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Abstract. In recent years, researchers and laboratory support compa-
nies have recognized the utility of automated profiling of laboratory
mouse activity and behavior in the home-cage. Video-based systems
have emerged as a viable solution for non-invasive mouse monitoring.
Wider use of vision systems for ethology studies requires the develop-
ment of scalable hardware seamlessly integrated with vivarium venti-
lated racks. Compact hardware combined with automated video analysis
would greatly impact animal science and animal-based research. Auto-
mated vision systems, free of bias and intensive labor, can accurately
assess rodent activity (e.g., well-being) and behavior 24-7 during research
studies within primary home-cages. Scalable compact hardware designs
impose constraints, such as use of fisheye lenses, placing greater bur-
den (e.g., distorted image) on downstream video analysis algorithms. We
present novel methods for analysis of video acquired through such spe-
cialized hardware. Our algorithms estimate the 3D pose of mouse from
monocular images. We present a thorough examination of the algorithm
training parameters’ influence on system accuracy. Overall, the methods
presented offer novel approaches for accurate activity and behavior esti-
mation practical for large-scale use of vision systems in animal facilities.

1 Introduction

The application of vision systems’ technologies could have a huge impact on
animal-based medical research, including corresponding animal care. During
recent decades, the use of laboratory mice in biomedical research increased con-
siderably [1]. Laboratory animals including mice are used to gain new knowledge
for improving the health and well-being of both humans and other animals [2].
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However, mice are the most frequently characterized and used mammals in bio-
medical research because of their small size and ease of use, including relative
ease for sophisticated genetic manipulation [1]. To achieve high-density hous-
ing while maintaining consistent, controlled microenvironments, animal facility
managers frequently utilize individually ventilated cages that mate with spe-
cialized racks. These ventilated cage environments have become the standard
in laboratory facilities as they provide protection for personnel (e.g., infectious
agent and allergen containment) and maintain low levels of ammonia and CO2

allowing an increased number of cages in animal holding rooms. When there are
hundreds or thousands of cages in one institution, monitoring of animal health
and activity is infrequent, of limited measures, and rather subjective. The use of
vision systems could significantly reduce the workload and more appropriately
focus the efforts of trained animal care staff by providing continual automated
monitoring. This would increase efficiency and reduce bias (e.g., due to fatigue
or drift [3]). For example, abnormalities in behavior patterns can be automati-
cally identified leading to early detection of illness, which can be quickly treated
or managed. The activity measures are of use to researchers conducting pheno-
typing, drug-efficacy, and animal model characterization studies. While many
commercial and academic systems have been developed to automate home-cage
ethology, the wide use of vision systems is contingent on availability of minimal
footprint hardware with seamless integration in ventilated racks. Salem et al. [4]
reported on the first video-based hardware design specifically targeted for use
in cage-racks. This system integrates into the ventilated rack without modifica-
tion to the cages or racks, nor alteration to animal husbandry procedures. The
resulting video poses processing challenges as mouse appearance exhibits large
variations induced by the nonlinearity of fisheye lenses, which is exacerbated
by lens placement in very close proximity to the cage. The position estimation
presented by the authors is limited to predicting the mouse 2D physical centroid
projected to the cage-floor, and only in cases when the mouse has all its limbs
on the cage-floor.

In this work, we begin addressing the task of mouse pose estimation using
the challenging video output from the system described in [4]. We present a
novel approach to producing accurate 3D pose estimates from monocular images.
The approach utilizes a rich dataset with mouse posterior/anterior annotations
from two orthogonal views. We describe slight modifications to the hardware
system that enable gathering of a unique training set. We investigate estimation
accuracy as a function of training parameters. The prototype example output
images and pose estimation results are shown in Fig. 1. The datasets are made
publicly available (scorhe.nih.gov) to encourage further development in field.

2 Related Work

Automated analysis of mice activity and behavior has attracted commercial and
academic interest over the past two decades [3,5,6]. Desired analysis output
measures range from pose estimation to detection of predefined behaviors [6–8].
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We limit our review to video-based systems for mice home-cage monitoring. We
explore hardware systems as well as pose estimation methods.

2.1 Hardware Systems

Hardware systems employed in academic works are typically simple prototypes
and ad hoc setups [6] that use cameras fitted with standard lenses, positioned
a sufficient distance from the cage ensuring the field-of-view encompasses the
cage volume. Some setups rely on overhead cameras [8,9]. However, as noted by
many [7,10], such placement is not well-suited for scalability due to cage and
rack obstructions in high-density housing. Commercial hardware systems are
reviewed in [4].

