3650 lines
391 KiB
Text
3650 lines
391 KiB
Text
|
|
|
|
|
|
|
|
|
|
<!DOCTYPE html>
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us" >
|
|
|
|
<head>
|
|
|
|
|
|
|
|
<!--
|
|
################################# CRAWLER WARNING #################################
|
|
|
|
- The terms of service and the robots.txt file disallows crawling of this site,
|
|
please see https://omim.org/help/agreement for more information.
|
|
|
|
- A number of data files are available for download at https://omim.org/downloads.
|
|
|
|
- We have an API which you can learn about at https://omim.org/help/api and register
|
|
for at https://omim.org/api, this provides access to the data in JSON & XML formats.
|
|
|
|
- You should feel free to contact us at https://omim.org/contact to figure out the best
|
|
approach to getting the data you need for your work.
|
|
|
|
- WE WILL AUTOMATICALLY BLOCK YOUR IP ADDRESS IF YOU CRAWL THIS SITE.
|
|
|
|
- WE WILL ALSO AUTOMATICALLY BLOCK SUB-DOMAINS AND ADDRESS RANGES IMPLICATED IN
|
|
DISTRIBUTED CRAWLS OF THIS SITE.
|
|
|
|
################################# CRAWLER WARNING #################################
|
|
-->
|
|
|
|
|
|
|
|
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
|
|
<meta http-equiv="cache-control" content="no-cache" />
|
|
<meta http-equiv="pragma" content="no-cache" />
|
|
<meta name="robots" content="index, follow" />
|
|
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
|
|
|
|
|
|
<meta name="title" content="Online Mendelian Inheritance in Man (OMIM)" />
|
|
<meta name="description" content="Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative
|
|
compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text,
|
|
referenced overviews in OMIM contain information on all known mendelian disorders and over 15,000 genes.
|
|
OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries
|
|
contain copious links to other genetics resources." />
|
|
<meta name="keywords" content="Mendelian Inheritance in Man, OMIM, Mendelian diseases, Mendelian disorders, genetic diseases,
|
|
genetic disorders, genetic disorders in humans, genetic phenotypes, phenotype and genotype, disease models, alleles,
|
|
genes, dna, genetics, dna testing, gene testing, clinical synopsis, medical genetics" />
|
|
<meta name="theme-color" content="#333333" />
|
|
<link rel="icon" href="/static/omim/favicon.png" />
|
|
<link rel="apple-touch-icon" href="/static/omim/favicon.png" />
|
|
<link rel="manifest" href="/static/omim/manifest.json" />
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script id='mimBrowserCapability'>
|
|
function _0x5069(){const _0x4b1387=['91sZIeLc','mimBrowserCapability','15627zshTnf','710004yxXedd','34LxqNYj','match','disconnect','1755955rnzTod','observe','1206216ZRfBWB','575728fqgsYy','webdriver','documentElement','close','open','3086704utbakv','7984143PpiTpt'];_0x5069=function(){return _0x4b1387;};return _0x5069();}function _0xe429(_0x472ead,_0x43eb70){const _0x506916=_0x5069();return _0xe429=function(_0xe42949,_0x1aaefc){_0xe42949=_0xe42949-0x1a9;let _0xe6add8=_0x506916[_0xe42949];return _0xe6add8;},_0xe429(_0x472ead,_0x43eb70);}(function(_0x337daa,_0x401915){const _0x293f03=_0xe429,_0x5811dd=_0x337daa();while(!![]){try{const _0x3dc3a3=parseInt(_0x293f03(0x1b4))/0x1*(-parseInt(_0x293f03(0x1b6))/0x2)+parseInt(_0x293f03(0x1b5))/0x3+parseInt(_0x293f03(0x1b0))/0x4+-parseInt(_0x293f03(0x1b9))/0x5+parseInt(_0x293f03(0x1aa))/0x6+-parseInt(_0x293f03(0x1b2))/0x7*(parseInt(_0x293f03(0x1ab))/0x8)+parseInt(_0x293f03(0x1b1))/0x9;if(_0x3dc3a3===_0x401915)break;else _0x5811dd['push'](_0x5811dd['shift']());}catch(_0x4dd27b){_0x5811dd['push'](_0x5811dd['shift']());}}}(_0x5069,0x84d63),(function(){const _0x9e4c5f=_0xe429,_0x363a26=new MutationObserver(function(){const _0x458b09=_0xe429;if(document!==null){let _0x2f0621=![];navigator[_0x458b09(0x1ac)]!==![]&&(_0x2f0621=!![]);for(const _0x427dda in window){_0x427dda[_0x458b09(0x1b7)](/cdc_[a-z0-9]/ig)&&(_0x2f0621=!![]);}_0x2f0621===!![]?document[_0x458b09(0x1af)]()[_0x458b09(0x1ae)]():(_0x363a26[_0x458b09(0x1b8)](),document['getElementById'](_0x458b09(0x1b3))['remove']());}});_0x363a26[_0x9e4c5f(0x1a9)](document[_0x9e4c5f(0x1ad)],{'childList':!![]});}()));
|
|
</script>
|
|
|
|
|
|
|
|
<link rel='preconnect' href='https://cdn.jsdelivr.net' />
|
|
<link rel='preconnect' href='https://cdnjs.cloudflare.com' />
|
|
|
|
<link rel="preconnect" href="https://www.googletagmanager.com" />
|
|
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/jquery@3.7.1/dist/jquery.min.js" integrity="sha256-/JqT3SQfawRcv/BIHPThkBvs0OEvtFFmqPF/lYI/Cxo=" crossorigin="anonymous"></script>
|
|
<script src="https://cdn.jsdelivr.net/npm/jquery-migrate@3.5.2/dist/jquery-migrate.js" integrity="sha256-ThFcNr/v1xKVt5cmolJIauUHvtXFOwwqiTP7IbgP8EU=" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@3.4.1/dist/css/bootstrap-theme.min.css" integrity="sha256-8uHMIn1ru0GS5KO+zf7Zccf8Uw12IA5DrdEcmMuWLFM=" crossorigin="anonymous">
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/min/moment.min.js" integrity="sha256-80OqMZoXo/w3LuatWvSCub9qKYyyJlK0qnUCYEghBx8=" crossorigin="anonymous"></script>
|
|
<script src="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/js/bootstrap-datetimepicker.min.js" integrity="sha256-dYxUtecag9x4IaB2vUNM34sEso6rWTgEche5J6ahwEQ=" crossorigin="anonymous"></script>
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/eonasdan-bootstrap-datetimepicker@4.17.49/build/css/bootstrap-datetimepicker.min.css" integrity="sha256-9FNpuXEYWYfrusiXLO73oIURKAOVzqzkn69cVqgKMRY=" crossorigin="anonymous">
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.js" integrity="sha256-a+PRq3NbyK3G08Boio9X6+yFiHpTSIrbE7uzZvqmDac=" crossorigin="anonymous"></script>
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/qtip2@3.0.3/dist/jquery.qtip.min.css" integrity="sha256-JvdVmxv7Q0LsN1EJo2zc1rACwzatOzkyx11YI4aP9PY=" crossorigin="anonymous">
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/devbridge-autocomplete@1.4.11/dist/jquery.autocomplete.min.js" integrity="sha256-BNpu3uLkB3SwY3a2H3Ue7WU69QFdSRlJVBrDTnVKjiA=" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.21.0/dist/jquery.validate.min.js" integrity="sha256-umbTaFxP31Fv6O1itpLS/3+v5fOAWDLOUzlmvOGaKV4=" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/js-cookie@3.0.5/dist/js.cookie.min.js" integrity="sha256-WCzAhd2P6gRJF9Hv3oOOd+hFJi/QJbv+Azn4CGB8gfY=" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollToFixed/1.0.8/jquery-scrolltofixed-min.js" integrity="sha512-ohXbv1eFvjIHMXG/jY057oHdBZ/jhthP1U3jES/nYyFdc9g6xBpjDjKIacGoPG6hY//xVQeqpWx8tNjexXWdqA==" crossorigin="anonymous"></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script async src="https://www.googletagmanager.com/gtag/js?id=G-HMPSQC23JJ"></script>
|
|
<script>
|
|
window.dataLayer = window.dataLayer || [];
|
|
function gtag(){window.dataLayer.push(arguments);}
|
|
gtag("js", new Date());
|
|
gtag("config", "G-HMPSQC23JJ");
|
|
</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script src="/static/omim/js/site.js?version=Zmk5Y1" integrity="sha256-fi9cXywxCO5p0mU1OSWcMp0DTQB4s8ncFR8j+IO840s="></script>
|
|
|
|
|
|
<link rel="stylesheet" href="/static/omim/css/site.css?version=VGE4MF" integrity="sha256-Ta80Qpm3w1S8kmnN0ornbsZxdfA32R42R4ncsbos0YU=" />
|
|
|
|
|
|
<script src="/static/omim/js/entry/entry.js?version=anMvRU" integrity="sha256-js/EBOBZzGDctUqr1VhnNPzEiA7w3HM5JbFmOj2CW84="></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div id="mimBootstrapDeviceSize">
|
|
<div class="visible-xs" data-mim-bootstrap-device-size="xs"></div>
|
|
<div class="visible-sm" data-mim-bootstrap-device-size="sm"></div>
|
|
<div class="visible-md" data-mim-bootstrap-device-size="md"></div>
|
|
<div class="visible-lg" data-mim-bootstrap-device-size="lg"></div>
|
|
</div>
|
|
|
|
|
|
|
|
<title>
|
|
|
|
Entry
|
|
|
|
- *102578 - ACUTE PROMYELOCYTIC LEUKEMIA, INDUCER OF; PML
|
|
|
|
|
|
- OMIM
|
|
|
|
</title>
|
|
|
|
|
|
|
|
</head>
|
|
|
|
<body>
|
|
<div id="mimBody">
|
|
|
|
|
|
|
|
<div id="mimHeader" class="hidden-print">
|
|
|
|
|
|
|
|
<nav class="navbar navbar-inverse navbar-fixed-top mim-navbar-background">
|
|
<div class="container-fluid">
|
|
|
|
<!-- Brand and toggle get grouped for better mobile display -->
|
|
<div class="navbar-header">
|
|
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#mimNavbarCollapse" aria-expanded="false">
|
|
<span class="sr-only"> Toggle navigation </span>
|
|
<span class="icon-bar"></span>
|
|
<span class="icon-bar"></span>
|
|
<span class="icon-bar"></span>
|
|
</button>
|
|
<a class="navbar-brand" href="/"><img alt="OMIM" src="/static/omim/icons/OMIM_davinciman.001.png" height="30" width="30"></a>
|
|
</div>
|
|
|
|
<div id="mimNavbarCollapse" class="collapse navbar-collapse">
|
|
|
|
<ul class="nav navbar-nav">
|
|
|
|
|
|
<li>
|
|
<a href="/help/about"><span class="mim-navbar-menu-font"> About </span></a>
|
|
</li>
|
|
|
|
|
|
|
|
<li class="dropdown">
|
|
<a href="#" id="mimStatisticsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Statistics <span class="caret"></span></span></a>
|
|
<ul class="dropdown-menu" role="menu" aria-labelledby="statisticsDropdown">
|
|
<li>
|
|
<a href="/statistics/update"> Update List </a>
|
|
</li>
|
|
<li>
|
|
<a href="/statistics/entry"> Entry Statistics </a>
|
|
</li>
|
|
<li>
|
|
<a href="/statistics/geneMap"> Phenotype-Gene Statistics </a>
|
|
</li>
|
|
<li>
|
|
<a href="/statistics/paceGraph"> Pace of Gene Discovery Graph </a>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
|
|
|
|
|
|
<li class="dropdown">
|
|
<a href="#" id="mimDownloadsDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Downloads <span class="caret"></span></span></a>
|
|
<ul class="dropdown-menu" role="menu" aria-labelledby="downloadsDropdown">
|
|
|
|
<li>
|
|
<a href="/downloads/"> Register for Downloads </a>
|
|
</li>
|
|
<li>
|
|
<a href="/api"> Register for API Access </a>
|
|
</li>
|
|
|
|
</ul>
|
|
</li>
|
|
|
|
|
|
|
|
<li>
|
|
<a href="/contact?mimNumber=102578"><span class="mim-navbar-menu-font"> Contact Us </span></a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li>
|
|
|
|
<a href="/mimmatch/">
|
|
|
|
<span class="mim-navbar-menu-font">
|
|
<span class="mim-tip-bottom" qtip_title="<strong>MIMmatch</strong>" qtip_text="MIMmatch is a way to follow OMIM entries that interest you and to find other researchers who may share interest in the same entries. <br /><br />A bonus to all MIMmatch users is the option to sign up for updates on new gene-phenotype relationships.">
|
|
MIMmatch
|
|
</span>
|
|
</span>
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="dropdown">
|
|
<a href="#" id="mimDonateDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Donate <span class="caret"></span></span></a>
|
|
<ul class="dropdown-menu" role="menu" aria-labelledby="donateDropdown">
|
|
<li>
|
|
<a href="https://secure.jhu.edu/form/OMIM" target="_blank" onclick="gtag('event', 'mim_donation', {'destination': 'secure.jhu.edu'})"> Donate! </a>
|
|
</li>
|
|
<li>
|
|
<a href="/donors"> Donors </a>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
|
|
|
|
|
|
<li class="dropdown">
|
|
<a href="#" id="mimHelpDropdown" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false"><span class="mim-navbar-menu-font"> Help <span class="caret"></span></span></a>
|
|
<ul class="dropdown-menu" role="menu" aria-labelledby="helpDropdown">
|
|
<li>
|
|
<a href="/help/faq"> Frequently Asked Questions (FAQs) </a>
|
|
</li>
|
|
<li role="separator" class="divider"></li>
|
|
<li>
|
|
<a href="/help/search"> Search Help </a>
|
|
</li>
|
|
<li>
|
|
<a href="/help/linking"> Linking Help </a>
|
|
</li>
|
|
<li>
|
|
<a href="/help/api"> API Help </a>
|
|
</li>
|
|
<li role="separator" class="divider"></li>
|
|
<li>
|
|
<a href="/help/external"> External Links </a>
|
|
</li>
|
|
<li role="separator" class="divider"></li>
|
|
<li>
|
|
<a href="/help/agreement"> Use Agreement </a>
|
|
</li>
|
|
<li>
|
|
<a href="/help/copyright"> Copyright </a>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
|
|
|
|
|
|
<li>
|
|
<a href="#" id="mimShowTips" class="mim-tip-hint" title="Click to reveal all tips on the page. You can also hover over individual elements to reveal the tip."><span class="mim-navbar-menu-font"><span class="glyphicon glyphicon-question-sign" aria-hidden="true"></span></span></a>
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
</nav>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div id="mimSearch" class="hidden-print">
|
|
|
|
<div class="container">
|
|
|
|
<form method="get" action="/search" id="mimEntrySearchForm" name="entrySearchForm" class="form-horizontal">
|
|
|
|
<input type="hidden" id="mimSearchIndex" name="index" value="entry" />
|
|
<input type="hidden" id="mimSearchStart" name="start" value="1" />
|
|
<input type="hidden" id="mimSearchLimit" name="limit" value="10" />
|
|
<input type="hidden" id="mimSearchSort" name="sort" value="score desc, prefix_sort desc" />
|
|
|
|
|
|
<div class="row">
|
|
|
|
<div class="col-lg-8 col-md-8 col-sm-8 col-xs-8">
|
|
<div class="form-group">
|
|
<div class="input-group">
|
|
<input type="search" id="mimEntrySearch" name="search" class="form-control" value="" placeholder="Search OMIM..." maxlength="5000" autocomplete="off" autocorrect="off" autocapitalize="none" spellcheck="false" autofocus />
|
|
<div class="input-group-btn">
|
|
<button type="submit" id="mimEntrySearchSubmit" class="btn btn-default" style="width: 5em;"><span class="glyphicon glyphicon-search"></span></button>
|
|
<button type="button" class="btn btn-default dropdown-toggle" data-toggle="dropdown"> Options <span class="caret"></span></button>
|
|
<ul class="dropdown-menu dropdown-menu-right">
|
|
<li class="dropdown-header">
|
|
Advanced Search
|
|
</li>
|
|
<li style="margin-left: 0.5em;">
|
|
<a href="/search/advanced/entry"> OMIM </a>
|
|
</li>
|
|
<li style="margin-left: 0.5em;">
|
|
<a href="/search/advanced/clinicalSynopsis"> Clinical Synopses </a>
|
|
</li>
|
|
<li style="margin-left: 0.5em;">
|
|
<a href="/search/advanced/geneMap"> Gene Map </a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li role="separator" class="divider"></li>
|
|
<li>
|
|
<a href="/history"> Search History </a>
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
<div class="autocomplete" id="mimEntrySearchAutocomplete"></div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-4">
|
|
<span class="small">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</span>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</form>
|
|
|
|
<div class="row">
|
|
<p />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
<!-- <div id="mimSearch"> -->
|
|
|
|
|
|
|
|
|
|
<div id="mimContent">
|
|
|
|
|
|
|
|
<div class="container hidden-print">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="row">
|
|
|
|
<div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
|
|
|
|
<div id="mimAlertBanner">
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div class="row">
|
|
|
|
|
|
|
|
|
|
<div class="col-lg-2 col-md-2 col-sm-2 hidden-sm hidden-xs">
|
|
|
|
<div id="mimFloatingTocMenu" class="small" role="navigation">
|
|
|
|
<p>
|
|
<span class="h4">*102578</span>
|
|
<br />
|
|
<strong>Table of Contents</strong>
|
|
</p>
|
|
|
|
<nav>
|
|
<ul id="mimFloatingTocMenuItems" class="nav nav-pills nav-stacked mim-floating-toc-padding">
|
|
|
|
<li role="presentation">
|
|
<a href="#title"><strong>Title</strong></a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#text"><strong>Text</strong></a>
|
|
</li>
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#description">Description</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#cloning">Cloning and Expression</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#mapping">Mapping</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#geneFunction">Gene Function</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#cytogenetics">Cytogenetics</a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation" style="margin-left: 1em">
|
|
<a href="#animalModel">Animal Model</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#references"><strong>References</strong></a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#contributors"><strong>Contributors</strong></a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#creationDate"><strong>Creation Date</strong></a>
|
|
</li>
|
|
|
|
|
|
|
|
<li role="presentation">
|
|
<a href="#editHistory"><strong>Edit History</strong></a>
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</nav>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div class="col-lg-2 col-lg-push-8 col-md-2 col-md-push-8 col-sm-2 col-sm-push-8 col-xs-12">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div id="mimFloatingLinksMenu">
|
|
|
|
<div class="panel panel-primary" style="margin-bottom: 0px; border-radius: 4px 4px 0px 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimExternalLinks">
|
|
<h4 class="panel-title">
|
|
<a href="#mimExternalLinksFold" id="mimExternalLinksToggle" class="mimTriangleToggle" role="button" data-toggle="collapse">
|
|
<div style="display: table-row">
|
|
<div id="mimExternalLinksToggleTriangle" class="small" style="color: white; display: table-cell;">▼</div>
|
|
|
|
<div style="display: table-cell;">External Links</div>
|
|
</div>
|
|
</a>
|
|
</h4>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="mimExternalLinksFold" class="collapse in">
|
|
|
|
<div class="panel-group" id="mimExternalLinksAccordion" role="tablist" aria-multiselectable="true">
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimGenome">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimGenomeLinksFold" id="mimGenomeLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<span id="mimGenomeLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">►</span> Genome
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimGenomeLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="genome">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
<div><a href="https://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000140464;t=ENST00000268058" class="mim-tip-hint" title="Genome databases for vertebrates and other eukaryotic species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/genome/gdv/browser/gene/?id=5371" class="mim-tip-hint" title="Detailed views of the complete genomes of selected organisms from vertebrates to protozoa." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Genome Viewer', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Genome Viewer</a></div>
|
|
|
|
|
|
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=102578" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimDna">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimDnaLinksFold" id="mimDnaLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<span id="mimDnaLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">►</span> DNA
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimDnaLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
<div><a href="https://www.ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000140464;t=ENST00000268058" class="mim-tip-hint" title="Transcript-based views for coding and noncoding DNA." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl (MANE Select)</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_002675,NM_033238,NM_033239,NM_033240,NM_033244,NM_033246,NM_033247,NM_033249,NM_033250" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/nuccore/NM_033238" class="mim-tip-hint" title="A collection of genome, gene, and transcript sequence data from several sources, including GenBank, RefSeq." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI RefSeq (MANE)', 'domain': 'ncbi.nlm.nih'})">NCBI RefSeq (MANE Select)</a></div>
|
|
|
|
|
|
<div><a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=102578" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">UCSC Genome Browser</a></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimProtein">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimProteinLinksFold" id="mimProteinLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<span id="mimProteinLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">►</span> Protein
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimProteinLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
<div><a href="https://hprd.org/summary?hprd_id=00023&isoform_id=00023_1&isoform_name=Isoform_1" class="mim-tip-hint" title="The Human Protein Reference Database; manually extracted and visually depicted information on human proteins." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HPRD', 'domain': 'hprd.org'})">HPRD</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.proteinatlas.org/search/PML" class="mim-tip-hint" title="The Human Protein Atlas contains information for a large majority of all human protein-coding genes regarding the expression and localization of the corresponding proteins based on both RNA and protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HumanProteinAtlas', 'domain': 'proteinatlas.org'})">Human Protein Atlas</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/protein/34814,190115,190117,190119,190121,190123,312883,544707,4261565,4505903,8815562,12275891,12275893,12275895,12275897,12275899,12275901,12275903,12275905,12275907,12275909,12275912,15451765,15451775,15451779,18088052,32880165,33341794,33875197,62087480,62087682,62088402,67089149,67089154,67089157,67089160,109637788,119598352,119598353,145337971,194374929,194390524,215274219" class="mim-tip-hint" title="NCBI protein data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Protein', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Protein</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.uniprot.org/uniprotkb/P29590" class="mim-tip-hint" title="Comprehensive protein sequence and functional information, including supporting data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UniProt', 'domain': 'uniprot.org'})">UniProt</a></div>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimGeneInfo">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimGeneInfoLinksFold" id="mimGeneInfoLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<div style="display: table-row">
|
|
<div id="mimGeneInfoLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">►</div>
|
|
|
|
<div style="display: table-cell;">Gene Info</div>
|
|
</div>
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimGeneInfoLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
<div><a href="http://biogps.org/#goto=genereport&id=5371" class="mim-tip-hint" title="The Gene Portal Hub; customizable portal of gene and protein function information." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'BioGPS', 'domain': 'biogps.org'})">BioGPS</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000140464;t=ENST00000268058" class="mim-tip-hint" title="Orthologs, paralogs, regulatory regions, and splice variants." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Ensembl', 'domain': 'ensembl.org'})">Ensembl</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=PML" class="mim-tip-hint" title="The Human Genome Compendium; web-based cards integrating automatically mined information on human genes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneCards', 'domain': 'genecards.org'})">GeneCards</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="http://amigo.geneontology.org/amigo/search/annotation?q=PML" class="mim-tip-hint" title="Terms, defined using controlled vocabulary, representing gene product properties (biologic process, cellular component, molecular function) across species." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GeneOntology', 'domain': 'amigo.geneontology.org'})">Gene Ontology</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.genome.jp/dbget-bin/www_bget?hsa+5371" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
|
|
|
|
|
|
|
|
<dd><a href="http://v1.marrvel.org/search/gene/PML" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></dd>
|
|
|
|
|
|
|
|
<dd><a href="https://monarchinitiative.org/NCBIGene:5371" class="mim-tip-hint" title="Monarch Initiative." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Monarch', 'domain': 'monarchinitiative.org'})">Monarch</a></dd>
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/gene/5371" class="mim-tip-hint" title="Gene-specific map, sequence, expression, structure, function, citation, and homology data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Gene', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Gene</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_chrom=chr15&hgg_gene=ENST00000268058.8&hgg_start=73994716&hgg_end=74047827&hgg_type=knownGene" class="mim-tip-hint" title="UCSC Genome Bioinformatics; gene-specific structure and function information with links to other databases." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC', 'domain': 'genome.ucsc.edu'})">UCSC</a></div>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimClinicalResources">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimClinicalResourcesLinksFold" id="mimClinicalResourcesLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<div style="display: table-row">
|
|
<div id="mimClinicalResourcesLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">►</div>
|
|
|
|
<div style="display: table-cell;">Clinical Resources</div>
|
|
</div>
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimClinicalResourcesLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel" aria-labelledby="clinicalResources">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://medlineplus.gov/genetics/gene/pml" class="mim-tip-hint" title="Consumer-friendly information about the effects of genetic variation on human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MedlinePlus Genetics', 'domain': 'medlineplus.gov'})">MedlinePlus Genetics</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=102578[mim]" class="mim-tip-hint" title="Genetic Testing Registry." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GTR', 'domain': 'ncbi.nlm.nih.gov'})">GTR</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimVariation">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimVariationLinksFold" id="mimVariationLinksToggle" class=" mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<span id="mimVariationLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5">▼</span> Variation
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimVariationLinksFold" class="panel-collapse collapse in mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/clinvar?term=102578[MIM]" class="mim-tip-hint" title="ClinVar aggregates information about sequence variation and its relationship to human health." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'ClinVar', 'domain': 'ncbi.nlm.nih.gov'})">ClinVar</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.deciphergenomics.org/gene/PML/overview/clinical-info" class="mim-tip-hint" title="DECIPHER" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'DECIPHER', 'domain': 'DECIPHER'})">DECIPHER</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://gnomad.broadinstitute.org/gene/ENSG00000140464" class="mim-tip-hint" title="The Genome Aggregation Database (gnomAD), Broad Institute." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'gnomAD', 'domain': 'gnomad.broadinstitute.org'})">gnomAD</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.ebi.ac.uk/gwas/search?query=PML" class="mim-tip-hint" title="GWAS Catalog; NHGRI-EBI Catalog of published genome-wide association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Catalog', 'domain': 'gwascatalog.org'})">GWAS Catalog </a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.gwascentral.org/search?q=PML" class="mim-tip-hint" title="GWAS Central; summary level genotype-to-phenotype information from genetic association studies." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'GWAS Central', 'domain': 'gwascentral.org'})">GWAS Central </a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://evs.gs.washington.edu/EVS/PopStatsServlet?searchBy=Gene+Hugo&target=PML&upstreamSize=0&downstreamSize=0&x=0&y=0" class="mim-tip-hint" title="National Heart, Lung, and Blood Institute Exome Variant Server." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NHLBI EVS', 'domain': 'evs.gs.washington.edu'})">NHLBI EVS</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.pharmgkb.org/gene/PA33439" class="mim-tip-hint" title="Pharmacogenomics Knowledge Base; curated and annotated information regarding the effects of human genetic variations on drug response." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PharmGKB', 'domain': 'pharmgkb.org'})">PharmGKB</a></div>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimAnimalModels">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimAnimalModelsLinksFold" id="mimAnimalModelsLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<div style="display: table-row">
