Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

dbSNP Short Genetic Variations

Welcome to the Reference SNP (rs) Report

All alleles are reported in the Forward orientation. Click on the Variant Details tab for details on Genomic Placement, Gene, and Amino Acid changes. HGVS names are in the HGVS tab.

Reference SNP (rs) Report

This page reports data for a single dbSNP Reference SNP variation (RefSNP or rs) from the new redesigned dbSNP build.
Top of the page reports a concise summary for the rs, with more specific details included in the corresponding tabs below.
All alleles are reported in the Forward orientation. Use the Genomic View to inspect the nucleotides flanking the variant, and its neighbors.
For more information see Help documentation.

rs1142345

Current Build 157

Released September 3, 2024

Organism
Homo sapiens
Position
chr6:18130687 (GRCh38.p14) Help

The anchor position for this RefSNP. Includes all nucleotides potentially affected by this change, thus it can differ from HGVS, which is right-shifted. See here for details.

Alleles
T>A / T>C / T>G
Variation Type
SNV Single Nucleotide Variation
Frequency
C=0.0430740 (60164/1396758, GnomAD_exomes)
C=0.045710 (12099/264690, TOPMED)
C=0.040902 (10610/259402, ALFA) (+ 24 more)
C=0.043405 (6480/149290, GnomAD_genomes)
C=0.036689 (4435/120882, ExAC)
C=0.00961 (744/77444, 38KJPN)
C=0.0163 (118/7234, Korea4K)
C=0.0397 (254/6404, 1000G_30X)
C=0.0391 (196/5008, 1000G)
C=0.0457 (176/3854, ALSPAC)
C=0.0507 (188/3708, TWINSUK)
C=0.0483 (156/3230, PRJNA289433)
C=0.0157 (46/2930, KOREAN)
C=0.0370 (70/1890, HapMap)
C=0.0186 (34/1832, Korea1K)
C=0.042 (42/998, GoNL)
C=0.055 (37/674, PharmGKB)
C=0.026 (16/614, Vietnamese)
C=0.030 (18/600, NorthernSweden)
C=0.034 (18/534, MGP)
C=0.020 (6/304, FINRISK)
C=0.005 (1/216, Qatari)
C=0.05 (2/40, GENOME_DK)
T=0.50 (14/28, SGDP_PRJ)
C=0.50 (14/28, SGDP_PRJ)
T=0.5 (3/6, Siberian)
C=0.5 (3/6, Siberian)
Clinical Significance
Reported in ClinVar
Gene : Consequence
TPMT : Missense Variant
Publications
92 citations
Genomic View
See rs on genome

ALFA Allele Frequency
The ALFA project provide aggregate allele frequency from dbGaP. More information is available on the project page including descriptions, data access, and terms of use.

Release Version: 20231103111315
Population Group Sample Size Ref Allele Alt Allele Ref HMOZ Alt HMOZ HTRZ HWEP
Total Global 259402 T=0.959098 C=0.040902 0.920109 0.001912 0.077979 3
European Sub 213762 T=0.958968 C=0.041032 0.919799 0.001862 0.078339 1
African Sub 11822 T=0.94510 C=0.05490 0.893081 0.002876 0.104043 0
African Others Sub 426 T=0.934 C=0.066 0.873239 0.004695 0.122066 0
African American Sub 11396 T=0.94551 C=0.05449 0.893822 0.002808 0.10337 0
Asian Sub 6720 T=0.9836 C=0.0164 0.968155 0.000893 0.030952 3
East Asian Sub 4830 T=0.9824 C=0.0176 0.966046 0.001242 0.032712 4
Other Asian Sub 1890 T=0.9868 C=0.0132 0.973545 0.0 0.026455 0
Latin American 1 Sub 1232 T=0.9586 C=0.0414 0.920455 0.003247 0.076299 1
Latin American 2 Sub 5254 T=0.9477 C=0.0523 0.900266 0.004949 0.094785 3
South Asian Sub 344 T=0.980 C=0.020 0.959302 0.0 0.040698 0
Other Sub 20268 T=0.96314 C=0.03686 0.927669 0.001381 0.070949 0


