Ugwu, N., Zaki, T. D., Antaya, R. J., Choate, K. A. &lt;strong&gt;Post-zygotic ACTB mutations underlie congenital smooth muscle hamartomas.&lt;/strong&gt; J. Cutan. Path. 47: 681-685, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32170967/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32170967&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32170967[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/cup.13683&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32170967">Atzmony et al. (2020)</a> identified heterozygosity for a somatic c.437G-T transversion at a mutation hotspot in the ACTB gene, resulting in a gly146-to-val (G146V) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32170967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0015" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0015&nbsp;CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, GLY146ASP
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV003320403" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV003320403" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV003320403</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected skin from the right upper arm of a 1-year-old boy (MOS9) with congenital smooth muscle hamartoma (CSMH; <a href="/entry/620470">620470</a>), <a href="#1" class="mim-tip-reference" title="Atzmony, L., Ugwu, N., Zaki, T. D., Antaya, R. J., Choate, K. A. &lt;strong&gt;Post-zygotic ACTB mutations underlie congenital smooth muscle hamartomas.&lt;/strong&gt; J. Cutan. Path. 47: 681-685, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32170967/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32170967&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32170967[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/cup.13683&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32170967">Atzmony et al. (2020)</a> identified heterozygosity for a somatic c.437G-A transition at a mutation hotspot in the ACTB gene, resulting in a gly146-to-asp (G146D) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32170967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0016" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0016&nbsp;CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, GLY146SER
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown">rs2128241304 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2128241304;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs2128241304" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs2128241304" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV001849714 OR RCV003320386" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV001849714, RCV003320386" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV001849714...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected skin from the right thigh of a 1-year-old girl (MOS10) with congenital smooth muscle hamartoma (CSMH; <a href="/entry/620470">620470</a>), <a href="#1" class="mim-tip-reference" title="Atzmony, L., Ugwu, N., Zaki, T. D., Antaya, R. J., Choate, K. A. &lt;strong&gt;Post-zygotic ACTB mutations underlie congenital smooth muscle hamartomas.&lt;/strong&gt; J. Cutan. Path. 47: 681-685, 2020.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/32170967/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;32170967&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=32170967[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/cup.13683&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="32170967">Atzmony et al. (2020)</a> identified heterozygosity for a somatic c.436G-A transition at a mutation hotspot in the ACTB gene, resulting in a gly146-to-ser (G146S) substitution. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32170967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0017" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0017&nbsp;THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, GLU364LYS
</div>
</span>
&nbsp;&nbsp;
<div class="btn-group"> <button type="button" class="btn btn-default btn-xs dropdown-toggle mim-font" data-toggle="dropdown"><span class="text-primary">&#x25cf;</span> rs368352689 <span class="caret"></span></button> <ul class="dropdown-menu"> <li><a href="https://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs368352689;toggle_HGVS_names=open" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'ensembl.org'})">Ensembl</a></li> <li><a href="https://gnomad.broadinstitute.org/variant/rs368352689?dataset=gnomad_r2_1" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'gnomad.broadinstitute.org'})" style="padding-left: 8px;"><span class="text-primary">&#x25cf;</span> gnomAD</a></li> <li><a href="https://www.ncbi.nlm.nih.gov/snp/?term=rs368352689" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'www.ncbi.nlm.nih.gov'})">NCBI</a></li> <li><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?org=Human&db=hg38&clinvar=pack&omimAvSnp=pack&position=rs368352689" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'dbSNP', 'domain': 'genome.ucsc.edu'})">UCSC</a></li> </ul> </div>
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV000202367 OR RCV001789615 OR RCV003324520" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV000202367, RCV001789615, RCV003324520" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV000202367...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 15-year-old Japanese girl with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; <a href="/entry/620475">620475</a>), <a href="#30" class="mim-tip-reference" title="Nunoi, H., Yamazaki, T., Tsuchiya, H., Kato, S., Malech, H. L., Matsuda, I., Kanegasaki, S. &lt;strong&gt;A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection.&lt;/strong&gt; Proc. Nat. Acad. Sci. 96: 8693-8698, 1999.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/10411937/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;10411937&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=10411937[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1073/pnas.96.15.8693&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="10411937">Nunoi et al. (1999)</a> identified a heterozygous c.1174G-A transition in exon 6 of the ACTB gene, resulting in a glu364-to-lys (E364K) substitution at a conserved residue in a domain important for binding to actin-regulatory molecules. Studies of patient B cells showed that although the mutant actin was able to polymerize and depolymerize normally, it had decreased binding efficiency to profilin (see PFN1, <a href="/entry/176610">176610</a>). The authors postulated a dominant-negative effect. In addition to thrombocytopenia, the patient had recurrent infections associated with neutrophil dysfunction (impaired chemotaxis and superoxide generating ability), leukopenia, developmental delay with impaired intellectual development, skin photosensitivity, and short stature. She died of sepsis at 15 years of age. Although dysmorphic features were not noted in the original report of this child, <a href="#25" class="mim-tip-reference" title="Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others. &lt;strong&gt;Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.&lt;/strong&gt; Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30315159/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30315159&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41467-018-06713-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30315159">Latham et al. (2018)</a> stated that the phenotype in this patient was consistent with THC8. <a href="#25" class="mim-tip-reference" title="Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others. &lt;strong&gt;Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.&lt;/strong&gt; Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30315159/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30315159&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41467-018-06713-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30315159">Latham et al. (2018)</a> referred to this mutation as c.1090G-A (c.1090G-A, NM_001101.3). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=10411937+30315159" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Variant Function</em></strong></p><p>
<a href="#18" class="mim-tip-reference" title="Hundt, N., Preller, M., Swolski, O., Ang, A. M., Mannherz, H. G., Manstein, D. J., Muller, M. &lt;strong&gt;Molecular mechanisms of disease-related human beta-actin mutations p.R183W and p.E364K.&lt;/strong&gt; FEBS J. 281: 5279-5291, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25255767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25255767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/febs.13068&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25255767">Hundt et al. (2014)</a> found that the E364K mutation increased the affinity of ACTB to DNase1 and reduced the exchange of nucleotides. Their studies indicated that mutation caused only minor effects on profilin affinity. Molecular modeling suggested that E364K acts as an allosteric trigger leading to preferred formation of ACTB in the closed state. <a href="#18" class="mim-tip-reference" title="Hundt, N., Preller, M., Swolski, O., Ang, A. M., Mannherz, H. G., Manstein, D. J., Muller, M. &lt;strong&gt;Molecular mechanisms of disease-related human beta-actin mutations p.R183W and p.E364K.&lt;/strong&gt; FEBS J. 281: 5279-5291, 2014.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/25255767/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;25255767&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1111/febs.13068&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="25255767">Hundt et al. (2014)</a> stated that the mutation results in a gain-of-function effect. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25255767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0018" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0018&nbsp;THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, 17-BP DEL, NT992
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV003324594" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV003324594" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV003324594</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 5.5-year-old boy (P3) and his 31-year-old mother (P4) (family B) of central European ancestry with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; <a href="/entry/620475">620475</a>), <a href="#25" class="mim-tip-reference" title="Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others. &lt;strong&gt;Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.&lt;/strong&gt; Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30315159/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30315159&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41467-018-06713-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30315159">Latham et al. (2018)</a> identified a heterozygous 17-bp deletion (c.992_1008del, NM_001101.3) in exon 6 (the last exon) of the ACTB gene, resulting in a frameshift and premature termination (Ala331ValfsTer27) in the SD1 domain, which is important for interactions with actin-binding proteins (ABPs). The mutation was found by whole-exome sequencing and confirmed by Sanger sequencing. The mutation did not result in nonsense-mediated mRNA decay and a C-terminal frameshift peptide was detected, but overall ACTB protein levels were decreased in patient fibroblasts. Patient-derived fibroblasts were smaller than controls and showed decreased migration speed, trajectories, and displacement area compared to controls. There was compensatory upregulation of ACTG1 (<a href="/entry/102560">102560</a>) and ACTA2 (<a href="/entry/102620">102620</a>) expression, and ACTB filaments bundled into abnormally thick fibers that incorporated ACTA2. Patient fibroblasts also showed increased recruitment of ABPs associated with macrothrombocytopenia phenotypes (see, e.g., ACTN1, <a href="/entry/102575">102575</a>). Patient-derived platelets, which were frequently enlarged, showed decreased ACTB protein levels and abnormal microtubule organization patterns at the platelet cortex. Similar microtubular disorganization abnormalities were observed in patient megakaryocytes, suggesting that the ACTB mutation inhibits the final stages of platelet maturation by perturbing membrane-associated cytoskeletal filaments. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30315159" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0019" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0019&nbsp;THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, 12-BP DEL, NT1012
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV003324595" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV003324595" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV003324595</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 5-year-old boy (P5, family C) of central European ancestry with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; <a href="/entry/620475">620475</a>), <a href="#25" class="mim-tip-reference" title="Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others. &lt;strong&gt;Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.&lt;/strong&gt; Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30315159/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30315159&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41467-018-06713-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30315159">Latham et al. (2018)</a> identified a de novo heterozygous 12-bp in-frame deletion (c.1012_1023del, NM_001101.3) in exon 6 (the last exon) of the ACTB gene, resulting in the deletion of residues 338-341 (Ser338_Ile341del) within the SD1 domain. The mutation was found by whole-exome sequencing and confirmed by Sanger sequencing. The mutation did not result in nonsense-mediated mRNA decay, but overall ACTB protein levels were decreased in patient fibroblasts. Patient-derived fibroblasts were smaller than controls, formed abnormal clusters, and showed decreased migration speed, trajectories, and displacement area compared to controls. There was compensatory upregulation of ACTG1 (<a href="/entry/102560">102560</a>) and ACTA2 (<a href="/entry/102620">102620</a>) expression, and ACTB filaments bundled into abnormally thick fibers that incorporated ACTA2. Patient fibroblasts also showed increased recruitment of ABPs associated with macrothrombocytopenia phenotypes (see, e.g., ACTN1, <a href="/entry/102575">102575</a>). Patient-derived platelets, which were frequently enlarged, showed decreased ACTB protein levels and abnormal microtubule organization patterns at the platelet cortex. Similar microtubular disorganization abnormalities were observed in patient megakaryocytes, suggesting that the ACTB mutation inhibits the final stages of platelet maturation by perturbing membrane-associated cytoskeletal filaments. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30315159" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0020" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0020&nbsp;THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, 1-BP DUP, NT1101
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV003324596" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV003324596" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV003324596</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 5.5-year-old girl of Western European origin (P6) with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; <a href="/entry/620475">620475</a>), <a href="#25" class="mim-tip-reference" title="Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others. &lt;strong&gt;Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.&lt;/strong&gt; Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30315159/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30315159&lt;/a&gt;, &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&amp;report=imagesdocsum&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed Image&#x27;, &#x27;domain&#x27;: &#x27;ncbi.nlm.nih.gov&#x27;})&quot;&gt;images&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1038/s41467-018-06713-0&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30315159">Latham et al. (2018)</a> identified a de novo heterozygous 1-bp duplication (c.1101dup, NM_001101.3) in exon 6 of the ACTB gene, resulting in the substitution of 8 amino acids and addition of 4 residues at the C-terminus (Ser368LeufsTer13). The mutation was found by whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed. The authors noted that a different mutation in the ACTB gene (<a href="#0008">102630.0008</a>) results in the same protein alteration. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30315159" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Variant Function</em></strong></p><p>
<a href="#13" class="mim-tip-reference" title="Greve, J. N., Schwabe, F. V., Pokrant, T., Faix, J., Di Donato, N., Taft, M. H., Manstein, D. J. &lt;strong&gt;Frameshift mutation S368fs in the gene encoding cytoskeletal beta-actin leads to ACTB-associated syndromic thrombocytopenia by impairing actin dynamics.&lt;/strong&gt; Europ. J. Cell Biol. 101: 151216, 2022.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/35313204/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;35313204&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1016/j.ejcb.2022.151216&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="35313204">Greve et al. (2022)</a> demonstrated that the mutation perturbed the interaction of ACTB with profilin-1 (<a href="/entry/176610">176610</a>) and impaired actin dynamics. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35313204" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<a id="0021" class="mim-anchor"></a>
<h4>
<span class="mim-font">
<strong>.0021&nbsp;THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
<div style="float: left;">
ACTB, LEU171PHE
</div>
</span>
&nbsp;&nbsp;
<span class="mim-text-font">
<a href="https://www.ncbi.nlm.nih.gov/clinvar?term=RCV003085948 OR RCV003324586 OR RCV004786827" target="_blank" class="btn btn-default btn-xs mim-tip-hint" title="RCV003085948, RCV003324586, RCV004786827" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">RCV003085948...</a>
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 4-year-old Swedish girl with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; <a href="/entry/620475">620475</a>), <a href="#34" class="mim-tip-reference" title="Sandestig, A., Green, A., Jonasson, J., Vogt, H., Wahlstrom, J., Pepler, A., Ellnebo, K., Biskup, S., Stefanova, M. &lt;strong&gt;Could dissimilar phenotypic effects of ACTB missense mutations reflect the actin conformational change? Two novel mutations and literature review.&lt;/strong&gt; Molec. Syndromol. 9: 259-265, 2018.[PubMed: &lt;a href=&quot;https://pubmed.ncbi.nlm.nih.gov/30733661/&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;name&#x27;: &#x27;PubMed&#x27;, &#x27;domain&#x27;: &#x27;pubmed.ncbi.nlm.nih.gov&#x27;})&quot;&gt;30733661&lt;/a&gt;] [&lt;a href=&quot;https://doi.org/10.1159/000492267&quot; target=&quot;_blank&quot; onclick=&quot;gtag(&#x27;event&#x27;, &#x27;mim_outbound&#x27;, {&#x27;destination&#x27;: &#x27;Publisher&#x27;})&quot;&gt;Full Text&lt;/a&gt;]" pmid="30733661">Sandestig et al. (2018)</a> identified a de novo heterozygous c.511C-T transition (c.511C-T, NM_001101.3) in the ACTB gene, resulting in a leu171-to-phe (L171F) substitution in the W-loop of the protein (SD3 domain). The mutation was found by trio-based whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed, but the authors noted that the mutation affects a domain involved in interactions with actin-binding proteins. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30733661" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
<div>
<a id="seeAlso" class="mim-anchor"></a>
<h4 href="#mimSeeAlsoFold" id="mimSeeAlsoToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimSeeAlsoToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>See Also:</strong>
</span>
</h4>
<div id="mimSeeAlsoFold" class="collapse in mimTextToggleFold">
<span class="mim-text-font">
<a href="#Erba1988" class="mim-tip-reference" title="Erba, H. P., Eddy, R., Shows, T., Kedes, L., Gunning, P. &lt;strong&gt;Structure, chromosome location, and expression of the human gamma-actin gene: differential evolution, location, and expression of the cytoskeletal beta- and gamma-actin genes.&lt;/strong&gt; Molec. Cell. Biol. 8: 1775-1789, 1988.">Erba et al. (1988)</a>; <a href="#Kedes1985" class="mim-tip-reference" title="Kedes, L., Ng, S.-Y., Lin, C.-S., Gunning, P., Eddy, R., Shows, T., Leavitt, J. &lt;strong&gt;The human beta-actin multigene family.&lt;/strong&gt; Trans. Assoc. Am. Phys. 98: 42-46, 1985.">Kedes et al. (1985)</a>; <a href="#Nakajima-Iijima1985" class="mim-tip-reference" title="Nakajima-Iijima, S., Hamada, H., Reddy, P., Kakunaga, T. &lt;strong&gt;Molecular structure of the human cytoplasmic beta-actin gene; interspecies homology of sequences in the introns.&lt;/strong&gt; Proc. Nat. Acad. Sci. 82: 6133-6137, 1985.">Nakajima-Iijima et al.