2.2 Pose Estimation Methods

One sought output of automated video analysis is a per-frame pose estimate,
which can be subsequently used for motion analysis. Two defining components
of pose estimation are the pose model (i.e., pose parameters) and pose detection
method. For pose model, ellipses are used by [11–13]. Oriented ellipses (i.e.,

Fig. 1. (a) The video acquisition system used for this work. (b) The system is designed
to seamlessly integrate into vivarium cage racks. (c) Example images from the hori-
zontal (leftmost image) and angled (rightmost image) cameras acquired at the same
time instance, along with the corresponding 3D position (in mm) of posterior (lighter
circle) and anterior (darker circle) estimated by our algorithm.
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with an ellipse axis end-point identified as the anterior of the mouse) are used in
[8] and the commercial Ethovision package by Noldus [14]. Twelve deformable
contour templates are used as the pose model by Branson and Belongie [7].
A lower dimensional ellipse pose model is used to localize the detection area
for the more elaborate deformable template model. de Chaumont et al. [15]
model the mouse as a head, belly, and neck, with corresponding constrained
displacements between each part. Each part is represented by a 2D articulated
rigid body model. The parts are linked together through a physics model that
defines the motion constraints between the parts. For pose detection, [11–13]
simply fit an ellipse to the observed foreground. During occlusion, Pistori et al.
[11] employ a particle filter to predict pose, while Branson et al. [12] generate the
poses acausally once occlusion ends. A more elaborate cascaded pose regression
method [16] is used in [17]. Branson and Belongie [7] use a mutliblob tracker
for the ellipse detection and particle-filter contour tracker for contour detection.
de Chaumont et al. [15] use the foreground binary mask and edges for initial
alignment and mean-shift processes drive the physics engine for refinements.

The hardware setups for all the described methods make it straightforward
to define pose parameters in 2D image domain. Given the geometry and optics,
physical correspondence is easily established by scaling. Scaled orthography,
however, does not apply for the hardware system used for the work presented in
this paper for two reasons: (1) the use of a fisheye lens, and (2) the very close
proximity of the lens to the monitoring arena. Instead of defining pose parame-
ters in image domain, which might well be uninformative, we instead define pose
parameters as the 3D physical coordinates of the mouse posterior and anterior.

3 Method

In what follows, we describe the pose estimation methods employed for solitary
home-cage housed mice. Since the ingenuity of the approach is motivated by
the uniqueness of the hardware configuration, we start with a quick overview of
the hardware system. We then describe the segmentation and pose estimation
processing modules.

3.1 Hardware System

The original hardware design is thoroughly described in [4]. A quick overview is
herein presented to make this paper self-contained. The video acquisition sys-
tem is designed to operate in the near-infrared (NIR) spectrum, hence producing
monochromatic video. The design employs two cameras fitted with fisheye lenses
that are positioned very close to the cage (i.e., < 5mm). The lenses are mounted
near the top of the cage front and rear walls with a downwards tilt of 25◦. We
have enhanced the NIR illumination uniformity of the prototype by replacing
the NIR LED strips within each side assembly with custom designed LED array.
The LED array spans the majority of surface of each side assembly. Translu-
cent acrylic is used to diffuse the LED sources resulting in uniform illumination.
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We also augmented the prototype with two additional cameras, one at each end
of the cage. The cameras were positioned at mid-height and pointed horizontally
(i.e., no tilt) into the cage. Lastly, we’ve designed an overhead camera system
to synchronously capture top-down view of the cage. The overhead system is
strictly used for video acquisition related to building training sets, and is not
utilized at runtime. The additional cameras proved instrumental in both gen-
erating the unique datasets and enabling the novel development and validation
presented in this paper. Figure 1a shows an image of the prototype. The front
cameras are labeled in the figure, whereas the rear cameras are not seen. Due
to cage obstructions (e.g., water and food baskets), each camera view is mainly
limited to its side of the cage (e.g., rear or front). The algorithms are coded such
that if the mouse is closer to the front of the cage, the estimation is done through
a front camera image, and vice-versa. It is also noted that despite our augmented
hardware system having two cameras at each end (i.e., horizontal and angled),
the algorithms are trained on a pre-chosen camera, and subsequently run strictly
on images from the camera on which they are trained. In other words, the addi-
tion of the horizontal camera to the original system was not with the intent of
making the system a binocular vision system, but rather to facilitate construc-
tion of training sets. However, we do take advantage of the availability of the
horizontal camera to compare the estimation accuracy between it and the angled
camera. While using both tilted and horizontal views at once would likely lead
to more accurate results, using a single camera for each end of the cage would
be desirable if one is concerned about video storage requirements, processing
expense (e.g., future real-time processing), and hardware cost and simplicity.