Help

Frequency tab displays a table of the reference and alternate allele frequencies reported by various studies and populations. Table lines, where Population="Global" refer to the entire study population, whereas lines, where Group="Sub", refer to a study-specific population subgroupings (i.e. AFR, CAU, etc.), if available. Frequency for the alternate allele (Alt Allele) is a ratio of samples observed-to-total, where the numerator (observed samples) is the number of chromosomes in the study with the minor allele present (found in "Sample size", where Group="Sub"), and the denominator (total samples) is the total number of all chromosomes in the study for the variant (found in "Sample size", where Group="Study-wide" and Population="Global").

Download
Study Population Group Sample Size Ref Allele Alt Allele
gnomAD v4 - Exomes Global Study-wide 1396758 T=0.9569260 C=0.0430740
gnomAD v4 - Exomes European Sub 1162240 T=0.9537634 C=0.0462366
gnomAD v4 - Exomes South Asian Sub 86114 T=0.98327 C=0.01673
gnomAD v4 - Exomes American Sub 44710 T=0.95151 C=0.04849
gnomAD v4 - Exomes East Asian Sub 39624 T=0.98703 C=0.01297
gnomAD v4 - Exomes African Sub 33360 T=0.94469 C=0.05531
gnomAD v4 - Exomes Ashkenazi Jewish Sub 26100 T=0.98429 C=0.01571
gnomAD v4 - Exomes Middle Eastern sub 4610 T=0.9896 C=0.0104
TopMed Global Study-wide 264690 T=0.954290 C=0.045710
Allele Frequency Aggregator Total Global 259402 T=0.959098 C=0.040902
Allele Frequency Aggregator European Sub 213762 T=0.958968 C=0.041032
Allele Frequency Aggregator Other Sub 20268 T=0.96314 C=0.03686
Allele Frequency Aggregator African Sub 11822 T=0.94510 C=0.05490
Allele Frequency Aggregator Asian Sub 6720 T=0.9836 C=0.0164
Allele Frequency Aggregator Latin American 2 Sub 5254 T=0.9477 C=0.0523
Allele Frequency Aggregator Latin American 1 Sub 1232 T=0.9586 C=0.0414
Allele Frequency Aggregator South Asian Sub 344 T=0.980 C=0.020
gnomAD v4 - Genomes Global Study-wide 149290 T=0.956595 C=0.043405
gnomAD v4 - Genomes European Sub 78648 T=0.95948 C=0.04052
gnomAD v4 - Genomes African Sub 41560 T=0.94497 C=0.05503
gnomAD v4 - Genomes American Sub 15304 T=0.94949 C=0.05051
gnomAD v4 - Genomes East Asian Sub 5186 T=0.9863 C=0.0137
gnomAD v4 - Genomes South Asian Sub 4828 T=0.9812 C=0.0188
gnomAD v4 - Genomes Ashkenazi Jewish Sub 3470 T=0.9810 C=0.0190
gnomAD v4 - Genomes Middle Eastern sub 294 T=0.983 C=0.017