(1985)</a>
</span>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="references"class="mim-anchor"></a>
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
<span class="mim-font">
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">&#9660;</span>
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
<ol>
<li>
<a id="1" class="mim-anchor"></a>
<a id="Atzmony2020" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Atzmony, L., Ugwu, N., Zaki, T. D., Antaya, R. J., Choate, K. A.
<strong>Post-zygotic ACTB mutations underlie congenital smooth muscle hamartomas.</strong>
J. Cutan. Path. 47: 681-685, 2020.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/32170967/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">32170967</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=32170967[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=32170967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/cup.13683" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="2" class="mim-anchor"></a>
<a id="Buxbaum2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Buxbaum, A. R., Wu, B., Singer, R. H.
<strong>Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability.</strong>
Science 343: 419-422, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/24458642/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">24458642</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=24458642[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=24458642" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1242939" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="3" class="mim-anchor"></a>
<a id="Cai2017" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cai, E. D., Sun, B. K., Chiang, A., Rogers, A., Bernet, L., Cheng, B., Teng, J., Rieger, K. E., Sarin, K. Y.
<strong>Postzygotic mutations in beta-actin are associated with Becker's nevus and Becker's nevus syndrome.</strong>
J. Invest. Derm. 137: 1795-1798, 2017.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/28347698/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">28347698</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28347698" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.jid.2017.03.017" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="4" class="mim-anchor"></a>
<a id="Conboy2017" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Conboy, E., Vairo, F., Waggoner, D., Ober, C., Das, S., Dhamija, R., Klee, E. W., Pichurin, P.
<strong>Pathogenic variant in ACTB, p.Arg183Trp, causes juvenile-onset dystonia, hearing loss, and developmental delay without midline malformation.</strong>
Case Rep. Genet. 2017: 9184265, 2017.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/28487785/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">28487785</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=28487785" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1155/2017/9184265" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="5" class="mim-anchor"></a>
<a id="Cuvertino2017" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others.
<strong>ACTB loss-of-function mutations result in a pleiotropic developmental disorder.</strong>
Am. J. Hum. Genet. 101: 1021-1033, 2017.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/29220674/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">29220674</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=29220674[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29220674" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ajhg.2017.11.006" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="6" class="mim-anchor"></a>
<a id="Der Kaloustian2001" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Der Kaloustian, V. M., Pelletier, M., Costa, T., Blackston, D. R., Oudjhane, K.
<strong>A new syndrome with craniofacial and skeletal dysmorphisms and developmental delay.</strong>
Clin. Dysmorph. 10: 87-93, 2001.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11311002/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11311002</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11311002" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1097/00019605-200104000-00003" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="7" class="mim-anchor"></a>
<a id="Di Donato2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., Krause, C., Hackmann, K., Hahn, G., Schrock, E., Verloes, A.
<strong>Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations.</strong>
Europ. J. Hum. Genet. 22: 179-183, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23756437/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23756437</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=23756437[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23756437" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ejhg.2013.130" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="8" class="mim-anchor"></a>
<a id="Erba1988" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Erba, H. P., Eddy, R., Shows, T., Kedes, L., Gunning, P.
<strong>Structure, chromosome location, and expression of the human gamma-actin gene: differential evolution, location, and expression of the cytoskeletal beta- and gamma-actin genes.</strong>
Molec. Cell. Biol. 8: 1775-1789, 1988.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2837653/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2837653</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2837653" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1128/mcb.8.4.1775-1789.1988" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="9" class="mim-anchor"></a>
<a id="Freitas2020" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Freitas, J. L., Vale, T. C., Barsottini, O. G. P., Pedroso, J. L.
<strong>Expanding the phenotype of dystonia-deafness syndrome caused by ACTB gene mutation.</strong>
Mov. Disord. Clin. Pract. 7: 86-87, 2020.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/31970217/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">31970217</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=31970217" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/mdc3.12854" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="10" class="mim-anchor"></a>
<a id="Fryns2000" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Fryns, J.-P., Aftimos, S.
<strong>New MR/MCA syndrome with distinct facial appearance and general habitus, broad and webbed neck, hypoplastic inverted nipples, epilepsy, and pachygyria of the frontal lobes. (Letter)</strong>
J. Med. Genet. 37: 460-462, 2000.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10928857/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10928857</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10928857" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1136/jmg.37.6.460" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="11" class="mim-anchor"></a>
<a id="Gearing2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gearing, M., Juncos, J. L., Procaccio, V., Gutekunst, C.-A., Marino-Rodriguez, E. M., Gyure, K. A., Ono, S., Santoianni, R., Krawiecki, N. S., Wallace, D. C., Wainer, B. H.
<strong>Aggregation of actin and cofilin in identical twins with juvenile-onset dystonia.</strong>
Ann. Neurol. 52: 465-476, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12325076/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12325076</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=12325076[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12325076" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ana.10319" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="12" class="mim-anchor"></a>
<a id="Glinka2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Glinka, M., Herrmann, T., Funk, N., Havlicek, S., Rossoll, W., Winkler, C., Sendtner, M.
<strong>The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons.</strong>
Hum. Molec. Genet. 19: 1951-1966, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20167579/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20167579</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20167579" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1093/hmg/ddq073" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="13" class="mim-anchor"></a>
<a id="Greve2022" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Greve, J. N., Schwabe, F. V., Pokrant, T., Faix, J., Di Donato, N., Taft, M. H., Manstein, D. J.
<strong>Frameshift mutation S368fs in the gene encoding cytoskeletal beta-actin leads to ACTB-associated syndromic thrombocytopenia by impairing actin dynamics.</strong>
Europ. J. Cell Biol. 101: 151216, 2022.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/35313204/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">35313204</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35313204" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/j.ejcb.2022.151216" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="14" class="mim-anchor"></a>
<a id="Guion-Almeida1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Guion-Almeida, M. L., Richieri-Costa, A.
<strong>Acrocallosal syndrome: report of a Brazilian girl.</strong>
Am. J. Med. Genet. 43: 938-941, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1415343/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1415343</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1415343" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/ajmg.1320430606" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="15" class="mim-anchor"></a>
<a id="Guion-Almeida1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Guion-Almeida, M. L., Richieri-Costa, A.
<strong>Frontonasal dysplasia, macroblepharon, eyelid colobomas, ear anomalies, macrostomia, mental retardation, and CNS structural anomalies: a new syndrome?</strong>
Clin. Dysmorph. 8: 1-4, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10327243/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10327243</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10327243" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="16" class="mim-anchor"></a>
<a id="Gunning1983" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Gunning, P., Ponte, P., Okayama, H., Engel, J., Blau, H., Kedes, L.
<strong>Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed.</strong>
Molec. Cell. Biol. 3: 787-795, 1983.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6865942/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6865942</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6865942" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1128/mcb.3.5.787-795.1983" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="17" class="mim-anchor"></a>
<a id="Habets1992" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Habets, G. G. M., van der Kammen, R. A., Willemsen, V., Balemans, M., Wiegant, J., Collard, J. G.
<strong>Sublocalization of an invasion-inducing locus and other genes on human chromosome 7.</strong>
Cytogenet. Cell Genet. 60: 200-205, 1992.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1505215/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1505215</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1505215" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1159/000133336" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="18" class="mim-anchor"></a>
<a id="Hundt2014" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Hundt, N., Preller, M., Swolski, O., Ang, A. M., Mannherz, H. G., Manstein, D. J., Muller, M.
<strong>Molecular mechanisms of disease-related human beta-actin mutations p.R183W and p.E364K.</strong>
FEBS J. 281: 5279-5291, 2014.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25255767/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25255767</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25255767" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1111/febs.13068" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="19" class="mim-anchor"></a>
<a id="Huttelmaier2005" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Huttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng, X., Bassell, G. J., Condeelis, J., Singer, R. H.
<strong>Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1.</strong>
Nature 438: 512-515, 2005.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16306994/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16306994</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16306994" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/nature04115" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="20" class="mim-anchor"></a>
<a id="Ji2007" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ji, Y., Ferracci, G., Warley, A., Ward, M., Leung, K.-Y., Samsuddin, S., Leveque, C., Queen, L., Reebye, V., Pal, P., Gkaliagkousi, E., Seager, M., Ferro, A.
<strong>Beta-actin regulates platelet nitric oxide synthase 3 activity through interaction with heat shock protein 90.</strong>
Proc. Nat. Acad. Sci. 104: 8839-8844, 2007.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17502619/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17502619</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=17502619[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17502619" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.0611416104" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="21" class="mim-anchor"></a>
<a id="Johnston2013" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Johnston, J. J., Wen, K.-K., Keppler-Noreuil, K., McKane, M., Maiers, J. L., Greiner, A., Sapp, J. C., NIH Intramural Sequencing Center, DeMali K. A., Rubenstein, P. A., Biesecker, L. G.
<strong>Functional analysis of a de novo ACTB mutation in a patient with atypical Baraitser-Winter syndrome.</strong>
Hum. Mutat. 34: 1242-1249, 2013.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/23649928/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">23649928</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=23649928[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=23649928" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/humu.22350" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="22" class="mim-anchor"></a>
<a id="Karakozova2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Karakozova, M., Kozak, M., Wong, C. C. L., Bailey, A. O., Yates, J. R, III, Mogilner, A., Zebroski, H., Kashina, A.
<strong>Arginylation of beta-actin regulates actin cytoskeleton and cell motility.</strong>
Science 313: 192-196, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16794040/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16794040</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16794040" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1129344" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="23" class="mim-anchor"></a>
<a id="Kedes1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kedes, L., Ng, S.-Y., Lin, C.-S., Gunning, P., Eddy, R., Shows, T., Leavitt, J.
