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Abstract—Video-based activity and behavior analysis for mice
has garnered wide attention in biomedical research. Animal
facilities hold large numbers of mice housed in ‘home-cages’
densely stored within ventilated racks. Automated analysis of
mice activity in their home-cages can provide a new set of
sensitive measures for detecting abnormalities and time-resolved
deviation from baseline behavior. Large scale monitoring in ani-
mal facilities requires minimal footprint hardware that integrates
seamlessly with the ventilated racks. Compactness of hardware
imposes use of fisheye lenses positioned in close proximity to
the cage. In this paper, we estimate the 3D pose of a mouse
from fisheye distorted monocular monochromatic images using a
novel adaptation of a structured forests algorithm. The method
utilizes classification decision trees leveraging their versatility to
store arbitrary information in the leaf-nodes. During training,
the samples arriving at each node are mapped from continuous
pose space to discrete class labels such that similar poses are
grouped in the same class. The node splitting function is trained
by optimizing a classification objective function rather than a
high-dimensional regression one. The leaf-nodes store the pose
parameters for the set of samples reaching the node. A prediction
model preserving the structural relationship of the pose is formed
based on the samples in the leaf-nodes. We apply the method to
what we believe is the first known training set for 3D recovery
of mouse key points from monocular images. We compare the
results of our approach to those obtained via standard regression
techniques.

I. INTRODUCTION

Mice are the most widely used mammalian model in
biomedical research laboratories. It is common for animal
facilities to hold in excess of 100, 000 mice in cages housed
within ventilated racks. A recent trend in laboratory mice
research is to capture activity and behavior in the naturalistic
environment for long durations. Automated monitoring of
activity can improve safety, reduce labor costs, and provide a
new set of sensitive time-resolved biomarkers for quantifying
the well-being of mice. The scientific demand for video-based
automation of research-animal monitoring has led to devel-
opment of several commercial and academic systems [1]. An
impediment for large scale use, however, has been the lack of
compact hardware design compatible with existing ventilated
racks. Recently, a system was designed for integration with
ventilated racks is that described by Salem et al. [2]. This
system does not utilize an overhead camera as it would not
meet mechanical constraints imposed by racks as noted by
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Figure 1. (a) The video acquisition system used for this work is designed to
integrate into vivarium cage racks. The cameras are fitted with fisheye lenses
and are in very close proximity to the cage. (b) Example images and the
corresponding 3D pose estimated by our algorithm.

many [3]. Rather, cameras fitted with fisheye lenses positioned
very close (i.e., 5mm) to the front and rear of the cage. The
resulting images exhibit a large degree of nonlinearity due
to the lens distortion exacerbated by very close proximity
of the lens placement to the cage wall, as shown in Figure
1. This burden on downstream video analysis algorithms is
further intensified by the high deformability of mice. We
describe a novel method that extracts 3D pose of the mouse
from the challenging images acquired using the hardware
described in [2]. Rather than treating the output pose parame-
ters as independent and estimating each parameter separately,
as would be the case in standard single-variate regression,
our method exploits the correlation between pose parameters



inherent in the training set. Our method is based on Dollár and
Zitnick’s [4] innovative approach to structured output space
predictions. We adapt their method, which was applied to edge
detection, to estimate continuous pose parameters. The method
exploits pose structure present in the training set by mapping
each set of pose parameters to a binary string. The encoded
binary string is then further discretized into classes encoding
the interdependencies between the parameters. Node splitting
functions are trained based on the discrete labels, rather than
the continuous parameters, employing standard classification
optimization objectives. Leaf nodes store the whole set of
poses reaching them or a representative subset. An aggregation
model is then designed to generate predictions from the set of
stored poses in a leaf. An ensemble model combines the pre-
dictions from multiple trees into a single ‘best’ prediction or,
if desired, multiple pose proposals. Generating pose proposals
is advantageous as it allows multiple hypotheses suited for
the multimodal output pose space. The proposals can in turn
seed algorithms aimed at merging poses by exploiting temporal
consistency or further refinement via other regression methods.
The main contributions of this work are:

1) A novel efficient structured pose estimation method
applied to decision forests. The method assigns discrete
class labels to continuous pose parameters grouping
similar poses in the same class. Mapping the set of
pose parameters (as opposed to an individual parameter)
to discrete class labels has two benefits. First, the
discretization accounts for the correlation between pose
parameters, and hence the pose structure is maintained.
Second, the discretization renders the training problem
solvable by optimizing a classification objective (e.g.,
standard information criteria gain) as opposed to a
regression objective function.