ExAC Global Study-wide 120882 T=0.963311 C=0.036689
ExAC Europe Sub 73188 T=0.96044 C=0.03956
ExAC Asian Sub 25142 T=0.98373 C=0.01627
ExAC American Sub 11546 T=0.95193 C=0.04807
ExAC African Sub 10106 T=0.94587 C=0.05413
ExAC Other Sub 900 T=0.968 C=0.032
38KJPN JAPANESE Study-wide 77444 T=0.99039 C=0.00961
Korean Genome Project 4K KOREAN Study-wide 7234 T=0.9837 C=0.0163
1000Genomes_30X Global Study-wide 6404 T=0.9603 C=0.0397
1000Genomes_30X African Sub 1786 T=0.9401 C=0.0599
1000Genomes_30X Europe Sub 1266 T=0.9700 C=0.0300
1000Genomes_30X South Asian Sub 1202 T=0.9834 C=0.0166
1000Genomes_30X East Asian Sub 1170 T=0.9778 C=0.0222
1000Genomes_30X American Sub 980 T=0.936 C=0.064
1000Genomes Global Study-wide 5008 T=0.9609 C=0.0391
1000Genomes African Sub 1322 T=0.9334 C=0.0666
1000Genomes East Asian Sub 1008 T=0.9782 C=0.0218
1000Genomes Europe Sub 1006 T=0.9712 C=0.0288
1000Genomes South Asian Sub 978 T=0.983 C=0.017
1000Genomes American Sub 694 T=0.942 C=0.058
The Avon Longitudinal Study of Parents and Children PARENT AND CHILD COHORT Study-wide 3854 T=0.9543 C=0.0457
UK 10K study - Twins TWIN COHORT Study-wide 3708 T=0.9493 C=0.0507
MxGDAR/Encodat-PGx Global Study-wide 3230 T=0.9517 C=0.0483
MxGDAR/Encodat-PGx MxGDAR Sub 3230 T=0.9517 C=0.0483
KOREAN population from KRGDB KOREAN Study-wide 2930 T=0.9843 C=0.0157
HapMap Global Study-wide 1890 T=0.9630 C=0.0370
HapMap American Sub 770 T=0.962 C=0.038
HapMap African Sub 690 T=0.946 C=0.054
HapMap Asian Sub 254 T=0.988 C=0.012
HapMap Europe Sub 176 T=0.994 C=0.006
Korean Genome Project KOREAN Study-wide 1832 T=0.9814 C=0.0186
Genome of the Netherlands Release 5 Genome of the Netherlands Study-wide 998 T=0.958 C=0.042
PharmGKB Aggregated Global Study-wide 674 T=0.945 C=0.055
PharmGKB Aggregated PA148721079 Sub 354 T=0.960 C=0.040
PharmGKB Aggregated PA130416061 Sub 180 T=0.917 C=0.083
PharmGKB Aggregated PA142188328 Sub 140 T=0.943 C=0.057
A Vietnamese Genetic Variation Database Global Study-wide 614 T=0.974 C=0.026
Northern Sweden ACPOP Study-wide 600 T=0.970 C=0.030
Medical Genome Project healthy controls from Spanish population Spanish controls Study-wide 534 T=0.966 C=0.034
FINRISK Finnish from FINRISK project Study-wide 304 T=0.980 C=0.020
Qatari Global Study-wide 216 T=0.995 C=0.005
The Danish reference pan genome Danish Study-wide 40 T=0.95 C=0.05
SGDP_PRJ Global Study-wide 28 T=0.50 C=0.50
Siberian Global Study-wide 6 T=0.5 C=0.5
Help