<strong>The human beta-actin multigene family.</strong>
Trans. Assoc. Am. Phys. 98: 42-46, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3842206/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3842206</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3842206" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
</p>
</div>
</li>
<li>
<a id="24" class="mim-anchor"></a>
<a id="Kusner2002" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Kusner, D. J., Barton, J. A., Wen, K.-K., Wang, X., Rubenstein, P. A., Iyer, S. S.
<strong>Regulation of phospholipase D activity by actin: actin exerts bidirectional modulation of mammalian phospolipase (sic) D activity in a polymerization-dependent, isoform-specific manner.</strong>
J. Biol. Chem. 277: 50683-50692, 2002.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12388543/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12388543</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12388543" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1074/jbc.M209221200" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="25" class="mim-anchor"></a>
<a id="Latham2018" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others.
<strong>Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.</strong>
Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/30315159/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">30315159</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=30315159[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30315159" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/s41467-018-06713-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="26" class="mim-anchor"></a>
<a id="Leavitt1982" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Leavitt, J., Bushar, G., Kakunaga, T., Hamada, H., Hirakawa, T., Goldman, D., Merril, C.
<strong>Variations in expression of mutant beta-actin accompanying incremental increases in human fibroblast tumorigenicity.</strong>
Cell 28: 259-268, 1982.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7199389/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7199389</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7199389" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0092-8674(82)90344-0" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="27" class="mim-anchor"></a>
<a id="Nakajima-Iijima1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Nakajima-Iijima, S., Hamada, H., Reddy, P., Kakunaga, T.
<strong>Molecular structure of the human cytoplasmic beta-actin gene; interspecies homology of sequences in the introns.</strong>
Proc. Nat. Acad. Sci. 82: 6133-6137, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2994062/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2994062</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2994062" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.82.18.6133" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="28" class="mim-anchor"></a>
<a id="Ng1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ng, S.-Y., Gunning, P., Eddy, R., Ponte, P., Leavitt, J., Kedes, L., Shows, T.
<strong>Chromosome 7 assignment of the human beta-actin functional gene (ACTB) and the chromosomal dispersion of pseudogenes. (Abstract)</strong>
Cytogenet. Cell Genet. 40: 712 only, 1985.
</p>
</div>
</li>
<li>
<a id="29" class="mim-anchor"></a>
<a id="Ng1985" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ng, S.-Y., Gunning, P., Eddy, R., Ponte, P., Leavitt, J., Shows, T., Kedes, L.
<strong>Evolution of the functional human beta-actin gene and its multi-pseudogene family: conservation of the noncoding regions and chromosomal dispersion of pseudogenes.</strong>
Molec. Cell. Biol. 5: 2720-2732, 1985.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/3837182/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">3837182</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=3837182" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1128/mcb.5.10.2720-2732.1985" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="30" class="mim-anchor"></a>
<a id="Nunoi1999" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Nunoi, H., Yamazaki, T., Tsuchiya, H., Kato, S., Malech, H. L., Matsuda, I., Kanegasaki, S.
<strong>A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection.</strong>
Proc. Nat. Acad. Sci. 96: 8693-8698, 1999.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10411937/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10411937</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=10411937[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10411937" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.96.15.8693" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="31" class="mim-anchor"></a>
<a id="Procaccio2006" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Procaccio, V., Salazar, G., Ono, S., Styers, M. L., Gearing, M., Davila, A., Jimenez, R., Juncos, J., Gutekunst, C.-A., Meroni, G., Fontanella, B., Sontag, E., Sontag, J. M., Faundez, V., Wainer, B. H.
<strong>A mutation of beta-actin that alters depolymerization dynamics is associated with autosomal dominant developmental malformations, deafness, and dystonia.</strong>
Am. J. Hum. Genet. 78: 947-960, 2006.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16685646/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16685646</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16685646[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16685646" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1086/504271" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="32" class="mim-anchor"></a>
<a id="Ramspacher2022" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ramspacher, J., Carmignac, V., Vabres, P., Mazereeuw-Hautier, J.
<strong>Becker's naevus syndrome with breast aplasia due to postzygotic mutation of ACTB.</strong>
Acta Derm. Venereol. 102: adv00806, 2022.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/35971836/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">35971836</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=35971836[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35971836" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.2340/actadv.v102.1141" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="33" class="mim-anchor"></a>
<a id="Riviere2012" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O'Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others.
<strong>De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.</strong>
Nature Genet. 44: 440-444, 2012.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/22366783/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">22366783</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=22366783[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=22366783" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ng.1091" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="34" class="mim-anchor"></a>
<a id="Sandestig2018" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Sandestig, A., Green, A., Jonasson, J., Vogt, H., Wahlstrom, J., Pepler, A., Ellnebo, K., Biskup, S., Stefanova, M.
<strong>Could dissimilar phenotypic effects of ACTB missense mutations reflect the actin conformational change? Two novel mutations and literature review.</strong>
Molec. Syndromol. 9: 259-265, 2018.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/30733661/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">30733661</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=30733661" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1159/000492267" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="35" class="mim-anchor"></a>
<a id="Skogseid2018" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Skogseid, I. M., Rosby, O., Konglund, A., Connelly, J. P., Nedregaard, B., Jablonski, G. E., Kvernmo, N., Stray-Pedersen, A., Glover, J. C.
<strong>Dystonia-deafness syndrome caused by ACTB p.Arg183Trp heterozygosity shows striatal dopaminergic dysfunction and response to pallidal stimulation.</strong>
J Neurodev. Disord. 10: 17, 2018.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/29788902/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">29788902</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=29788902[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=29788902" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1186/s11689-018-9235-z" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="36" class="mim-anchor"></a>
<a id="Toyama1984" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Toyama, S., Toyama, S.
<strong>A variant form of beta-actin in a mutant of KB cells resistant to cytochalasin B.</strong>
Cell 37: 609-614, 1984.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/6202424/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">6202424</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=6202424" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1016/0092-8674(84)90391-x" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="37" class="mim-anchor"></a>
<a id="Ueyama1996" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Ueyama, H., Inazawa, J., Nishino, H., Ohkubo, I., Miwa, T.
<strong>FISH localization of human cytoplasmic actin genes ACTB to 7p22 and ACTG1 to 17q25 and characterization of related pseudogenes.</strong>
Cytogenet. Cell Genet. 74: 221-224, 1996.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8941379/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8941379</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8941379" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1159/000134420" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="38" class="mim-anchor"></a>
<a id="Vandekerckhove1978" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Vandekerckhove, J., Weber, K.
<strong>Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins.</strong>
Proc. Nat. Acad. Sci. 75: 1106-1110, 1978.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/274701/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">274701</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=274701" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1073/pnas.75.3.1106" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="39" class="mim-anchor"></a>
<a id="Verloes2015" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Verloes, A., Di Donato, N., Masliah-Planchon, J., Jongmans, M., Abdul-Raman, O. A., Albrecht, B., Allanson, J., Brunner, H., Bertola, D., Chassaing, N., David, A., Devriendt, K., and 40 others.
<strong>Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases.</strong>
Europ. J. Hum. Genet. 23: 292-301, 2015.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/25052316/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">25052316</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=25052316[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=25052316" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1038/ejhg.2014.95" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="40" class="mim-anchor"></a>
<a id="Zavala2022" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zavala, L., Ziegler, G., Moron, D. G., Garretto, N.
<strong>Dystonia-deafness syndrome: ACTB pathogenic variant in an Argentinean family.</strong>
Mov. Disord. Clin. Pract. 9: 122-124, 2022.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/35005077/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">35005077</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=35005077" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1002/mdc3.13358" target="_blank">Full Text</a>]
</p>
</div>
</li>
<li>
<a id="41" class="mim-anchor"></a>
<a id="Zhang2010" class="mim-anchor"></a>
<div class="">
<p class="mim-text-font">
Zhang, F., Saha, S., Shabalina, S. A., Kashina, A.
<strong>Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation.</strong>
Science 329: 1534-1537, 2010.
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20847274/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20847274</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=20847274[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20847274" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
[<a href="https://doi.org/10.1126/science.1191701" target="_blank">Full Text</a>]
</p>
</div>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<a id="contributors" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="mim-text-font">
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Hilary J. Vernon - updated : 09/05/2023
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseContributors">
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Cassandra L. Kniffin - updated : 08/21/2023<br>Cassandra L. Kniffin - updated : 08/14/2023<br>Marla J. F. O'Neill - updated : 08/09/2023<br>Cassandra L. Kniffin - updated : 02/27/2018<br>Nara Sobreira - updated : 7/15/2015<br>Ada Hamosh - updated : 3/14/2014<br>Marla J. F. O'Neill - updated : 10/7/2013<br>George E. Tiller - updated : 8/14/2013<br>Ada Hamosh - updated : 4/18/2012<br>Ada Hamosh - updated : 11/2/2010<br>Patricia A. Hartz - updated : 5/29/2008<br>Patricia A. Hartz - updated : 1/16/2008<br>Patricia A. Hartz - updated : 10/4/2006<br>Ada Hamosh - updated : 8/7/2006<br>Victor A. McKusick - updated : 5/15/2006<br>Ada Hamosh - updated : 1/30/2006<br>Mark H. Paalman - edited : 4/18/1997<br>Mark H. Paalman - edited : 4/10/1997
</span>
</div>
</div>
</div>
<div>
<a id="creationDate" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/4/1986
</span>
</div>
</div>
</div>
<div>
<a id="editHistory" class="mim-anchor"></a>
<div class="row">
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
<span class="text-nowrap mim-text-font">
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 10/02/2023
</span>
</div>
</div>
<div class="row collapse" id="mimCollapseEditHistory">
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
alopez : 09/05/2023<br>alopez : 08/24/2023<br>alopez : 08/24/2023<br>ckniffin : 08/21/2023<br>carol : 08/14/2023<br>ckniffin : 08/14/2023<br>alopez : 08/11/2023<br>alopez : 08/10/2023<br>alopez : 08/09/2023<br>alopez : 03/08/2018<br>ckniffin : 02/27/2018<br>carol : 09/29/2015<br>carol : 7/15/2015<br>carol : 7/15/2015<br>alopez : 3/14/2014<br>carol : 10/7/2013<br>tpirozzi : 10/7/2013<br>carol : 8/15/2013<br>tpirozzi : 8/15/2013<br>tpirozzi : 8/15/2013<br>tpirozzi : 8/14/2013<br>carol : 1/2/2013<br>alopez : 4/20/2012<br>alopez : 4/19/2012<br>terry : 4/18/2012<br>alopez : 11/9/2010<br>terry : 11/2/2010<br>carol : 4/28/2010<br>mgross : 6/2/2008<br>terry : 5/29/2008<br>mgross : 1/25/2008<br>terry : 1/16/2008<br>mgross : 10/11/2006<br>terry : 10/4/2006<br>alopez : 8/9/2006<br>terry : 8/7/2006<br>alopez : 5/17/2006<br>terry : 5/15/2006<br>alopez : 1/31/2006<br>alopez : 1/31/2006<br>terry : 1/30/2006<br>mark : 4/18/1997<br>mark : 4/18/1997<br>jenny : 4/10/1997<br>terry : 1/13/1997<br>carol : 7/1/1993<br>supermim : 3/16/1992<br>carol : 2/29/1992<br>supermim : 3/20/1990<br>ddp : 10/26/1989<br>carol : 5/18/1988
</span>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="container visible-print-block">
<div class="row">
<div class="col-md-8 col-md-offset-1">
<div>
<div>
<h3>
<span class="mim-font">
<strong>*</strong> 102630
</span>
</h3>
</div>
<div>
<h3>
<span class="mim-font">
ACTIN, BETA; ACTB
</span>
</h3>
</div>
<div>
<br />
</div>
<div>
<div >
<p>
<span class="mim-font">
<em>Alternative titles; symbols</em>
</span>
</p>
</div>