2) Evaluation of method on a unique and challenging
dataset (made publicly available: scorhe.nih.gov) ac-
quired via a specialized hardware setup designed to
be suitable for wide-scale use in animal facilities. The
dataset is, to our knowledge, the first known annotation
set allowing recovery of mouse 3D pose from monocular
images. The set should be of interest to vision re-
searchers as, uncommon to many datasets, the target ob-
ject lacks visible articulation and is highly deformable.
The dataset should also be of interest to those involved
in video-based activity and behavior analysis of mice, a
topic that has lately received a lot of attention [1].

II. RELATED WORK

Pose estimation continues to be an active field of research.
A lot of the literature focuses on human pose estimation
and has been reviewed in [5] among others. More recent
approaches [6] estimate 3D position of human body joints
from single depth images. Several works describe pose
estimation for mice. One defining component of pose
estimation is the pose model (i.e., pose parameters). An often
used coarse pose model is the ellipse [7], [8]. Oriented ellipses
(i.e., with one end of the ellipse aligned with the anterior

of the mouse) are used in [9], [10]. Branson and Belongie
[3] define an ellipse as a coarse pose which then guides
detection for more refined pose based on twelve manually
constructed deformable contour templates that are assumed
to be representative of the mouse postures. de Chaumont et
al. [11] define a physics engine based 2D articulated rigid
body model consisting of head, belly, and neck linked with
joints constraining relative motions between the connected
bodies. In all described methods, pose parameters are defined
in image domain. Translation to physical domain is done
by fixed scaling as scaled orthography is assumed. For
fisheye lens distorted images with the added complexity
of large appearance variations due to proximity of lens to
monitoring arena, defining pose in image domain might be
uninformative. We instead define pose parameters as the
3D physical coordinates of the mouse key points. We adapt
structured forests described in [4] to estimate the 3D pose
parameters from monocular images.

III. METHOD

We first review standard decision forests, then outline the
extension by Dollár and Zitnick [4] to structured output spaces,
after which we describe our adaptation of the method to
structured pose estimation.

A. Standard decision forests

A quick review of decision forests helps set terminology and
mathematical notation. Many references, such as [12] can be
consulted for a more thorough treatment of the subject. For
consistency, the review herein closely follows the work on
which we are expanding [4]. For a training set S : {X ,Y},
a binary decision tree ft(x), x ∈ X is a partition of the
input feature space into (typically, but not necessarily) axis
aligned cuboid regions, with each region storing an assigned
output prediction ŷ. The prediction is ŷ = g({yk}) where
{yk} ∈ Y are the output labels falling in the cuboid regions
having input feature vectors {xk} ∈ X . Each node in the tree
defining a partition is referred to as a split or internal node,
whereas the terminal node representing the region containing
the prediction ŷ is referred to as leaf node. The partitioning
is done in a recursive manner. Starting with the root node, a
split function partitions the training data into two sets. One
set would be associated with the right node, and the other
with the left. The split function for node j can be written
mathematically as h(x, θj) ∈ {0, 1} where traversal is to the
left if the output is 0 and otherwise is to the right. Typically, the
parameters θ of the split function are simply (k, τ), an index of
a feature element within the vector x, and a threshold, such that
h(x, θ) = [x(k) < τ ], where [·] is the indicator function. The
process is repeated until criteria on the information content
of the node or the depth of the tree is met, thereby reaching
a leaf node, wherein a prediction g(·) is stored. A decision
forest is a collection of T trees ft(x), t ∈ {1 . . . T}, each
trained differently by injecting randomness in the choice of
features used for split functions and/or the choice of subset