Variant Details tab shows known variant placements on genomic sequences: chromosomes (NC_), RefSeqGene, pseudogenes or genomic regions (NG_), and in a separate table: on transcripts (NM_) and protein sequences (NP_). The corresponding transcript and protein locations are listed in adjacent lines, along with molecular consequences from Sequence Ontology. When no protein placement is available, only the transcript is listed. Column "Codon[Amino acid]" shows the actual base change in the format of "Reference > Alternate" allele, including the nucleotide codon change in transcripts, and the amino acid change in proteins, respectively, allowing for known ribosomal slippage sites. To view nucleotides adjacent to the variant use the Genomic View at the bottom of the page - zoom into the sequence until the nucleotides around the variant become visible.

Genomic Placements
Sequence name Change
GRCh38.p14 chr 6 NC_000006.12:g.18130687T>A
GRCh38.p14 chr 6 NC_000006.12:g.18130687T>C
GRCh38.p14 chr 6 NC_000006.12:g.18130687T>G
GRCh37.p13 chr 6 NC_000006.11:g.18130918T>A
GRCh37.p13 chr 6 NC_000006.11:g.18130918T>C
GRCh37.p13 chr 6 NC_000006.11:g.18130918T>G
TPMT RefSeqGene (LRG_874) NG_012137.3:g.29457A>T
TPMT RefSeqGene (LRG_874) NG_012137.3:g.29457A>G
TPMT RefSeqGene (LRG_874) NG_012137.3:g.29457A>C
Gene: TPMT, thiopurine S-methyltransferase (minus strand)
Molecule type Change Amino acid[Codon] SO Term
TPMT transcript variant 2 NM_001346817.1:c.719A>T Y [TAT] > F [TTT] Coding Sequence Variant
thiopurine S-methyltransferase isoform 1 NP_001333746.1:p.Tyr240Phe Y (Tyr) > F (Phe) Missense Variant
TPMT transcript variant 2 NM_001346817.1:c.719A>G Y [TAT] > C [TGT] Coding Sequence Variant
thiopurine S-methyltransferase isoform 1 NP_001333746.1:p.Tyr240Cys Y (Tyr) > C (Cys) Missense Variant
TPMT transcript variant 2 NM_001346817.1:c.719A>C Y [TAT] > S [TCT] Coding Sequence Variant
thiopurine S-methyltransferase isoform 1 NP_001333746.1:p.Tyr240Ser Y (Tyr) > S (Ser) Missense Variant
TPMT transcript variant 3 NM_001346818.1:c.674A>T Y [TAT] > F [TTT] Coding Sequence Variant
thiopurine S-methyltransferase isoform 2 NP_001333747.1:p.Tyr225Phe Y (Tyr) > F (Phe) Missense Variant
TPMT transcript variant 3 NM_001346818.1:c.674A>G Y [TAT] > C [TGT] Coding Sequence Variant
thiopurine S-methyltransferase isoform 2 NP_001333747.1:p.Tyr225Cys Y (Tyr) > C (Cys) Missense Variant
TPMT transcript variant 3 NM_001346818.1:c.674A>C Y [TAT] > S [TCT] Coding Sequence Variant
thiopurine S-methyltransferase isoform 2 NP_001333747.1:p.Tyr225Ser Y (Tyr) > S (Ser) Missense Variant
TPMT transcript variant 1 NM_000367.5:c.719A>T Y [TAT] > F [TTT] Coding Sequence Variant
thiopurine S-methyltransferase isoform 1 NP_000358.1:p.Tyr240Phe Y (Tyr) > F (Phe) Missense Variant
TPMT transcript variant 1 NM_000367.5:c.719A>G Y [TAT] > C [TGT] Coding Sequence Variant
thiopurine S-methyltransferase isoform 1 NP_000358.1:p.Tyr240Cys Y (Tyr) > C (Cys) Missense Variant
TPMT transcript variant 1 NM_000367.5:c.719A>C Y [TAT] > S [TCT] Coding Sequence Variant
thiopurine S-methyltransferase isoform 1 NP_000358.1:p.Tyr240Ser Y (Tyr) > S (Ser) Missense Variant
TPMT transcript variant X1 XM_047419289.1:c.719A>T Y [TAT] > F [TTT] Coding Sequence Variant
thiopurine S-methyltransferase isoform X1 XP_047275245.1:p.Tyr240Phe Y (Tyr) > F (Phe) Missense Variant
TPMT transcript variant X1 XM_047419289.1:c.719A>G Y [TAT] > C [TGT] Coding Sequence Variant
thiopurine S-methyltransferase isoform X1 XP_047275245.1:p.Tyr240Cys Y (Tyr) > C (Cys) Missense Variant
TPMT transcript variant X1 XM_047419289.1:c.719A>C Y [TAT] > S [TCT] Coding Sequence Variant
thiopurine S-methyltransferase isoform X1 XP_047275245.1:p.Tyr240Ser Y (Tyr) > S (Ser) Missense Variant
TPMT transcript variant X2 XM_047419290.1:c.674A>T Y [TAT] > F [TTT] Coding Sequence Variant
thiopurine S-methyltransferase isoform X2 XP_047275246.1:p.Tyr225Phe Y (Tyr) > F (Phe) Missense Variant
TPMT transcript variant X2 XM_047419290.1:c.674A>G Y [TAT] > C [TGT] Coding Sequence Variant
thiopurine S-methyltransferase isoform X2 XP_047275246.1:p.Tyr225Cys Y (Tyr) > C (Cys) Missense Variant
TPMT transcript variant X2 XM_047419290.1:c.674A>C Y [TAT] > S [TCT] Coding Sequence Variant
thiopurine S-methyltransferase isoform X2 XP_047275246.1:p.Tyr225Ser Y (Tyr) > S (Ser) Missense Variant
Help