<div>
<h4>
<span class="mim-font">
BETA-ACTIN<br />
ACTIN, CYTOPLASMIC, 1
</span>
</h4>
</div>
</div>
<div>
<br />
</div>
</div>
<div>
<p>
<span class="mim-text-font">
<strong><em>HGNC Approved Gene Symbol: ACTB</em></strong>
</span>
</p>
</div>
<div>
<p>
<span class="mim-text-font">
<strong>
<em>
Cytogenetic location: 7p22.1
&nbsp;
Genomic coordinates <span class="small">(GRCh38)</span> : 7:5,527,148-5,530,601 </span>
</em>
</strong>
<span class="small">(from NCBI)</span>
</span>
</p>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene-Phenotype Relationships</strong>
</span>
</h4>
<div>
<table class="table table-bordered table-condensed small mim-table-padding">
<thead>
<tr class="active">
<th>
Location
</th>
<th>
Phenotype
</th>
<th>
Phenotype <br /> MIM number
</th>
<th>
Inheritance
</th>
<th>
Phenotype <br /> mapping key
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="5">
<span class="mim-font">
7p22.1
</span>
</td>
<td>
<span class="mim-font">
Baraitser-Winter syndrome 1
</span>
</td>
<td>
<span class="mim-font">
243310
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Becker nevus, syndromic or isolated, somatic mosaic
</span>
</td>
<td>
<span class="mim-font">
604919
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Congenital smooth muscle hamartoma with or without hemihypertrophy, somatic mosaic
</span>
</td>
<td>
<span class="mim-font">
620470
</span>
</td>
<td>
<span class="mim-font">
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Dystonia-deafness syndrome 1
</span>
</td>
<td>
<span class="mim-font">
607371
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
<tr>
<td>
<span class="mim-font">
Thrombocytopenia 8, with dysmorphic features and developmental delay
</span>
</td>
<td>
<span class="mim-font">
620475
</span>
</td>
<td>
<span class="mim-font">
Autosomal dominant
</span>
</td>
<td>
<span class="mim-font">
3
</span>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>TEXT</strong>
</span>
</h4>
<div>
<h4>
<span class="mim-font">
<strong>Description</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>The ACTB gene encodes beta-actin, which is essential for a number of cytoplasmic functions, such as regulation of cell shape and migration, as well as nuclear functions, such as regulation of gene expression, cell division, and proliferation (summary by Cuvertino et al., 2017). </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Cloning and Expression</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>From studies of the amino acid sequence of cytoplasmic and muscle actins, Vandekerckhove and Weber (1978) concluded that mammalian cytoplasmic actins are the products of 2 different genes and differ by many amino acids from muscle actin. In a neoplastic cell line resulting from treatment of cultured human diploid fibroblasts with a chemical mutagen, Leavitt et al. (1982) observed a mutant form of beta-actin. Toyama and Toyama (1984) isolated and characterized lines of KB cells resistant to cytochalasin B. They found that one resistant line had an alteration in beta-actin. Such cells bound less cytochalasin B than did parental KB cells. The authors suggested that the primary site of action of cytochalasin B on cell motility processes is beta-actin. </p><p>Using chick beta-actin cDNA as probe, Gunning et al. (1983) cloned beta-actin and gamma-actin (ACTG1; 102560) from a fibroblast cDNA library. They noted that the N-terminal methionine is posttranslationally removed from the mature beta- and gamma-actin proteins. </p><p>In embryonic mouse tissue at day 14, Cuvertino et al. (2017) found prominent expression of the Actb gene in cortical neurons and choroid plexus epithelia in the brain, in differentiating tubules of the metanephric kidney, and in the epicardium, endocardium, and muscle in the outflow tract of the heart. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Structure</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Latham et al. (2018) stated that the ACTB gene contains 6 exons. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Mapping</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Ng et al. (1985) assigned the ACTB gene to 7pter-q22 by Southern blot analysis of DNA from somatic cell hybrids. Habets et al. (1992) generated hybrids that harbor only specific regions of human chromosome 7 and assigned the ACTB locus to 7p15-p12. </p><p>Ueyama et al. (1996) used fluorescence in situ hybridization to map ACTB to 7p22. By PCR of somatic cell hybrid DNAs, they mapped 4 ACTB pseudogenes to other chromosomes. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Gene Function</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p>Interaction of phospholipase D (see PLD1; 602382) with actin microfilaments regulates cell proliferation, vesicle trafficking, and secretion. Kusner et al. (2002) found that highly purified globular actin (G-actin) inhibited both basal and stimulated PLD1 activity, whereas filamentous actin (F-actin) had the opposite effect. Actin-induced modulation of PLD1 activity was independent of the activating stimulus. The effects of actin on PLD1 were isoform-specific: human platelet actin, which exists in a 5:1 ratio of beta- and gamma-actin, was only 45% as potent and 40% as efficacious as rabbit skeletal muscle alpha-actin. </p><p>Localization of beta-actin mRNA to sites of active actin polymerization modulates cell migration during embryogenesis, differentiation, and possibly carcinogenesis. This localization requires the oncofetal protein ZBP1 (608288), which binds to a conserved 54-nucleotide element in the 3-prime untranslated region of the beta-actin mRNA known as the 'zipcode.' ZBP1 promotes translocation of the beta-actin transcript to actin-rich protrusions in primary fibroblasts and neurons. Huttelmaier et al. (2005) showed that chicken ZBP1 modulates the translation of beta-actin mRNA. ZBP1 associates with the beta-actin transcript in the nucleus and prevents premature translation in the cytoplasm by blocking translation initiation. Translation occurs only when the ZBP1-RNA complex reaches its destination at the periphery of the cell. At the endpoint of mRNA transport, the protein kinase Src (190090) promotes translation by phosphorylating a key tyrosine residue in ZBP1 that is required for binding to RNA. These sequential events provide both temporal and spatial control over beta-actin mRNA translation, which is important for cell migration and neurite outgrowth. </p><p>In immunoprecipitation studies of embryonic fibroblasts from wildtype and knockout mice deficient in the arginylation enzyme Ate1 (607103), Karakozova et al. (2006) found that approximately 40% of intracellular beta-actin is arginylated in vivo. In both wildtype and Ate1-null cells beta-actin was stable, suggesting that arginylation does not induce beta-actin degradation. Karakozova et al. (2006) found that arginylation of beta-actin regulates cell motility. The majority of Ate1-null cells appeared smaller than wildtype cells and were apparently unable to form a lamella during movement along the substrate. In addition, Ate1-null cells exhibited apparent defects in ruffling activity and cortical flow. Karakozova et al. (2006) concluded that arginylation of beta-actin apparently represents a critical step in the actin N-terminal processing needed for actin functioning in vivo. </p><p>Nitric oxide (NO) is a paracrine mediator of vascular and platelet function that is produced in the vasculature by NO synthase-3 (NOS3; 163729). Using human platelets, Ji et al. (2007) demonstrated that polymerization of beta-actin regulated the activation state of NOS3, and hence NO formation, by altering its binding to heat-shock protein-90 (HSP90, or HSPCA; 140571). NOS3 bound the globular, but not the filamentous, form of beta-actin, and the affinity of NOS3 for globular beta-actin was, in turn, increased by HSP90. Formation of this ternary complex of NOS3, globular beta-actin, and HSP90 increased NOS activity and cyclic GMP, an index of bioactive NO, and increased the rate of HSP90 degradation, thus limiting NOS3 activation. Ji et al. (2007) concluded that beta-actin regulates NO formation and signaling in platelets. </p><p>The mammalian cytoskeletal proteins beta- and gamma-actin are highly homologous, but only beta-actin is N-terminally arginylated in vivo, which regulates its function. Zhang et al. (2010) examined the metabolic fate of exogenously expressed arginylated and nonarginylated actin isoforms. Arginylated gamma-actin, unlike beta-actin, was highly unstable and was selectively ubiquitinated and degraded in vivo. This instability was regulated by the differences in the nucleotide coding sequence between the 2 actin isoforms, which conferred different translation rates. Gamma-actin was translated more slowly than beta-actin, and this slower processing resulted in the exposure of a normally hidden lysine residue for ubiquitination, leading to the preferential degradation of gamma-actin upon arginylation. Zhang et al. (2010) suggested that this degradation mechanism, coupled to nucleotide coding sequence, may regulate protein arginylation in vivo. </p><p>Glinka et al. (2010) noted that the beta-actin mRNA binding protein HNRNPR (607201) has been identified as a partner of the survival motor neuron protein (SMN1; 600354) that is deficient in spinal muscular atrophy. They reported that hnRNPR and beta-actin mRNA colocalized in axons. Recombinant hnRNPR interacted directly with the 3-prime UTR of beta-actin mRNA. Suppression of hnRNPR in developing zebrafish embryos resulted in reduced axon growth in spinal motor neurons, without any alteration in motor neuron survival. ShRNA-mediated knockdown in isolated embryonic mouse motor neurons reduced beta-actin mRNA translocation to the axonal growth cone, which was paralleled by reduced axon elongation. Dendrite growth and neuronal survival were not affected by hnRNPR depletion in these neurons. The loss of beta-actin mRNA in axonal growth cones of hnRNPR-depleted motor neurons resembled that observed in Smn-deficient motor neurons, a model for the human disease spinal muscular atrophy. In particular, hnRNPR-depleted motor neurons also exhibited defects in presynaptic clustering of voltage-gated calcium channels. Glinka et al. (2010) suggested that hnRNPR-mediated axonal beta-actin mRNA translocation may play an essential physiologic role in axon growth and presynaptic differentiation. </p><p>Buxbaum et al. (2014) used single-molecule in situ hybridization to demonstrate that dendritic beta-actin mRNA and ribosomes are in a masked, neuron-specific form. Chemically induced long-term potentiation prompts transient mRNA unmasking, which depends on factors active during synaptic activity. Ribosomes and single beta-actin mRNA motility increase after stimulation, indicative of release from complexes. Buxbaum et al. (2014) argued that their single-molecule assays allow for the quantification of activity-induced unmasking and availability for active translation, and that their work demonstrates that beta-actin mRNA and ribosomes are in a masked state that is alleviated by stimulation. </p><p><strong><em>Pseudogenes</em></strong></p><p>
Ng et al. (1985, 1985) showed that there are about 20 pseudogenes widely distributed in the genome. ACTBP1 is on Xq13-q22; ACTBP2, on chromosome 5; ACTBP3, on chromosome 18; ACTBP4, on chromosome 5 and ACTBP5, on 7q22-7qter. All have been mapped in somatic cell hybrids by use of DNA clones. </p>
</span>
<div>
<br />
</div>
<div>
<h4>
<span class="mim-font">
<strong>Molecular Genetics</strong>
</span>
</h4>
</div>
<span class="mim-text-font">
<p><strong><em>Dystonia-Deafness Syndrome 1</em></strong></p><p>
In the monozygotic twins reported by Gearing et al. (2002) with dystonia-deafness syndrome-1 (DDS1; 607371), Procaccio et al. (2006) identified a heterozygous missense mutation in the ACTB gene (R183W; 102630.0001). The disease phenotype included developmental midline malformations, sensory hearing loss, and a delayed-onset generalized dystonia syndrome. Cellular studies of a lymphoblastoid cell line obtained from an affected patient demonstrated morphologic abnormalities of the actin cytoskeleton and altered actin depolymerization dynamics in response to latrunculin A, an actin monomer-sequestering drug. Resistance to latrunculin A was also observed in NIH 3T3 cells expressing the mutant actin. These findings suggested that mutations in nonmuscle actins may be associated with a broad spectrum of developmental malformations and/or neurologic abnormalities such as dystonia. Riviere et al. (2012) suggested that this report should be interpreted with caution given the absence of replication studies and unavailability of parental DNA. </p><p>In a 15-year-old boy, born of consanguineous Hutterite parents, with DDS1, Conboy et al. (2017) identified a de novo heterozygous R183W mutation in the ACTB gene. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was not present in several public databases, including the Exome Sequencing Project and ExAC databases. Functional studies of the variant and studies of patient cells were not performed. </p><p>In a 22-year-old woman with DDS1, Skogseid et al. (2018) identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed. </p><p>In a 52-year-old Brazilian woman with DDS1, Freitas et al. (2020) identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing. Functional studies of the variant and studies of patient cells were not performed. </p><p>In a 34-year-old Argentinian woman with DDS1, Zavala et al. (2022) identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed. </p><p><strong><em>Baraitser-Winter Syndrome 1</em></strong></p><p>