of the whole training set S. Training a decision forest entails
training each tree and then combining the resulting predictions
by an ensemble model. The ensemble model can be stated
mathematically as ŷF = l(ŷt), t ∈ {1 . . . T} where the ŷt’s
are the leaf node predictions from all trees in the forest. The
main tasks in training a forest are training each individual
tree and defining a suitable prediction aggregation model, i.e.
defining l(·). Training each tree entails finding an optimal node
split for each internal node and defining a prediction model
for each leaf node, i.e., a suitable ŷ . The split node function
parameters θj are obtained by maximizing an information gain
criterion. The standard information gain relies on defining
an information measure function H . For classification, it is
common to define H as the Shannon entropy, Gini impurity, or
the twoing criterion. For single-variate regression, a common
H is one that minimizes variance of the child nodes.

B. Structured decision forests

Realizing the challenge of defining an information gain
criterion for structured output spaces, Dollár and Zitnick [4]
map the output space to discrete labels. The mapping would
be defined such that similar structured labels are assigned the
same discrete label. The information gain is then computed
for the discrete classes rather than the structured labels them-
selves using the standard information gain criteria along with
standard H used in classification training. The mapping is
used to train the split functions at each internal node. The
structured labels arriving at each node, however, are stored and
propagated until a leaf node is reached. A prediction model for
each leaf node, and an ensemble model for the whole forest
would then be formulated based on the stored structured labels.
The success of this elegant solution is contingent upon finding
an effective mapping from structured labels space to discrete
labels, i.e., Y → C, such that each label y ∈ Y is mapped
to a discrete label c ∈ C, where C = {1, . . . , k}. Given that
measuring similarity for structured labels might not be well
defined, [4] employed an intermediate mapping Π : Y → Z
such that Z is a space on which similarity can be measured by
computing Euclidean distance. The authors then applied their
method to predicting edge maps in an image (i.e., classifying
a pixel either as an edge pixel or not).

C. Structured pose-estimation

We leverage the framework developed by [4] and adapt
it to a regression problem. Namely we estimate the 3D
coordinates of key points for the mouse. Since the physical
objects of interest have properties that constrain the relative
location of key points, the pose output space is structured.
The proposed method capitalizes on this underlying structure.
In the subsections that follow, we detail the key components
for setting up and training structured forests to accomplish the
pose-estimation task. Namely, we define

• The structured output space Y
• The mapping function Π.
• The discretization mapping Z → C
• The leaf-node prediction model

Figure 2. Example output of the discretization function. The function was
applied to nine randomly chosen poses. The green and red outlines group the
images for which the poses received the same class label by the node splitting
function. The results are intuitive as all the poses in which the mouse nose
was at greater elevation are grouped together.

• The ensemble model
• The input feature space X
1) Structured Output Pose Space: The output pose space

is Y ∈ RD, such that y ∈ Y is a D-dimensional vector
containing the pose parameters. We start by defining a 3D
Cartesian coordinate system with the origin at the center of
the cage floor. The 3D coordinates of the landmarks in the said
coordinate system are expressed as φ = {φi}, i ∈ {1, . . . , 4},
where the sequence of i’s indexes tail, left-ear, right-ear,
and nose respectively and each φi has the 3D coordinate of
key point i. In order to generate a more translation-tolerant
representation of φ suitable for use as y in the training
framework, we define y as follows:

y = [φ1 −M(σa), φi − φ1], i ∈ {2, · · · , 4} (1)

whereM is a pre-assigned image-to-physical coordinate map-
ping that maps each pixel location σ in the image to a fixed but
arbitrarily chosen 3D location. σa is then taken to be a point
(e.g., binary silhouette ellipse-fit end point) on the detected
foreground. Referencing the tail point to a fixed 3D point based
on the detection window can be thought of as the 3D analog of
referencing 2D landmarks relative to the corner point of the 2D
detection window. The pose representation in Eq 1 achieves
tolerance to translation by representing the key points relative
to the tail point and the tail point relative to a 3D mapped
position based on the 2D detection window.