3.2 Segmentation

Segmentation identifies mouse pixels in the image. Although the mouse is gener-
ally darker than background, segmentation based simple intensity thresholding
produces poor results due to four main factors: (1) the large disparity in pixel
intensity values between the backside of the mouse and its underside, (2) the
presence of dark regions in the cage with pixel intensity ranges overlapping those
of the mouse (e.g., between food and water baskets), (3) the variability in back-
ground intensity patterns in and around the cage-floor region resulting from fre-
quent bedding changes, and (4) the significant shadows cast by the mouse on the
bedding. Figure 4 shows example frames highlighting the challenges of segmenta-
tion. Our segmentation method capitalizes on the constrained environment and
the constant camera position. We build a segmentation model for each camera
(i.e., horizontal and angled at both front and rear). Mouse pixels were manually
annotated in a set of 250 images from each camera. The images were selected to
account for the varied mouse appearance in different positions and poses within
the cage. Approximately 350,000 foreground and 350,000 background pixels are
chosen randomly from the images and used to train each tree of an 8-tree deci-
sion forest classifier to predict a binary label (foreground vs background) for each
image pixel. To derive discriminative features, a set of information channels reg-
istered to the image are obtained through linear and nonlinear transformations
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of the image as per [18]. Namely, we use the intensity gradient magnitude and
the 4-bin histogram of orientation of the gradients (HOG). The feature vector
for each labeled pixel includes its intensity value along with the values of the
feature channels at the pixel position. Additionally, to exploit the stationary
camera placement, the pixel’s (x, y) location in the image are included in the
feature set. Using the pixel image location as a feature results in region-specific
classification rules and more robust thresholds (e.g., a more robust intensity
threshold against the bright panels, etc.). To segment an incoming image dur-
ing run-time, the feature channels are first computed for the whole image. The
feature vectors for each pixel are formed by concatenating its intensity value, x
and y image locations, and feature channel values (i.e., gradient magnitude and
HOG as used in training). The decision forest is evaluated for each pixel’s feature
vector. The returned result is a value representing the probability that the pixel
is foreground. A segmentation probability image map, which is pixel-to-pixel
registered to the intensity image, is formed by setting the value of location (x, y)
to the returned foreground probability value. The foreground probability map is
converted to a binary image by thresholding. The threshold level can be selected
empirically based on visualizing segmentation results. Alternatively, a more sys-
tematic method of tuning a threshold to achieve a desired precision or recall can
be employed. Connected component analysis is run on the binary segmentation
mask. Size-based filtering is employed to discard small connected components
deemed as noise. The largest connected component is regarded as the mouse.
Statistics of the binary silhouette such as ellipse fit parameters, ellipse axes end
points, bounding box, and area are computed. The area is used to decide which
camera will be used for pose estimation. Namely, if the mouse area in the front
camera’s image is bigger than the area in the rear camera’s image, then the front
camera image is used and vice-versa.

3.3 Pose Estimation

Pose estimation recovers the three dimensional physical coordinates of the mouse
anterior and posterior from a monocular image. The motivation behind 3D pos-
terior/anterior position estimation is to obtain a meaningful measure of mouse
activity and behavior. Motion analysis relying on 2D image positions could be
non-informative due to the significant distortions resulting from the fisheye lens
and its close proximity to the cage. The pose estimation problem is formulated
as a non-parametric regression supervised learning task. Hence the objective is
to find a mapping f(·) from feature space X to continuous pose parameters space
Y ∈ R