Riviere et al. (2012) identified heterozygous missense mutations in 10 of 18 patients with Baraitser-Winter syndrome-1 (BRWS1; 243310). In all cases in which parental DNA was available, the mutation was shown to have occurred de novo. Seven of the 10 patients carried a recurrent arg196-to-his mutation (R1906H; 102630.0002). One carried a different mutation at the same codon, arg196-to-cys (102630.0003), and the other 2 patients carried different de novo missense mutations in the ACTB gene (102630.0004-102630.0005). </p><p>In a 7-year-old girl with atypical Baraitser-Winter syndrome-1, who did not exhibit lissencephaly or seizures, Johnston et al. (2013) identified a de novo missense mutation in the ACTB gene (E117K; 102630.0006). </p><p>In 3 patients with a diagnosis of Fryns-Aftimos syndrome, Di Donato et al. (2014) identified mutations in the ACTB gene; see, e.g., R196C (102630.0003), a recurrent mutation in patients with BRWS, and T120I (102630.0007). On the basis of the ACTB mutations and analysis of the clinical findings, the authors reclassified the diagnosis of these patients as severe BRWS. In 2 patients with a severe BRWS phenotype, who were previously diagnosed with cerebrofrontofacial syndrome (Guion-Almeida and Richieri-Costa, 1992; Guion-Almeida and Richieri-Costa, 1999), Verloes et al. (2015) identified the T120I mutation. Verloes et al. (2015) suggested that this mutation is associated with a severe phenotype. </p><p>In 3 unrelated patients (XXIV, XXV, and XXVI) with a pleiotropic developmental disorder similar to BRWS1, Cuvertino et al. (2017) identified de novo heterozygous loss-of-function frameshift or nonsense mutations in the ACTB gene (102630.0008-102630.0010), consistent with haploinsufficiency. Cuvertino et al. (2017) also reported 30 patients from 23 unrelated families with a similar pleiotropic developmental disorder associated with heterozygous larger deletions of chromosome 7p22, all of which included or putatively affected the ACTB gene as well as additional genes. The deletions, which had different breakpoints, ranged from 0.08 to 3.64 Mb in size, and ACTB was the only gene deleted within the minimal critical region. Cells from 4 patients with larger deletions showed reduced ACTB transcript levels compared to controls. Although cytoplasmic levels of beta-actin protein in patient fibroblasts were similar to controls, the ACTB-deficient cells were significantly more circular compared to control cells; ACTB-deficient cells also showed impaired migration in an in vitro wound assay. Similar results were obtained in control fibroblasts using siRNA-mediated ACTB gene silencing. Cells derived from deletion patients showed decreased nuclear ACTB protein levels, abnormal regulation and expression of genes involved in the cell cycle, and decreased cellular proliferation. Cuvertino et al. (2017) noted that the partial overlap of phenotypes of individuals with BRWS resulting from heterozygous ACTB missense mutations and those resulting from loss-of-function mutations suggested that the disorder may result not only from a postulated gain-of-function mechanism, as suggested by Riviere et al. (2012), but might also include effects resulting from a loss-of-function or dominant-negative mechanism. The findings suggested that the phenotype resulted from haploinsufficiency of the ACTB gene, which plays a role in development, particularly of the brain, heart, and kidney. </p><p><strong><em>Becker Nevus Syndrome and Becker Nevi</em></strong></p><p>
In a 13-year-old girl with Becker nevus syndrome (BNS; 604919), Cai et al. (2017) performed exome sequencing of affected and nonaffected skin and identified heterozygosity for a missense mutation in the ACTB gene (R147C; 102630.0011) in lesional skin that was absent from adjacent normal skin. Analysis of 22 nonsyndromic Becker nevi (BN) revealed that 13 contained a point mutation involving the same codon, including 10 with the R147C substitution and 3 with an R147S substitution (102630.0012). Functional analysis in transfected C2C12 myoblast cells suggested a trend towards increased Hedgehog (see 600726) pathway signaling. The authors hypothesized that Becker nevus syndrome may reflect a mutation earlier in development, affecting multiple cell lineages, compared with isolated Becker nevus. </p><p>In affected skin from a 17-year-old French girl with Becker nevus syndrome, Ramspacher et al. (2022) identified heterozygosity for a postzygotic mutation, the previously reported R147C substitution. </p><p><strong><em>Congenital Smooth Muscle Hamartoma with or without Hemihypertrophy</em></strong></p><p>
In fibroblasts cultured from affected skin of a 2-year-old boy with segmental congenital smooth muscle hamartoma and hemihypertrophy (CSMH; 620470), Atzmony et al. (2020) sequenced the ACTB gene and identified a previously reported postzygotic missense mutation, R147S, which was not found in keratinocytes from the same lesion or in patient saliva. The authors analyzed another 12 samples of CSMHs and identified somatic hotspot mutations in the ACTB gene in 8 samples, including the previously reported R147S mutation and recurrent mutations at residue G146: G146A (102630.0013), G146V (102630.0014), G146D (102630.0015), and G146S (102630.0016) The authors suggested that dissimilarities between Becker nevi and CSMHs might be determined by intrauterine environmental factors, mutation lineage or timing, and/or modifier genes. </p><p><strong><em>Thrombocytopenia 8 with Dysmorphic Features and Developmental Delay</em></strong></p><p>
In 6 patients from 4 unrelated families with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; 620475), Latham et al. (2018) identified heterozygous mutations affecting exons 5 and 6 of the ACTB gene (see, e.g,. 102630.0018-102630.0020). The mutations were found by trio-based whole-exome sequencing and confirmed by Sanger sequencing. Two mutations were inherited from mildly affected parents and 2 occurred de novo. There was 1 missense variant in exon 5 (M313R), 1 in-frame deletion in exon 6, 1 frameshift in exon 6, and 1 frameshift with protein extension in exon 6. The mutations in exon 6 affected the conserved SD1 domain, which is important for interactions with actin-binding proteins (ABPs). Studies of fibroblasts and platelets derived from affected members of 2 families showed decreased ACTB levels compared to controls. Patient-derived fibroblasts were small and demonstrated impaired migration speed, trajectories, and displacement area compared to controls. There was compensatory upregulation of ACTG1 (102560) and ACTA2 (102620) expression, and ACTB filaments bundled into abnormally thick fibers that incorporated ACTA2. Patient fibroblasts also showed increased recruitment of ABPs associated with macrothrombocytopenia phenotypes (see, e.g. ACTN1, 102575). Patient-derived platelets, which were frequently enlarged, showed abnormal microtubule organization patterns at the platelet cortex. Abnormal microtubule organization patterns were also observed in patient megakaryocytes. The findings suggested that the ACTB mutations inhibit the final stages of platelet maturation by perturbing membrane-associated cytoskeletal filaments. </p><p>Latham et al. (2018) referred to the report of Nunoi et al. (1999), who described a 15-year-old Japanese girl with THC8 associated with a heterozygous missense mutation in exon 6 of the ACTB gene (E364K; 102630.0017). Studies of patient B cells showed that although the mutant actin was able to polymerize and depolymerize normally, it had decreased binding efficiency to profilin (see PFN1, 176610). The authors postulated a dominant-negative effect. Although dysmorphic features were not noted in the original report of this child, Latham et al. (2018) stated that the phenotype in this patient was consistent with the disorder described by them. </p><p>In a 4-year-old Swedish girl with THC8, Sandestig et al. (2018) identified a de novo heterozygous missense mutation in the ACTB gene (L171F; 102630.0021). The mutation was found by trio-based whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed, but the authors noted that the mutation affects a domain involved in interactions with actin-binding proteins. </p><p><strong><em>Exclusion Studies</em></strong></p><p>
Verloes et al. (2015) screened a cohort of 95 B-cell acute lymphocytic leukemia (ALL) samples and identified no somatic ACTB mutations. </p>
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>ALLELIC VARIANTS</strong>
</span>
<strong>21 Selected Examples):</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0001 &nbsp; DYSTONIA-DEAFNESS SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, ARG183TRP
<br />
SNP: rs104894003,
ClinVar: RCV000019937, RCV000503778, RCV000624662, RCV000680718, RCV001533046
</span>
</div>
<div>
<span class="mim-text-font">
<p>In the twins with dystonia-deafness syndrome-1 (DDS1; 607371) originally described by Gearing et al. (2002), Procaccio et al. (2006) detected a heterozygous arg183-to-trp (R183W) mutation in the ACTB gene. The amino acid substitution was the result of a c.547C-T transition in exon 4. The constellation of malformations exhibited by the patients resembled Opitz syndrome (300000), but no mutations were found in the MID1 gene (300552) and no evidence was found for involvement of genes causing the autosomal form of Opitz syndrome. No mutations in ACTB were identified in the mother and 2 half brothers. Paternal samples were not available for analysis. Riviere et al. (2012) suggested that this report should be interpreted with caution given the absence of replication studies and unavailability of parental DNA. </p><p>In a 15-year-old boy, born of consanguineous Hutterite parents, with DDS1, Conboy et al. (2017) identified a de novo heterozygous R183W mutation in the ACTB gene. The mutation, which was found by whole-exome sequencing and confirmed by Sanger sequencing, was not present in several public databases, including the Exome Sequencing Project and ExAC databases. Functional studies of the variant and studies of patient cells were not performed. </p><p>In a 22-year-old woman with DDS1, Skogseid et al. (2018) identified heterozygosity for the c.547C-T transition (c.547C-T, NM_001101.3) in exon 4 of the ACTB gene resulting in an R183W mutation. The mutation, which was identified by whole-exome sequencing and confirmed with Sanger sequencing, was not present in the patient's mother. The father was not available for testing. Functional studies of the variant and studies of patient cells were not performed. </p><p>In a 52-year-old Brazilian woman with DDS1, Freitas et al. (2020) identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing. Functional studies of the variant and studies of patient cells were not performed. </p><p>In a 34-year-old Argentinian woman with DDS1, Zavala et al. (2022) identified heterozygosity for the R183W mutation in the ACTB gene. The mutation was identified by whole-exome sequencing and confirmed by Sanger sequencing. The patient had similarly affected family members, including her deceased mother and a deceased sib, who did not undergo genetic testing. Functional studies of the variant and studies of patient cells were not performed. </p><p><strong><em>Variant Function</em></strong></p><p>
Hundt et al. (2014) found that the R183W mutation increased the affinity of ACTB to DNase1 and resulted in slower filament growth, higher ATP hydrolysis, and faster depolymerization compared to wildtype, resulting in impaired formation of long stable filaments. The mutation also impaired the interaction of ACTB with MYH9 (160775). The findings suggested that the mutation induced a closed-state conformation. Hundt et al. (2014) stated that the mutation results in a gain-of-function effect. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0002 &nbsp; BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, ARG196HIS
<br />
SNP: rs281875334,
ClinVar: RCV000022439, RCV000059721, RCV004018661
</span>
</div>
<div>
<span class="mim-text-font">
<p>In 7 of 10 patients with Baraitser-Winter syndrome-1 (BRWS1; 243310), Riviere et al. (2012) identified a heterozygous G-to-A transition at nucleotide 587 of the ACTB gene, resulting in an arg-to-his substitution at codon 196 (R196H). In 2 patients from whom parental DNA was available the mutation was determined to have occurred de novo. This mutation was not identified in 212 other exomes. Lymphoblastoid cell lines established from patients carrying this mutation had greatly increased F-actin content and multiple, anomalous F-actin-rich, filopodia-like protrusions compared to control cells, resulting in an increased cell perimeter. </p><p>One of the patients found by Riviere et al. (2012) to carry the R196H mutation had been described by Fryns and Aftimos (2000) as patient 1 in the original report of Fryns-Aftimos syndrome. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0003 &nbsp; BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, ARG196CYS
<br />
SNP: rs281875333,
ClinVar: RCV000022440, RCV000059720
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an individual with Baraitser-Winter syndrome-1 (BRWS1; 243310), Riviere et al. (2012) identified a heterozygous C-to-T transition at nucleotide 586 of the ACTB gene, resulting in an arg-to-cys substitution at codon 196 (R196C). This mutation was not found in 214 other exomes. </p><p>In a patient (patient 3) with a severe BRWS1 phenotype, previously reported by Der Kaloustian et al. (2001), Di Donato et al. (2014) identified a c.586C-T transition (c.586C-T, NM_001101.3) in the ACTB gene, resulting in the R196C mutation. They noted that the patient with the R196C mutation reported by Riviere et al. (2012) had a mild form of the disorder. Di Donato et al. (2014) suggested that the more severe phenotype in their patient may be due to an unknown genetic modifier that has an impact on the clinical severity and malformation spectrum. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0004 &nbsp; BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, LEU65VAL
<br />
SNP: rs281875332,
ClinVar: RCV000022441, RCV000059718
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient with Baraitser-Winter syndrome-1 (BRWS1; 243310), Riviere et al. (2012) identified a de novo mutation, a heterozygous C-to-G transversion at nucleotide 193 of the ACTB gene resulting in a leu-to-val substitution at codon 65 (L65V). This mutation was not identified in 244 other exomes. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0005 &nbsp; BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, ASN12ASP
<br />
SNP: rs281875331,
ClinVar: RCV000022442, RCV000059719
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient with Baraitser-Winter syndrome-1 (BRWS1; 243310), Riviere et al. (2012) identified a de novo mutation, a heterozygous A-to-G transition at nucleotide 34 of the ACTB gene resulting in an asn-to-asp substitution at codon 12 (N12D). This mutation was not identified in 24 other exomes. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0006 &nbsp; BARAITSER-WINTER SYNDROME 1, ATYPICAL</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, GLU117LYS
<br />
SNP: rs397515470,
ClinVar: RCV000056289, RCV003441738
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 7-year-old girl with atypical Baraitser-Winter syndrome-1 (243310), who had microcephaly, intellectual disability, and facial dysmorphism but no lissencephaly or seizures, Johnston et al. (2013) identified heterozygosity for a de novo c.349G-A transition in the ACTB gene, resulting in a glu117-to-lys (E117K) substitution. The mutation was not present in either of her unaffected parents. Patient lymphocytes demonstrated significantly decreased ability to adhere to a fibronectin-coated surface and formed few actin-rich protrusions compared to the parents' lymphocytes. Studies in yeast showed virtually complete loss of normal polarization of the cytoskeleton with the mutant, and mutant cells were almost completely resistant to the depolymerizing agent latrunculin A, suggesting that E117K might result in strengthened actin monomer-monomer interactions and increased filament stability. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0007 &nbsp; BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, THR120ILE
<br />
SNP: rs587779774,
ClinVar: RCV000133571, RCV002055273
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a patient (patient 1) with a severe form of Baraitser-Winter syndrome-1 (BRWS1; 243310), who was previously diagnosed with Fryns-Aftimos syndrome, Di Donato et al. (2014) identified a c.359C-T transition (c.359C-T, NM_001101.3) in the ACTB gene, resulting in a thr120-to-ile (T120I) substitution. The mutation was not found in the dbSNP or Exome Variant Server databases. </p><p>In 2 patients with severe Baraitser-Winter syndrome-1 (BRWS1; 243310), who were previously diagnosed with cerebrofrontofacial syndrome (Guion-Almeida and Richieri-Costa, 1992; Guion-Almeida and Richieri-Costa, 1999), Verloes et al. (2015) identified the T120I mutation. Verloes et al. (2015) suggested that this mutation is associated with a more severe BRWS phenotype. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0008 &nbsp; BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, 1-BP DUP, 1097G