|
|
<div id="mimAnimalModelsLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">►</div>
|
|
|
|
<div style="display: table-cell;">Animal Models</div>
|
|
</div>
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimAnimalModelsLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.alliancegenome.org/gene/HGNC:9113" class="mim-tip-hint" title="Search Across Species; explore model organism and human comparative genomics." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'Alliance Genome', 'domain': 'alliancegenome.org'})">Alliance Genome</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://flybase.org/reports/FBgn0026206.html" class="mim-tip-hint" title="A Database of Drosophila Genes and Genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'FlyBase', 'domain': 'flybase.org'})">FlyBase</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.mousephenotype.org/data/genes/MGI:104662" class="mim-tip-hint" title="International Mouse Phenotyping Consortium." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'IMPC', 'domain': 'knockoutmouse.org'})">IMPC</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="http://v1.marrvel.org/search/gene/PML#HomologGenesPanel" class="mim-tip-hint" title="Model organism Aggregated Resources for Rare Variant ExpLoration." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MARRVEL', 'domain': 'marrvel.org'})">MARRVEL</a></div>
|
|
|
|
|
|
|
|
|
|
<div><a href="http://www.informatics.jax.org/marker/MGI:104662" class="mim-tip-hint" title="Mouse Genome Informatics; international database resource for the laboratory mouse, including integrated genetic, genomic, and biological data." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MGI Mouse Gene', 'domain': 'informatics.jax.org'})">MGI Mouse Gene</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.mmrrc.org/catalog/StrainCatalogSearchForm.php?search_query=" class="mim-tip-hint" title="Mutant Mouse Resource & Research Centers." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'MMRRC', 'domain': 'mmrrc.org'})">MMRRC</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.ncbi.nlm.nih.gov/gene/5371/ortholog/" class="mim-tip-hint" title="Orthologous genes at NCBI." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'NCBI Orthologs', 'domain': 'ncbi.nlm.nih.gov'})">NCBI Orthologs</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://omia.org/OMIA002526/" class="mim-tip-hint" title="Online Mendelian Inheritance in Animals (OMIA) is a database of genes, inherited disorders and traits in 191 animal species (other than human and mouse.)" target="_blank">OMIA</a></div>
|
|
|
|
|
|
|
|
<div><a href="https://www.orthodb.org/?ncbi=5371" class="mim-tip-hint" title="Hierarchical catalogue of orthologs." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'OrthoDB', 'domain': 'orthodb.org'})">OrthoDB</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://wormbase.org/db/gene/gene?name=WBGene00003599;class=Gene" class="mim-tip-hint" title="Database of the biology and genome of Caenorhabditis elegans and related nematodes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name'{'name': 'Wormbase Gene', 'domain': 'wormbase.org'})">Wormbase Gene</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div class="panel panel-default" style="margin-top: 0px; border-radius: 0px">
|
|
<div class="panel-heading mim-panel-heading" role="tab" id="mimCellularPathways">
|
|
<span class="panel-title">
|
|
<span class="small">
|
|
<a href="#mimCellularPathwaysLinksFold" id="mimCellularPathwaysLinksToggle" class="collapsed mimSingletonTriangleToggle" role="button" data-toggle="collapse" data-parent="#mimExternalLinksAccordion">
|
|
<div style="display: table-row">
|
|
<div id="mimCellularPathwaysLinksToggleTriangle" class="small mimSingletonTriangle" style="color: #337CB5; display: table-cell;">►</div>
|
|
|
|
<div style="display: table-cell;">Cellular Pathways</div>
|
|
</div>
|
|
</a>
|
|
</span>
|
|
</span>
|
|
</div>
|
|
<div id="mimCellularPathwaysLinksFold" class="panel-collapse collapse mimLinksFold" role="tabpanel">
|
|
<div class="panel-body small mim-panel-body">
|
|
|
|
|
|
|
|
|
|
<div><a href="https://www.genome.jp/dbget-bin/get_linkdb?-t+pathway+hsa:5371" class="mim-tip-hint" title="Kyoto Encyclopedia of Genes and Genomes; diagrams of signaling pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'KEGG', 'domain': 'genome.jp'})">KEGG</a></div>
|
|
|
|
|
|
|
|
|
|
|
|
<div><a href="https://reactome.org/content/query?q=PML&species=Homo+sapiens&types=Reaction&types=Pathway&cluster=true" class="definition" title="Protein-specific information in the context of relevant cellular pathways." target="_blank" onclick="gtag('event', 'mim_outbound', {{'name': 'Reactome', 'domain': 'reactome.org'}})">Reactome</a></div>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
<span>
|
|
<span class="mim-tip-bottom" qtip_title="<strong>Looking for this gene or this phenotype in other resources?</strong>" qtip_text="Select a related resource from the dropdown menu and click for a targeted link to information directly relevant.">
|
|
|
|
</span>
|
|
</span>
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div class="col-lg-8 col-lg-pull-2 col-md-8 col-md-pull-2 col-sm-8 col-sm-pull-2 col-xs-12">
|
|
|
|
<div>
|
|
|
|
<a id="title" class="mim-anchor"></a>
|
|
|
|
<div>
|
|
<a id="number" class="mim-anchor"></a>
|
|
<div class="text-right">
|
|
|
|
|
|
|
|
|
|
|
|
</div>
|
|
<div>
|
|
<span class="h3">
|
|
<span class="mim-font mim-tip-hint" title="Gene description">
|
|
<span class="text-danger"><strong>*</strong></span>
|
|
102578
|
|
</span>
|
|
</span>
|
|
</div>
|
|
</div>
|
|
|
|
<div>
|
|
<a id="preferredTitle" class="mim-anchor"></a>
|
|
<h3>
|
|
<span class="mim-font">
|
|
|
|
ACUTE PROMYELOCYTIC LEUKEMIA, INDUCER OF; PML
|
|
|
|
</span>
|
|
</h3>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<a id="alternativeTitles" class="mim-anchor"></a>
|
|
<div>
|
|
<p>
|
|
<span class="mim-font">
|
|
<em>Alternative titles; symbols</em>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
MYL
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="includedTitles" class="mim-anchor"></a>
|
|
<div>
|
|
<p>
|
|
<span class="mim-font">
|
|
Other entities represented in this entry:
|
|
</span>
|
|
</p>
|
|
</div>
|
|
<div>
|
|
<span class="h3 mim-font">
|
|
PML/RARA FUSION GENE, INCLUDED
|
|
</span>
|
|
</div>
|
|
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="approvedGeneSymbols" class="mim-anchor"></a>
|
|
<p>
|
|
<span class="mim-text-font">
|
|
<strong><em>HGNC Approved Gene Symbol: <a href="https://www.genenames.org/tools/search/#!/genes?query=PML" class="mim-tip-hint" title="HUGO Gene Nomenclature Committee." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'HGNC', 'domain': 'genenames.org'})">PML</a></em></strong>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="cytogeneticLocation" class="mim-anchor"></a>
|
|
<p>
|
|
<span class="mim-text-font">
|
|
<strong>
|
|
<em>
|
|
Cytogenetic location: <a href="/geneMap/15/371?start=-3&limit=10&highlight=371">15q24.1</a>
|
|
|
|
Genomic coordinates <span class="small">(GRCh38)</span> : <a href="https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr15:73994716-74047827&dgv=pack&knownGene=pack&omimGene=pack" class="mim-tip-hint" title="UCSC Genome Browser; reference sequences and working draft assemblies for a large collection of genomes." target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'UCSC Genome Browser', 'domain': 'genome.ucsc.edu'})">15:73,994,716-74,047,827</a> </span>
|
|
</em>
|
|
</strong>
|
|
<a href="https://www.ncbi.nlm.nih.gov/" target="_blank" class="small"> (from NCBI) </a>
|
|
|
|
|
|
|
|
</span>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="text" class="mim-anchor"></a>
|
|
|
|
|
|
|
|
<h4>
|
|
|
|
<span class="mim-font">
|
|
<span class="mim-tip-floating" qtip_title="<strong>Looking For More References?</strong>" qtip_text="Click the 'reference plus' icon <span class='glyphicon glyphicon-plus-sign'></span> at the end of each OMIM text paragraph to see more references related to the content of the preceding paragraph.">
|
|
<strong>TEXT</strong>
|
|
</span>
|
|
</span>
|
|
</h4>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="description" class="mim-anchor"></a>
|
|
<h4 href="#mimDescriptionFold" id="mimDescriptionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimDescriptionToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Description</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimDescriptionFold" class="collapse in ">
|
|
<span class="mim-text-font">
|
|
<p>The PML tumor suppressor protein is essential for the formation of a dynamic macromolecular nuclear structure called the PML-nuclear body (PML-NB). PML-NBs have also been referred to as nuclear domains-10, Kremer bodies, and PML oncogenic domains. Unlike more specialized subnuclear structures, PML-NBs are involved in diverse cellular functions, including sequestration and release of proteins, mediation of posttranslational modifications, and promotion of nuclear events in response to various cellular stresses. The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukemia (APL; <a href="/entry/612376">612376</a>), which generates the oncogenic fusion protein PML-retinoic acid receptor-alpha (RARA; <a href="/entry/180240">180240</a>). PML-NBs are disrupted in APL and are thus implicated in APL pathogenesis (<a href="#4" class="mim-tip-reference" title="Bernardi, R., Pandolfi, P. P. <strong>Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies.</strong> Nature Rev. Molec. Cell Biol. 8: 1006-1016, 2007.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17928811/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17928811</a>] [<a href="https://doi.org/10.1038/nrm2277" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17928811">Bernardi and Pandolfi, 2007</a>; <a href="#31" class="mim-tip-reference" title="Salomoni, P., Ferguson, B. J., Wyllie, A. H., Rich, T. <strong>New insights into the role of PML in tumour suppression.</strong> Cell Res. 18: 622-640, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18504460/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18504460</a>] [<a href="https://doi.org/10.1038/cr.2008.58" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18504460">Salomoni et al., 2008</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?term=18504460+17928811" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="cloning" class="mim-anchor"></a>
|
|
<h4 href="#mimCloningFold" id="mimCloningToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimCloningToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Cloning and Expression</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimCloningFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p>In the process of analyzing the RARA gene in the t(15;17)(q22;q11.2-q12) translocation specifically associated with APL, <a href="#9" class="mim-tip-reference" title="de The, H., Chomienne, C., Lanotte, M., Degos, L., Dejean, A. <strong>The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus.</strong> Nature 347: 558-561, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2170850/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2170850</a>] [<a href="https://doi.org/10.1038/347558a0" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2170850">de The et al. (1990)</a> identified a novel gene on chromosome 15 involved with the RARA gene in formation of a fusion product. This gene, which they called MYL for 'myelocytic leukemia,' was transcribed in the same direction as RARA on the translocated chromosome. <a href="#9" class="mim-tip-reference" title="de The, H., Chomienne, C., Lanotte, M., Degos, L., Dejean, A. <strong>The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus.</strong> Nature 347: 558-561, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2170850/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2170850</a>] [<a href="https://doi.org/10.1038/347558a0" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2170850">De The et al. (1990)</a> identified a 144-bp region, flanked by canonical splice acceptor and donor sequences, that had a high probability of being an exon and showed no significant similarity to any sequence in a protein data bank, thus suggesting that MYL is a previously undescribed gene. In a later report, <a href="#10" class="mim-tip-reference" title="de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., Dejean, A. <strong>The PML-RAR-alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR.</strong> Cell 66: 675-684, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1652369/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1652369</a>] [<a href="https://doi.org/10.1016/0092-8674(91)90113-d" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1652369">de The et al. (1991)</a> changed the name of the gene from MYL to PML. They reported, furthermore, that the gene product contains a novel zinc finger motif common to several DNA-binding proteins. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1652369+2170850" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#16" class="mim-tip-reference" title="Goddard, A. D., Borrow, J., Freemont, P. S., Solomon, E. <strong>Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia.</strong> Science 254: 1371-1374, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1720570/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1720570</a>] [<a href="https://doi.org/10.1126/science.1720570" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1720570">Goddard et al. (1991)</a> demonstrated that PML is a putative zinc finger protein and potential transcription factor that is commonly expressed, with at least 3 major transcription products. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1720570" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#17" class="mim-tip-reference" title="Goddard, A. D., Yuan, J. Q., Fairbairn, L., Dexter, M., Borrow, J., Kozak, C., Solomon, E. <strong>Cloning of the murine homolog of the leukemia-associated PML gene.</strong> Mammalian Genome 6: 732-737, 1995.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8563172/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8563172</a>] [<a href="https://doi.org/10.1007/BF00354296" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8563172">Goddard et al. (1995)</a> cloned the murine Pml gene. The predicted amino acid sequence of mouse Pml, a ring-finger protein, shows 80% similarity to that of the human homolog, with greater than 90% similarity in the proposed functional domains. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8563172" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="mapping" class="mim-anchor"></a>
|
|
<h4 href="#mimMappingFold" id="mimMappingToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimMappingToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Mapping</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimMappingFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p>The PML gene maps to chromosome 15q22 (<a href="#9" class="mim-tip-reference" title="de The, H., Chomienne, C., Lanotte, M., Degos, L., Dejean, A. <strong>The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus.</strong> Nature 347: 558-561, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2170850/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2170850</a>] [<a href="https://doi.org/10.1038/347558a0" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2170850">de The et al., 1990</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2170850" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#17" class="mim-tip-reference" title="Goddard, A. D., Yuan, J. Q., Fairbairn, L., Dexter, M., Borrow, J., Kozak, C., Solomon, E. <strong>Cloning of the murine homolog of the leukemia-associated PML gene.</strong> Mammalian Genome 6: 732-737, 1995.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8563172/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8563172</a>] [<a href="https://doi.org/10.1007/BF00354296" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8563172">Goddard et al. (1995)</a> mapped the mouse Pml gene to a region of chromosome 9 with known homology of synteny to the region of 15q where PML is located. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8563172" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="geneFunction" class="mim-anchor"></a>
|
|
<h4 href="#mimGeneFunctionFold" id="mimGeneFunctionToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimGeneFunctionToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Gene Function</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimGeneFunctionFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p>While PML does not colocalize with proliferating cell nuclear antigen (PCNA; <a href="/entry/176740">176740</a>) or spliceosomes, <a href="#14" class="mim-tip-reference" title="Dyck, J. A., Maul, G. G., Miller, W. H., Jr., Chen, J. D., Kakizuka, A., Evans, R. M. <strong>A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein.</strong> Cell 76: 333-343, 1994.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8293467/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8293467</a>] [<a href="https://doi.org/10.1016/0092-8674(94)90340-9" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8293467">Dyck et al. (1994)</a> showed that it is part of a macromolecular structure, composed of at least 4 nuclear proteins, that is adhered to the nuclear matrix. This structure shows a labeling pattern resembling spheres that vary in both size and number among individual cells of a given cell line. PML-RAR expression appears to disrupt the integrity of these structures (referred to by <a href="#14" class="mim-tip-reference" title="Dyck, J. A., Maul, G. G., Miller, W. H., Jr., Chen, J. D., Kakizuka, A., Evans, R. M. <strong>A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein.</strong> Cell 76: 333-343, 1994.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8293467/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8293467</a>] [<a href="https://doi.org/10.1016/0092-8674(94)90340-9" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8293467">Dyck et al. (1994)</a> as PML oncogenic domains, or PODs) and thus appears to be the possible cause of their altered morphology. Retinoid treatment leads to a striking reassembly of the POD, which in turn is linked to differentiation of the leukemic cells. These results identified a novel macromolecular nuclear structure and suggested that it may serve as a target of cellular transformation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8293467" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>From their analysis of the phosphoamino acids of the PML protein, <a href="#6" class="mim-tip-reference" title="Chang, K.-S., Fan, Y.-H., Andreeff, M., Liu, J., Mu, Z.-M. <strong>The PML gene encodes a phosphoprotein associated with the nuclear matrix.</strong> Blood 85: 3646-3653, 1995.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7780148/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7780148</a>]" pmid="7780148">Chang et al. (1995)</a> concluded that both tyrosine and serine residues are phosphorylated. To investigate whether expression of the PML protein is cell cycle related, HeLa cells synchronized at various phases of the cell cycle were analyzed by immunofluorescence staining and confocal microscopy. They found that PML was expressed at a lower level in S, G2, and M phases and at a significantly higher level in G1 phase. Other studies showed that PML is a phosphoprotein and is associated with the nuclear matrix. <a href="#6" class="mim-tip-reference" title="Chang, K.-S., Fan, Y.-H., Andreeff, M., Liu, J., Mu, Z.-M. <strong>The PML gene encodes a phosphoprotein associated with the nuclear matrix.</strong> Blood 85: 3646-3653, 1995.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7780148/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7780148</a>]" pmid="7780148">Chang et al. (1995)</a> noted that PML shares many properties with tumor suppressors such as RB (<a href="/entry/614041">614041</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7780148" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Fusion of PML and TIF1A (<a href="/entry/603406">603406</a>) to RARA and BRAF (<a href="/entry/164757">164757</a>), respectively, results in the production of PML-RAR-alpha and TIF1-alpha-B-RAF (T18) oncoproteins. <a href="#42" class="mim-tip-reference" title="Zhong, S., Delva, L., Rachez, C., Cenciarelli, C., Gandini, D., Zhang, H., Kalantry, S., Freedman, L. P., Pandolfi, P. P. <strong>A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RAR-alpha and T18 oncoproteins.</strong> Nature Genet. 23: 287-295, 1999.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10610177/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10610177</a>] [<a href="https://doi.org/10.1038/15463" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10610177">Zhong et al. (1999)</a> showed that PML, TIF1-alpha, and RXR-alpha (<a href="/entry/180245">180245</a>)/RAR-alpha function together in a retinoic acid-dependent transcription complex. <a href="#42" class="mim-tip-reference" title="Zhong, S., Delva, L., Rachez, C., Cenciarelli, C., Gandini, D., Zhang, H., Kalantry, S., Freedman, L. P., Pandolfi, P. P. <strong>A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RAR-alpha and T18 oncoproteins.</strong> Nature Genet. 23: 287-295, 1999.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10610177/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10610177</a>] [<a href="https://doi.org/10.1038/15463" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10610177">Zhong et al. (1999)</a> found that PML acts as a ligand-dependent coactivator of RXR-alpha/RARA-alpha. PML interacts with TIF1-alpha and CREB-binding protein (CBP; <a href="/entry/600140">600140</a>). In PML -/- cells, the retinoic acid-dependent induction of genes such as RARB2, and the ability of TIF1-alpha and CBP to act as transcriptional coactivators on retinoic acid, are impaired. <a href="#42" class="mim-tip-reference" title="Zhong, S., Delva, L., Rachez, C., Cenciarelli, C., Gandini, D., Zhang, H., Kalantry, S., Freedman, L. P., Pandolfi, P. P. <strong>A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RAR-alpha and T18 oncoproteins.</strong> Nature Genet. 23: 287-295, 1999.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10610177/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10610177</a>] [<a href="https://doi.org/10.1038/15463" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10610177">Zhong et al. (1999)</a> showed that both PML and TIF1-alpha are growth suppressors required for the growth-inhibitory activity of retinoic acid. T18, similar to PML-RAR-alpha, disrupts the retinoic acid-dependent activity of this complex in a dominant-negative manner, resulting in a growth advantage. PML-RAR-alpha was the first example of an oncoprotein generated by the fusion of 2 molecules participating in the same pathway, specifically the fusion of a transcription factor to one of its own cofactors. Since the PML and RAR-alpha pathways converge at the transcriptional level, there is no need for a double-dominant-negative product to explain the pathogenesis of APL. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10610177" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#30" class="mim-tip-reference" title="Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P. P., Pelicci, P. G. <strong>PML regulates p53 acetylation and premature senescence induced by oncogenic Ras.</strong> Nature 406: 207-210, 2000.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10910364/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10910364</a>] [<a href="https://doi.org/10.1038/35018127" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10910364">Pearson et al. (2000)</a> reported that the tumor suppressor PML regulates the p53 response to oncogenic signals. <a href="#30" class="mim-tip-reference" title="Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P. P., Pelicci, P. G. <strong>PML regulates p53 acetylation and premature senescence induced by oncogenic Ras.</strong> Nature 406: 207-210, 2000.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10910364/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10910364</a>] [<a href="https://doi.org/10.1038/35018127" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10910364">Pearson et al. (2000)</a> found that oncogenic RAS (<a href="/entry/190020">190020</a>) upregulates PML expression, and that overexpression of PML induces senescence in a p53-dependent manner. p53 is acetylated at lysine-382 upon RAS expression, an event that is essential for its biologic function. RAS induces relocalization of p53 and the CBP acetyltransferase within the PML nuclear bodies and induces the formation of a trimeric p53-PML-CBP complex. Lastly, RAS-induced p53 acetylation, p53-CBP complex stabilization, and senescence are lost in PML -/- fibroblasts. <a href="#30" class="mim-tip-reference" title="Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P. P., Pelicci, P. G. <strong>PML regulates p53 acetylation and premature senescence induced by oncogenic Ras.</strong> Nature 406: 207-210, 2000.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10910364/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10910364</a>] [<a href="https://doi.org/10.1038/35018127" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10910364">Pearson et al. (2000)</a> concluded that their data established a link between PML and p53 and indicated that integrity of the PML bodies is required for p53 acetylation and senescence upon oncogene expression. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10910364" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#21" class="mim-tip-reference" title="Khan, M. M., Nomura, T., Kim, H., Kaul, S. C., Wadhwa, R., Shinagawa, T., Ichikawa-Iwata, E., Zhong, S., Pandolfi, P. P., Ishii, S. <strong>Role of PML and PML-RAR-alpha in Mad-mediated transcriptional repression.</strong> Molec. Cell 7: 1233-1243, 2001.