D given a training set S ⊂ X × Y. Each pose parameter entry y ∈ Y in
the training set constitutes six parameters denoting 3D coordinates of the mouse
posterior (p) and anterior (a). Namely, y = [p, a], p = [pi, pj , pk], a = [ai, aj , ak],
where i, j, k are the three axes of the Cartesian coordinates system. Correspond-
ing to each y is a vector x ∈ X of features drawn from the image of the mouse
having pose y. The challenge in learning f(·), however, is to construct the ground
truth set for the pose 3D coordinates, i.e. y′s. The mouse is highly deformable
and the fisheye lens placed close to the cage rules out the assumption of scaled
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orthography. Both factors impede recovery of 3D coordinates from a single image.
Hence, as described in Sect. 3.1, we augmented the system with an overhead
camera with acquisition synchronized to the side-view cameras. All cameras are
calibrated such that each image point maps to a line in 3D space. The same
mouse key point (e.g., anterior or posterior) is manually marked in two views,
namely the horizontal view and the overhead view as shown in Fig. 2. For each
view, the 3D line corresponding to the marked image point is computed. The 3D
point at which distance between the two resulting lines in minimum is regarded
as the ground truth 3D position for the key point. The full training set comprises
approximately 200,000 annotations (e.g., two points on side view image and two
points on top-down image). To aid the human annotators and speed up the task,
the frames were segmented to isolate the mouse and posterior/anterior were pre-
annotated as the fitting ellipse major axis end points. Since the end points were
arbitrarily designated as posterior/anterior, in most of the cases the annotator’s
task was to reverse the designation. In some cases, where the major axis end
points did not align well with posterior/anterior of the mouse, the annotator
would displace the pre-annotated points to more suitable locations in the image.

The vector x is populated with two sets of features. The first set is statistics
drawn from the binary silhouette returned by the segmentation module. The
features include silhouette area, ellipse fit parameters (e.g., orientation, centroid,
length of major and minor axes), and bounding box parameters. The second set is
pixel intensity value lookups for randomly chosen locations within the detection
window. To compute N such features, a set of positions {φn}, n ∈ {1, ..., N}
is randomly chosen at training time. Each position φi is specified as relative
offsets from the binary silhouette bounding box, i.e. φi = (ox, oy), o ∈ [0, 1]. To
compute the feature value, the offsets are scaled to the size of the bounding box,
i.e., φs

i = (ox · bw, oy · bh), where bw and bh are the bounding box width and
height respectively and the superscript s denotes the scaled φ. The feature is
then simply computed as Ib(φs

i ), where Ib denotes the subset of the whole image
I enclosed by the binary silhouette bounding box. The feature extraction concept
is illustrated in the cartoon shown in Fig. 3 for N = 6. Our implementation uses
N = 125.

Fig. 2. Mouse in different camera views at the same time instance, shown with example
posterior/anterior as well as tail/nose manual annotations. (a) horizontal camera view
(b) overhead mounted camera view.
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Fig. 3. Cartoon demonstrating the scaling of normalized feature positions to compute
the ferns-like features.

The set of discriminative feature vectors each paired with the corresponding
ground truth pose are used to train regression forests to act as the mapping
function f(·). We treat the parameters (e.g., coordinates) as uncorrelated, and for
each of the six parameters of y, a regression forest fi(·), i ∈ {1, . . . , 6} is trained
to estimate parameter yi separately. Regression forests constitute an effective
non-parameteric regression technique and are well described in literature, e.g.
[19].

4 Results

We have built four segmentation models, one for each camera (cage-front angled
camera, cage-front horizontal camera, cage-rear angled camera, and cage-rear
horizontal camera). Since the decision forests for segmentation yield a proba-
bility map for foreground, we use 0.7 as a threshold to convert the map to a
binary image. The threshold was selected empirically such that the foreground
pixels are well matched to the mouse pixels in the image. We used 60 images
with ground truth annotations that were set aside for testing purposes (i.e., not
included in segmentation classifier training) to compute the precision/recall for
the chosen threshold. The computed values achieved 94 % precision with 85 %
recall. Figure 4 shows example segmentation results.