2) Intermediate mapping function: One key component
of the structured forest approach is the mapping Π from
the structured labels to an intermediate space on which
dissimilarity can be measured. The mapping is obtained by
first converting each parameter y(d), d ∈ 1, . . . , D to a
binary sequence denoted bLd

(y(d)), where Ld is the number
of bits representing parameter y(d). To generate the binary
sequence for each y(d), the full range of the parameter in
the N training samples arriving at the node is computed as
r(d) = max iyi(d) − min iyi(d), i ∈ 1, . . . , N . The range
r(d) is uniformly partitioned into Ld bins. For yi(d), Bit l
in bLd

(y(d)) is set if yi(d) falls in bin l. Second the binary



representations for each parameter are concatenated to form
the initial z vector. Mathematically, the mapping generating
z is then defined as Π =

∨D
d=1 bLd

(y(d)), where
∨

denotes
concatenation. Lastly, we further reduce dimensionality of z
by Principal Component Analysis (PCA). PCA is used to limit
the dimensions to at most 5 principal components. The reduced
dimensionality also serves to denoise z. Two methods are used
to assign the number of bits Ld to which parameter y(d) is
converted. The first method, hereinafter referred to as ‘fixed’,
assigns to each parameter the same fixed number of bits bL,
i.e. bLd

= bL∀d. The second method, hereinafter referred to
as ‘weighted’, assigns more bits to parameters having larger
ranges r(·). Namely, bLd

= B × r(d)/
∑D

i=1 r(i), where B is
the total number of bit, namely B = bL ×D. bL is a training
parameter hereinafter referred to as ‘number of bins’.

3) Discretization mapping: The goal of the intermediate
mapping function is to allow for discrete label assignments
to the structured output labels, such that similar y’s ∈ Y are
assigned the same class label c ∈ C, where C = {1, . . . ,m}.
We follow the same two approaches as [4] to obtain a discrete
label assignments for the set of y’s at each node. The first
approach is clustering z’s into m clusters by K-means. Each y
is then assigned the cluster number in which its corresponding
z falls. The second approach is to take the top log2(m)
principal components resulting for the earlier computed PCA.
Each y is then assigned the a discrete label according to the
orthant into which z falls. It is noted that the intermediate
mapping and subsequent discrete label assignments are done
for each node separately based on the subset of the training set
arriving at the node. Discretization captures interdependencies
between the pose parameters. Figure 2 shows the output of the
discretizing function on a sample set of poses.

4) Leaf node prediction model: To completely specify a
model for a single tree, a leaf node prediction model has to
be specified. Decision trees are versatile in that arbitrarily
complex information can be stored in their leaf nodes. In
the case of structured output trees, the leaf nodes can store
a single ‘best’ prediction from the output labels arriving at
the node. In [4], the leaf node prediction is set to be the label
ym whose zm is the medoid of all zm’s at the node. Although
we experimented with different approaches, we chose to retain
the same leaf-node prediction model as in [4]. Hence, our leaf-
node prediction is the pose whose zm is the medoid.

5) Ensemble model: An ensemble model is defined to
aggregate the leaf node predictions. Here again, the result
could be the single ‘best’ pose or a set of pose proposals (i.e.,
the set or subset of poses returned by all trees in the forest).
Pose proposals are advantageous as they would account for
multi-modality in the pose output space and can be useful if a
temporal consistency model is applied to filter out implausible
poses. Alternatively multiple proposals can be used to initialize
another refinement method. In this work, we take advantage
of the constrained environment and the available calibration
mappings to rule out some improbable poses prior to selecting
the ‘best’ pose. Namely, we project all the poses back onto the
image and eliminate poses that fall out of range of the mouse

detection window. We then chose a single pose by applying
the same discretization mapping described in section III-C2 to
the set of retained poses. Similar to the leaf-node prediction
model, the ‘best’ pose is that which has the medoid binary
string. Our method results in a prediction ŷ which maintains
the pose structure in the training data. Although we observed
that ensemble models based on choosing the median of each
parameter from the set of poses returned by the trees reduce
the failure rates, it is noted that these models do not guarantee
a physically plausible pose estimate.