<br />
SNP: rs1554329078,
ClinVar: RCV000585890, RCV000624638
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 12-year-old boy (patient XXIV) with Baraitser-Winter syndrome-1 (BRWS1; 243310), Cuvertino et al. (2017) identified a de novo heterozygous 1-bp duplication (c.1097dupG, NM_001101.3) in exon 6 of the ACTB gene, predicted to result in a frameshift (Ser368LeufsTer13). The mutation, which was found by exome sequencing of a cohort of 4,293 trios in which the offspring had a developmental disorder, was predicted to escape nonsense-mediated mRNA decay, and to result in a loss of function and haploinsufficiency of the ACTB gene. </p><p>Greve et al. (2022) noted that the mutation results in an altered C-terminal region of ACTB that includes replacement of the last 8 residues and elongation of the molecule by 4 residues. A different mutation in the ACTB gene (102630.0020) results in the same protein alteration. In vitro studies showed that the mutation perturbed the interaction of ACTB with profilin-1 (176610) and impaired actin dynamics. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0009 &nbsp; BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, LYS373TER
<br />
SNP: rs1554329068,
ClinVar: RCV000585888
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 14-year-old girl (patient XXV) with Baraitser-Winter syndrome-1 (BRWS1; 243310), Cuvertino et al. (2017) identified a de novo heterozygous c.1117A-T transversion (c.1117A-T, NM_001101.3) in exon 6 of the ACTB gene, resulting in a lys373-to-ter (K373X) substitution. The mutation, which was found by exome sequencing of a cohort of 4,293 trios in which the offspring had a developmental disorder, was predicted to escape nonsense-mediated mRNA decay, and to result in loss of function and haploinsufficiency of the ACTB gene. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0010 &nbsp; BARAITSER-WINTER SYNDROME 1</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, 1-BP DEL, 329T
<br />
SNP: rs1554329523,
ClinVar: RCV000585889, RCV003238783
</span>
</div>
<div>
<span class="mim-text-font">
<p>In an 18-year-old man (patient XXVI) with Baraitser-Winter syndrome-1 (BRWS1; 243310), Cuvertino et al. (2017) identified a de novo heterozygous 1-bp deletion (c.329delT, NM_001101.3) in exon 3 of the ACTB gene, predicted to result in a frameshift and premature termination (Leu110ArgfsTer10). The mutation, which was found by exome sequencing of a cohort of 4,293 trios in which the offspring had a developmental disorder, was predicted to result in a loss of function and haploinsufficiency of the ACTB gene. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0011 &nbsp; BECKER NEVUS SYNDROME, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
BECKER NEVUS, SOMATIC, MOSAIC, INCLUDED<br />
CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
ACTB, ARG147CYS
<br />
SNP: rs2128241302,
ClinVar: RCV001814893, RCV003320379, RCV003320380, RCV003320381
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Becker Nevus Syndrome and Becker Nevus</em></strong></p><p>
In a 13-year-old girl with Becker nevus syndrome (BNS; 604919), Cai et al. (2017) performed exome sequencing of affected and nonaffected skin and identified heterozygosity for a c.439C-T transition, resulting in an arg147-to-cys (R147C) substitution in lesional skin that was absent from adjacent normal skin. The variant, which affects a highly conserved residue, was not found in the COSMIC, ExAC, or EVS databases. Analysis of 22 nonsyndromic Becker nevi (BN) revealed that 13 contained a point mutation involving the same codon, including 10 with the R147C substitution and 3 with an R147S substitution (102630.0012). Functional analysis in transfected C2C12 myoblast cells suggested a trend towards increased Hedgehog (see 600726) pathway signaling. The authors hypothesized that Becker nevus syndrome may reflect a mutation earlier in development, affecting multiple cell lineages, compared with isolated Becker nevus. </p><p><strong><em>Congenital Smooth Muscle Hamartoma</em></strong></p><p>
In affected skin from the left lower back of a 1-year-old girl (MOS4) with congenital smooth muscle hamartoma (CSMH; 620470), Atzmony et al. (2020) identified heterozygosity for the previously reported R147C somatic missense mutation in the ACTB gene. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0012 &nbsp; BECKER NEVUS, ISOLATED, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
CONGENITAL SMOOTH MUSCLE HAMARTOMA WITH HEMIHYPERTROPHY, SOMATIC, MOSAIC, INCLUDED
</span>
</div>
<div>
<span class="mim-text-font">
ACTB, ARG147SER
<br />
SNP: rs2128241302,
ClinVar: RCV001849711, RCV003320383, RCV003320384
</span>
</div>
<div>
<span class="mim-text-font">
<p />
<p><strong><em>Becker Nevus</em></strong></p><p>
In 3 Becker nevi (BN; 604919) specimens, Cai et al. (2017) identified heterozygosity for a c.439C-A transversion, resulting in an arg147-to-ser (R147S) substitution at a highly conserved residue. The variant was not found in the COSMIC, ExAC, or EVS databases. Functional analysis in transfected C2C12 myoblast cells suggested a trend towards increased Hedgehog (see 600726) pathway signaling. </p><p><strong><em>Congenital Smooth Muscle Hamartoma With Hemihypertrophy</em></strong></p><p>
In fibroblasts cultured from affected skin of a 2-year-old boy (MOS1) who had congenital smooth muscle hamartoma with hemihypertrophy of the right upper limb and back (CSMH; 620470), Atzmony et al. (2020) identified heterozygosity for a somatic R147S mutation in the ACTB gene. The variant was not found in keratinocytes from the same lesion or in patient saliva. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0013 &nbsp; CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, GLY146ALA
<br />
SNP: rs2128241303,
ClinVar: RCV001849713, RCV003320385
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected skin from the back of a 5-month-old boy (MOS7) and an 8-month-old boy (MOS13) with congenital smooth muscle hamartoma (CSMH; 620470), Atzmony et al. (2020) identified heterozygosity for a somatic c.437G-C transversion at a mutation hotspot in the ACTB gene, resulting in a gly146-to-ala (G146A) substitution. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0014 &nbsp; CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, GLY146VAL
<br />
ClinVar: RCV003320402
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected skin from the left back of a 2-year-old boy (MOS8) with congenital smooth muscle hamartoma (CSMH; 620470), Atzmony et al. (2020) identified heterozygosity for a somatic c.437G-T transversion at a mutation hotspot in the ACTB gene, resulting in a gly146-to-val (G146V) substitution. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0015 &nbsp; CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, GLY146ASP
<br />
ClinVar: RCV003320403
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected skin from the right upper arm of a 1-year-old boy (MOS9) with congenital smooth muscle hamartoma (CSMH; 620470), Atzmony et al. (2020) identified heterozygosity for a somatic c.437G-A transition at a mutation hotspot in the ACTB gene, resulting in a gly146-to-asp (G146D) substitution. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0016 &nbsp; CONGENITAL SMOOTH MUSCLE HAMARTOMA, SOMATIC, MOSAIC</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, GLY146SER
<br />
SNP: rs2128241304,
ClinVar: RCV001849714, RCV003320386
</span>
</div>
<div>
<span class="mim-text-font">
<p>In affected skin from the right thigh of a 1-year-old girl (MOS10) with congenital smooth muscle hamartoma (CSMH; 620470), Atzmony et al. (2020) identified heterozygosity for a somatic c.436G-A transition at a mutation hotspot in the ACTB gene, resulting in a gly146-to-ser (G146S) substitution. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0017 &nbsp; THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, GLU364LYS
<br />
SNP: rs368352689,
gnomAD: rs368352689,
ClinVar: RCV000202367, RCV001789615, RCV003324520
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 15-year-old Japanese girl with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; 620475), Nunoi et al. (1999) identified a heterozygous c.1174G-A transition in exon 6 of the ACTB gene, resulting in a glu364-to-lys (E364K) substitution at a conserved residue in a domain important for binding to actin-regulatory molecules. Studies of patient B cells showed that although the mutant actin was able to polymerize and depolymerize normally, it had decreased binding efficiency to profilin (see PFN1, 176610). The authors postulated a dominant-negative effect. In addition to thrombocytopenia, the patient had recurrent infections associated with neutrophil dysfunction (impaired chemotaxis and superoxide generating ability), leukopenia, developmental delay with impaired intellectual development, skin photosensitivity, and short stature. She died of sepsis at 15 years of age. Although dysmorphic features were not noted in the original report of this child, Latham et al. (2018) stated that the phenotype in this patient was consistent with THC8. Latham et al. (2018) referred to this mutation as c.1090G-A (c.1090G-A, NM_001101.3). </p><p><strong><em>Variant Function</em></strong></p><p>
Hundt et al. (2014) found that the E364K mutation increased the affinity of ACTB to DNase1 and reduced the exchange of nucleotides. Their studies indicated that mutation caused only minor effects on profilin affinity. Molecular modeling suggested that E364K acts as an allosteric trigger leading to preferred formation of ACTB in the closed state. Hundt et al. (2014) stated that the mutation results in a gain-of-function effect. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0018 &nbsp; THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, 17-BP DEL, NT992
<br />
ClinVar: RCV003324594
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 5.5-year-old boy (P3) and his 31-year-old mother (P4) (family B) of central European ancestry with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; 620475), Latham et al. (2018) identified a heterozygous 17-bp deletion (c.992_1008del, NM_001101.3) in exon 6 (the last exon) of the ACTB gene, resulting in a frameshift and premature termination (Ala331ValfsTer27) in the SD1 domain, which is important for interactions with actin-binding proteins (ABPs). The mutation was found by whole-exome sequencing and confirmed by Sanger sequencing. The mutation did not result in nonsense-mediated mRNA decay and a C-terminal frameshift peptide was detected, but overall ACTB protein levels were decreased in patient fibroblasts. Patient-derived fibroblasts were smaller than controls and showed decreased migration speed, trajectories, and displacement area compared to controls. There was compensatory upregulation of ACTG1 (102560) and ACTA2 (102620) expression, and ACTB filaments bundled into abnormally thick fibers that incorporated ACTA2. Patient fibroblasts also showed increased recruitment of ABPs associated with macrothrombocytopenia phenotypes (see, e.g., ACTN1, 102575). Patient-derived platelets, which were frequently enlarged, showed decreased ACTB protein levels and abnormal microtubule organization patterns at the platelet cortex. Similar microtubular disorganization abnormalities were observed in patient megakaryocytes, suggesting that the ACTB mutation inhibits the final stages of platelet maturation by perturbing membrane-associated cytoskeletal filaments. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0019 &nbsp; THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, 12-BP DEL, NT1012
<br />
ClinVar: RCV003324595
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 5-year-old boy (P5, family C) of central European ancestry with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; 620475), Latham et al. (2018) identified a de novo heterozygous 12-bp in-frame deletion (c.1012_1023del, NM_001101.3) in exon 6 (the last exon) of the ACTB gene, resulting in the deletion of residues 338-341 (Ser338_Ile341del) within the SD1 domain. The mutation was found by whole-exome sequencing and confirmed by Sanger sequencing. The mutation did not result in nonsense-mediated mRNA decay, but overall ACTB protein levels were decreased in patient fibroblasts. Patient-derived fibroblasts were smaller than controls, formed abnormal clusters, and showed decreased migration speed, trajectories, and displacement area compared to controls. There was compensatory upregulation of ACTG1 (102560) and ACTA2 (102620) expression, and ACTB filaments bundled into abnormally thick fibers that incorporated ACTA2. Patient fibroblasts also showed increased recruitment of ABPs associated with macrothrombocytopenia phenotypes (see, e.g., ACTN1, 102575). Patient-derived platelets, which were frequently enlarged, showed decreased ACTB protein levels and abnormal microtubule organization patterns at the platelet cortex. Similar microtubular disorganization abnormalities were observed in patient megakaryocytes, suggesting that the ACTB mutation inhibits the final stages of platelet maturation by perturbing membrane-associated cytoskeletal filaments. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0020 &nbsp; THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, 1-BP DUP, NT1101
<br />
ClinVar: RCV003324596
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 5.5-year-old girl of Western European origin (P6) with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; 620475), Latham et al. (2018) identified a de novo heterozygous 1-bp duplication (c.1101dup, NM_001101.3) in exon 6 of the ACTB gene, resulting in the substitution of 8 amino acids and addition of 4 residues at the C-terminus (Ser368LeufsTer13). The mutation was found by whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed. The authors noted that a different mutation in the ACTB gene (102630.0008) results in the same protein alteration. </p><p><strong><em>Variant Function</em></strong></p><p>
Greve et al. (2022) demonstrated that the mutation perturbed the interaction of ACTB with profilin-1 (176610) and impaired actin dynamics. </p>
</span>
</div>
<div>
<br />
</div>
</div>
<div>
<div>
<h4>
<span class="mim-font">
<strong>.0021 &nbsp; THROMBOCYTOPENIA 8, WITH DYSMORPHIC FEATURES AND DEVELOPMENTAL DELAY</strong>
</span>
</h4>
</div>
<div>
<span class="mim-text-font">
ACTB, LEU171PHE
<br />
ClinVar: RCV003085948, RCV003324586, RCV004786827
</span>
</div>
<div>
<span class="mim-text-font">
<p>In a 4-year-old Swedish girl with thrombocytopenia-8 with dysmorphic features and developmental delay (THC8; 620475), Sandestig et al. (2018) identified a de novo heterozygous c.511C-T transition (c.511C-T, NM_001101.3) in the ACTB gene, resulting in a leu171-to-phe (L171F) substitution in the W-loop of the protein (SD3 domain). The mutation was found by trio-based whole-exome sequencing and confirmed by Sanger sequencing. Functional studies of the variant and studies of patient cells were not performed, but the authors noted that the mutation affects a domain involved in interactions with actin-binding proteins. </p>
</span>
</div>
<div>
<br />
</div>
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>See Also:</strong>
</span>
</h4>
<span class="mim-text-font">
Erba et al. (1988); Kedes et al. (1985); Nakajima-Iijima et al.