Clinical Significance tab shows a list of clinical significance entries from ClinVar associated with the variation, per allele. Click on the RCV accession (i.e. RCV000001615.2) or Allele ID (i.e. 12274) to access full ClinVar report.

Allele: C (allele ID: 27764 )
ClinVar Accession Disease Names Clinical Significance
RCV000013559.35 Thiopurine S-methyltransferase deficiency Drug-Response
RCV000013562.32 Thiopurine S-methyltransferase deficiency Drug-Response
RCV000396233.15 not provided Likely-Benign,Other
Help

Aliases tab displays HGVS names representing the variant placements and allele changes on genomic, transcript and protein sequences, per allele. HGVS name is an expression for reporting sequence accession and version, sequence type, position, and allele change. The column "Note" can have two values: "diff" means that there is a difference between the reference allele (variation interval) at the placement reported in HGVS name and the reference alleles reported in other HGVS names, and "rev" means that the sequence of this variation interval at the placement reported in HGVS name is in reverse orientation to the sequence(s) of this variation in other HGVS names not labeled as "rev".

Placement T= A C G
GRCh38.p14 chr 6 NC_000006.12:g.18130687= NC_000006.12:g.18130687T>A NC_000006.12:g.18130687T>C NC_000006.12:g.18130687T>G
GRCh37.p13 chr 6 NC_000006.11:g.18130918= NC_000006.11:g.18130918T>A NC_000006.11:g.18130918T>C NC_000006.11:g.18130918T>G
TPMT RefSeqGene (LRG_874) NG_012137.3:g.29457= NG_012137.3:g.29457A>T NG_012137.3:g.29457A>G NG_012137.3:g.29457A>C
TPMT transcript variant 1 NM_000367.5:c.719= NM_000367.5:c.719A>T NM_000367.5:c.719A>G NM_000367.5:c.719A>C
TPMT transcript variant 1 NM_000367.4:c.719= NM_000367.4:c.719A>T NM_000367.4:c.719A>G NM_000367.4:c.719A>C
TPMT transcript NM_000367.3:c.719= NM_000367.3:c.719A>T NM_000367.3:c.719A>G NM_000367.3:c.719A>C
TPMT transcript NM_000367.2:c.719= NM_000367.2:c.719A>T NM_000367.2:c.719A>G NM_000367.2:c.719A>C
TPMT transcript variant 2 NM_001346817.1:c.719= NM_001346817.1:c.719A>T NM_001346817.1:c.719A>G NM_001346817.1:c.719A>C
TPMT transcript variant 3 NM_001346818.1:c.674= NM_001346818.1:c.674A>T NM_001346818.1:c.674A>G NM_001346818.1:c.674A>C
TPMT transcript variant X1 XM_047419289.1:c.719= XM_047419289.1:c.719A>T XM_047419289.1:c.719A>G XM_047419289.1:c.719A>C
TPMT transcript variant X2 XM_047419290.1:c.674= XM_047419290.1:c.674A>T XM_047419290.1:c.674A>G XM_047419290.1:c.674A>C
thiopurine S-methyltransferase isoform 1 NP_000358.1:p.Tyr240= NP_000358.1:p.Tyr240Phe NP_000358.1:p.Tyr240Cys NP_000358.1:p.Tyr240Ser
thiopurine S-methyltransferase isoform 1 NP_001333746.1:p.Tyr240= NP_001333746.1:p.Tyr240Phe NP_001333746.1:p.Tyr240Cys NP_001333746.1:p.Tyr240Ser
thiopurine S-methyltransferase isoform 2 NP_001333747.1:p.Tyr225= NP_001333747.1:p.Tyr225Phe NP_001333747.1:p.Tyr225Cys NP_001333747.1:p.Tyr225Ser
thiopurine S-methyltransferase isoform X1 XP_047275245.1:p.Tyr240= XP_047275245.1:p.Tyr240Phe XP_047275245.1:p.Tyr240Cys XP_047275245.1:p.Tyr240Ser
thiopurine S-methyltransferase isoform X2 XP_047275246.1:p.Tyr225= XP_047275246.1:p.Tyr225Phe XP_047275246.1:p.Tyr225Cys XP_047275246.1:p.Tyr225Ser
Help