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11430826/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11430826</a>] [<a href="https://doi.org/10.1016/s1097-2765(01)00257-x" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11430826">Khan et al. (2001)</a> showed that PML interacts with multiple corepressors (SKI (<a href="/entry/164780">164780</a>), NCOR, and Sin3A (<a href="/entry/607776">607776</a>)) and histone deacetylase-1 (HDAC1; <a href="/entry/601241">601241</a>), and that this interaction is required for transcriptional repression mediated by the tumor suppressor MAD (<a href="/entry/600021">600021</a>). PML-RARA has the 2 corepressor-interacting sites and inhibits MAD-mediated repression, suggesting that aberrant binding of PML-RARA to the corepressor complexes may lead to abrogation of the corepressor function. The authors suggested that these mechanisms may contribute to events leading to leukemogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11430826" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#36" class="mim-tip-reference" title="Turelli, P., Doucas, V., Craig, E., Mangeat, B., Klages, N., Evans, R., Kalpana, G., Trono, D. <strong>Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication.</strong> Molec. Cell 7: 1245-1254, 2001.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11430827/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11430827</a>] [<a href="https://doi.org/10.1016/s1097-2765(01)00255-6" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11430827">Turelli et al. (2001)</a> showed that incoming retroviral preintegration complexes trigger the exportin (<a href="/entry/602559">602559</a>)-mediated cytoplasmic export of the SWI/SNF component INI1 (<a href="/entry/601607">601607</a>) and of the nuclear body constituent PML. They further showed that the human immunodeficiency virus (HIV) genome associates with these proteins before nuclear migration. In the presence of arsenic, PML was sequestered in the nucleus, and the efficiency of HIV-mediated transduction was markedly increased. These results unveiled an unsuspected cellular response that interferes with the early steps of HIV replication. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11430827" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#39" class="mim-tip-reference" title="Yang, S., Kuo, C., Bisi, J. E., Kim, M. K. <strong>PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2.</strong> Nature Cell Biol. 4: 865-870, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12402044/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12402044</a>] [<a href="https://doi.org/10.1038/ncb869" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12402044">Yang et al. (2002)</a> determined that PML and checkpoint kinase-2 (CHEK2; <a href="/entry/604373">604373</a>) mediated p53 (<a href="/entry/191170">191170</a>)-independent apoptosis following gamma irradiation of several human cell lines. Endogenous CHEK2 bound PML within PML nuclear bodies. Following gamma irradiation, CHEK2 phosphorylated PML on ser117, causing dissociation of the 2 proteins. Apoptosis through this mechanism also required ATM (<a href="/entry/208900">208900</a>). <a href="#39" class="mim-tip-reference" title="Yang, S., Kuo, C., Bisi, J. E., Kim, M. K. <strong>PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2.</strong> Nature Cell Biol. 4: 865-870, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12402044/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12402044</a>] [<a href="https://doi.org/10.1038/ncb869" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12402044">Yang et al. (2002)</a> concluded that this pathway to gamma irradiation-induced apoptosis utilizes ATM, CHEK2, and PML. Overexpression of PML alone caused apoptosis in U937 myeloid cells. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12402044" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#24" class="mim-tip-reference" title="Lin, H.-K., Bergmann, S., Pandolfi, P. P. <strong>Cytoplasmic PML function in TGF-beta signalling.</strong> Nature 431: 205-211, 2004.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15356634/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15356634</a>] [<a href="https://doi.org/10.1038/nature02783" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="15356634">Lin et al. (2004)</a> demonstrated that cytoplasmic PML is an essential modulator of TGF-beta signaling. Primary cells from Pml-null mice are resistant to TGF-beta-dependent growth arrest, induction of cellular senescence, and apoptosis. These cells also have impaired phosphorylation and nuclear translocation of the TGF-beta signaling proteins Smad2 (<a href="/entry/601366">601366</a>) and Smad3 (<a href="/entry/603109">603109</a>), as well as impaired induction of TGF-beta target genes. Expression of cytoplasmic Pml is induced by TGF-beta. Furthermore, cytoplasmic Pml physically interacts with Smad2, Smad3, and SMAD anchor for receptor activation (SARA; <a href="/entry/603755">603755</a>), and is required for association of Smad2 and Smad3 with Sara and for the accumulation of Sara and TGF-beta receptor (see <a href="/entry/190181">190181</a>) in the early endosome. The PML-RAR-alpha oncoprotein of acute promyelocytic leukemia can antagonize cytoplasmic PML function, and acute promyelocytic leukemia cells have defects in TGF-beta signaling similar to those observed in Pml-null cells. <a href="#24" class="mim-tip-reference" title="Lin, H.-K., Bergmann, S., Pandolfi, P. P. <strong>Cytoplasmic PML function in TGF-beta signalling.</strong> Nature 431: 205-211, 2004.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15356634/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15356634</a>] [<a href="https://doi.org/10.1038/nature02783" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="15356634">Lin et al. (2004)</a> concluded that their findings identified cytoplasmic PML as a critical TGF-beta receptor and further implicated deregulated TGF-beta signaling in cancer pathogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15356634" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#35" class="mim-tip-reference" title="Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon-Cardo, C., Pandolfi, P. P. <strong>Identification of a tumour suppressor network opposing nuclear Akt function.</strong> Nature 441: 523-536, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16680151/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16680151</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16680151[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1038/nature04809" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16680151">Trotman et al. (2006)</a> demonstrated that the PML tumor suppressor prevents cancer by inactivating phosphorylated AKT (<a href="/entry/164730">164730</a>) inside the nucleus. They found in a mouse model that Pml loss markedly accelerated tumor onset, incidence, and progression in Pten (<a href="/entry/601728">601728</a>) heterozygous mutants, and led to female sterility with features that recapitulate the phenotype of Foxo3a knockout mice. <a href="#35" class="mim-tip-reference" title="Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon-Cardo, C., Pandolfi, P. P. <strong>Identification of a tumour suppressor network opposing nuclear Akt function.</strong> Nature 441: 523-536, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16680151/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16680151</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16680151[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1038/nature04809" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16680151">Trotman et al. (2006)</a> showed that PML deficiency on its own leads to tumorigenesis in the prostate, a tissue that is exquisitely sensitive to phosphorylated AKT levels, and demonstrated that PML specifically recruits the AKT phosphatase PP2a (see <a href="/entry/603113">603113</a>) as well phosphorylated AKT into PML nuclear bodies. Notably, <a href="#35" class="mim-tip-reference" title="Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon-Cardo, C., Pandolfi, P. P. <strong>Identification of a tumour suppressor network opposing nuclear Akt function.</strong> Nature 441: 523-536, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16680151/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16680151</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16680151[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1038/nature04809" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16680151">Trotman et al. (2006)</a> found that PML-null cells are impaired in PP2a phosphatase activity towards AKT, and thus accumulate nuclear phosphorylated AKT. As a consequence, the progressive reduction in PML dose leads to inactivation of FOXO3A-mediated transcription of proapoptotic BIM (<a href="/entry/603827">603827</a>) and the cell cycle inhibitor p27(KIP1) (<a href="/entry/600778">600778</a>). <a href="#35" class="mim-tip-reference" title="Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon-Cardo, C., Pandolfi, P. P. <strong>Identification of a tumour suppressor network opposing nuclear Akt function.</strong> Nature 441: 523-536, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16680151/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16680151</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16680151[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1038/nature04809" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16680151">Trotman et al. (2006)</a> concluded that their results demonstrate that PML orchestrates a nuclear tumor suppressor network for inactivation of nuclear phosphorylated AKT, and thus highlight the importance of AKT compartmentalization in human cancer pathogenesis and treatment. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16680151" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#3" class="mim-tip-reference" title="Bernardi, R., Guernah, I., Jin, D., Grisendi, S., Alimonti, A., Teruya-Feldstein, J., Cordon-Cardo, C., Simon, M. C., Rafii, S., Pandolfi, P. P. <strong>PML inhibits HIF-1-alpha translation and neoangiogenesis through repression of mTOR.</strong> Nature 442: 779-785, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16915281/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16915281</a>] [<a href="https://doi.org/10.1038/nature05029" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16915281">Bernardi et al. (2006)</a> identified PML as a critical inhibitor of neoangiogenesis (the formation of new blood vessels) in vivo, in both ischemic and neoplastic conditions, through the control of protein translation. <a href="#3" class="mim-tip-reference" title="Bernardi, R., Guernah, I., Jin, D., Grisendi, S., Alimonti, A., Teruya-Feldstein, J., Cordon-Cardo, C., Simon, M. C., Rafii, S., Pandolfi, P. P. <strong>PML inhibits HIF-1-alpha translation and neoangiogenesis through repression of mTOR.</strong> Nature 442: 779-785, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16915281/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16915281</a>] [<a href="https://doi.org/10.1038/nature05029" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16915281">Bernardi et al. (2006)</a> demonstrated that in hypoxic conditions PML acts as a negative regulator of the synthesis rate of hypoxia-inducible factor 1-alpha (HIF1A; <a href="/entry/603348">603348</a>) by repressing MTOR (<a href="/entry/601231">601231</a>). PML physically interacts with MTOR and negatively regulates its association with the small GTPase RHEB (<a href="/entry/601293">601293</a>) by favoring MTOR nuclear accumulation. Notably, PML-null cells and tumors display higher sensitivity both in vitro and in vivo to growth inhibition by rapamycin, and lack of PML inversely correlates with phosphorylation of ribosomal protein S6 (<a href="/entry/180460">180460</a>) and tumor angiogenesis in mouse and human tumors. Thus, <a href="#3" class="mim-tip-reference" title="Bernardi, R., Guernah, I., Jin, D., Grisendi, S., Alimonti, A., Teruya-Feldstein, J., Cordon-Cardo, C., Simon, M. C., Rafii, S., Pandolfi, P. P. <strong>PML inhibits HIF-1-alpha translation and neoangiogenesis through repression of mTOR.</strong> Nature 442: 779-785, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16915281/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16915281</a>] [<a href="https://doi.org/10.1038/nature05029" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16915281">Bernardi et al. (2006)</a> concluded that their findings identified PML as a novel suppressor of mTOR and neoangiogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16915281" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>By yeast 2-hybrid analysis of a human fetal brain cDNA library, followed by coimmunoprecipitation analysis, <a href="#22" class="mim-tip-reference" title="Kunapuli, P., Kasyapa, C. S., Chin, S.-F., Caldas, C., Cowell, J. K. <strong>ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML.</strong> Exp. Cell Res. 312: 3739-3751, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17027752/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17027752</a>] [<a href="https://doi.org/10.1016/j.yexcr.2006.06.037" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17027752">Kunapuli et al. (2006)</a> found that ZNF198 (ZMYM2; <a href="/entry/602221">602221</a>) was covalently modified by SUMO1 (<a href="/entry/601912">601912</a>). Confocal microscopy showed that a proportion of ZNF198 colocalized with SUMO1 and PML in PML nuclear bodies, and coimmunoprecipitation analysis revealed that all 3 proteins resided in a protein complex. Mutation of the SUMO1-binding site of ZNF198 resulted in degradation of ZNF198, nuclear dispersal of PML, and loss of punctate PML nuclear bodies. <a href="#22" class="mim-tip-reference" title="Kunapuli, P., Kasyapa, C. S., Chin, S.-F., Caldas, C., Cowell, J. K. <strong>ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML.</strong> Exp. Cell Res. 312: 3739-3751, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17027752/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17027752</a>] [<a href="https://doi.org/10.1016/j.yexcr.2006.06.037" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17027752">Kunapuli et al. (2006)</a> found that the MDA-MB-157 breast cancer cell line, which has a deletion in chromosome 13q11 encompassing the ZNF198 gene, lacked PML nuclear bodies, although PML protein levels appeared normal. The fusion protein ZNF198/FGFR1 (<a href="/entry/136350">136350</a>), which occurs in atypical myeloproliferative disease (<a href="/entry/613523">613523</a>) and lacks the SUMO1-binding site of ZNF198, could dimerize with wildtype ZNF198 and disrupt its function. Expression of ZNF198/FGFR1 disrupted PML sumoylation and nuclear body formation and resulted in cytoplasmic localization of SUMO1. <a href="#22" class="mim-tip-reference" title="Kunapuli, P., Kasyapa, C. S., Chin, S.-F., Caldas, C., Cowell, J. K. <strong>ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML.</strong> Exp. Cell Res. 312: 3739-3751, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17027752/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17027752</a>] [<a href="https://doi.org/10.1016/j.yexcr.2006.06.037" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17027752">Kunapuli et al. (2006)</a> concluded that sumoylation of ZNF198 is required for PML nuclear body formation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17027752" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Using wildtype and Irf8 (<a href="/entry/601565">601565</a>) -/- mice, <a href="#13" class="mim-tip-reference" title="Dror, N., Rave-Harel, N., Burchert, A., Azriel, A., Tamura, T., Tailor, P., Neubauer, A., Ozato, K., Levi, B.-Z. <strong>Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells.</strong> J. Biol. Chem. 282: 5633-5640, 2007.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17189268/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17189268</a>] [<a href="https://doi.org/10.1074/jbc.M607825200" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17189268">Dror et al. (2007)</a> showed that Irf8 was essential for induced expression of Pml in macrophages and for constitutive expression of Pml in hematopoietic tissues. The authors identified PML-I as the major PML splice variant induced in IFN-gamma (IFNG; <a href="/entry/147570">147570</a>)- and lipopolysaccharide-activated human U937 promyelocytic cell line, indicating that IRF8 mediates PML-I expression. Regulation of Pml-I expression by Irf8 occurred through a specific ISRE located within the Pml promoter and through cooperative interaction with transcription factors Irf1 (<a href="/entry/147575">147575</a>) and Pu.1 (SPI1; <a href="/entry/165170">165170</a>) in mouse macrophages. Irf8 was not only essential for the Ifn-gamma-induced expression of Pml in activated mouse macrophages, but also for formation of Pml nuclear bodies. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17189268" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#20" class="mim-tip-reference" title="Ito, K., Bernardi, R., Morotti, A., Matsuoka, S., Saglio, G., Ikeda, Y., Rosenblatt, J., Avigan, D. E., Teruya-Feldstein, J., Pandolfi, P. P. <strong>PML targeting eradicates quiescent leukaemia-initiating cells.</strong> Nature 453: 1072-1078, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18469801/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18469801</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18469801[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1038/nature07016" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18469801">Ito et al. (2008)</a> showed that PML is critical in the maintenance of quiescent leukemia-initiating cells and normal hematopoietic stem cells. They suggested that targeting PML may be an effective treatment for prevention of relapse in CML (<a href="/entry/608232">608232</a>). <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18469801" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#32" class="mim-tip-reference" title="Song, M. S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya-Feldstein, J., Pandolfi, P. P. <strong>The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network.</strong> Nature 455: 813-817, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18716620/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18716620</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18716620[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1038/nature07290" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18716620">Song et al. (2008)</a> found that PTEN was aberrantly localized in APL in which PML function was disrupted by the PML-RARA fusion oncoprotein. Treatment with drugs that triggered PML-RARA degradation restored nuclear PTEN. PML opposed the activity of HAUSP (USP7; <a href="/entry/602519">602519</a>) towards PTEN through a mechanism involving DAXX (<a href="/entry/603186">603186</a>). Confocal microscopy and immunohistochemistry demonstrated that HAUSP was overexpressed in prostate cancer and that levels of HAUSP directly correlated with tumor aggressiveness and with PTEN nuclear exclusion. <a href="#32" class="mim-tip-reference" title="Song, M. S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya-Feldstein, J., Pandolfi, P. P. <strong>The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network.</strong> Nature 455: 813-817, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18716620/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18716620</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18716620[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1038/nature07290" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18716620">Song et al. (2008)</a> concluded that a PML-HAUSP network controls PTEN deubiquitinylation and subcellular localization, which is perturbed in human cancers. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18716620" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide exerts its therapeutic effect by promoting degradation of PML-RARA. PML and PML-RARA degradation is triggered by their sumoylation, but the mechanism by which arsenic trioxide induces this posttranslational modification was unclear. <a href="#41" class="mim-tip-reference" title="Zhang, X.-W., Yan, X.-J., Zhou, Z.-R., Yang, F.-F., Wu, Z.-Y., Sun, H.-B., Liang, W.-X., Song, A.-X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q.-Y., Yang, H.-Y., and 9 others. <strong>Arsenic trioxide controls the fate of the PML-RAR-alpha oncoprotein by directly binding PML.</strong> Science 328: 240-243, 2010. Note: Erratum: Science 328: 974 only, 2010.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20378816/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20378816</a>] [<a href="https://doi.org/10.1126/science.1183424" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="20378816">Zhang et al. (2010)</a> showed that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARA and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9 (<a href="/entry/601661">601661</a>), resulting in enhanced sumoylation and degradation. <a href="#41" class="mim-tip-reference" title="Zhang, X.-W., Yan, X.-J., Zhou, Z.-R., Yang, F.-F., Wu, Z.-Y., Sun, H.-B., Liang, W.-X., Song, A.-X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q.-Y., Yang, H.-Y., and 9 others. <strong>Arsenic trioxide controls the fate of the PML-RAR-alpha oncoprotein by directly binding PML.</strong> Science 328: 240-243, 2010. Note: Erratum: Science 328: 974 only, 2010.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20378816/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20378816</a>] [<a href="https://doi.org/10.1126/science.1183424" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="20378816">Zhang et al. (2010)</a> concluded that the identification of PML as a direct target of arsenic trioxide provides insights into the drug's mechanism of action and its specificity for APL. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20378816" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In mouse embryonic fibroblasts, <a href="#15" class="mim-tip-reference" title="Giorgi, C., Ito, K., Lin, H.-K., Santangelo, C., Wieckowski, M. R., Lebiedzinska, M., Bononi, A., Bonora, M., Duszynski, J., Bernardi, R., Rizzuto, R., Tacchetti, C., Pinton, P., Pandolfi, P. P. <strong>PML regulates apoptosis at endoplasmic reticulum by modulating calcium release.</strong> Science 330: 1247-1251, 2010. Note: Erratum: Science 371: eabi4740, 2021.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21030605/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21030605</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21030605[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1126/science.1189157" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="21030605">Giorgi et al. (2010)</a> found that extranuclear Pml was specifically enriched at the endoplasmic reticulum (ER) and at the mitochondria-associated membranes, signaling domains involved in ER-to-mitochondria calcium ion transport and in induction of apoptosis. They found Pml in complexes of large molecular size with the inositol 1,4,5-triphosphate receptor (IP3R; <a href="/entry/147265">147265</a>), protein kinase Akt (<a href="/entry/164730">164730</a>), and protein phosphatase 2a (<a href="/entry/176915">176915</a>). Pml was essential for Akt- and PP2a-dependent modulation of Ip3r phosphorylation and in turn for Ip3r-mediated calcium ion release from the endoplasmic reticulum. <a href="#15" class="mim-tip-reference" title="Giorgi, C., Ito, K., Lin, H.-K., Santangelo, C., Wieckowski, M. R., Lebiedzinska, M., Bononi, A., Bonora, M., Duszynski, J., Bernardi, R., Rizzuto, R., Tacchetti, C., Pinton, P., Pandolfi, P. P. <strong>PML regulates apoptosis at endoplasmic reticulum by modulating calcium release.</strong> Science 330: 1247-1251, 2010. Note: Erratum: Science 371: eabi4740, 2021.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21030605/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21030605</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21030605[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1126/science.1189157" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="21030605">Giorgi et al. (2010)</a> concluded that their findings provided a mechanistic explanation for the pleiotropic role of Pml in apoptosis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21030605" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>Reviews of PML Function</em></strong></p><p>
|
|
<a href="#4" class="mim-tip-reference" title="Bernardi, R., Pandolfi, P. P. <strong>Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies.</strong> Nature Rev. Molec. Cell Biol. 8: 1006-1016, 2007.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17928811/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17928811</a>] [<a href="https://doi.org/10.1038/nrm2277" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="17928811">Bernardi and Pandolfi (2007)</a> reviewed the structure, dynamics, and functions of PML-NBs. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17928811" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#31" class="mim-tip-reference" title="Salomoni, P., Ferguson, B. J., Wyllie, A. H., Rich, T. <strong>New insights into the role of PML in tumour suppression.</strong> Cell Res. 18: 622-640, 2008.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18504460/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18504460</a>] [<a href="https://doi.org/10.1038/cr.2008.58" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="18504460">Salomoni et al. (2008)</a> reviewed the role of PML in tumor suppression. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18504460" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><strong><em>PML/RARA Fusion Protein</em></strong></p><p>
|
|