6) Input space: Pose estimation is typically preceded by
object detection. The detector could supply a window (e.g.,
bounding box) or a more refined segmentation map. In our
case, we manually annotate mouse pixels in ∼ 250 images for
each camera. The annotations provide positive and negative
samples to train a classifier to produce a segmentation mask.
The features used for pose-estimation are derived both from
the binary silhouette and the intensity image, more specifi-
cally the foreground bounding box region of the image. Two
different types of features are extracted. Hence,e the feature
vector x = [x1, x2] is the concatenation of the two feature sets.
The first feature set x1 is the binary silhouette statistics. The
statistics include area, image coordinates of the bounding box,
ellipse fit major and minor axis lengths, ellipse fit orientation,
image coordinates of major and minor axis end points, binary
silhouette eccentricity, and major axis to minor axis ratio.

The second feature set, x2, is the raw intensity values
at randomly pre-selected positions relative a normalized (i.e.
width=1, length=1) foreground bounding box. To compute K
such features, a set of offsets (okx, o

k
y), k = 1, · · · ,K, o ∈ [0, 1]

are randomly generated. Each normalized position (okx, o
k
y) is

scaled to the actual size of the detected bounding box to yield
an image pixel position σk = (okx · bw, oky · bh) relative to the
upper left corner of the bounding box, where bw and bh are
the bounding box width and height respectively. The kth entry
in x2 is the intensity value of the image at pixel location σk.
Our implementation uses K = 125 such features.

IV. DATASET AND IMPLEMENTATION DETAIL

The dataset used to evaluate the structured pose estimation
method is that of mouse key point annotations. Pose param-
eters are based on four key-points on the mouse as shown in
Figure 3a: tail (TL), left-ear (LE), right-ear (RE), and nose
(NO). The video acquisition hardware was augmented with
two additional overhead cameras, one at each end of the cage.
These cameras are only used to acquire video for the training
sets. Normal operation of the hardware unit does not utilize
the overhead cameras as their placement is precluded by cage
and rack mechanical constraints. The video acquisition for top
and side cameras is synchronized. All cameras are calibrated
so as to enable mapping image coordinates to physical space
and vice versa. The key points (i.e., TL, LE, RE, NO) are
marked in both orthogonal views as shown in Figure 3b. In
situations where simple geometry can be used to compute
position of some key-points given others, only a sufficient
subset is annotated. Namely, if the left and right parts of the
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Figure 3. (a) Skeletal structure for mouse labeled with key points defined for this work. (b) Example manual annotation of the key points from top and side
camera. (c) Ground truth stick figure (solid) for the given annotations, and predicted pose stick figure (dashed)

mouse are symmetric along the straight line connecting tail
(TL) to nose (NO), then only TL, NO, and the more visible
of the two ears are annotated. Approximately 92,000 frames
were annotated to account for the large variation in appearance
due to the hardware configuration and mouse posture. A set of
6,500 frames was annotated by two different trained annotators
to establish a meaningful measure for assessing estimation
quality. The first step in the estimation pipeline is to produce
a segmentation mask using the trained classifier described
in III-C6. Two sets of features are then extracted from the
binary silhouette and its corresponding bounding box in the
intensity image. The first set is the binary silhouette statistics
for the detected foreground (e.g., bounding box, centroid, area,
ellipse fit parameters). The second is derived from intensity
features as described in III-C6. The computed feature vectors
along with the corresponding ground-truth pose parameters as
defined in (1) are used to train the proposed structured forest.
The leaf nodes store the single ‘best’ pose from the set arriving
at the node. At runtime, the image is segmented, features are
computed in the same fashion as was done in training, and
the trees are traversed. Each tree contributes a pose estimate.
A single ‘best’ pose is then selected from the ensemble.
One implementation variation that yielded higher prediction
accuracy was to utilize the calibration mappings and project
the whole set of poses returned from all the trees back on
the image. Only poses projecting to within empirically chosen
tolerance of the binary silhouette of the mouse are retained.
The single ‘best’ pose is then selected from the filtered set
of poses. It is noted that the system used in [2] utilizes two
cameras to overcome the cage-lid obstruction. However, only
the image from the camera to which the mouse is closer (as
determined by the area of the detected foreground) is used for
training and prediction. Hence, the 3D construction is done
from monocular images.