To establish a basis for assessing key point estimation performance, a set R
of approximately 6,000 frames was redundantly annotated to provide a range
of acceptable deviation between annotations. The chosen frames account for a
wide variety of mouse posture in different positions within the cage. Noting
that posterior and anterior do not correspond to a single well-defined point on
the mouse, but are rather proximity designations (mainly corresponding to the
ellipse endpoints as explained in Sect. 3.3), the redundant annotations aimed to
establish a Euclidean distance range for 3D posterior position deviation relative
to the mouse tail and 3D anterior position deviation relative to mouse nose (refer
to Fig. 2). Hence, for the frames in R having posterior/anterior annotations, an
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Fig. 4. Example segmentation output for challenging frames highlighting the method’s
(a) robustness to shadows and dark background regions (i.e., center of image) (b)
detection of lighter underside of the mouse.

annotator carefully labeled the tail and nose. For each frame in the redundantly
annotated set, the 3D points for posterior/anterior y = [pi, pj , pk, ai, aj , ak] and
the 3D points for tail/nose ȳ = [ti, tj , tk, ni, nj , nk] were reconstructed via the
calibration mappings. The variance, σ2

i of each coordinate in y(i) around the
corresponding coordinate in ȳ(i) was computed as the variance of the distance
‖y(i) − ȳ(i)‖, i ∈ {1, · · · , 6}, where ‖ · ‖ is defined as Euclidean distance. We
define a distance measure similar to that proposed in [16] utilizing the observed
variances σi for all six coordinates to equally weigh the estimation errors for each
coordinate. The distance, d(ŷ, ȳ), is computed between the regression models
output ŷ = [p̂, â] and the earlier defined ȳ = [t, n] which is regarded as ground
truth. Namely,

d(ŷ, ȳ) =

√
√
√
√

1
6

6∑

i=1

1
σ2
i

(ŷ(i) − ȳ(i))2 (1)

In addition to the distance measure, we define a metric to deem an estimation
output ŷ as either a success or a failure, as is done in [16]. The metric is based on
the normalized distance measure of Eq. (1) and an unweighted overall distance
measure defined as d̃(ŷ, ȳ) = ‖p − t‖ + ‖a − n‖. We let dthr be the normalized
distance (1) such that 99 % of R, the redundantly annotated frames, are within
dthr of each other. We let d̃thr be the unweighted overall distance such that 99 %
of R are within d̃thr of each other. Our metric for success is if d(ŷ, ȳ) < dthr
and d̃(ŷ, ȳ) < d̃thr. The computed thresholds for R where dthr = 2.73 and
d̃thr = 69mm.
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To evaluate the accuracy of the regression models, the models were applied
to the frames in set R, which was held out of training. For each frame, the
feature vector is formed as described in Sect. 3.3. The vector is then fed to all
regression forests fi(·) to separately estimate each parameter in ŷ. The output
ŷ is compared to ȳ, the reconstructed 3D points for the tail/nose annotations,
which are regarded as ground truth. Namely, we compute both distance mea-
sures, d(ŷ, ȳ) and d̃(ŷ, ȳ). The computed distance measures are then compared
to the thresholds to set the failure rates. For successful estimates, a mean d
and d̃ are computed as well. To analyze the influence of training parameters
on accuracy, different regression models were built by varying training parame-
ters including number of trees, image resolution, and training set size. Another
variation was to compare taking the median versus the mean of the leaf-node
predictions from the trees. Additionally, the hardware system equipped with a
horizontal and angled camera offers a unique opportunity to assess accuracy as
a function of camera view-point. Recall that the horizontal cameras were added,
as stated in Sect. 3.1, to aid in generating training sets. While having a system
with two cameras (i.e., horizontal and angled) might lead to greater accuracy, it
is desirable to limit the number of cameras per system. Having multiple cameras
for each end of the cage would increase the storage requirements for the output
video and increase the processing load. To compare the accuracy of estimates
as a function of camera view-point, one set of regression models was built to
estimate pose from horizontal camera images, and another set of models was
built to estimate pose from angled camera images. The result of the compari-
son between horizontal and angled cameras helps with design choices for such
compact systems (i.e., if results are more accurate using horizontal versus angled
camera). The base model was chosen to be the horizontal camera, using 50 trees,
taking the median of the leaf-node predictions, with features drawn from 1

2 scale
image. Table 1 shows the failure rates. The table also shows the mean distance

Table 1. Results of algorithm training parameters sweeps for horizontal and angled
cameras