For information on the generation of PML/RARA fusion genes through translocations associated with APL, see CYTOGENETICS.</p><p><a href="#19" class="mim-tip-reference" title="Grignani, F., Ferrucci, P. F., Testa, U., Talamo, G., Fagioli, M., Alcalay, M., Mencarelli, A., Grignani, F., Peschle, C., Nicoletti, I., Pelicci, P. G. <strong>The acute promyelocytic leukemia-specific PML-RAR-alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells.</strong> Cell 74: 423-431, 1993.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8394219/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8394219</a>] [<a href="https://doi.org/10.1016/0092-8674(93)80044-f" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="8394219">Grignani et al. (1993)</a> expressed the PML-RARA protein in U937 myeloid precursor cells and showed that they lost the capacity to differentiate under the action of stimuli such as vitamin D3 and transforming growth factor beta-1 (TGFB1; <a href="/entry/190180">190180</a>), acquired enhanced sensitivity to retinoic acid, and exhibited a higher growth rate consequent to diminished apoptotic cell death. These results provided evidence of biologic activity of the fusion protein and recapitulated critical features of the promyelocytic leukemia phenotype. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8394219" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#26" class="mim-tip-reference" title="Lin, R. J., Nagy, L., Inoue, S., Shao, W., Miller, W. H., Jr., Evans, R. M. <strong>Role of the histone deacetylase complex in acute promyelocytic leukaemia.</strong> Nature 391: 811-814, 1998.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9486654/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9486654</a>] [<a href="https://doi.org/10.1038/35895" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9486654">Lin et al. (1998)</a> reported that the association of PLZF-RAR-alpha (see <a href="/entry/176797">176797</a>) and PML-RAR-alpha with the histone deacetylase complex (see <a href="/entry/605164">605164</a>) helps to determine both the development of APL and the ability of patients to respond to retinoids. Consistent with these observations, inhibitors of histone deacetylase dramatically potentiate retinoid-induced differentiation of retinoic acid-sensitive, and restore retinoid responses of retinoic acid-resistant, APL cell lines. <a href="#26" class="mim-tip-reference" title="Lin, R. J., Nagy, L., Inoue, S., Shao, W., Miller, W. H., Jr., Evans, R. M. <strong>Role of the histone deacetylase complex in acute promyelocytic leukaemia.</strong> Nature 391: 811-814, 1998.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9486654/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9486654</a>] [<a href="https://doi.org/10.1038/35895" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9486654">Lin et al. (1998)</a> concluded that oncogenic retinoic acid receptors mediate leukemogenesis through aberrant chromatin acetylation, and that pharmacologic manipulation of nuclear receptor cofactors may be a useful approach in the treatment of human disease. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9486654" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#18" class="mim-tip-reference" title="Grignani, F., De Matteis, S., Nervi, C., Tomassoni, L., Gelmetti, V., Cioce, M., Fanelli, M., Ruthardt, M., Ferrara, F. F., Zamir, I., Seiser, C., Grignani, F., Lazar, M. A., Minucci, S., Pelicci, P. G. <strong>Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia.</strong> Nature 391: 815-818, 1998.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9486655/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9486655</a>] [<a href="https://doi.org/10.1038/35901" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9486655">Grignani et al. (1998)</a> demonstrated that both PML-RAR-alpha and PLZF-RAR-alpha fusion proteins recruit the nuclear corepressor (NCOR; see <a href="/entry/600849">600849</a>)-histone deacetylase complex through the RAR-alpha CoR box. PLZF-RAR-alpha contains a second, retinoic acid-resistant binding site in the PLZF amino-terminal region. High doses of retinoic acid release histone deacetylase activity from PML-RAR-alpha, but not from PLZF-RAR-alpha. Mutation of the NCOR binding site abolishes the ability of PML-RAR-alpha to block differentiation, whereas inhibition of histone deacetylase activity switches the transcriptional and biologic effects of PLZF-RAR-alpha from being an inhibitor to an activator of the retinoic acid signaling pathway. Therefore, <a href="#18" class="mim-tip-reference" title="Grignani, F., De Matteis, S., Nervi, C., Tomassoni, L., Gelmetti, V., Cioce, M., Fanelli, M., Ruthardt, M., Ferrara, F. F., Zamir, I., Seiser, C., Grignani, F., Lazar, M. A., Minucci, S., Pelicci, P. G. <strong>Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia.</strong> Nature 391: 815-818, 1998.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9486655/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9486655</a>] [<a href="https://doi.org/10.1038/35901" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9486655">Grignani et al. (1998)</a> concluded that recruitment of histone deacetylase is crucial to the transforming potential of APL fusion proteins, and the different effects of retinoic acid on the stability of the PML-RAR-alpha and PLZF-RAR-alpha corepressor complexes determines the differential response of APLs to retinoic acid. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9486655" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>RAR and acute myeloid leukemia-1 (AML1; <a href="/entry/151385">151385</a>) transcription factors are found in leukemias as fusion proteins with PML and ETO (CBFA2T1; <a href="/entry/133435">133435</a>), respectively. Association of PML-RAR and AML1-ETO with the NCOR-histone deacetylase complex is required to block hematopoietic differentiation. <a href="#27" class="mim-tip-reference" title="Minucci, S., Maccarana, M., Cioce, M., De Luca, P., Gelmetti, V., Segalla, S., Di Croce, L., Giavara, S., Matteucci, C., Gobbi, A., Bianchini, A., Colombo, E., Schiavoni, I., Badaracco, G., Hu, X., Lazar, M. A., Landsberger, N., Nervi, C., Pelicci, P. G. <strong>Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation.</strong> Molec. Cell 5: 811-820, 2000.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10882117/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10882117</a>] [<a href="https://doi.org/10.1016/s1097-2765(00)80321-4" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10882117">Minucci et al. (2000)</a> showed that PML-RAR and AML1-ETO exist in vivo within high molecular weight nuclear complexes, reflecting their oligomeric state. Oligomerization requires PML or ETO coiled-coil regions and is responsible for abnormal recruitment of NCOR, transcriptional repression, and impaired differentiation of primary hematopoietic precursors. Fusion of RAR to a heterologous oligomerization domain recapitulated the properties of PML-RAR, indicating that oligomerization per se is sufficient to achieve transforming potential. These results showed that oligomerization of a transcription factor, imposing an altered interaction with transcriptional coregulators, represents a novel mechanism of oncogenic activation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10882117" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The recruitment of the nuclear receptor corepressor SMRT (NCOR2; <a href="/entry/600848">600848</a>) and subsequent repression of retinoid target genes is critical for the oncogenic function of PML-RARA. <a href="#25" class="mim-tip-reference" title="Lin, R. J., Evans, R. M. <strong>Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers.</strong> Molec. Cell 5: 821-830, 2000.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10882118/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10882118</a>] [<a href="https://doi.org/10.1016/s1097-2765(00)80322-6" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10882118">Lin and Evans (2000)</a> showed that the ability of PML-RARA to form homodimers is both necessary and sufficient for its increased binding efficiency to corepressor and its inhibitory effects on hormonal responses in myeloid differentiation. Furthermore, the authors found that altered stoichiometric interaction of SMRT with PML-RARA homodimers may underlie these processes. An RXR mutant lacking transactivation function AF2 recapitulated many biochemical and functional properties of PML-RARA. Taken together, these results indicated that altered dimerization of a transcription factor can be directly linked to cellular transformation, and they implicated dimerization interfaces of oncogenes as potential drug targets. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10882118" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#29" class="mim-tip-reference" title="Pandolfi, P. P. <strong>Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia.</strong> Hum. Molec. Genet. 10: 769-775, 2001.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11257111/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11257111</a>] [<a href="https://doi.org/10.1093/hmg/10.7.769" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11257111">Pandolfi (2001)</a> reviewed the roles of the RARA and PML genes in the pathogenesis of APL and discussed the multiple oncogenic activities of PML-RARA. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11257111" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#11" class="mim-tip-reference" title="Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo Coco, F., Kouzarides, T., Nervi, C., Minucci, S., Pelicci, P. G. <strong>Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor.</strong> Science 295: 1079-1082, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11834837/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11834837</a>] [<a href="https://doi.org/10.1126/science.1065173" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11834837">Di Croce et al. (2002)</a> demonstrated that PML-RARA fusion protein induces gene hypermethylation and silencing by recruiting DNA methyltransferases to target promoters and that hypermethylation contributes to its leukemogenic potential. Retinoic acid treatment induces promoter demethylation, gene reexpression, and reversion of the transformed phenotype. <a href="#11" class="mim-tip-reference" title="Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo Coco, F., Kouzarides, T., Nervi, C., Minucci, S., Pelicci, P. G. <strong>Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor.</strong> Science 295: 1079-1082, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11834837/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11834837</a>] [<a href="https://doi.org/10.1126/science.1065173" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="11834837">Di Croce et al. (2002)</a> concluded that their results establish a mechanistic link between genetic and epigenetic changes during transformation and suggest that hypermethylation contributes to the early steps of carcinogenesis. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11834837" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>The fusion protein PML-RARA initiates APL when expressed in the early myeloid compartment of transgenic mice. <a href="#23" class="mim-tip-reference" title="Lane, A. A., Ley, T. J. <strong>Neutrophil elastase cleaves PML-RAR-alpha and is important for the development of acute promyelocytic leukemia in mice.</strong> Cell 115: 305-318, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14636558/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14636558</a>] [<a href="https://doi.org/10.1016/s0092-8674(03)00852-3" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="14636558">Lane and Ley (2003)</a> found that PML-RARA was cleaved in several positions by a neutral serine protease in a human myeloid cell line; purification revealed that the protease was neutrophil elastase (ELA2; <a href="/entry/130130">130130</a>). Immunofluorescence localization studies suggested that cleavage of PML-RARA must have occurred within the cell, perhaps within the nucleus. The functional importance of ELA2 for APL development was assessed in Ela2-deficient mice. More than 90% of bone marrow PML-RARA-cleaving activity was lost in the absence of Ela2, and Ela2-deficient animals, but not cathepsin G (<a href="/entry/116830">116830</a>)-deficient animals, were protected from APL development. The authors determined that primary mouse and human APL cells also contained ELA2-dependent PML-RARA-cleaving activity. <a href="#23" class="mim-tip-reference" title="Lane, A. A., Ley, T. J. <strong>Neutrophil elastase cleaves PML-RAR-alpha and is important for the development of acute promyelocytic leukemia in mice.</strong> Cell 115: 305-318, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14636558/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14636558</a>] [<a href="https://doi.org/10.1016/s0092-8674(03)00852-3" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="14636558">Lane and Ley (2003)</a> concluded that, since ELA2 is maximally produced in promyelocytes, it may play a role in APL pathogenesis by facilitating the leukemogenic potential of PML-RARA. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14636558" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#37" class="mim-tip-reference" title="Villa, R., Morey, L., Raker, V. A., Buschbeck, M., Gutierrez, A., De Santis, F., Corsaro, M., Varas, F., Bossi, D., Minucci, S., Pelicci, P. G., Di Croce, L. <strong>The methyl-CpG binding protein MBD1 is required for PML-RAR-alpha function.</strong> Proc. Nat. Acad. Sci. 103: 1400-1405, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16432238/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16432238</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16432238[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1073/pnas.0509343103" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16432238">Villa et al. (2006)</a> found that MBD1 (<a href="/entry/156535">156535</a>) cooperated with PML-RARA in transcriptional repression and cellular transformation in human cell lines. PML-RARA recruited MBD1 to its target promoter through an HDAC3 (<a href="/entry/605166">605166</a>)-mediated mechanism. Binding of HDAC3 and MBD1 was not confined to the target promoter, but was instead spread over the locus. Knockdown of HDAC3 expression by RNA interference in acute promyelocytic leukemia cells alleviated PML-RARA-induced promoter silencing. Furthermore, retroviral expression of dominant-negative mutants of MBD1 in human hematopoietic precursors interfered with PML-RARA-induced repression and restored cell differentiation. <a href="#37" class="mim-tip-reference" title="Villa, R., Morey, L., Raker, V. A., Buschbeck, M., Gutierrez, A., De Santis, F., Corsaro, M., Varas, F., Bossi, D., Minucci, S., Pelicci, P. G., Di Croce, L. <strong>The methyl-CpG binding protein MBD1 is required for PML-RAR-alpha function.</strong> Proc. Nat. Acad. Sci. 103: 1400-1405, 2006.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16432238/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16432238</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16432238[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1073/pnas.0509343103" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="16432238">Villa et al. (2006)</a> concluded that PML-RARA recruits an HDAC3-MBD1 complex to target promoters to establish and maintain chromatin silencing. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16432238" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="cytogenetics" class="mim-anchor"></a>
|
|
<h4 href="#mimCytogeneticsFold" id="mimCytogeneticsToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimCytogeneticsToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Cytogenetics</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimCytogeneticsFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p><strong><em>PML/RARA Fusion Gene</em></strong></p><p>
|
|
In the process of analyzing the RARA gene in the t(15;17)(q22;q11.2-q12) translocation specifically associated with acute promyelocytic leukemia (APL), <a href="#9" class="mim-tip-reference" title="de The, H., Chomienne, C., Lanotte, M., Degos, L., Dejean, A. <strong>The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus.</strong> Nature 347: 558-561, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2170850/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2170850</a>] [<a href="https://doi.org/10.1038/347558a0" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2170850">de The et al. (1990)</a> identified a novel gene on chromosome 15 involved with the RARA gene in formation of a fusion product. This gene, which they called MYL, was transcribed in the same direction as RARA on the translocated chromosome. In the chimeric gene, the promoter and first exon of the RARA gene were replaced by part of the MYL gene. <a href="#9" class="mim-tip-reference" title="de The, H., Chomienne, C., Lanotte, M., Degos, L., Dejean, A. <strong>The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus.</strong> Nature 347: 558-561, 1990.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2170850/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2170850</a>] [<a href="https://doi.org/10.1038/347558a0" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="2170850">De The et al. (1990)</a> established that the translocation chromosome generates an MYL-RARA chimeric transcript. The findings strongly implicated RARA in leukemogenesis. The possibility was raised that the altered retinoic acid receptor behaves as a dominant-negative mutant that blocks the expression of retinoic acid target genes involved in granulocytic differentiation. In a later report, <a href="#10" class="mim-tip-reference" title="de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., Dejean, A. <strong>The PML-RAR-alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR.</strong> Cell 66: 675-684, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1652369/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1652369</a>] [<a href="https://doi.org/10.1016/0092-8674(91)90113-d" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1652369">de The et al. (1991)</a> changed the name of the gene from MYL to PML. The PML-RARA mRNA encoded a predicted 106-kD chimeric protein containing most of the PML sequences fused to a large part of the RARA gene, including its DNA- and hormone-binding domains. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1652369+2170850" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#16" class="mim-tip-reference" title="Goddard, A. D., Borrow, J., Freemont, P. S., Solomon, E. <strong>Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia.</strong> Science 254: 1371-1374, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1720570/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1720570</a>] [<a href="https://doi.org/10.1126/science.1720570" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1720570">Goddard et al. (1991)</a> determined that the PML breakpoints were clustered in 2 regions on either side of an alternatively spliced exon. Although leukemic cells with translocations characteristically expressed only 1 fusion product, both PML-RARA (on the 15q+ derivative chromosome) and RARA-PML (on the 17q- derivative) were transcribed. The contribution of PML to the oncogenicity of the fusion products was demonstrated by the following: no mutations affecting RARA alone were observed in 20 APLs analyzed; 2 APLs cytogenetically lacking t(15;17) chromosomes were found to have rearrangements of both PML and RARA; and PML but not RARA was molecularly rearranged in a variant APL translocation in which chromosome 15 had been translocated to another chromosome with no visible involvement of chromosome 17. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1720570" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#34" class="mim-tip-reference" title="Tong, J.-H., Dong, S., Geng, J.-P., Huang, W., Wang, Z.-Y., Sun, G.-L., Chen, S.-J., Chen, Z., Larsen, C.-J., Berger, R. <strong>Molecular rearrangements of the MYL gene in acute promyelocytic leukemia (APL, M3) define a breakpoint cluster region as well as some molecular variants.</strong> Oncogene 7: 311-316, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1312695/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1312695</a>]" pmid="1312695">Tong et al. (1992)</a> found that in 20 of 22 patients with a detectable MYL rearrangement the breakpoints were clustered within a 4.4-kb segment, which they designated MYL(bcr). The 2 remaining patients exhibited a more 5-prime rearrangement at about 10-kb upstream of the MYL(bcr) region, indicating the lack of at least one MYL gene exon in the resulting MYL-RARA fusion gene. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1312695" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#7" class="mim-tip-reference" title="Cleary, M. L. <strong>Oncogenic conversion of transcription factors by chromosomal translocations.</strong> Cell 66: 619-622, 1991.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1878967/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1878967</a>] [<a href="https://doi.org/10.1016/0092-8674(91)90105-8" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1878967">Cleary (1991)</a> pointed out that detection of the PML-RARA fusion links a specific molecular defect in neoplasia with a characteristic biologic and clinical response to pharmacologic therapy. It is a useful marker for the diagnosis of APL and for the identification of patients who may benefit from retinoid treatment. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1878967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>PML, the gene involved in the breakpoint on chromosome 15, is a putative transcription factor: it contains a cysteine-rich motif that resembles a zinc finger DNA-binding domain common to several classes of transcriptional factors. Two fusion genes, PML-RARA and RARA-PML, are formed as a result of the characteristic translocation in APL. Heterogeneity of the chromosome 15 breakpoints accounts for the diverse architecture of the PML-RARA mRNAs isolated from different APL patients, and alternative splicing of PML exons gives rise to multiple isoforms of the PML-RARA mRNAs even within a single patient. <a href="#2" class="mim-tip-reference" title="Alcalay, M., Zangrilli, D., Fagioli, M., Pandolfi, P. P., Mencarelli, A., Lo Coco, F., Biondi, A., Grignani, F., Pelicci, P. G. <strong>Expression pattern of the RAR-alpha-PML fusion gene in acute promyelocytic leukemia.</strong> Proc. Nat. Acad. Sci. 89: 4840-4844, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1317574/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1317574</a>] [<a href="https://doi.org/10.1073/pnas.89.11.4840" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="1317574">Alcalay et al. (1992)</a> investigated the organization and expression pattern of the RARA/PML gene in a series of APL patients. A RARA-PML transcript was present in most but not all APL patients. Among 70 patients with APL, <a href="#12" class="mim-tip-reference" title="Diverio, D., Lo Coco, F., D'Adamo, F., Biondi, A., Fagioli, M., Grignani, F., Rambaldi, A., Rossi, V., Avvisati, G., Petti, M. C., Testi, A. M., Liso, V., Specchia, G., Fioritoni, G., Recchia, A., Frassoni, F., Ciolli, S., Pelicci, P. G. <strong>Identification of DNA rearrangements at the retinoic acid receptor-alpha (RAR-alpha) locus in all patients with acute promyelocytic leukemia and mapping of APL breakpoints within the RAR-alpha second intron.</strong> Blood 79: 3331-3336, 1992.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1317727/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1317727</a>]" pmid="1317727">Diverio et al. (1992)</a> found an abnormality in intron 2 of the RARA gene in all cases, with clustering of rearrangements within the 20-kb intronic region separating exons 2 and 3. A curious difference was found in the location of breakpoints in males and females: breakpoints at the 5-prime end of intron 2 of the RARA gene occurred in females and 3-prime breakpoints predominated in males. <a href="https://pubmed.ncbi.nlm.nih.gov/?term=1317727+1317574" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#33" class="mim-tip-reference" title="Stock, A. D., Dennis, T. R., Spallone, P. A. <strong>Precise localization by microdissection/reverse ISH and FISH of the t(15;17)(q24;q21.1) chromosomal breakpoints associated with acute promyelocytic leukemia.</strong> Cancer Genet. Cytogenet. 119: 15-17, 2000.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10812165/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10812165</a>] [<a href="https://doi.org/10.1016/s0165-4608(99)00207-1" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10812165">Stock et al. (2000)</a> pointed out that breakpoints in chromosomes 15 and 17 leading to the translocation associated with APL had been described as located between 15q22 and 15q26, and between 17q11 and 17q25. Most studies using FISH had indicated the chromosome 15 breakpoint to be in 15q22. <a href="#33" class="mim-tip-reference" title="Stock, A. D., Dennis, T. R., Spallone, P. A. <strong>Precise localization by microdissection/reverse ISH and FISH of the t(15;17)(q24;q21.1) chromosomal breakpoints associated with acute promyelocytic leukemia.</strong> Cancer Genet. Cytogenet. 119: 15-17, 2000.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10812165/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10812165</a>] [<a href="https://doi.org/10.1016/s0165-4608(99)00207-1" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="10812165">Stock et al. (2000)</a> used a combination of G-banding, FISH, and chromosome microdissection/reverse in situ hybridization to map the breakpoints precisely to 15q24 and 17q21.1. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10812165" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#40" class="mim-tip-reference" title="Zaccaria, A., Valenti, A., Toschi, M., Salvucci, M., Cipriani, R., Ottaviani, E., Martinelli, G. <strong>Cryptic translocation of PML/RARA on 17q. A rare event in acute promyelocytic leukemia.</strong> Cancer Genet. Cytogenet. 138: 169-173, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12505266/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12505266</a>] [<a href="https://doi.org/10.1016/s0165-4608(02)00584-8" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12505266">Zaccaria et al. (2002)</a> studied a rare example of cryptic translocation causing APL. Conventional cytogenetics showed a normal karyotype; PCR showed a typical PML-RARA rearrangement in exon 1. FISH analysis revealed that a submicroscopic part of chromosome 15 had been inserted into 17q. <a href="#40" class="mim-tip-reference" title="Zaccaria, A., Valenti, A., Toschi, M., Salvucci, M., Cipriani, R., Ottaviani, E., Martinelli, G. <strong>Cryptic translocation of PML/RARA on 17q. A rare event in acute promyelocytic leukemia.</strong> Cancer Genet. Cytogenet. 138: 169-173, 2002.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12505266/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12505266</a>] [<a href="https://doi.org/10.1016/s0165-4608(02)00584-8" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="12505266">Zaccaria et al. (2002)</a> reviewed other cases of cryptic translocation; their report appeared to be the first in which both pairs of chromosomes 15 and 17 were cytogenetically normal and a PML-RARA fusion gene, discovered after FISH analysis, was located on chromosome 17. A poor response to ATRA therapy was postulated to have a relationship to the atypical translocation. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12505266" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#1" class="mim-tip-reference" title="Abreu e Lima, R. S., Baruffi, M. R., de Lima, A. S. G., de Oliveira, F. M., de Figueiredo-Pontes, L. L., Tone, L. G., Rogatto, S. R., Falcao, R. P., Ferrari Chauffaille, M. de L. L., Rego, E. M. <strong>The co-expression of PML/RAR-alpha and AML1/ETO fusion genes is associated with ATRA resistance.</strong> Brit. J. Haemat. 128: 407-409, 2005.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15667548/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15667548</a>] [<a href="https://doi.org/10.1111/j.1365-2141.2004.05343.x" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="15667548">Abreu e Lima et al. (2005)</a> described a 47-year-old woman with acute myeloid leukemia who had simultaneous expression of the PML/RARA and the AML1/ETO (<a href="/entry/133435">133435</a>) fusion genes. Despite prolonged use of therapeutic doses of ATRA plus chemotherapy, the patient did not achieve remission, in contrast to the experience of most patients with such fusion genes. Conventional cytogenetics in this case showed the presence of only the t(8;21) translocation. In previous reports of coexpression of these 2 fusion genes there was evidence of the presence of 2 or 3 distinct leukemic clones harboring either or both chromosomal translocations. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15667548" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<a id="animalModel" class="mim-anchor"></a>
|
|
<h4 href="#mimAnimalModelFold" id="mimAnimalModelToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span id="mimAnimalModelToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<span class="mim-font">
|
|
<strong>Animal Model</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="mimAnimalModelFold" class="collapse in mimTextToggleFold">
|
|
<span class="mim-text-font">
|
|