(1985)
</span>
<div>
<br />
</div>
</div>
<div>
<h4>
<span class="mim-font">
<strong>REFERENCES</strong>
</span>
</h4>
<div>
<p />
</div>
<div>
<ol>
<li>
<p class="mim-text-font">
Atzmony, L., Ugwu, N., Zaki, T. D., Antaya, R. J., Choate, K. A.
<strong>Post-zygotic ACTB mutations underlie congenital smooth muscle hamartomas.</strong>
J. Cutan. Path. 47: 681-685, 2020.
[PubMed: 32170967]
[Full Text: https://doi.org/10.1111/cup.13683]
</p>
</li>
<li>
<p class="mim-text-font">
Buxbaum, A. R., Wu, B., Singer, R. H.
<strong>Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability.</strong>
Science 343: 419-422, 2014.
[PubMed: 24458642]
[Full Text: https://doi.org/10.1126/science.1242939]
</p>
</li>
<li>
<p class="mim-text-font">
Cai, E. D., Sun, B. K., Chiang, A., Rogers, A., Bernet, L., Cheng, B., Teng, J., Rieger, K. E., Sarin, K. Y.
<strong>Postzygotic mutations in beta-actin are associated with Becker&#x27;s nevus and Becker&#x27;s nevus syndrome.</strong>
J. Invest. Derm. 137: 1795-1798, 2017.
[PubMed: 28347698]
[Full Text: https://doi.org/10.1016/j.jid.2017.03.017]
</p>
</li>
<li>
<p class="mim-text-font">
Conboy, E., Vairo, F., Waggoner, D., Ober, C., Das, S., Dhamija, R., Klee, E. W., Pichurin, P.
<strong>Pathogenic variant in ACTB, p.Arg183Trp, causes juvenile-onset dystonia, hearing loss, and developmental delay without midline malformation.</strong>
Case Rep. Genet. 2017: 9184265, 2017.
[PubMed: 28487785]
[Full Text: https://doi.org/10.1155/2017/9184265]
</p>
</li>
<li>
<p class="mim-text-font">
Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., Deshpande, C., Devriendt, K., and 29 others.
<strong>ACTB loss-of-function mutations result in a pleiotropic developmental disorder.</strong>
Am. J. Hum. Genet. 101: 1021-1033, 2017.
[PubMed: 29220674]
[Full Text: https://doi.org/10.1016/j.ajhg.2017.11.006]
</p>
</li>
<li>
<p class="mim-text-font">
Der Kaloustian, V. M., Pelletier, M., Costa, T., Blackston, D. R., Oudjhane, K.
<strong>A new syndrome with craniofacial and skeletal dysmorphisms and developmental delay.</strong>
Clin. Dysmorph. 10: 87-93, 2001.
[PubMed: 11311002]
[Full Text: https://doi.org/10.1097/00019605-200104000-00003]
</p>
</li>
<li>
<p class="mim-text-font">
Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., Krause, C., Hackmann, K., Hahn, G., Schrock, E., Verloes, A.
<strong>Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations.</strong>
Europ. J. Hum. Genet. 22: 179-183, 2014.
[PubMed: 23756437]
[Full Text: https://doi.org/10.1038/ejhg.2013.130]
</p>
</li>
<li>
<p class="mim-text-font">
Erba, H. P., Eddy, R., Shows, T., Kedes, L., Gunning, P.
<strong>Structure, chromosome location, and expression of the human gamma-actin gene: differential evolution, location, and expression of the cytoskeletal beta- and gamma-actin genes.</strong>
Molec. Cell. Biol. 8: 1775-1789, 1988.
[PubMed: 2837653]
[Full Text: https://doi.org/10.1128/mcb.8.4.1775-1789.1988]
</p>
</li>
<li>
<p class="mim-text-font">
Freitas, J. L., Vale, T. C., Barsottini, O. G. P., Pedroso, J. L.
<strong>Expanding the phenotype of dystonia-deafness syndrome caused by ACTB gene mutation.</strong>
Mov. Disord. Clin. Pract. 7: 86-87, 2020.
[PubMed: 31970217]
[Full Text: https://doi.org/10.1002/mdc3.12854]
</p>
</li>
<li>
<p class="mim-text-font">
Fryns, J.-P., Aftimos, S.
<strong>New MR/MCA syndrome with distinct facial appearance and general habitus, broad and webbed neck, hypoplastic inverted nipples, epilepsy, and pachygyria of the frontal lobes. (Letter)</strong>
J. Med. Genet. 37: 460-462, 2000.
[PubMed: 10928857]
[Full Text: https://doi.org/10.1136/jmg.37.6.460]
</p>
</li>
<li>
<p class="mim-text-font">
Gearing, M., Juncos, J. L., Procaccio, V., Gutekunst, C.-A., Marino-Rodriguez, E. M., Gyure, K. A., Ono, S., Santoianni, R., Krawiecki, N. S., Wallace, D. C., Wainer, B. H.
<strong>Aggregation of actin and cofilin in identical twins with juvenile-onset dystonia.</strong>
Ann. Neurol. 52: 465-476, 2002.
[PubMed: 12325076]
[Full Text: https://doi.org/10.1002/ana.10319]
</p>
</li>
<li>
<p class="mim-text-font">
Glinka, M., Herrmann, T., Funk, N., Havlicek, S., Rossoll, W., Winkler, C., Sendtner, M.
<strong>The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons.</strong>
Hum. Molec. Genet. 19: 1951-1966, 2010.
[PubMed: 20167579]
[Full Text: https://doi.org/10.1093/hmg/ddq073]
</p>
</li>
<li>
<p class="mim-text-font">
Greve, J. N., Schwabe, F. V., Pokrant, T., Faix, J., Di Donato, N., Taft, M. H., Manstein, D. J.
<strong>Frameshift mutation S368fs in the gene encoding cytoskeletal beta-actin leads to ACTB-associated syndromic thrombocytopenia by impairing actin dynamics.</strong>
Europ. J. Cell Biol. 101: 151216, 2022.
[PubMed: 35313204]
[Full Text: https://doi.org/10.1016/j.ejcb.2022.151216]
</p>
</li>
<li>
<p class="mim-text-font">
Guion-Almeida, M. L., Richieri-Costa, A.
<strong>Acrocallosal syndrome: report of a Brazilian girl.</strong>
Am. J. Med. Genet. 43: 938-941, 1992.
[PubMed: 1415343]
[Full Text: https://doi.org/10.1002/ajmg.1320430606]
</p>
</li>
<li>
<p class="mim-text-font">
Guion-Almeida, M. L., Richieri-Costa, A.
<strong>Frontonasal dysplasia, macroblepharon, eyelid colobomas, ear anomalies, macrostomia, mental retardation, and CNS structural anomalies: a new syndrome?</strong>
Clin. Dysmorph. 8: 1-4, 1999.
[PubMed: 10327243]
</p>
</li>
<li>
<p class="mim-text-font">
Gunning, P., Ponte, P., Okayama, H., Engel, J., Blau, H., Kedes, L.
<strong>Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed.</strong>
Molec. Cell. Biol. 3: 787-795, 1983.
[PubMed: 6865942]
[Full Text: https://doi.org/10.1128/mcb.3.5.787-795.1983]
</p>
</li>
<li>
<p class="mim-text-font">
Habets, G. G. M., van der Kammen, R. A., Willemsen, V., Balemans, M., Wiegant, J., Collard, J. G.
<strong>Sublocalization of an invasion-inducing locus and other genes on human chromosome 7.</strong>
Cytogenet. Cell Genet. 60: 200-205, 1992.
[PubMed: 1505215]
[Full Text: https://doi.org/10.1159/000133336]
</p>
</li>
<li>
<p class="mim-text-font">
Hundt, N., Preller, M., Swolski, O., Ang, A. M., Mannherz, H. G., Manstein, D. J., Muller, M.
<strong>Molecular mechanisms of disease-related human beta-actin mutations p.R183W and p.E364K.</strong>
FEBS J. 281: 5279-5291, 2014.
[PubMed: 25255767]
[Full Text: https://doi.org/10.1111/febs.13068]
</p>
</li>
<li>
<p class="mim-text-font">
Huttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng, X., Bassell, G. J., Condeelis, J., Singer, R. H.
<strong>Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1.</strong>
Nature 438: 512-515, 2005.
[PubMed: 16306994]
[Full Text: https://doi.org/10.1038/nature04115]
</p>
</li>
<li>
<p class="mim-text-font">
Ji, Y., Ferracci, G., Warley, A., Ward, M., Leung, K.-Y., Samsuddin, S., Leveque, C., Queen, L., Reebye, V., Pal, P., Gkaliagkousi, E., Seager, M., Ferro, A.
<strong>Beta-actin regulates platelet nitric oxide synthase 3 activity through interaction with heat shock protein 90.</strong>
Proc. Nat. Acad. Sci. 104: 8839-8844, 2007.
[PubMed: 17502619]
[Full Text: https://doi.org/10.1073/pnas.0611416104]
</p>
</li>
<li>
<p class="mim-text-font">
Johnston, J. J., Wen, K.-K., Keppler-Noreuil, K., McKane, M., Maiers, J. L., Greiner, A., Sapp, J. C., NIH Intramural Sequencing Center, DeMali K. A., Rubenstein, P. A., Biesecker, L. G.
<strong>Functional analysis of a de novo ACTB mutation in a patient with atypical Baraitser-Winter syndrome.</strong>
Hum. Mutat. 34: 1242-1249, 2013.
[PubMed: 23649928]
[Full Text: https://doi.org/10.1002/humu.22350]
</p>
</li>
<li>
<p class="mim-text-font">
Karakozova, M., Kozak, M., Wong, C. C. L., Bailey, A. O., Yates, J. R, III, Mogilner, A., Zebroski, H., Kashina, A.
<strong>Arginylation of beta-actin regulates actin cytoskeleton and cell motility.</strong>
Science 313: 192-196, 2006.
[PubMed: 16794040]
[Full Text: https://doi.org/10.1126/science.1129344]
</p>
</li>
<li>
<p class="mim-text-font">
Kedes, L., Ng, S.-Y., Lin, C.-S., Gunning, P., Eddy, R., Shows, T., Leavitt, J.
<strong>The human beta-actin multigene family.</strong>
Trans. Assoc. Am. Phys. 98: 42-46, 1985.
[PubMed: 3842206]
</p>
</li>
<li>
<p class="mim-text-font">
Kusner, D. J., Barton, J. A., Wen, K.-K., Wang, X., Rubenstein, P. A., Iyer, S. S.