Parameters Horizontal Angled

% fail d mean d̃ mean % fail d mean d̃ mean

Trees = 25 0.91 0.84 23.2 0.96 0.87 23.6

Trees = 50 0.83 0.84 23.2 0.86 0.87 23.6

Trees = 75 0.81 0.84 23.2 0.98 0.86 23.6

Trees = 100 0.83 0.84 23.2 0.93 0.86 23.6

Image Scale = 1 0.88 0.85 23.3 0.11 0.87 23.6

Image Scale = 0.25 0.91 0.84 23.2 0.10 0.87 23.6

Mean of leaf-nodes 0.78 0.88 23.9 0.88 0.90 24.1

70 % of Training Set 6.73 1.05 28.1 6.88 1.06 28.3

52 % of Training Set 7.49 1.09 28.9 7.37 1.10 29.3

45 % of Training Set 8.30 1.11 29.6 8.61 1.10 29.4
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measures for successful estimates. Each entry in the table shows the results of
varying a single training parameter relative to the base model. It is clear that
the estimation is not sensitive to any of the parameter changes except for the
training set size.

5 Discussion

We have demonstrated a viable algorithmic path for accurately estimating 3D
posterior/anterior positions of a mouse from monocular fisheye distorted images.
These or similar types of images will likely arise in specialized compact systems
designed for large scale use in animal vivaria. Our methods capitalize on the
constrained environment and known tracking subject to overcome challenges
caused by the unusual camera configuration and the highly deformable tracking
target. We experimented with algorithm training parameters and demonstrated,
as per Table 1 that the accuracy is robust to changes in training parameters.
We also experimented with two camera orientations: the horizontal view and
angled view. Table 1 suggests that both camera views produce similar results.
While an algorithm relying on both cameras horizontal and angled cameras (at
both the cage front and rear) to estimate pose would likely be more accurate,
some users may wish to decide, for practicaly reasons such as goals aimed at
real-time processing, to limit the amount of video data stored and/or processed.
The training and testing sets utilized for this study are for a limited mouse
size range. Encompassing a larger mouse weight range would simply involve
generating additional annotations for the desired mouse sizes. The uniqueness of
the hardware system and the specificity of the algorithms to the custom hardware
percludes direct comparison with existing state of the art. The per-frame 3D
pose estimates produced by our algorithm, however, provide meaningful position
information. The 3D position information can be subsequently used for accurate
motion analysis. Burgos-Artizzu et al. [8] have shown that trajectory features
derived from pose estimates are discriminant for behavior detection. Overall,
the algorithm should provide researchers and animal care professionals accurate
measures to assess well-being and phenotypical changes.

The training set and the videos are available online (scorhe.nih.gov).
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de Andrade Silva, J., Machado, B.B.: Mice and larvae tracking using a particle
filter with an auto-adjustable observation model. Pattern Recognit. Lett. 31(4),
337–346 (2010)

12. Branson, K., Rabaud, V., Belongie, S.J.: Three brown mice: See how they run. In:
VS-PETS Workshop at ICCV (2003)

13. Zarringhalam, K., Ka, M., Kook, Y.-H., Terranova, J.I., Suh, Y., King, O.D., Um,
M.: An open system for automatic home-cage behavioral analysis and its applica-
tion to male and female mouse models of huntington’s disease. Behav. Brain Res.
229(1), 216–225 (2012)

14. Noldus EthoVision-XT (2016). http://www.noldus.com/animal-behavior-research/
products/ethovision-xt

15. de Chaumont, F., Coura, R.D.-S., Serreau, P., Cressant, A., Chabout, J., Granon,
S., Olivo-Marin, J.-C.: Computerized video analysis of social interactions in mice.
Nat. Meth. 9(4), 410–417 (2012)

16. Dollár, P., Welinder, P., Perona, P.: Cascaded pose regression. In: 2010 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1078–1085,
June 2010

17. Burgos-Artizzu, X.P., Hall, D.C., Perona, P., Dollár, P.: Merging pose estimates
across space and time. In: BMVC (2013)

18. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: BMVC
(2009)

19. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for
classification, regression, density estimation, manifold learning and semi-supervised
learning. Found. Trends Comput. Graph. Vis. 7(2–3), 81–227 (2012)

http://www.noldus.com/animal-behavior-research/products/ethovision-xt
http://www.noldus.com/animal-behavior-research/products/ethovision-xt

	Scalable Vision System for Mouse Homecage Ethology
	1 Introduction
	2 Related Work
	2.1 Hardware Systems
	2.2 Pose Estimation Methods

	3 Method
	3.1 Hardware System
	3.2 Segmentation
	3.3 Pose Estimation

	4 Results
	5 Discussion
	References