<p><a href="#5" class="mim-tip-reference" title="Brown, D., Kogan, S., Lagasse, E., Weissman, I., Alcalay, M., Pelicci, P. G., Atwater, S., Bishop, J. M. <strong>A PMLRAR-alpha transgene initiates murine acute promyelocytic leukemia.</strong> Proc. Nat. Acad. Sci. 94: 2551-2556, 1997.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9122233/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9122233</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=9122233[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1073/pnas.94.6.2551" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9122233">Brown et al. (1997)</a> established a transgenic mouse model that documented the ability of the chimeric PML-RARA gene to initiate leukemogenesis. The mice developed 2 currently unrelated abnormalities. The first was a severe papillomatosis of the skin; the second was a disturbance of hematopoiesis that presented as a partial block of differentiation in the neutrophil lineage of the transgenic mice and then progressed at low frequency to overt APL. The leukemia appeared to be a faithful reproduction of the human disease, including a therapeutic response to retinoic acid that reflected differentiation of the leukemic cells. Both the preleukemic state and the overt leukemia could be transplanted into nontransgenic hosts. <a href="#5" class="mim-tip-reference" title="Brown, D., Kogan, S., Lagasse, E., Weissman, I., Alcalay, M., Pelicci, P. G., Atwater, S., Bishop, J. M. <strong>A PMLRAR-alpha transgene initiates murine acute promyelocytic leukemia.</strong> Proc. Nat. Acad. Sci. 94: 2551-2556, 1997.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9122233/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9122233</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=9122233[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>] [<a href="https://doi.org/10.1073/pnas.94.6.2551" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9122233">Brown et al. (1997)</a> commented that the model should be useful for exploring the pathogenesis and treatment of APL. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9122233" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>From studies in mice with disruption of the Pml gene, <a href="#38" class="mim-tip-reference" title="Wang, Z. G., Delva, L., Gaboli, M., Rivi, R., Giorgio, M., Cordon-Cardo, C., Grosveld, F., Pandolfi, P. P. <strong>Role of PML in cell growth and the retinoic acid pathway.</strong> Science 279: 1547-1551, 1998.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9488655/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9488655</a>] [<a href="https://doi.org/10.1126/science.279.5356.1547" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9488655">Wang et al. (1998)</a> demonstrated that normally, PML regulates hemopoietic differentiation and controls cell growth and tumorigenesis. PML function is essential for the tumor-growth-suppressive activity of retinoic acid (RA) and for its ability to induce terminal myeloid differentiation of precursor cells. PML was needed for the RA-dependent transactivation of the p21(Waf1/Cip1) gene (<a href="/entry/116899">116899</a>), which regulates cell cycle progression and cellular differentiation. These results provided a framework for understanding the molecular pathogenesis of APL. Whereas APL might result from the functional interference of PML/RARA with 2 independent pathways, PML and RXR/RAR, <a href="#38" class="mim-tip-reference" title="Wang, Z. G., Delva, L., Gaboli, M., Rivi, R., Giorgio, M., Cordon-Cardo, C., Grosveld, F., Pandolfi, P. P. <strong>Role of PML in cell growth and the retinoic acid pathway.</strong> Science 279: 1547-1551, 1998.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9488655/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9488655</a>] [<a href="https://doi.org/10.1126/science.279.5356.1547" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9488655">Wang et al. (1998)</a> showed that these proteins act, at least in part, in the same pathway. Thus, by simultaneously interacting with RXR and PML, the fusion gene product may inactivate this pathway at multiple levels, leading to the proliferative advantage and the block of hemopoietic differentiation that characterize APL. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9488655" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p><a href="#8" class="mim-tip-reference" title="David, G., Terris, B., Marchio, A., Lavau, C., Dejean, A. <strong>The acute promyelocytic leukemia PML-RAR-alpha protein induces hepatic preneoplastic and neoplastic lesions in transgenic mice.</strong> Oncogene 14: 1547-1554, 1997.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9129145/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9129145</a>] [<a href="https://doi.org/10.1038/sj.onc.1200989" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9129145">David et al. (1997)</a> generated an inducible line of transgenic mice in which the expression of PML-RARA is driven by the metallothionein promoter. After 5 days zinc stimulation, 27 of 54 mice developed hepatic preneoplasia and neoplasia including foci of basophilic hepatocytes, dysplasia, and carcinoma, with a significantly higher incidence of lesions in females than in males. The rapid onset of liver pathologies was dependent on overexpression of the transgene, since it was not detected in noninduced transgenic animals of the same age. The PML-RARA protein was always present in altered tissues at much higher levels than in the surrounding normal liver tissues. In addition, overexpression of PML-RARA resulted in a strong proliferative response in the hepatocytes. <a href="#8" class="mim-tip-reference" title="David, G., Terris, B., Marchio, A., Lavau, C., Dejean, A. <strong>The acute promyelocytic leukemia PML-RAR-alpha protein induces hepatic preneoplastic and neoplastic lesions in transgenic mice.</strong> Oncogene 14: 1547-1554, 1997.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9129145/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9129145</a>] [<a href="https://doi.org/10.1038/sj.onc.1200989" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="9129145">David et al. (1997)</a> concluded that overexpression of PML-RARA deregulates subproliferation and can induce tumorigenic changes in vivo. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9129145" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p><p>In an animal model of acute promyelocytic leukemia, <a href="#28" class="mim-tip-reference" title="Padua, R. A., Larghero, J., Robin, M., le Pogam, C., Schlageter, M.-H., Muszlak, S., Fric, J., West, R., Rousselot, P., Phan, T. H., Mudde, L., Teisserenc, H., Carpentier, A. F., Kogan, S., Degos, L., Pla, M., Bishop, J. M., Stevenson, F., Charron, D., Chomienne, C. <strong>PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.</strong> Nature Med. 9: 1413-1417, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14566333/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14566333</a>] [<a href="https://doi.org/10.1038/nm949" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="14566333">Padua et al. (2003)</a> developed a DNA-based vaccine by fusing the human PML-RARA oncogene to tetanus fragment C (FrC) sequences. <a href="#28" class="mim-tip-reference" title="Padua, R. A., Larghero, J., Robin, M., le Pogam, C., Schlageter, M.-H., Muszlak, S., Fric, J., West, R., Rousselot, P., Phan, T. H., Mudde, L., Teisserenc, H., Carpentier, A. F., Kogan, S., Degos, L., Pla, M., Bishop, J. M., Stevenson, F., Charron, D., Chomienne, C. <strong>PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.</strong> Nature Med. 9: 1413-1417, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14566333/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14566333</a>] [<a href="https://doi.org/10.1038/nm949" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="14566333">Padua et al. (2003)</a> showed for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and in combination with all-trans retinoic acid (ATRA). The survival advantage was concomitant with time-dependent antibody production and an increase in interferon-gamma. <a href="#28" class="mim-tip-reference" title="Padua, R. A., Larghero, J., Robin, M., le Pogam, C., Schlageter, M.-H., Muszlak, S., Fric, J., West, R., Rousselot, P., Phan, T. H., Mudde, L., Teisserenc, H., Carpentier, A. F., Kogan, S., Degos, L., Pla, M., Bishop, J. M., Stevenson, F., Charron, D., Chomienne, C. <strong>PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.</strong> Nature Med. 9: 1413-1417, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14566333/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14566333</a>] [<a href="https://doi.org/10.1038/nm949" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="14566333">Padua et al. (2003)</a> also showed that ATRA therapy on its own triggered an immune response in this model. When DNA vaccination and conventional ATRA therapy were combined, they induced protective immune responses against leukemia progression in mice. <a href="#28" class="mim-tip-reference" title="Padua, R. A., Larghero, J., Robin, M., le Pogam, C., Schlageter, M.-H., Muszlak, S., Fric, J., West, R., Rousselot, P., Phan, T. H., Mudde, L., Teisserenc, H., Carpentier, A. F., Kogan, S., Degos, L., Pla, M., Bishop, J. M., Stevenson, F., Charron, D., Chomienne, C. <strong>PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.</strong> Nature Med. 9: 1413-1417, 2003.[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14566333/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14566333</a>] [<a href="https://doi.org/10.1038/nm949" target="_blank" onclick="gtag('event', 'mim_outbound', {'destination': 'Publisher'})">Full Text</a>]" pmid="14566333">Padua et al. (2003)</a> concluded that this may provide a new approach to improve clinical outcome in human leukemia. <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14566333" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})"><span class="glyphicon glyphicon-plus-sign mim-tip-hint" title="Click this 'reference-plus' icon to see articles related to this paragraph in PubMed."></span></a></p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="references"class="mim-anchor"></a>
|
|
<h4 href="#mimReferencesFold" id="mimReferencesToggle" class="mimTriangleToggle" style="cursor: pointer;" data-toggle="collapse">
|
|
<span class="mim-font">
|
|
<span id="mimReferencesToggleTriangle" class="small mimTextToggleTriangle">▼</span>
|
|
<strong>REFERENCES</strong>
|
|
</span>
|
|
</h4>
|
|
<div>
|
|
<p />
|
|
</div>
|
|
|
|
<div id="mimReferencesFold" class="collapse in mimTextToggleFold">
|
|
<ol>
|
|
|
|
<li>
|
|
<a id="1" class="mim-anchor"></a>
|
|
<a id="Abreu e Lima2005" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Abreu e Lima, R. S., Baruffi, M. R., de Lima, A. S. G., de Oliveira, F. M., de Figueiredo-Pontes, L. L., Tone, L. G., Rogatto, S. R., Falcao, R. P., Ferrari Chauffaille, M. de L. L., Rego, E. M.
|
|
<strong>The co-expression of PML/RAR-alpha and AML1/ETO fusion genes is associated with ATRA resistance.</strong>
|
|
Brit. J. Haemat. 128: 407-409, 2005.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15667548/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15667548</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15667548" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1111/j.1365-2141.2004.05343.x" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="2" class="mim-anchor"></a>
|
|
<a id="Alcalay1992" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Alcalay, M., Zangrilli, D., Fagioli, M., Pandolfi, P. P., Mencarelli, A., Lo Coco, F., Biondi, A., Grignani, F., Pelicci, P. G.
|
|
<strong>Expression pattern of the RAR-alpha-PML fusion gene in acute promyelocytic leukemia.</strong>
|
|
Proc. Nat. Acad. Sci. 89: 4840-4844, 1992.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1317574/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1317574</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1317574" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.89.11.4840" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="3" class="mim-anchor"></a>
|
|
<a id="Bernardi2006" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Bernardi, R., Guernah, I., Jin, D., Grisendi, S., Alimonti, A., Teruya-Feldstein, J., Cordon-Cardo, C., Simon, M. C., Rafii, S., Pandolfi, P. P.
|
|
<strong>PML inhibits HIF-1-alpha translation and neoangiogenesis through repression of mTOR.</strong>
|
|
Nature 442: 779-785, 2006.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16915281/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16915281</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16915281" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/nature05029" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="4" class="mim-anchor"></a>
|
|
<a id="Bernardi2007" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Bernardi, R., Pandolfi, P. P.
|
|
<strong>Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies.</strong>
|
|
Nature Rev. Molec. Cell Biol. 8: 1006-1016, 2007.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17928811/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17928811</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17928811" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/nrm2277" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="5" class="mim-anchor"></a>
|
|
<a id="Brown1997" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Brown, D., Kogan, S., Lagasse, E., Weissman, I., Alcalay, M., Pelicci, P. G., Atwater, S., Bishop, J. M.
|
|
<strong>A PMLRAR-alpha transgene initiates murine acute promyelocytic leukemia.</strong>
|
|
Proc. Nat. Acad. Sci. 94: 2551-2556, 1997.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9122233/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9122233</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=9122233[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9122233" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.94.6.2551" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="6" class="mim-anchor"></a>
|
|
<a id="Chang1995" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Chang, K.-S., Fan, Y.-H., Andreeff, M., Liu, J., Mu, Z.-M.
|
|
<strong>The PML gene encodes a phosphoprotein associated with the nuclear matrix.</strong>
|
|
Blood 85: 3646-3653, 1995.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/7780148/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">7780148</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=7780148" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="7" class="mim-anchor"></a>
|
|
<a id="Cleary1991" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Cleary, M. L.
|
|
<strong>Oncogenic conversion of transcription factors by chromosomal translocations.</strong>
|
|
Cell 66: 619-622, 1991.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1878967/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1878967</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1878967" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/0092-8674(91)90105-8" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="8" class="mim-anchor"></a>
|
|
<a id="David1997" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
David, G., Terris, B., Marchio, A., Lavau, C., Dejean, A.
|
|
<strong>The acute promyelocytic leukemia PML-RAR-alpha protein induces hepatic preneoplastic and neoplastic lesions in transgenic mice.</strong>
|
|
Oncogene 14: 1547-1554, 1997.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9129145/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9129145</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9129145" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/sj.onc.1200989" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="9" class="mim-anchor"></a>
|
|
<a id="de The1990" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
de The, H., Chomienne, C., Lanotte, M., Degos, L., Dejean, A.
|
|
<strong>The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus.</strong>
|
|
Nature 347: 558-561, 1990.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/2170850/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">2170850</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=2170850" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/347558a0" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="10" class="mim-anchor"></a>
|
|
<a id="de The1991" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., Dejean, A.
|
|
<strong>The PML-RAR-alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR.</strong>
|
|
Cell 66: 675-684, 1991.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1652369/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1652369</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1652369" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/0092-8674(91)90113-d" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="11" class="mim-anchor"></a>
|
|
<a id="Di Croce2002" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo Coco, F., Kouzarides, T., Nervi, C., Minucci, S., Pelicci, P. G.
|
|
<strong>Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor.</strong>
|
|
Science 295: 1079-1082, 2002.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11834837/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11834837</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11834837" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1126/science.1065173" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="12" class="mim-anchor"></a>
|
|
<a id="Diverio1992" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Diverio, D., Lo Coco, F., D'Adamo, F., Biondi, A., Fagioli, M., Grignani, F., Rambaldi, A., Rossi, V., Avvisati, G., Petti, M. C., Testi, A. M., Liso, V., Specchia, G., Fioritoni, G., Recchia, A., Frassoni, F., Ciolli, S., Pelicci, P. G.
|
|
<strong>Identification of DNA rearrangements at the retinoic acid receptor-alpha (RAR-alpha) locus in all patients with acute promyelocytic leukemia and mapping of APL breakpoints within the RAR-alpha second intron.</strong>
|
|
Blood 79: 3331-3336, 1992.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1317727/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1317727</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1317727" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="13" class="mim-anchor"></a>
|
|
<a id="Dror2007" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Dror, N., Rave-Harel, N., Burchert, A., Azriel, A., Tamura, T., Tailor, P., Neubauer, A., Ozato, K., Levi, B.-Z.
|
|
<strong>Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells.</strong>
|
|
J. Biol. Chem. 282: 5633-5640, 2007.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17189268/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17189268</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17189268" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1074/jbc.M607825200" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="14" class="mim-anchor"></a>
|
|
<a id="Dyck1994" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Dyck, J. A., Maul, G. G., Miller, W. H., Jr., Chen, J. D., Kakizuka, A., Evans, R. M.
|
|
<strong>A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein.</strong>
|
|
Cell 76: 333-343, 1994.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8293467/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8293467</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8293467" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/0092-8674(94)90340-9" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="15" class="mim-anchor"></a>
|
|
<a id="Giorgi2010" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Giorgi, C., Ito, K., Lin, H.-K., Santangelo, C., Wieckowski, M. R., Lebiedzinska, M., Bononi, A., Bonora, M., Duszynski, J., Bernardi, R., Rizzuto, R., Tacchetti, C., Pinton, P., Pandolfi, P. P.
|
|
<strong>PML regulates apoptosis at endoplasmic reticulum by modulating calcium release.</strong>
|
|
Science 330: 1247-1251, 2010. Note: Erratum: Science 371: eabi4740, 2021.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/21030605/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">21030605</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=21030605[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=21030605" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1126/science.1189157" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="16" class="mim-anchor"></a>
|
|
<a id="Goddard1991" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Goddard, A. D., Borrow, J., Freemont, P. S., Solomon, E.
|
|
<strong>Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia.</strong>
|
|
Science 254: 1371-1374, 1991.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1720570/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1720570</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1720570" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1126/science.1720570" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="17" class="mim-anchor"></a>
|
|
<a id="Goddard1995" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Goddard, A. D., Yuan, J. Q., Fairbairn, L., Dexter, M., Borrow, J., Kozak, C., Solomon, E.
|
|
<strong>Cloning of the murine homolog of the leukemia-associated PML gene.</strong>
|
|
Mammalian Genome 6: 732-737, 1995.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8563172/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8563172</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8563172" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1007/BF00354296" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="18" class="mim-anchor"></a>
|
|
<a id="Grignani1998" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Grignani, F., De Matteis, S., Nervi, C., Tomassoni, L., Gelmetti, V., Cioce, M., Fanelli, M., Ruthardt, M., Ferrara, F. F., Zamir, I., Seiser, C., Grignani, F., Lazar, M. A., Minucci, S., Pelicci, P. G.
|
|
<strong>Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia.</strong>
|
|
Nature 391: 815-818, 1998.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9486655/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9486655</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9486655" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/35901" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="19" class="mim-anchor"></a>
|
|
<a id="Grignani1993" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Grignani, F., Ferrucci, P. F., Testa, U., Talamo, G., Fagioli, M., Alcalay, M., Mencarelli, A., Grignani, F., Peschle, C., Nicoletti, I., Pelicci, P. G.
|
|
<strong>The acute promyelocytic leukemia-specific PML-RAR-alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells.</strong>
|
|
Cell 74: 423-431, 1993.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/8394219/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">8394219</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=8394219" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/0092-8674(93)80044-f" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="20" class="mim-anchor"></a>
|
|
<a id="Ito2008" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Ito, K., Bernardi, R., Morotti, A., Matsuoka, S., Saglio, G., Ikeda, Y., Rosenblatt, J., Avigan, D. E., Teruya-Feldstein, J., Pandolfi, P. P.
|
|
<strong>PML targeting eradicates quiescent leukaemia-initiating cells.</strong>
|
|
Nature 453: 1072-1078, 2008.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18469801/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18469801</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18469801[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18469801" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/nature07016" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="21" class="mim-anchor"></a>
|
|
<a id="Khan2001" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Khan, M. M., Nomura, T., Kim, H., Kaul, S. C., Wadhwa, R., Shinagawa, T., Ichikawa-Iwata, E., Zhong, S., Pandolfi, P. P., Ishii, S.
|
|
<strong>Role of PML and PML-RAR-alpha in Mad-mediated transcriptional repression.</strong>
|
|
Molec. Cell 7: 1233-1243, 2001.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11430826/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11430826</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11430826" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/s1097-2765(01)00257-x" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="22" class="mim-anchor"></a>
|
|
<a id="Kunapuli2006" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Kunapuli, P., Kasyapa, C. S., Chin, S.-F., Caldas, C., Cowell, J. K.
|
|
<strong>ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML.</strong>
|
|
Exp. Cell Res. 312: 3739-3751, 2006.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/17027752/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">17027752</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=17027752" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/j.yexcr.2006.06.037" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="23" class="mim-anchor"></a>
|
|
<a id="Lane2003" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Lane, A. A., Ley, T. J.
|
|
<strong>Neutrophil elastase cleaves PML-RAR-alpha and is important for the development of acute promyelocytic leukemia in mice.</strong>
|
|
Cell 115: 305-318, 2003.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14636558/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14636558</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14636558" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/s0092-8674(03)00852-3" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="24" class="mim-anchor"></a>
|
|
<a id="Lin2004" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Lin, H.-K., Bergmann, S., Pandolfi, P. P.
|
|
<strong>Cytoplasmic PML function in TGF-beta signalling.</strong>
|
|
Nature 431: 205-211, 2004.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/15356634/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">15356634</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=15356634" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/nature02783" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="25" class="mim-anchor"></a>
|
|
<a id="Lin2000" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Lin, R. J., Evans, R. M.
|
|
<strong>Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers.</strong>
|
|
Molec. Cell 5: 821-830, 2000.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10882118/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10882118</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10882118" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/s1097-2765(00)80322-6" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="26" class="mim-anchor"></a>
|
|
<a id="Lin1998" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Lin, R. J., Nagy, L., Inoue, S., Shao, W., Miller, W. H., Jr., Evans, R. M.
|
|
<strong>Role of the histone deacetylase complex in acute promyelocytic leukaemia.</strong>
|
|
Nature 391: 811-814, 1998.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9486654/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9486654</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9486654" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/35895" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="27" class="mim-anchor"></a>
|
|
<a id="Minucci2000" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Minucci, S., Maccarana, M., Cioce, M., De Luca, P., Gelmetti, V., Segalla, S., Di Croce, L., Giavara, S., Matteucci, C., Gobbi, A., Bianchini, A., Colombo, E., Schiavoni, I., Badaracco, G., Hu, X., Lazar, M. A., Landsberger, N., Nervi, C., Pelicci, P. G.