<strong>Regulation of phospholipase D activity by actin: actin exerts bidirectional modulation of mammalian phospolipase (sic) D activity in a polymerization-dependent, isoform-specific manner.</strong>
J. Biol. Chem. 277: 50683-50692, 2002.
[PubMed: 12388543]
[Full Text: https://doi.org/10.1074/jbc.M209221200]
</p>
</li>
<li>
<p class="mim-text-font">
Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., and 15 others.
<strong>Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia.</strong>
Nature Commun. 9: 4250, 2018. Note: Erratum: Nature Commun. 9: 4930, 2018.
[PubMed: 30315159]
[Full Text: https://doi.org/10.1038/s41467-018-06713-0]
</p>
</li>
<li>
<p class="mim-text-font">
Leavitt, J., Bushar, G., Kakunaga, T., Hamada, H., Hirakawa, T., Goldman, D., Merril, C.
<strong>Variations in expression of mutant beta-actin accompanying incremental increases in human fibroblast tumorigenicity.</strong>
Cell 28: 259-268, 1982.
[PubMed: 7199389]
[Full Text: https://doi.org/10.1016/0092-8674(82)90344-0]
</p>
</li>
<li>
<p class="mim-text-font">
Nakajima-Iijima, S., Hamada, H., Reddy, P., Kakunaga, T.
<strong>Molecular structure of the human cytoplasmic beta-actin gene; interspecies homology of sequences in the introns.</strong>
Proc. Nat. Acad. Sci. 82: 6133-6137, 1985.
[PubMed: 2994062]
[Full Text: https://doi.org/10.1073/pnas.82.18.6133]
</p>
</li>
<li>
<p class="mim-text-font">
Ng, S.-Y., Gunning, P., Eddy, R., Ponte, P., Leavitt, J., Kedes, L., Shows, T.
<strong>Chromosome 7 assignment of the human beta-actin functional gene (ACTB) and the chromosomal dispersion of pseudogenes. (Abstract)</strong>
Cytogenet. Cell Genet. 40: 712 only, 1985.
</p>
</li>
<li>
<p class="mim-text-font">
Ng, S.-Y., Gunning, P., Eddy, R., Ponte, P., Leavitt, J., Shows, T., Kedes, L.
<strong>Evolution of the functional human beta-actin gene and its multi-pseudogene family: conservation of the noncoding regions and chromosomal dispersion of pseudogenes.</strong>
Molec. Cell. Biol. 5: 2720-2732, 1985.
[PubMed: 3837182]
[Full Text: https://doi.org/10.1128/mcb.5.10.2720-2732.1985]
</p>
</li>
<li>
<p class="mim-text-font">
Nunoi, H., Yamazaki, T., Tsuchiya, H., Kato, S., Malech, H. L., Matsuda, I., Kanegasaki, S.
<strong>A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection.</strong>
Proc. Nat. Acad. Sci. 96: 8693-8698, 1999.
[PubMed: 10411937]
[Full Text: https://doi.org/10.1073/pnas.96.15.8693]
</p>
</li>
<li>
<p class="mim-text-font">
Procaccio, V., Salazar, G., Ono, S., Styers, M. L., Gearing, M., Davila, A., Jimenez, R., Juncos, J., Gutekunst, C.-A., Meroni, G., Fontanella, B., Sontag, E., Sontag, J. M., Faundez, V., Wainer, B. H.
<strong>A mutation of beta-actin that alters depolymerization dynamics is associated with autosomal dominant developmental malformations, deafness, and dystonia.</strong>
Am. J. Hum. Genet. 78: 947-960, 2006.
[PubMed: 16685646]
[Full Text: https://doi.org/10.1086/504271]
</p>
</li>
<li>
<p class="mim-text-font">
Ramspacher, J., Carmignac, V., Vabres, P., Mazereeuw-Hautier, J.
<strong>Becker&#x27;s naevus syndrome with breast aplasia due to postzygotic mutation of ACTB.</strong>
Acta Derm. Venereol. 102: adv00806, 2022.
[PubMed: 35971836]
[Full Text: https://doi.org/10.2340/actadv.v102.1141]
</p>
</li>
<li>
<p class="mim-text-font">
Riviere, J.-B., van Bon, B. W. M., Hoischen, A., Kholmanskikh, S. S., O'Roak, B. J., Gilissen, C., Gijsen, S., Sullivan, C. T., Christian, S. L., Abdul-Rahman, O. A., Atkin, J. F., Chassaing, N., and 21 others.
<strong>De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome.</strong>
Nature Genet. 44: 440-444, 2012.
[PubMed: 22366783]
[Full Text: https://doi.org/10.1038/ng.1091]
</p>
</li>
<li>
<p class="mim-text-font">
Sandestig, A., Green, A., Jonasson, J., Vogt, H., Wahlstrom, J., Pepler, A., Ellnebo, K., Biskup, S., Stefanova, M.
<strong>Could dissimilar phenotypic effects of ACTB missense mutations reflect the actin conformational change? Two novel mutations and literature review.</strong>
Molec. Syndromol. 9: 259-265, 2018.
[PubMed: 30733661]
[Full Text: https://doi.org/10.1159/000492267]
</p>
</li>
<li>
<p class="mim-text-font">
Skogseid, I. M., Rosby, O., Konglund, A., Connelly, J. P., Nedregaard, B., Jablonski, G. E., Kvernmo, N., Stray-Pedersen, A., Glover, J. C.
<strong>Dystonia-deafness syndrome caused by ACTB p.Arg183Trp heterozygosity shows striatal dopaminergic dysfunction and response to pallidal stimulation.</strong>
J Neurodev. Disord. 10: 17, 2018.
[PubMed: 29788902]
[Full Text: https://doi.org/10.1186/s11689-018-9235-z]
</p>
</li>
<li>
<p class="mim-text-font">
Toyama, S., Toyama, S.
<strong>A variant form of beta-actin in a mutant of KB cells resistant to cytochalasin B.</strong>
Cell 37: 609-614, 1984.
[PubMed: 6202424]
[Full Text: https://doi.org/10.1016/0092-8674(84)90391-x]
</p>
</li>
<li>
<p class="mim-text-font">
Ueyama, H., Inazawa, J., Nishino, H., Ohkubo, I., Miwa, T.
<strong>FISH localization of human cytoplasmic actin genes ACTB to 7p22 and ACTG1 to 17q25 and characterization of related pseudogenes.</strong>
Cytogenet. Cell Genet. 74: 221-224, 1996.
[PubMed: 8941379]
[Full Text: https://doi.org/10.1159/000134420]
</p>
</li>
<li>
<p class="mim-text-font">
Vandekerckhove, J., Weber, K.
<strong>Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins.</strong>
Proc. Nat. Acad. Sci. 75: 1106-1110, 1978.
[PubMed: 274701]
[Full Text: https://doi.org/10.1073/pnas.75.3.1106]
</p>
</li>
<li>
<p class="mim-text-font">
Verloes, A., Di Donato, N., Masliah-Planchon, J., Jongmans, M., Abdul-Raman, O. A., Albrecht, B., Allanson, J., Brunner, H., Bertola, D., Chassaing, N., David, A., Devriendt, K., and 40 others.
<strong>Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases.</strong>
Europ. J. Hum. Genet. 23: 292-301, 2015.
[PubMed: 25052316]
[Full Text: https://doi.org/10.1038/ejhg.2014.95]
</p>
</li>
<li>
<p class="mim-text-font">
Zavala, L., Ziegler, G., Moron, D. G., Garretto, N.
<strong>Dystonia-deafness syndrome: ACTB pathogenic variant in an Argentinean family.</strong>
Mov. Disord. Clin. Pract. 9: 122-124, 2022.
[PubMed: 35005077]
[Full Text: https://doi.org/10.1002/mdc3.13358]
</p>
</li>
<li>
<p class="mim-text-font">
Zhang, F., Saha, S., Shabalina, S. A., Kashina, A.
<strong>Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation.</strong>
Science 329: 1534-1537, 2010.
[PubMed: 20847274]
[Full Text: https://doi.org/10.1126/science.1191701]
</p>
</li>
</ol>
<div>
<br />
</div>
</div>
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Contributors:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Hilary J. Vernon - updated : 09/05/2023<br>Cassandra L. Kniffin - updated : 08/21/2023<br>Cassandra L. Kniffin - updated : 08/14/2023<br>Marla J. F. O&#x27;Neill - updated : 08/09/2023<br>Cassandra L. Kniffin - updated : 02/27/2018<br>Nara Sobreira - updated : 7/15/2015<br>Ada Hamosh - updated : 3/14/2014<br>Marla J. F. O&#x27;Neill - updated : 10/7/2013<br>George E. Tiller - updated : 8/14/2013<br>Ada Hamosh - updated : 4/18/2012<br>Ada Hamosh - updated : 11/2/2010<br>Patricia A. Hartz - updated : 5/29/2008<br>Patricia A. Hartz - updated : 1/16/2008<br>Patricia A. Hartz - updated : 10/4/2006<br>Ada Hamosh - updated : 8/7/2006<br>Victor A. McKusick - updated : 5/15/2006<br>Ada Hamosh - updated : 1/30/2006<br>Mark H. Paalman - edited : 4/18/1997<br>Mark H. Paalman - edited : 4/10/1997
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Creation Date:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
Victor A. McKusick : 6/4/1986
</span>
</div>
</div>
</div>
<div>
<br />
</div>
<div>
<div class="row">
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
<span class="text-nowrap mim-text-font">
Edit History:
</span>
</div>
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
<span class="mim-text-font">
carol : 10/02/2023<br>alopez : 09/05/2023<br>alopez : 08/24/2023<br>alopez : 08/24/2023<br>ckniffin : 08/21/2023<br>carol : 08/14/2023<br>ckniffin : 08/14/2023<br>alopez : 08/11/2023<br>alopez : 08/10/2023<br>alopez : 08/09/2023<br>alopez : 03/08/2018<br>ckniffin : 02/27/2018<br>carol : 09/29/2015<br>carol : 7/15/2015<br>carol : 7/15/2015<br>alopez : 3/14/2014<br>carol : 10/7/2013<br>tpirozzi : 10/7/2013<br>carol : 8/15/2013<br>tpirozzi : 8/15/2013<br>tpirozzi : 8/15/2013<br>tpirozzi : 8/14/2013<br>carol : 1/2/2013<br>alopez : 4/20/2012<br>alopez : 4/19/2012<br>terry : 4/18/2012<br>alopez : 11/9/2010<br>terry : 11/2/2010<br>carol : 4/28/2010<br>mgross : 6/2/2008<br>terry : 5/29/2008<br>mgross : 1/25/2008<br>terry : 1/16/2008<br>mgross : 10/11/2006<br>terry : 10/4/2006<br>alopez : 8/9/2006<br>terry : 8/7/2006<br>alopez : 5/17/2006<br>terry : 5/15/2006<br>alopez : 1/31/2006<br>alopez : 1/31/2006<br>terry : 1/30/2006<br>mark : 4/18/1997<br>mark : 4/18/1997<br>jenny : 4/10/1997<br>terry : 1/13/1997<br>carol : 7/1/1993<br>supermim : 3/16/1992<br>carol : 2/29/1992<br>supermim : 3/20/1990<br>ddp : 10/26/1989<br>carol : 5/18/1988
</span>
</div>
</div>
</div>
<div>
<br />
</div>
</div>
</div>
</div>
</div>
<div id="mimFooter">
<div class="container ">
<div class="row">
<br />
<br />
</div>
</div>
<div class="hidden-print mim-footer">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
</div>
</div>
</div>
<div class="visible-print-block mim-footer" style="position: relative;">
<div class="container">
<div class="row">
<p />
</div>
<div class="row text-center small">
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
<br />
OMIM<sup>&reg;</sup> and Online Mendelian Inheritance in Man<sup>&reg;</sup> are registered trademarks of the Johns Hopkins University.
<br />
Copyright<sup>&reg;</sup> 1966-2025 Johns Hopkins University.
<br />
Printed: March 5, 2025
</div>
</div>
</div>
</div>
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button>
<h4 class="modal-title" id="mimDonationPopupModalTitle">
OMIM Donation:
</h4>
</div>
<div class="modal-body">
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Dear OMIM User,
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
To ensure long-term funding for the OMIM project, we have diversified
our revenue stream. We are determined to keep this website freely
accessible. Unfortunately, it is not free to produce. Expert curators
review the literature and organize it to facilitate your work. Over 90%
of the OMIM's operating expenses go to salary support for MD and PhD
science writers and biocurators. Please join your colleagues by making a
donation now and again in the future. Donations are an important
component of our efforts to ensure long-term funding to provide you the
information that you need at your fingertips.
</p>
</div>
</div>
<div class="row">
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
<p>
Thank you in advance for your generous support, <br />
Ada Hamosh, MD, MPH <br />
Scientific Director, OMIM <br />
</p>
</div>
</div>
</div>
<div class="modal-footer">
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>