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Background



Main Objective

To understand the neural basis for jumping in mice.

• Core behavior used in many contexts
• How do different neural cell types contribute to the way a 

mouse jumps?
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Neurology of Jumping

• Locomotor networks in the brain and spinal cord
• Manipulating locomotor network can affect movement
• How can we see if the jump has changed?
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Grillner et al., 2013



Pose Estimation



Pose Estimation

• Must quantify movement in order to analyze
• Articulated body pose estimation: automatically detect a 

body’s pose in an image
• Complex but central problem in computer vision
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Wang et al., 2019



Deep Learning

• Machine learning algorithms modeled after human brain to 
“learn” information

• Two phases: training and analysis

• Training: critical process of learning parameters

• Analysis: apply trained network to new data

• Many applications, including pose estimation
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DeepLabCut

• Public deep learning software for animal pose estimation
• Uses a pre-trained Residual Network (ResNet) to analyze 

videos and identify user-specified joints
• Basis for our quantification of mouse jumping behavior

8

Nath et al., 2019



Experimental Methods



Apparatus
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Software Environment

• Python 3.7 via Anaconda
• Graphics Processing Unit (GPU) and driver
• DeepLabCut (DLC) software and user interface
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Body Part Labels

• DLC is designed for 
general use – requires 
user input

• For jumping behavior:
– Nose, eye, forepaw, iliac 

crest, hip, knee, ankle, 
MTP, toe, tail base
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Data and Results



Proof of Concept – Data
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Proof of Concept –
Results
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• Promising, clear 
indication that DLC is 
learning

• Issues: limb 
switching, low 
resolution, motion 
blur, noisy and dark 
image, inconsistent 
data



Design Adjustments

Issues: limb switching, low resolution, motion blur, noisy 
and dark image, inconsistent data

• Add more points
• Move camera closer
• Better lighting
• Increase video frame rate
• Shave mice, use same-colored mice
• Trim videos
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Improved Data
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Improved Results
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• Adjustments proved 
highly effective at 
addressing issues

• Data is easier to 
label and analyze, 
with more consistent 
and accurate results



Additional Analysis – Training Efficacy

• Validation: train error = 0.8, test error = 1.57 (in pixels)
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Additional Analysis – Generated Plots
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Future Directions



Future Directions

• Refine the training parameters in DLC
• Generate four DLC models for four camera angles
• Collect more data and analyze from all angles
• Calibrate across multiple cameras to obtain 3D position
• Synchronize with EMG and platform data

• Perturb cell populations and quantify changes in jump
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Questions? Feel free to email me at tara.m.tang@gmail.com!
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