|
|
<strong>Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation.</strong>
|
|
Molec. Cell 5: 811-820, 2000.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10882117/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10882117</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10882117" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/s1097-2765(00)80321-4" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="28" class="mim-anchor"></a>
|
|
<a id="Padua2003" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Padua, R. A., Larghero, J., Robin, M., le Pogam, C., Schlageter, M.-H., Muszlak, S., Fric, J., West, R., Rousselot, P., Phan, T. H., Mudde, L., Teisserenc, H., Carpentier, A. F., Kogan, S., Degos, L., Pla, M., Bishop, J. M., Stevenson, F., Charron, D., Chomienne, C.
|
|
<strong>PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.</strong>
|
|
Nature Med. 9: 1413-1417, 2003.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/14566333/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">14566333</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=14566333" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/nm949" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="29" class="mim-anchor"></a>
|
|
<a id="Pandolfi2001" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Pandolfi, P. P.
|
|
<strong>Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia.</strong>
|
|
Hum. Molec. Genet. 10: 769-775, 2001.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11257111/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11257111</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11257111" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1093/hmg/10.7.769" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="30" class="mim-anchor"></a>
|
|
<a id="Pearson2000" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P. P., Pelicci, P. G.
|
|
<strong>PML regulates p53 acetylation and premature senescence induced by oncogenic Ras.</strong>
|
|
Nature 406: 207-210, 2000.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10910364/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10910364</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10910364" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/35018127" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="31" class="mim-anchor"></a>
|
|
<a id="Salomoni2008" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Salomoni, P., Ferguson, B. J., Wyllie, A. H., Rich, T.
|
|
<strong>New insights into the role of PML in tumour suppression.</strong>
|
|
Cell Res. 18: 622-640, 2008.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18504460/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18504460</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18504460" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/cr.2008.58" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="32" class="mim-anchor"></a>
|
|
<a id="Song2008" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Song, M. S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya-Feldstein, J., Pandolfi, P. P.
|
|
<strong>The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network.</strong>
|
|
Nature 455: 813-817, 2008.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/18716620/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">18716620</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=18716620[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=18716620" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/nature07290" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="33" class="mim-anchor"></a>
|
|
<a id="Stock2000" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Stock, A. D., Dennis, T. R., Spallone, P. A.
|
|
<strong>Precise localization by microdissection/reverse ISH and FISH of the t(15;17)(q24;q21.1) chromosomal breakpoints associated with acute promyelocytic leukemia.</strong>
|
|
Cancer Genet. Cytogenet. 119: 15-17, 2000.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10812165/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10812165</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10812165" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/s0165-4608(99)00207-1" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="34" class="mim-anchor"></a>
|
|
<a id="Tong1992" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Tong, J.-H., Dong, S., Geng, J.-P., Huang, W., Wang, Z.-Y., Sun, G.-L., Chen, S.-J., Chen, Z., Larsen, C.-J., Berger, R.
|
|
<strong>Molecular rearrangements of the MYL gene in acute promyelocytic leukemia (APL, M3) define a breakpoint cluster region as well as some molecular variants.</strong>
|
|
Oncogene 7: 311-316, 1992.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/1312695/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">1312695</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=1312695" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="35" class="mim-anchor"></a>
|
|
<a id="Trotman2006" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon-Cardo, C., Pandolfi, P. P.
|
|
<strong>Identification of a tumour suppressor network opposing nuclear Akt function.</strong>
|
|
Nature 441: 523-536, 2006.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16680151/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16680151</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16680151[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16680151" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/nature04809" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="36" class="mim-anchor"></a>
|
|
<a id="Turelli2001" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Turelli, P., Doucas, V., Craig, E., Mangeat, B., Klages, N., Evans, R., Kalpana, G., Trono, D.
|
|
<strong>Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication.</strong>
|
|
Molec. Cell 7: 1245-1254, 2001.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/11430827/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">11430827</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=11430827" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/s1097-2765(01)00255-6" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="37" class="mim-anchor"></a>
|
|
<a id="Villa2006" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Villa, R., Morey, L., Raker, V. A., Buschbeck, M., Gutierrez, A., De Santis, F., Corsaro, M., Varas, F., Bossi, D., Minucci, S., Pelicci, P. G., Di Croce, L.
|
|
<strong>The methyl-CpG binding protein MBD1 is required for PML-RAR-alpha function.</strong>
|
|
Proc. Nat. Acad. Sci. 103: 1400-1405, 2006.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/16432238/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">16432238</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/?term=16432238[PMID]&report=imagesdocsum" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Image', 'domain': 'ncbi.nlm.nih.gov'})">images</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=16432238" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1073/pnas.0509343103" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="38" class="mim-anchor"></a>
|
|
<a id="Wang1998" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Wang, Z. G., Delva, L., Gaboli, M., Rivi, R., Giorgio, M., Cordon-Cardo, C., Grosveld, F., Pandolfi, P. P.
|
|
<strong>Role of PML in cell growth and the retinoic acid pathway.</strong>
|
|
Science 279: 1547-1551, 1998.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/9488655/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">9488655</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=9488655" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1126/science.279.5356.1547" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="39" class="mim-anchor"></a>
|
|
<a id="Yang2002" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Yang, S., Kuo, C., Bisi, J. E., Kim, M. K.
|
|
<strong>PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2.</strong>
|
|
Nature Cell Biol. 4: 865-870, 2002.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12402044/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12402044</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12402044" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/ncb869" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="40" class="mim-anchor"></a>
|
|
<a id="Zaccaria2002" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Zaccaria, A., Valenti, A., Toschi, M., Salvucci, M., Cipriani, R., Ottaviani, E., Martinelli, G.
|
|
<strong>Cryptic translocation of PML/RARA on 17q. A rare event in acute promyelocytic leukemia.</strong>
|
|
Cancer Genet. Cytogenet. 138: 169-173, 2002.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/12505266/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">12505266</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=12505266" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1016/s0165-4608(02)00584-8" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="41" class="mim-anchor"></a>
|
|
<a id="Zhang2010" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Zhang, X.-W., Yan, X.-J., Zhou, Z.-R., Yang, F.-F., Wu, Z.-Y., Sun, H.-B., Liang, W.-X., Song, A.-X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q.-Y., Yang, H.-Y., and 9 others.
|
|
<strong>Arsenic trioxide controls the fate of the PML-RAR-alpha oncoprotein by directly binding PML.</strong>
|
|
Science 328: 240-243, 2010. Note: Erratum: Science 328: 974 only, 2010.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/20378816/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">20378816</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=20378816" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1126/science.1183424" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
<li>
|
|
<a id="42" class="mim-anchor"></a>
|
|
<a id="Zhong1999" class="mim-anchor"></a>
|
|
<div class="">
|
|
<p class="mim-text-font">
|
|
Zhong, S., Delva, L., Rachez, C., Cenciarelli, C., Gandini, D., Zhang, H., Kalantry, S., Freedman, L. P., Pandolfi, P. P.
|
|
<strong>A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RAR-alpha and T18 oncoproteins.</strong>
|
|
Nature Genet. 23: 287-295, 1999.
|
|
|
|
|
|
[PubMed: <a href="https://pubmed.ncbi.nlm.nih.gov/10610177/" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">10610177</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?cmd=link&linkname=pubmed_pubmed&from_uid=10610177" target="_blank" onclick="gtag('event', 'mim_outbound', {'name': 'PubMed Related', 'domain': 'pubmed.ncbi.nlm.nih.gov'})">related citations</a>]
|
|
|
|
|
|
[<a href="https://doi.org/10.1038/15463" target="_blank">Full Text</a>]
|
|
|
|
|
|
</p>
|
|
</div>
|
|
</li>
|
|
|
|
</ol>
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="contributors" class="mim-anchor"></a>
|
|
|
|
<div class="row">
|
|
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
|
|
<span class="mim-text-font">
|
|
<a href="#mimCollapseContributors" role="button" data-toggle="collapse"> Contributors: </a>
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
Bao Lige - updated : 10/05/2018
|
|
</span>
|
|
</div>
|
|
</div>
|
|
<div class="row collapse" id="mimCollapseContributors">
|
|
<div class="col-lg-offset-2 col-md-offset-4 col-sm-offset-4 col-xs-offset-2 col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
Ada Hamosh - updated : 1/31/2011<br>Patricia A. Hartz - updated : 10/19/2010<br>Ada Hamosh - updated : 5/25/2010<br>Paul J. Converse - updated : 11/19/2008<br>Matthew B. Gross - updated : 10/14/2008<br>Matthew B. Gross - reorganized : 10/13/2008<br>Ada Hamosh - updated : 7/9/2008<br>Ada Hamosh - updated : 9/8/2006<br>Ada Hamosh - updated : 7/24/2006<br>Patricia A. Hartz - updated : 3/29/2006<br>Victor A. McKusick - updated : 3/21/2005<br>Victor A. McKusick - updated : 1/25/2005<br>Ada Hamosh - updated : 9/29/2004<br>Ada Hamosh - updated : 1/8/2004<br>Stylianos E. Antonarakis - updated : 11/19/2003<br>Patricia A. Hartz - updated : 3/14/2003<br>Victor A. McKusick - updated : 3/3/2003<br>Ada Hamosh - updated : 2/12/2002<br>Stylianos E. Antonarakis - updated : 7/3/2001<br>Stylianos E. Antonarakis - updated : 7/3/2001<br>George E. Tiller - updated : 6/19/2001<br>Ada Hamosh - updated : 5/1/2001<br>Ada Hamosh - updated : 4/30/2001<br>Ada Hamosh - updated : 7/12/2000<br>Stylianos E. Antonarakis - updated : 6/21/2000<br>Ada Hamosh - updated : 5/29/2000<br>Ada Hamosh - updated : 11/2/1999<br>Victor A. McKusick - updated : 9/15/1999<br>Victor A. McKusick - updated : 10/1/1998<br>Victor A. McKusick - updated : 3/2/1998<br>Victor A. McKusick - updated : 4/21/1997
|
|
</span>
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="creationDate" class="mim-anchor"></a>
|
|
<div class="row">
|
|
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
|
|
<span class="text-nowrap mim-text-font">
|
|
Creation Date:
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
Victor A. McKusick : 11/30/1990
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<a id="editHistory" class="mim-anchor"></a>
|
|
|
|
<div class="row">
|
|
<div class="col-lg-2 col-md-2 col-sm-4 col-xs-4">
|
|
<span class="text-nowrap mim-text-font">
|
|
<a href="#mimCollapseEditHistory" role="button" data-toggle="collapse"> Edit History: </a>
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
carol : 11/08/2021
|
|
</span>
|
|
</div>
|
|
</div>
|
|
<div class="row collapse" id="mimCollapseEditHistory">
|
|
<div class="col-lg-offset-2 col-md-offset-2 col-sm-offset-4 col-xs-offset-4 col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
carol : 10/08/2018<br>mgross : 10/05/2018<br>terry : 03/14/2013<br>carol : 6/17/2011<br>alopez : 2/4/2011<br>terry : 1/31/2011<br>wwang : 11/22/2010<br>mgross : 10/19/2010<br>alopez : 5/26/2010<br>terry : 5/25/2010<br>mgross : 11/19/2008<br>mgross : 10/28/2008<br>mgross : 10/14/2008<br>mgross : 10/13/2008<br>wwang : 7/17/2008<br>terry : 7/9/2008<br>alopez : 9/19/2006<br>terry : 9/8/2006<br>alopez : 7/27/2006<br>terry : 7/24/2006<br>mgross : 3/29/2006<br>carol : 4/4/2005<br>wwang : 3/30/2005<br>wwang : 3/23/2005<br>terry : 3/21/2005<br>tkritzer : 3/17/2005<br>terry : 1/25/2005<br>tkritzer : 10/1/2004<br>terry : 9/29/2004<br>tkritzer : 1/12/2004<br>terry : 1/8/2004<br>mgross : 11/19/2003<br>mgross : 11/19/2003<br>mgross : 5/12/2003<br>mgross : 3/18/2003<br>terry : 3/14/2003<br>tkritzer : 3/10/2003<br>terry : 3/3/2003<br>alopez : 2/12/2002<br>terry : 2/12/2002<br>terry : 11/15/2001<br>mgross : 7/3/2001<br>mgross : 7/3/2001<br>cwells : 6/20/2001<br>cwells : 6/19/2001<br>alopez : 5/1/2001<br>alopez : 4/30/2001<br>alopez : 7/12/2000<br>mgross : 6/21/2000<br>mgross : 6/21/2000<br>mgross : 6/21/2000<br>alopez : 6/2/2000<br>terry : 5/29/2000<br>alopez : 11/3/1999<br>alopez : 11/2/1999<br>mgross : 9/23/1999<br>terry : 9/15/1999<br>carol : 10/6/1998<br>terry : 10/1/1998<br>dkim : 9/11/1998<br>alopez : 3/6/1998<br>terry : 3/2/1998<br>alopez : 7/9/1997<br>carol : 6/20/1997<br>jenny : 4/21/1997<br>terry : 4/12/1997<br>mark : 11/30/1995<br>mark : 10/5/1995<br>carol : 8/13/1992<br>carol : 6/16/1992<br>carol : 5/28/1992<br>supermim : 3/16/1992
|
|
</span>
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div class="container visible-print-block">
|
|
|
|
<div class="row">
|
|
|
|
|
|
|
|
<div class="col-md-8 col-md-offset-1">
|
|
|
|
<div>
|
|
<div>
|
|
<h3>
|
|
<span class="mim-font">
|
|
<strong>*</strong> 102578
|
|
</span>
|
|
</h3>
|
|
</div>
|
|
|
|
<div>
|
|
<h3>
|
|
<span class="mim-font">
|
|
|
|
ACUTE PROMYELOCYTIC LEUKEMIA, INDUCER OF; PML
|
|
|
|
</span>
|
|
</h3>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
<div>
|
|
<div >
|
|
<p>
|
|
<span class="mim-font">
|
|
<em>Alternative titles; symbols</em>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
MYL
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<div>
|
|
<p>
|
|
<span class="mim-font">
|
|
Other entities represented in this entry:
|
|
</span>
|
|
</p>
|
|
</div>
|
|
<div>
|
|
<span class="h3 mim-font">
|
|
PML/RARA FUSION GENE, INCLUDED
|
|
</span>
|
|
</div>
|
|
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<p>
|
|
<span class="mim-text-font">
|
|
<strong><em>HGNC Approved Gene Symbol: PML</em></strong>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<p>
|
|
<span class="mim-text-font">
|
|
<strong>
|
|
<em>
|
|
Cytogenetic location: 15q24.1
|
|
|
|
Genomic coordinates <span class="small">(GRCh38)</span> : 15:73,994,716-74,047,827 </span>
|
|
</em>
|
|
</strong>
|
|
<span class="small">(from NCBI)</span>
|
|
</span>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>TEXT</strong>
|
|
</span>
|
|
</h4>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Description</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>The PML tumor suppressor protein is essential for the formation of a dynamic macromolecular nuclear structure called the PML-nuclear body (PML-NB). PML-NBs have also been referred to as nuclear domains-10, Kremer bodies, and PML oncogenic domains. Unlike more specialized subnuclear structures, PML-NBs are involved in diverse cellular functions, including sequestration and release of proteins, mediation of posttranslational modifications, and promotion of nuclear events in response to various cellular stresses. The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukemia (APL; 612376), which generates the oncogenic fusion protein PML-retinoic acid receptor-alpha (RARA; 180240). PML-NBs are disrupted in APL and are thus implicated in APL pathogenesis (Bernardi and Pandolfi, 2007; Salomoni et al., 2008). </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Cloning and Expression</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>In the process of analyzing the RARA gene in the t(15;17)(q22;q11.2-q12) translocation specifically associated with APL, de The et al. (1990) identified a novel gene on chromosome 15 involved with the RARA gene in formation of a fusion product. This gene, which they called MYL for 'myelocytic leukemia,' was transcribed in the same direction as RARA on the translocated chromosome. De The et al. (1990) identified a 144-bp region, flanked by canonical splice acceptor and donor sequences, that had a high probability of being an exon and showed no significant similarity to any sequence in a protein data bank, thus suggesting that MYL is a previously undescribed gene. In a later report, de The et al. (1991) changed the name of the gene from MYL to PML. They reported, furthermore, that the gene product contains a novel zinc finger motif common to several DNA-binding proteins. </p><p>Goddard et al. (1991) demonstrated that PML is a putative zinc finger protein and potential transcription factor that is commonly expressed, with at least 3 major transcription products. </p><p>Goddard et al. (1995) cloned the murine Pml gene. The predicted amino acid sequence of mouse Pml, a ring-finger protein, shows 80% similarity to that of the human homolog, with greater than 90% similarity in the proposed functional domains. </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Mapping</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>The PML gene maps to chromosome 15q22 (de The et al., 1990). </p><p>Goddard et al. (1995) mapped the mouse Pml gene to a region of chromosome 9 with known homology of synteny to the region of 15q where PML is located. </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Gene Function</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>While PML does not colocalize with proliferating cell nuclear antigen (PCNA; 176740) or spliceosomes, Dyck et al. (1994) showed that it is part of a macromolecular structure, composed of at least 4 nuclear proteins, that is adhered to the nuclear matrix. This structure shows a labeling pattern resembling spheres that vary in both size and number among individual cells of a given cell line. PML-RAR expression appears to disrupt the integrity of these structures (referred to by Dyck et al. (1994) as PML oncogenic domains, or PODs) and thus appears to be the possible cause of their altered morphology. Retinoid treatment leads to a striking reassembly of the POD, which in turn is linked to differentiation of the leukemic cells. These results identified a novel macromolecular nuclear structure and suggested that it may serve as a target of cellular transformation. </p><p>From their analysis of the phosphoamino acids of the PML protein, Chang et al. (1995) concluded that both tyrosine and serine residues are phosphorylated. To investigate whether expression of the PML protein is cell cycle related, HeLa cells synchronized at various phases of the cell cycle were analyzed by immunofluorescence staining and confocal microscopy. They found that PML was expressed at a lower level in S, G2, and M phases and at a significantly higher level in G1 phase. Other studies showed that PML is a phosphoprotein and is associated with the nuclear matrix. Chang et al. (1995) noted that PML shares many properties with tumor suppressors such as RB (614041). </p><p>Fusion of PML and TIF1A (603406) to RARA and BRAF (164757), respectively, results in the production of PML-RAR-alpha and TIF1-alpha-B-RAF (T18) oncoproteins. Zhong et al. (1999) showed that PML, TIF1-alpha, and RXR-alpha (180245)/RAR-alpha function together in a retinoic acid-dependent transcription complex. Zhong et al. (1999) found that PML acts as a ligand-dependent coactivator of RXR-alpha/RARA-alpha. PML interacts with TIF1-alpha and CREB-binding protein (CBP; 600140). In PML -/- cells, the retinoic acid-dependent induction of genes such as RARB2, and the ability of TIF1-alpha and CBP to act as transcriptional coactivators on retinoic acid, are impaired. Zhong et al. (1999) showed that both PML and TIF1-alpha are growth suppressors required for the growth-inhibitory activity of retinoic acid. T18, similar to PML-RAR-alpha, disrupts the retinoic acid-dependent activity of this complex in a dominant-negative manner, resulting in a growth advantage. PML-RAR-alpha was the first example of an oncoprotein generated by the fusion of 2 molecules participating in the same pathway, specifically the fusion of a transcription factor to one of its own cofactors. Since the PML and RAR-alpha pathways converge at the transcriptional level, there is no need for a double-dominant-negative product to explain the pathogenesis of APL. </p><p>Pearson et al. (2000) reported that the tumor suppressor PML regulates the p53 response to oncogenic signals. Pearson et al. (2000) found that oncogenic RAS (190020) upregulates PML expression, and that overexpression of PML induces senescence in a p53-dependent manner. p53 is acetylated at lysine-382 upon RAS expression, an event that is essential for its biologic function. RAS induces relocalization of p53 and the CBP acetyltransferase within the PML nuclear bodies and induces the formation of a trimeric p53-PML-CBP complex. Lastly, RAS-induced p53 acetylation, p53-CBP complex stabilization, and senescence are lost in PML -/- fibroblasts. Pearson et al. (2000) concluded that their data established a link between PML and p53 and indicated that integrity of the PML bodies is required for p53 acetylation and senescence upon oncogene expression. </p><p>Khan et al. (2001) showed that PML interacts with multiple corepressors (SKI (164780), NCOR, and Sin3A (607776)) and histone deacetylase-1 (HDAC1; 601241), and that this interaction is required for transcriptional repression mediated by the tumor suppressor MAD (600021). PML-RARA has the 2 corepressor-interacting sites and inhibits MAD-mediated repression, suggesting that aberrant binding of PML-RARA to the corepressor complexes may lead to abrogation of the corepressor function. The authors suggested that these mechanisms may contribute to events leading to leukemogenesis. </p><p>Turelli et al. (2001) showed that incoming retroviral preintegration complexes trigger the exportin (602559)-mediated cytoplasmic export of the SWI/SNF component INI1 (601607) and of the nuclear body constituent PML. They further showed that the human immunodeficiency virus (HIV) genome associates with these proteins before nuclear migration. In the presence of arsenic, PML was sequestered in the nucleus, and the efficiency of HIV-mediated transduction was markedly increased. These results unveiled an unsuspected cellular response that interferes with the early steps of HIV replication. </p><p>Yang et al. (2002) determined that PML and checkpoint kinase-2 (CHEK2; 604373) mediated p53 (191170)-independent apoptosis following gamma irradiation of several human cell lines. Endogenous CHEK2 bound PML within PML nuclear bodies. Following gamma irradiation, CHEK2 phosphorylated PML on ser117, causing dissociation of the 2 proteins. Apoptosis through this mechanism also required ATM (208900). Yang et al. (2002) concluded that this pathway to gamma irradiation-induced apoptosis utilizes ATM, CHEK2, and PML. Overexpression of PML alone caused apoptosis in U937 myeloid cells. </p><p>Lin et al. (2004) demonstrated that cytoplasmic PML is an essential modulator of TGF-beta signaling. Primary cells from Pml-null mice are resistant to TGF-beta-dependent growth arrest, induction of cellular senescence, and apoptosis. These cells also have impaired phosphorylation and nuclear translocation of the TGF-beta signaling proteins Smad2 (601366) and Smad3 (603109), as well as impaired induction of TGF-beta target genes. Expression of cytoplasmic Pml is induced by TGF-beta. Furthermore, cytoplasmic Pml physically interacts with Smad2, Smad3, and SMAD anchor for receptor activation (SARA; 603755), and is required for association of Smad2 and Smad3 with Sara and for the accumulation of Sara and