V. RESULTS

We assessed our approach on two separate sequences total-
ing 1,100 frames that were not used in training. The redundant
annotations are used to define a distance metric as proposed
in [9] which equalizes the error from each pose parameter by
weighing it with the inverse of its variance in the redundant
annotations. The distance measure between two poses y1 and

Figure 4. Probability distribution for pose distance as defined in 2. The
vertical line denotes the threshold for what is deemed to be a failure in
estimation. The reported means µ for distance error is computed for cases
where estimation was deemed successful. The best performance was obtained
with our structured forest approach with filtering out poses that do not project
back onto the image within prespecified proximity of the detected foreground.
For the same number of trees, the structured forest implementation is superior
to the standard regression forest.

y2 is

d(y1, y2) =

√√√√ 1

12

12∑
i=1

1

σi
(y1(i)− y2(i))2 (2)

where 12 is the number of parameters (e.g., 3 per each of the
4 keypoints) in the pose representation 1. The σi’s in (2) refer
to the variance in each pose parameter between two human
annotators for the whole set of redundantly annotated frames.
Following [9], we define a normalized distance threshold dthr
for a successful estimate. dthr is set to be such that the nor-
malized distance for 99% of the redundantly annotated frames
fall below dthr. So if the estimation output has a normalized
distance (i.e., that computed via equation (2)) exceeding dthr,
then it is considered a failed estimate. The value of dthr
was computed to be 3.77. We compared our approach to the
standard regression forest where all the parameters are treated
as uncorrelated and estimated separately. As shown in Figure
4, our approach reduces failure rates by 2%. Furthermore,
our prediction maintains pose structure whereas there is no
guarantee that the pose prediction from the standard regression
forest is a physically plausible pose. While a failure rate of
35% seems high, we note that the seemingly easier task of
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Figure 5. Ground truth (solid) versus estimate (dashed). (a) An example of
a successful prediction (i.e. distance error lower than threshold computed by
assessing annotator consistency). (b) An example of a failed prediction. The
main error is due to 180 degree rotation. The lack of distinct image features
to properly orient the pose is evident in the example.

Table I
RESULTS OF ALGORITHM TRAINING PARAMETERS SWEEPS.

Value % fail d mean

No of Bins
Fixed

3 37.6 3.31
4 37.3 3.34
5 38.4 3.58

No of Bins
Weighted

3 36.4 3.31
4 39.3 3.54
5 34.9 3.41

No of Trees
4 44.7 3.40
8 37.7 3.26

16 34.9 3.41

Fraction of
training set

0.4 40.9 3.61
0.5 39.8 3.44
0.9 38.0 3.51

estimating 2D pose from monocular images of mice [9], [10]
using state of the art method reported similar results. The high
deformability of the mouse and lack of visible features make it
difficult to discriminate slight pose differences in many cases
as shown in Figure 5.

We have also investigated the effect of training parameters
on the accuracy of the estimations. Table I shows a subset of
parameter sweeps that were done to validate the approach. We
observed that filtering out pose-proposals that do not project
to close proximity to the image detection window consistently
reduced failure rates by 5-7%. Excluding segmentation, the
frame rate for pose estimation with backprojection filtering is
60 fps.

VI. CONCLUSION

We’ve presented a novel solution for the practical problem
of estimating mouse pose in video systems well-suited for
scalable use in animal vivaria. Our solution leverages a unique
and challenging dataset of mouse key points. We presented a
novel approach to structured pose estimation and applied the

approach to the dataset. We were able to accurately construct
3D pose estimates from monocular images of mice. We
benchmarked our approach against standard regression forest
techniques of predicting pose assuming no correlation between
the parameters. Our evaluations indicate this new approach
offers many advantages compared to standard regression forest
methods. First, we showed that our approach reduces failure
rates. Second, the predictions preserve the pose structure
observed in the training sets. Third, the approach yields a
set of valid pose proposals rather than a single prediction.
These proposals can seed other pose refinement algorithms.
One drawback however, is that the method would be unable
to predict a pose sufficiently different from any encountered
in training. Therefore, as shown in the results section, a rich
training set is required for the method to work as described.
The dataset is available online (scorhe.nih.gov).
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