TGF-beta receptor (see 190181) in the early endosome. The PML-RAR-alpha oncoprotein of acute promyelocytic leukemia can antagonize cytoplasmic PML function, and acute promyelocytic leukemia cells have defects in TGF-beta signaling similar to those observed in Pml-null cells. Lin et al. (2004) concluded that their findings identified cytoplasmic PML as a critical TGF-beta receptor and further implicated deregulated TGF-beta signaling in cancer pathogenesis. </p><p>Trotman et al. (2006) demonstrated that the PML tumor suppressor prevents cancer by inactivating phosphorylated AKT (164730) inside the nucleus. They found in a mouse model that Pml loss markedly accelerated tumor onset, incidence, and progression in Pten (601728) heterozygous mutants, and led to female sterility with features that recapitulate the phenotype of Foxo3a knockout mice. Trotman et al. (2006) showed that PML deficiency on its own leads to tumorigenesis in the prostate, a tissue that is exquisitely sensitive to phosphorylated AKT levels, and demonstrated that PML specifically recruits the AKT phosphatase PP2a (see 603113) as well phosphorylated AKT into PML nuclear bodies. Notably, Trotman et al. (2006) found that PML-null cells are impaired in PP2a phosphatase activity towards AKT, and thus accumulate nuclear phosphorylated AKT. As a consequence, the progressive reduction in PML dose leads to inactivation of FOXO3A-mediated transcription of proapoptotic BIM (603827) and the cell cycle inhibitor p27(KIP1) (600778). Trotman et al. (2006) concluded that their results demonstrate that PML orchestrates a nuclear tumor suppressor network for inactivation of nuclear phosphorylated AKT, and thus highlight the importance of AKT compartmentalization in human cancer pathogenesis and treatment. </p><p>Bernardi et al. (2006) identified PML as a critical inhibitor of neoangiogenesis (the formation of new blood vessels) in vivo, in both ischemic and neoplastic conditions, through the control of protein translation. Bernardi et al. (2006) demonstrated that in hypoxic conditions PML acts as a negative regulator of the synthesis rate of hypoxia-inducible factor 1-alpha (HIF1A; 603348) by repressing MTOR (601231). PML physically interacts with MTOR and negatively regulates its association with the small GTPase RHEB (601293) by favoring MTOR nuclear accumulation. Notably, PML-null cells and tumors display higher sensitivity both in vitro and in vivo to growth inhibition by rapamycin, and lack of PML inversely correlates with phosphorylation of ribosomal protein S6 (180460) and tumor angiogenesis in mouse and human tumors. Thus, Bernardi et al. (2006) concluded that their findings identified PML as a novel suppressor of mTOR and neoangiogenesis. </p><p>By yeast 2-hybrid analysis of a human fetal brain cDNA library, followed by coimmunoprecipitation analysis, Kunapuli et al. (2006) found that ZNF198 (ZMYM2; 602221) was covalently modified by SUMO1 (601912). Confocal microscopy showed that a proportion of ZNF198 colocalized with SUMO1 and PML in PML nuclear bodies, and coimmunoprecipitation analysis revealed that all 3 proteins resided in a protein complex. Mutation of the SUMO1-binding site of ZNF198 resulted in degradation of ZNF198, nuclear dispersal of PML, and loss of punctate PML nuclear bodies. Kunapuli et al. (2006) found that the MDA-MB-157 breast cancer cell line, which has a deletion in chromosome 13q11 encompassing the ZNF198 gene, lacked PML nuclear bodies, although PML protein levels appeared normal. The fusion protein ZNF198/FGFR1 (136350), which occurs in atypical myeloproliferative disease (613523) and lacks the SUMO1-binding site of ZNF198, could dimerize with wildtype ZNF198 and disrupt its function. Expression of ZNF198/FGFR1 disrupted PML sumoylation and nuclear body formation and resulted in cytoplasmic localization of SUMO1. Kunapuli et al. (2006) concluded that sumoylation of ZNF198 is required for PML nuclear body formation. </p><p>Using wildtype and Irf8 (601565) -/- mice, Dror et al. (2007) showed that Irf8 was essential for induced expression of Pml in macrophages and for constitutive expression of Pml in hematopoietic tissues. The authors identified PML-I as the major PML splice variant induced in IFN-gamma (IFNG; 147570)- and lipopolysaccharide-activated human U937 promyelocytic cell line, indicating that IRF8 mediates PML-I expression. Regulation of Pml-I expression by Irf8 occurred through a specific ISRE located within the Pml promoter and through cooperative interaction with transcription factors Irf1 (147575) and Pu.1 (SPI1; 165170) in mouse macrophages. Irf8 was not only essential for the Ifn-gamma-induced expression of Pml in activated mouse macrophages, but also for formation of Pml nuclear bodies. </p><p>Ito et al. (2008) showed that PML is critical in the maintenance of quiescent leukemia-initiating cells and normal hematopoietic stem cells. They suggested that targeting PML may be an effective treatment for prevention of relapse in CML (608232). </p><p>Song et al. (2008) found that PTEN was aberrantly localized in APL in which PML function was disrupted by the PML-RARA fusion oncoprotein. Treatment with drugs that triggered PML-RARA degradation restored nuclear PTEN. PML opposed the activity of HAUSP (USP7; 602519) towards PTEN through a mechanism involving DAXX (603186). Confocal microscopy and immunohistochemistry demonstrated that HAUSP was overexpressed in prostate cancer and that levels of HAUSP directly correlated with tumor aggressiveness and with PTEN nuclear exclusion. Song et al. (2008) concluded that a PML-HAUSP network controls PTEN deubiquitinylation and subcellular localization, which is perturbed in human cancers. </p><p>Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide exerts its therapeutic effect by promoting degradation of PML-RARA. PML and PML-RARA degradation is triggered by their sumoylation, but the mechanism by which arsenic trioxide induces this posttranslational modification was unclear. Zhang et al. (2010) showed that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARA and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9 (601661), resulting in enhanced sumoylation and degradation. Zhang et al. (2010) concluded that the identification of PML as a direct target of arsenic trioxide provides insights into the drug's mechanism of action and its specificity for APL. </p><p>In mouse embryonic fibroblasts, Giorgi et al. (2010) found that extranuclear Pml was specifically enriched at the endoplasmic reticulum (ER) and at the mitochondria-associated membranes, signaling domains involved in ER-to-mitochondria calcium ion transport and in induction of apoptosis. They found Pml in complexes of large molecular size with the inositol 1,4,5-triphosphate receptor (IP3R; 147265), protein kinase Akt (164730), and protein phosphatase 2a (176915). Pml was essential for Akt- and PP2a-dependent modulation of Ip3r phosphorylation and in turn for Ip3r-mediated calcium ion release from the endoplasmic reticulum. Giorgi et al. (2010) concluded that their findings provided a mechanistic explanation for the pleiotropic role of Pml in apoptosis. </p><p><strong><em>Reviews of PML Function</em></strong></p><p>
|
|
Bernardi and Pandolfi (2007) reviewed the structure, dynamics, and functions of PML-NBs. </p><p>Salomoni et al. (2008) reviewed the role of PML in tumor suppression. </p><p><strong><em>PML/RARA Fusion Protein</em></strong></p><p>
|
|
For information on the generation of PML/RARA fusion genes through translocations associated with APL, see CYTOGENETICS.</p><p>Grignani et al. (1993) expressed the PML-RARA protein in U937 myeloid precursor cells and showed that they lost the capacity to differentiate under the action of stimuli such as vitamin D3 and transforming growth factor beta-1 (TGFB1; 190180), acquired enhanced sensitivity to retinoic acid, and exhibited a higher growth rate consequent to diminished apoptotic cell death. These results provided evidence of biologic activity of the fusion protein and recapitulated critical features of the promyelocytic leukemia phenotype. </p><p>Lin et al. (1998) reported that the association of PLZF-RAR-alpha (see 176797) and PML-RAR-alpha with the histone deacetylase complex (see 605164) helps to determine both the development of APL and the ability of patients to respond to retinoids. Consistent with these observations, inhibitors of histone deacetylase dramatically potentiate retinoid-induced differentiation of retinoic acid-sensitive, and restore retinoid responses of retinoic acid-resistant, APL cell lines. Lin et al. (1998) concluded that oncogenic retinoic acid receptors mediate leukemogenesis through aberrant chromatin acetylation, and that pharmacologic manipulation of nuclear receptor cofactors may be a useful approach in the treatment of human disease. </p><p>Grignani et al. (1998) demonstrated that both PML-RAR-alpha and PLZF-RAR-alpha fusion proteins recruit the nuclear corepressor (NCOR; see 600849)-histone deacetylase complex through the RAR-alpha CoR box. PLZF-RAR-alpha contains a second, retinoic acid-resistant binding site in the PLZF amino-terminal region. High doses of retinoic acid release histone deacetylase activity from PML-RAR-alpha, but not from PLZF-RAR-alpha. Mutation of the NCOR binding site abolishes the ability of PML-RAR-alpha to block differentiation, whereas inhibition of histone deacetylase activity switches the transcriptional and biologic effects of PLZF-RAR-alpha from being an inhibitor to an activator of the retinoic acid signaling pathway. Therefore, Grignani et al. (1998) concluded that recruitment of histone deacetylase is crucial to the transforming potential of APL fusion proteins, and the different effects of retinoic acid on the stability of the PML-RAR-alpha and PLZF-RAR-alpha corepressor complexes determines the differential response of APLs to retinoic acid. </p><p>RAR and acute myeloid leukemia-1 (AML1; 151385) transcription factors are found in leukemias as fusion proteins with PML and ETO (CBFA2T1; 133435), respectively. Association of PML-RAR and AML1-ETO with the NCOR-histone deacetylase complex is required to block hematopoietic differentiation. Minucci et al. (2000) showed that PML-RAR and AML1-ETO exist in vivo within high molecular weight nuclear complexes, reflecting their oligomeric state. Oligomerization requires PML or ETO coiled-coil regions and is responsible for abnormal recruitment of NCOR, transcriptional repression, and impaired differentiation of primary hematopoietic precursors. Fusion of RAR to a heterologous oligomerization domain recapitulated the properties of PML-RAR, indicating that oligomerization per se is sufficient to achieve transforming potential. These results showed that oligomerization of a transcription factor, imposing an altered interaction with transcriptional coregulators, represents a novel mechanism of oncogenic activation. </p><p>The recruitment of the nuclear receptor corepressor SMRT (NCOR2; 600848) and subsequent repression of retinoid target genes is critical for the oncogenic function of PML-RARA. Lin and Evans (2000) showed that the ability of PML-RARA to form homodimers is both necessary and sufficient for its increased binding efficiency to corepressor and its inhibitory effects on hormonal responses in myeloid differentiation. Furthermore, the authors found that altered stoichiometric interaction of SMRT with PML-RARA homodimers may underlie these processes. An RXR mutant lacking transactivation function AF2 recapitulated many biochemical and functional properties of PML-RARA. Taken together, these results indicated that altered dimerization of a transcription factor can be directly linked to cellular transformation, and they implicated dimerization interfaces of oncogenes as potential drug targets. </p><p>Pandolfi (2001) reviewed the roles of the RARA and PML genes in the pathogenesis of APL and discussed the multiple oncogenic activities of PML-RARA. </p><p>Di Croce et al. (2002) demonstrated that PML-RARA fusion protein induces gene hypermethylation and silencing by recruiting DNA methyltransferases to target promoters and that hypermethylation contributes to its leukemogenic potential. Retinoic acid treatment induces promoter demethylation, gene reexpression, and reversion of the transformed phenotype. Di Croce et al. (2002) concluded that their results establish a mechanistic link between genetic and epigenetic changes during transformation and suggest that hypermethylation contributes to the early steps of carcinogenesis. </p><p>The fusion protein PML-RARA initiates APL when expressed in the early myeloid compartment of transgenic mice. Lane and Ley (2003) found that PML-RARA was cleaved in several positions by a neutral serine protease in a human myeloid cell line; purification revealed that the protease was neutrophil elastase (ELA2; 130130). Immunofluorescence localization studies suggested that cleavage of PML-RARA must have occurred within the cell, perhaps within the nucleus. The functional importance of ELA2 for APL development was assessed in Ela2-deficient mice. More than 90% of bone marrow PML-RARA-cleaving activity was lost in the absence of Ela2, and Ela2-deficient animals, but not cathepsin G (116830)-deficient animals, were protected from APL development. The authors determined that primary mouse and human APL cells also contained ELA2-dependent PML-RARA-cleaving activity. Lane and Ley (2003) concluded that, since ELA2 is maximally produced in promyelocytes, it may play a role in APL pathogenesis by facilitating the leukemogenic potential of PML-RARA. </p><p>Villa et al. (2006) found that MBD1 (156535) cooperated with PML-RARA in transcriptional repression and cellular transformation in human cell lines. PML-RARA recruited MBD1 to its target promoter through an HDAC3 (605166)-mediated mechanism. Binding of HDAC3 and MBD1 was not confined to the target promoter, but was instead spread over the locus. Knockdown of HDAC3 expression by RNA interference in acute promyelocytic leukemia cells alleviated PML-RARA-induced promoter silencing. Furthermore, retroviral expression of dominant-negative mutants of MBD1 in human hematopoietic precursors interfered with PML-RARA-induced repression and restored cell differentiation. Villa et al. (2006) concluded that PML-RARA recruits an HDAC3-MBD1 complex to target promoters to establish and maintain chromatin silencing. </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Cytogenetics</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p><strong><em>PML/RARA Fusion Gene</em></strong></p><p>
|
|
In the process of analyzing the RARA gene in the t(15;17)(q22;q11.2-q12) translocation specifically associated with acute promyelocytic leukemia (APL), de The et al. (1990) identified a novel gene on chromosome 15 involved with the RARA gene in formation of a fusion product. This gene, which they called MYL, was transcribed in the same direction as RARA on the translocated chromosome. In the chimeric gene, the promoter and first exon of the RARA gene were replaced by part of the MYL gene. De The et al. (1990) established that the translocation chromosome generates an MYL-RARA chimeric transcript. The findings strongly implicated RARA in leukemogenesis. The possibility was raised that the altered retinoic acid receptor behaves as a dominant-negative mutant that blocks the expression of retinoic acid target genes involved in granulocytic differentiation. In a later report, de The et al. (1991) changed the name of the gene from MYL to PML. The PML-RARA mRNA encoded a predicted 106-kD chimeric protein containing most of the PML sequences fused to a large part of the RARA gene, including its DNA- and hormone-binding domains. </p><p>Goddard et al. (1991) determined that the PML breakpoints were clustered in 2 regions on either side of an alternatively spliced exon. Although leukemic cells with translocations characteristically expressed only 1 fusion product, both PML-RARA (on the 15q+ derivative chromosome) and RARA-PML (on the 17q- derivative) were transcribed. The contribution of PML to the oncogenicity of the fusion products was demonstrated by the following: no mutations affecting RARA alone were observed in 20 APLs analyzed; 2 APLs cytogenetically lacking t(15;17) chromosomes were found to have rearrangements of both PML and RARA; and PML but not RARA was molecularly rearranged in a variant APL translocation in which chromosome 15 had been translocated to another chromosome with no visible involvement of chromosome 17. </p><p>Tong et al. (1992) found that in 20 of 22 patients with a detectable MYL rearrangement the breakpoints were clustered within a 4.4-kb segment, which they designated MYL(bcr). The 2 remaining patients exhibited a more 5-prime rearrangement at about 10-kb upstream of the MYL(bcr) region, indicating the lack of at least one MYL gene exon in the resulting MYL-RARA fusion gene. </p><p>Cleary (1991) pointed out that detection of the PML-RARA fusion links a specific molecular defect in neoplasia with a characteristic biologic and clinical response to pharmacologic therapy. It is a useful marker for the diagnosis of APL and for the identification of patients who may benefit from retinoid treatment. </p><p>PML, the gene involved in the breakpoint on chromosome 15, is a putative transcription factor: it contains a cysteine-rich motif that resembles a zinc finger DNA-binding domain common to several classes of transcriptional factors. Two fusion genes, PML-RARA and RARA-PML, are formed as a result of the characteristic translocation in APL. Heterogeneity of the chromosome 15 breakpoints accounts for the diverse architecture of the PML-RARA mRNAs isolated from different APL patients, and alternative splicing of PML exons gives rise to multiple isoforms of the PML-RARA mRNAs even within a single patient. Alcalay et al. (1992) investigated the organization and expression pattern of the RARA/PML gene in a series of APL patients. A RARA-PML transcript was present in most but not all APL patients. Among 70 patients with APL, Diverio et al. (1992) found an abnormality in intron 2 of the RARA gene in all cases, with clustering of rearrangements within the 20-kb intronic region separating exons 2 and 3. A curious difference was found in the location of breakpoints in males and females: breakpoints at the 5-prime end of intron 2 of the RARA gene occurred in females and 3-prime breakpoints predominated in males. </p><p>Stock et al. (2000) pointed out that breakpoints in chromosomes 15 and 17 leading to the translocation associated with APL had been described as located between 15q22 and 15q26, and between 17q11 and 17q25. Most studies using FISH had indicated the chromosome 15 breakpoint to be in 15q22. Stock et al. (2000) used a combination of G-banding, FISH, and chromosome microdissection/reverse in situ hybridization to map the breakpoints precisely to 15q24 and 17q21.1. </p><p>Zaccaria et al. (2002) studied a rare example of cryptic translocation causing APL. Conventional cytogenetics showed a normal karyotype; PCR showed a typical PML-RARA rearrangement in exon 1. FISH analysis revealed that a submicroscopic part of chromosome 15 had been inserted into 17q. Zaccaria et al. (2002) reviewed other cases of cryptic translocation; their report appeared to be the first in which both pairs of chromosomes 15 and 17 were cytogenetically normal and a PML-RARA fusion gene, discovered after FISH analysis, was located on chromosome 17. A poor response to ATRA therapy was postulated to have a relationship to the atypical translocation. </p><p>Abreu e Lima et al. (2005) described a 47-year-old woman with acute myeloid leukemia who had simultaneous expression of the PML/RARA and the AML1/ETO (133435) fusion genes. Despite prolonged use of therapeutic doses of ATRA plus chemotherapy, the patient did not achieve remission, in contrast to the experience of most patients with such fusion genes. Conventional cytogenetics in this case showed the presence of only the t(8;21) translocation. In previous reports of coexpression of these 2 fusion genes there was evidence of the presence of 2 or 3 distinct leukemic clones harboring either or both chromosomal translocations. </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>Animal Model</strong>
|
|
</span>
|
|
</h4>
|
|
</div>
|
|
|
|
|
|
|
|
<span class="mim-text-font">
|
|
<p>Brown et al. (1997) established a transgenic mouse model that documented the ability of the chimeric PML-RARA gene to initiate leukemogenesis. The mice developed 2 currently unrelated abnormalities. The first was a severe papillomatosis of the skin; the second was a disturbance of hematopoiesis that presented as a partial block of differentiation in the neutrophil lineage of the transgenic mice and then progressed at low frequency to overt APL. The leukemia appeared to be a faithful reproduction of the human disease, including a therapeutic response to retinoic acid that reflected differentiation of the leukemic cells. Both the preleukemic state and the overt leukemia could be transplanted into nontransgenic hosts. Brown et al. (1997) commented that the model should be useful for exploring the pathogenesis and treatment of APL. </p><p>From studies in mice with disruption of the Pml gene, Wang et al. (1998) demonstrated that normally, PML regulates hemopoietic differentiation and controls cell growth and tumorigenesis. PML function is essential for the tumor-growth-suppressive activity of retinoic acid (RA) and for its ability to induce terminal myeloid differentiation of precursor cells. PML was needed for the RA-dependent transactivation of the p21(Waf1/Cip1) gene (116899), which regulates cell cycle progression and cellular differentiation. These results provided a framework for understanding the molecular pathogenesis of APL. Whereas APL might result from the functional interference of PML/RARA with 2 independent pathways, PML and RXR/RAR, Wang et al. (1998) showed that these proteins act, at least in part, in the same pathway. Thus, by simultaneously interacting with RXR and PML, the fusion gene product may inactivate this pathway at multiple levels, leading to the proliferative advantage and the block of hemopoietic differentiation that characterize APL. </p><p>David et al. (1997) generated an inducible line of transgenic mice in which the expression of PML-RARA is driven by the metallothionein promoter. After 5 days zinc stimulation, 27 of 54 mice developed hepatic preneoplasia and neoplasia including foci of basophilic hepatocytes, dysplasia, and carcinoma, with a significantly higher incidence of lesions in females than in males. The rapid onset of liver pathologies was dependent on overexpression of the transgene, since it was not detected in noninduced transgenic animals of the same age. The PML-RARA protein was always present in altered tissues at much higher levels than in the surrounding normal liver tissues. In addition, overexpression of PML-RARA resulted in a strong proliferative response in the hepatocytes. David et al. (1997) concluded that overexpression of PML-RARA deregulates subproliferation and can induce tumorigenic changes in vivo. </p><p>In an animal model of acute promyelocytic leukemia, Padua et al. (2003) developed a DNA-based vaccine by fusing the human PML-RARA oncogene to tetanus fragment C (FrC) sequences. Padua et al. (2003) showed for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and in combination with all-trans retinoic acid (ATRA). The survival advantage was concomitant with time-dependent antibody production and an increase in interferon-gamma. Padua et al. (2003) also showed that ATRA therapy on its own triggered an immune response in this model. When DNA vaccination and conventional ATRA therapy were combined, they induced protective immune responses against leukemia progression in mice. Padua et al. (2003) concluded that this may provide a new approach to improve clinical outcome in human leukemia. </p>
|
|
</span>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<h4>
|
|
<span class="mim-font">
|
|
<strong>REFERENCES</strong>
|
|
</span>
|
|
</h4>
|
|
<div>
|
|
<p />
|
|
</div>
|
|
|
|
<div>
|
|
<ol>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Abreu e Lima, R. S., Baruffi, M. R., de Lima, A. S. G., de Oliveira, F. M., de Figueiredo-Pontes, L. L., Tone, L. G., Rogatto, S. R., Falcao, R. P., Ferrari Chauffaille, M. de L. L., Rego, E. M.
|
|
<strong>The co-expression of PML/RAR-alpha and AML1/ETO fusion genes is associated with ATRA resistance.</strong>
|
|
Brit. J. Haemat. 128: 407-409, 2005.
|
|
|
|
|
|
[PubMed: 15667548]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1111/j.1365-2141.2004.05343.x]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Alcalay, M., Zangrilli, D., Fagioli, M., Pandolfi, P. P., Mencarelli, A., Lo Coco, F., Biondi, A., Grignani, F., Pelicci, P. G.
|
|
<strong>Expression pattern of the RAR-alpha-PML fusion gene in acute promyelocytic leukemia.</strong>
|
|
Proc. Nat. Acad. Sci. 89: 4840-4844, 1992.
|
|
|
|
|
|
[PubMed: 1317574]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.89.11.4840]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Bernardi, R., Guernah, I., Jin, D., Grisendi, S., Alimonti, A., Teruya-Feldstein, J., Cordon-Cardo, C., Simon, M. C., Rafii, S., Pandolfi, P. P.
|
|
<strong>PML inhibits HIF-1-alpha translation and neoangiogenesis through repression of mTOR.</strong>
|
|
Nature 442: 779-785, 2006.
|
|
|
|
|
|
[PubMed: 16915281]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/nature05029]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Bernardi, R., Pandolfi, P. P.
|
|
<strong>Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies.</strong>
|
|
Nature Rev. Molec. Cell Biol. 8: 1006-1016, 2007.
|
|
|
|
|
|
[PubMed: 17928811]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/nrm2277]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Brown, D., Kogan, S., Lagasse, E., Weissman, I., Alcalay, M., Pelicci, P. G., Atwater, S., Bishop, J. M.
|
|
<strong>A PMLRAR-alpha transgene initiates murine acute promyelocytic leukemia.</strong>
|
|
Proc. Nat. Acad. Sci. 94: 2551-2556, 1997.
|
|
|
|
|
|
[PubMed: 9122233]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.94.6.2551]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Chang, K.-S., Fan, Y.-H., Andreeff, M., Liu, J., Mu, Z.-M.
|
|
<strong>The PML gene encodes a phosphoprotein associated with the nuclear matrix.</strong>
|
|
Blood 85: 3646-3653, 1995.
|
|
|
|
|
|
[PubMed: 7780148]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Cleary, M. L.
|
|
<strong>Oncogenic conversion of transcription factors by chromosomal translocations.</strong>
|
|
Cell 66: 619-622, 1991.
|
|
|
|
|
|
[PubMed: 1878967]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/0092-8674(91)90105-8]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
David, G., Terris, B., Marchio, A., Lavau, C., Dejean, A.
|
|
<strong>The acute promyelocytic leukemia PML-RAR-alpha protein induces hepatic preneoplastic and neoplastic lesions in transgenic mice.</strong>
|
|
Oncogene 14: 1547-1554, 1997.
|
|
|
|
|
|
[PubMed: 9129145]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/sj.onc.1200989]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
de The, H., Chomienne, C., Lanotte, M., Degos, L., Dejean, A.
|
|
<strong>The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus.</strong>
|
|
Nature 347: 558-561, 1990.
|
|
|
|
|
|
[PubMed: 2170850]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/347558a0]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., Dejean, A.
|
|
<strong>The PML-RAR-alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR.</strong>
|
|
Cell 66: 675-684, 1991.
|
|
|
|
|
|
[PubMed: 1652369]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/0092-8674(91)90113-d]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo Coco, F., Kouzarides, T., Nervi, C., Minucci, S., Pelicci, P. G.
|
|
<strong>Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor.</strong>
|
|
Science 295: 1079-1082, 2002.
|
|
|
|
|
|
[PubMed: 11834837]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1126/science.1065173]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Diverio, D., Lo Coco, F., D'Adamo, F., Biondi, A., Fagioli, M., Grignani, F., Rambaldi, A., Rossi, V., Avvisati, G., Petti, M. C., Testi, A. M., Liso, V., Specchia, G., Fioritoni, G., Recchia, A., Frassoni, F., Ciolli, S., Pelicci, P. G.
|
|
<strong>Identification of DNA rearrangements at the retinoic acid receptor-alpha (RAR-alpha) locus in all patients with acute promyelocytic leukemia and mapping of APL breakpoints within the RAR-alpha second intron.</strong>
|
|
Blood 79: 3331-3336, 1992.
|
|
|
|
|
|
[PubMed: 1317727]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Dror, N., Rave-Harel, N., Burchert, A., Azriel, A., Tamura, T., Tailor, P., Neubauer, A., Ozato, K., Levi, B.-Z.
|
|
<strong>Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells.</strong>
|
|
J. Biol. Chem. 282: 5633-5640, 2007.
|
|
|
|
|
|
[PubMed: 17189268]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1074/jbc.M607825200]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Dyck, J. A., Maul, G. G., Miller, W. H., Jr., Chen, J. D., Kakizuka, A., Evans, R. M.
|
|
<strong>A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein.</strong>
|
|
Cell 76: 333-343, 1994.
|
|
|
|
|
|
[PubMed: 8293467]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/0092-8674(94)90340-9]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Giorgi, C., Ito, K., Lin, H.-K., Santangelo, C., Wieckowski, M. R., Lebiedzinska, M., Bononi, A., Bonora, M., Duszynski, J., Bernardi, R., Rizzuto, R., Tacchetti, C., Pinton, P., Pandolfi, P. P.
|
|
<strong>PML regulates apoptosis at endoplasmic reticulum by modulating calcium release.</strong>
|
|
Science 330: 1247-1251, 2010. Note: Erratum: Science 371: eabi4740, 2021.
|
|
|
|
|
|
[PubMed: 21030605]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1126/science.1189157]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Goddard, A. D., Borrow, J., Freemont, P. S., Solomon, E.
|
|
<strong>Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia.</strong>
|
|
Science 254: 1371-1374, 1991.
|
|
|
|
|
|
[PubMed: 1720570]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1126/science.1720570]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Goddard, A. D., Yuan, J. Q., Fairbairn, L., Dexter, M., Borrow, J., Kozak, C., Solomon, E.
|
|
<strong>Cloning of the murine homolog of the leukemia-associated PML gene.</strong>
|
|
Mammalian Genome 6: 732-737, 1995.
|
|
|
|
|
|
[PubMed: 8563172]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1007/BF00354296]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Grignani, F., De Matteis, S., Nervi, C., Tomassoni, L., Gelmetti, V., Cioce, M., Fanelli, M., Ruthardt, M., Ferrara, F. F., Zamir, I., Seiser, C., Grignani, F., Lazar, M. A., Minucci, S., Pelicci, P. G.
|
|
<strong>Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia.</strong>
|
|
Nature 391: 815-818, 1998.
|
|
|
|
|
|
[PubMed: 9486655]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/35901]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Grignani, F., Ferrucci, P. F., Testa, U., Talamo, G., Fagioli, M., Alcalay, M., Mencarelli, A., Grignani, F., Peschle, C., Nicoletti, I., Pelicci, P. G.
|
|
<strong>The acute promyelocytic leukemia-specific PML-RAR-alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells.</strong>
|
|
Cell 74: 423-431, 1993.
|
|
|
|
|
|
[PubMed: 8394219]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/0092-8674(93)80044-f]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Ito, K., Bernardi, R., Morotti, A., Matsuoka, S., Saglio, G., Ikeda, Y., Rosenblatt, J., Avigan, D. E., Teruya-Feldstein, J., Pandolfi, P. P.
|
|
<strong>PML targeting eradicates quiescent leukaemia-initiating cells.</strong>
|
|
Nature 453: 1072-1078, 2008.
|
|
|
|
|
|
[PubMed: 18469801]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/nature07016]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Khan, M. M., Nomura, T., Kim, H., Kaul, S. C., Wadhwa, R., Shinagawa, T., Ichikawa-Iwata, E., Zhong, S., Pandolfi, P. P., Ishii, S.
|
|
<strong>Role of PML and PML-RAR-alpha in Mad-mediated transcriptional repression.</strong>
|
|
Molec. Cell 7: 1233-1243, 2001.
|
|
|
|
|
|
[PubMed: 11430826]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/s1097-2765(01)00257-x]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Kunapuli, P., Kasyapa, C. S., Chin, S.-F., Caldas, C., Cowell, J. K.
|
|
<strong>ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML.</strong>
|
|
Exp. Cell Res. 312: 3739-3751, 2006.
|
|
|
|
|
|
[PubMed: 17027752]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/j.yexcr.2006.06.037]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Lane, A. A., Ley, T. J.
|
|
<strong>Neutrophil elastase cleaves PML-RAR-alpha and is important for the development of acute promyelocytic leukemia in mice.</strong>
|
|
Cell 115: 305-318, 2003.
|
|
|
|
|
|
[PubMed: 14636558]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/s0092-8674(03)00852-3]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Lin, H.-K., Bergmann, S., Pandolfi, P. P.
|
|
<strong>Cytoplasmic PML function in TGF-beta signalling.</strong>
|
|
Nature 431: 205-211, 2004.
|
|
|
|
|
|
[PubMed: 15356634]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/nature02783]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Lin, R. J., Evans, R. M.
|
|
<strong>Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers.</strong>
|
|
Molec. Cell 5: 821-830, 2000.
|
|
|
|
|
|
[PubMed: 10882118]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/s1097-2765(00)80322-6]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Lin, R. J., Nagy, L., Inoue, S., Shao, W., Miller, W. H., Jr., Evans, R. M.
|
|
<strong>Role of the histone deacetylase complex in acute promyelocytic leukaemia.</strong>
|
|
Nature 391: 811-814, 1998.
|
|
|
|
|
|
[PubMed: 9486654]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/35895]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Minucci, S., Maccarana, M., Cioce, M., De Luca, P., Gelmetti, V., Segalla, S., Di Croce, L., Giavara, S., Matteucci, C., Gobbi, A., Bianchini, A., Colombo, E., Schiavoni, I., Badaracco, G., Hu, X., Lazar, M. A., Landsberger, N., Nervi, C., Pelicci, P. G.
|
|
<strong>Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation.</strong>
|
|
Molec. Cell 5: 811-820, 2000.
|
|
|
|
|
|
[PubMed: 10882117]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/s1097-2765(00)80321-4]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Padua, R. A., Larghero, J., Robin, M., le Pogam, C., Schlageter, M.-H., Muszlak, S., Fric, J., West, R., Rousselot, P., Phan, T. H., Mudde, L., Teisserenc, H., Carpentier, A. F., Kogan, S., Degos, L., Pla, M., Bishop, J. M., Stevenson, F., Charron, D., Chomienne, C.
|
|
<strong>PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.</strong>
|
|
Nature Med. 9: 1413-1417, 2003.
|
|
|
|
|
|
[PubMed: 14566333]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/nm949]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Pandolfi, P. P.
|
|
<strong>Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia.</strong>
|
|
Hum. Molec. Genet. 10: 769-775, 2001.
|
|
|
|
|
|
[PubMed: 11257111]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1093/hmg/10.7.769]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P. P., Pelicci, P. G.
|
|
<strong>PML regulates p53 acetylation and premature senescence induced by oncogenic Ras.</strong>
|
|
Nature 406: 207-210, 2000.
|
|
|
|
|
|
[PubMed: 10910364]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/35018127]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Salomoni, P., Ferguson, B. J., Wyllie, A. H., Rich, T.
|
|
<strong>New insights into the role of PML in tumour suppression.</strong>
|
|
Cell Res. 18: 622-640, 2008.
|
|
|
|
|
|
[PubMed: 18504460]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/cr.2008.58]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Song, M. S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya-Feldstein, J., Pandolfi, P. P.
|
|
<strong>The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network.</strong>
|
|
Nature 455: 813-817, 2008.
|
|
|
|
|
|
[PubMed: 18716620]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/nature07290]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Stock, A. D., Dennis, T. R., Spallone, P. A.
|
|
<strong>Precise localization by microdissection/reverse ISH and FISH of the t(15;17)(q24;q21.1) chromosomal breakpoints associated with acute promyelocytic leukemia.</strong>
|
|
Cancer Genet. Cytogenet. 119: 15-17, 2000.
|
|
|
|
|
|
[PubMed: 10812165]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/s0165-4608(99)00207-1]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Tong, J.-H., Dong, S., Geng, J.-P., Huang, W., Wang, Z.-Y., Sun, G.-L., Chen, S.-J., Chen, Z., Larsen, C.-J., Berger, R.
|
|
<strong>Molecular rearrangements of the MYL gene in acute promyelocytic leukemia (APL, M3) define a breakpoint cluster region as well as some molecular variants.</strong>
|
|
Oncogene 7: 311-316, 1992.
|
|
|
|
|
|
[PubMed: 1312695]
|
|
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon-Cardo, C., Pandolfi, P. P.
|
|
<strong>Identification of a tumour suppressor network opposing nuclear Akt function.</strong>
|
|
Nature 441: 523-536, 2006.
|
|
|
|
|
|
[PubMed: 16680151]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/nature04809]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Turelli, P., Doucas, V., Craig, E., Mangeat, B., Klages, N., Evans, R., Kalpana, G., Trono, D.
|
|
<strong>Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication.</strong>
|
|
Molec. Cell 7: 1245-1254, 2001.
|
|
|
|
|
|
[PubMed: 11430827]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/s1097-2765(01)00255-6]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Villa, R., Morey, L., Raker, V. A., Buschbeck, M., Gutierrez, A., De Santis, F., Corsaro, M., Varas, F., Bossi, D., Minucci, S., Pelicci, P. G., Di Croce, L.
|
|
<strong>The methyl-CpG binding protein MBD1 is required for PML-RAR-alpha function.</strong>
|
|
Proc. Nat. Acad. Sci. 103: 1400-1405, 2006.
|
|
|
|
|
|
[PubMed: 16432238]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1073/pnas.0509343103]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Wang, Z. G., Delva, L., Gaboli, M., Rivi, R., Giorgio, M., Cordon-Cardo, C., Grosveld, F., Pandolfi, P. P.
|
|
<strong>Role of PML in cell growth and the retinoic acid pathway.</strong>
|
|
Science 279: 1547-1551, 1998.
|
|
|
|
|
|
[PubMed: 9488655]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1126/science.279.5356.1547]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Yang, S., Kuo, C., Bisi, J. E., Kim, M. K.
|
|
<strong>PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2.</strong>
|
|
Nature Cell Biol. 4: 865-870, 2002.
|
|
|
|
|
|
[PubMed: 12402044]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/ncb869]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Zaccaria, A., Valenti, A., Toschi, M., Salvucci, M., Cipriani, R., Ottaviani, E., Martinelli, G.
|
|
<strong>Cryptic translocation of PML/RARA on 17q. A rare event in acute promyelocytic leukemia.</strong>
|
|
Cancer Genet. Cytogenet. 138: 169-173, 2002.
|
|
|
|
|
|
[PubMed: 12505266]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1016/s0165-4608(02)00584-8]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Zhang, X.-W., Yan, X.-J., Zhou, Z.-R., Yang, F.-F., Wu, Z.-Y., Sun, H.-B., Liang, W.-X., Song, A.-X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q.-Y., Yang, H.-Y., and 9 others.
|
|
<strong>Arsenic trioxide controls the fate of the PML-RAR-alpha oncoprotein by directly binding PML.</strong>
|
|
Science 328: 240-243, 2010. Note: Erratum: Science 328: 974 only, 2010.
|
|
|
|
|
|
[PubMed: 20378816]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1126/science.1183424]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
<li>
|
|
<p class="mim-text-font">
|
|
Zhong, S., Delva, L., Rachez, C., Cenciarelli, C., Gandini, D., Zhang, H., Kalantry, S., Freedman, L. P., Pandolfi, P. P.
|
|
<strong>A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RAR-alpha and T18 oncoproteins.</strong>
|
|
Nature Genet. 23: 287-295, 1999.
|
|
|
|
|
|
[PubMed: 10610177]
|
|
|
|
|
|
[Full Text: https://doi.org/10.1038/15463]
|
|
|
|
|
|
</p>
|
|
</li>
|
|
|
|
</ol>
|
|
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<div class="row">
|
|
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
|
|
<span class="text-nowrap mim-text-font">
|
|
Contributors:
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
Bao Lige - updated : 10/05/2018<br>Ada Hamosh - updated : 1/31/2011<br>Patricia A. Hartz - updated : 10/19/2010<br>Ada Hamosh - updated : 5/25/2010<br>Paul J. Converse - updated : 11/19/2008<br>Matthew B. Gross - updated : 10/14/2008<br>Matthew B. Gross - reorganized : 10/13/2008<br>Ada Hamosh - updated : 7/9/2008<br>Ada Hamosh - updated : 9/8/2006<br>Ada Hamosh - updated : 7/24/2006<br>Patricia A. Hartz - updated : 3/29/2006<br>Victor A. McKusick - updated : 3/21/2005<br>Victor A. McKusick - updated : 1/25/2005<br>Ada Hamosh - updated : 9/29/2004<br>Ada Hamosh - updated : 1/8/2004<br>Stylianos E. Antonarakis - updated : 11/19/2003<br>Patricia A. Hartz - updated : 3/14/2003<br>Victor A. McKusick - updated : 3/3/2003<br>Ada Hamosh - updated : 2/12/2002<br>Stylianos E. Antonarakis - updated : 7/3/2001<br>Stylianos E. Antonarakis - updated : 7/3/2001<br>George E. Tiller - updated : 6/19/2001<br>Ada Hamosh - updated : 5/1/2001<br>Ada Hamosh - updated : 4/30/2001<br>Ada Hamosh - updated : 7/12/2000<br>Stylianos E. Antonarakis - updated : 6/21/2000<br>Ada Hamosh - updated : 5/29/2000<br>Ada Hamosh - updated : 11/2/1999<br>Victor A. McKusick - updated : 9/15/1999<br>Victor A. McKusick - updated : 10/1/1998<br>Victor A. McKusick - updated : 3/2/1998<br>Victor A. McKusick - updated : 4/21/1997
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<div class="row">
|
|
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
|
|
<span class="text-nowrap mim-text-font">
|
|
Creation Date:
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
Victor A. McKusick : 11/30/1990
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div>
|
|
<div class="row">
|
|
<div class="col-lg-1 col-md-1 col-sm-2 col-xs-2">
|
|
<span class="text-nowrap mim-text-font">
|
|
Edit History:
|
|
</span>
|
|
</div>
|
|
<div class="col-lg-6 col-md-6 col-sm-6 col-xs-6">
|
|
<span class="mim-text-font">
|
|
carol : 11/08/2021<br>carol : 10/08/2018<br>mgross : 10/05/2018<br>terry : 03/14/2013<br>carol : 6/17/2011<br>alopez : 2/4/2011<br>terry : 1/31/2011<br>wwang : 11/22/2010<br>mgross : 10/19/2010<br>alopez : 5/26/2010<br>terry : 5/25/2010<br>mgross : 11/19/2008<br>mgross : 10/28/2008<br>mgross : 10/14/2008<br>mgross : 10/13/2008<br>wwang : 7/17/2008<br>terry : 7/9/2008<br>alopez : 9/19/2006<br>terry : 9/8/2006<br>alopez : 7/27/2006<br>terry : 7/24/2006<br>mgross : 3/29/2006<br>carol : 4/4/2005<br>wwang : 3/30/2005<br>wwang : 3/23/2005<br>terry : 3/21/2005<br>tkritzer : 3/17/2005<br>terry : 1/25/2005<br>tkritzer : 10/1/2004<br>terry : 9/29/2004<br>tkritzer : 1/12/2004<br>terry : 1/8/2004<br>mgross : 11/19/2003<br>mgross : 11/19/2003<br>mgross : 5/12/2003<br>mgross : 3/18/2003<br>terry : 3/14/2003<br>tkritzer : 3/10/2003<br>terry : 3/3/2003<br>alopez : 2/12/2002<br>terry : 2/12/2002<br>terry : 11/15/2001<br>mgross : 7/3/2001<br>mgross : 7/3/2001<br>cwells : 6/20/2001<br>cwells : 6/19/2001<br>alopez : 5/1/2001<br>alopez : 4/30/2001<br>alopez : 7/12/2000<br>mgross : 6/21/2000<br>mgross : 6/21/2000<br>mgross : 6/21/2000<br>alopez : 6/2/2000<br>terry : 5/29/2000<br>alopez : 11/3/1999<br>alopez : 11/2/1999<br>mgross : 9/23/1999<br>terry : 9/15/1999<br>carol : 10/6/1998<br>terry : 10/1/1998<br>dkim : 9/11/1998<br>alopez : 3/6/1998<br>terry : 3/2/1998<br>alopez : 7/9/1997<br>carol : 6/20/1997<br>jenny : 4/21/1997<br>terry : 4/12/1997<br>mark : 11/30/1995<br>mark : 10/5/1995<br>carol : 8/13/1992<br>carol : 6/16/1992<br>carol : 5/28/1992<br>supermim : 3/16/1992
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<br />
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div id="mimFooter">
|
|
|
|
|
|
<div class="container ">
|
|
<div class="row">
|
|
<br />
|
|
<br />
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div class="hidden-print mim-footer">
|
|
<div class="container">
|
|
<div class="row">
|
|
<p />
|
|
</div>
|
|
<div class="row text-center small">
|
|
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
|
|
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
|
|
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
|
|
<br />
|
|
OMIM<sup>®</sup> and Online Mendelian Inheritance in Man<sup>®</sup> are registered trademarks of the Johns Hopkins University.
|
|
<br />
|
|
Copyright<sup>®</sup> 1966-2025 Johns Hopkins University.
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div class="visible-print-block mim-footer" style="position: relative;">
|
|
<div class="container">
|
|
<div class="row">
|
|
<p />
|
|
</div>
|
|
<div class="row text-center small">
|
|
NOTE: OMIM is intended for use primarily by physicians and other professionals concerned with genetic disorders, by genetics researchers,
|
|
and by advanced students in science and medicine. While the OMIM database is open to the public, users seeking information about a personal
|
|
medical or genetic condition are urged to consult with a qualified physician for diagnosis and for answers to personal questions.
|
|
<br />
|
|
OMIM<sup>®</sup> and Online Mendelian Inheritance in Man<sup>®</sup> are registered trademarks of the Johns Hopkins University.
|
|
<br />
|
|
Copyright<sup>®</sup> 1966-2025 Johns Hopkins University.
|
|
<br />
|
|
Printed: March 6, 2025
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div class="modal fade" id="mimDonationPopupModal" tabindex="-1" role="dialog" aria-labelledby="mimDonationPopupModalTitle">
|
|
<div class="modal-dialog" role="document">
|
|
<div class="modal-content">
|
|
<div class="modal-header">
|
|
<button type="button" id="mimDonationPopupCancel" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button>
|
|
<h4 class="modal-title" id="mimDonationPopupModalTitle">
|
|
OMIM Donation:
|
|
</h4>
|
|
</div>
|
|
<div class="modal-body">
|
|
<div class="row">
|
|
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
|
|
<p>
|
|
Dear OMIM User,
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class="row">
|
|
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
|
|
<p>
|
|
To ensure long-term funding for the OMIM project, we have diversified
|
|
our revenue stream. We are determined to keep this website freely
|
|
accessible. Unfortunately, it is not free to produce. Expert curators
|
|
review the literature and organize it to facilitate your work. Over 90%
|
|
of the OMIM's operating expenses go to salary support for MD and PhD
|
|
science writers and biocurators. Please join your colleagues by making a
|
|
donation now and again in the future. Donations are an important
|
|
component of our efforts to ensure long-term funding to provide you the
|
|
information that you need at your fingertips.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class="row">
|
|
<div class="col-lg-offset-1 col-md-offset-1 col-sm-offset-1 col-xs-offset-1 col-lg-10 col-md-10 col-sm-10 col-xs-10">
|
|
<p>
|
|
Thank you in advance for your generous support, <br />
|
|
Ada Hamosh, MD, MPH <br />
|
|
Scientific Director, OMIM <br />
|
|
</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div class="modal-footer">
|
|
<button type="button" id="mimDonationPopupDonate" class="btn btn-success btn-block" data-dismiss="modal"> Donate To OMIM! </button>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
</body>
|
|
|
|
</html>
|
|
|
|
|