Submissions tab displays variations originally submitted to dbSNP, now supporting this RefSNP cluster (rs). We display Submitter handle, Submission identifier, Date and Build number, when the submission appeared for the first time. Direct submissions to dbSNP have Submission ID in the form of an ss-prefixed number (ss#). Other supporting variations are listed in the table without ss#.

128 SubSNP, 25 Frequency, 3 ClinVar submissions
No Submitter Submission ID Date (Build)
1 LEE ss1554460 Oct 13, 2000 (86)
2 HGBASE ss2421439 Nov 14, 2000 (94)
3 PHARMGKB_PAAR-SJCRH ss69368192 May 16, 2007 (127)
4 PHARMGKB_PPII ss69370567 May 16, 2007 (127)
5 AFFY ss74811830 Aug 16, 2007 (128)
6 AFFY ss74822055 Aug 16, 2007 (128)
7 ILLUMINA ss75279105 Dec 07, 2007 (129)
8 ILLUMINA ss75287553 Dec 07, 2007 (129)
9 CGM_KYOTO ss76875486 Dec 07, 2007 (129)
10 PHARMGKB_AB_DME ss84164450 Dec 16, 2007 (130)
11 SNP500CANCER ss105439122 Feb 06, 2009 (130)
12 KRIBB_YJKIM ss119383576 Dec 01, 2009 (131)
13 ILLUMINA ss123105575 Dec 01, 2009 (131)
14 ILLUMINA ss123336313 Dec 01, 2009 (131)
15 ILLUMINA ss159977692 Dec 01, 2009 (131)
16 1000GENOMES ss240424863 Jul 15, 2010 (132)
17 OMICIA ss244238585 Aug 29, 2012 (137)
18 ILLUMINA ss244272401 Jul 04, 2010 (132)
19 OMIM-CURATED-RECORDS ss275515909 Nov 29, 2010 (133)
20 NHLBI-ESP ss342202115 May 09, 2011 (134)
21 ILLUMINA ss479976551 Sep 08, 2015 (146)
22 1000GENOMES ss490920222 May 04, 2012 (137)
23 EXOME_CHIP ss491378155 May 04, 2012 (137)
24 CLINSEQ_SNP ss491881231 May 04, 2012 (137)
25 ILLUMINA ss534203861 Sep 08, 2015 (146)
26 SSMP ss652948628 Apr 25, 2013 (138)
27 ILLUMINA ss780845863 Sep 08, 2015 (146)
28 ILLUMINA ss783529410 Sep 08, 2015 (146)
29 ILLUMINA ss825644720 Apr 01, 2015 (144)
30 QEHCHEMPATH ss831883150 Mar 15, 2016 (147)
31 JMKIDD_LAB ss974458968 Aug 21, 2014 (142)
32 EVA-GONL ss982638248 Aug 21, 2014 (142)
33 JMKIDD_LAB ss1067475581 Aug 21, 2014 (142)
34 JMKIDD_LAB ss1073420853 Aug 21, 2014 (142)
35 1000GENOMES ss1319172549 Aug 21, 2014 (142)
36 EVA_GENOME_DK ss1581553289 Apr 01, 2015 (144)
37 EVA_FINRISK ss1584043919 Apr 01, 2015 (144)
38 EVA_DECODE ss1592188623 Apr 01, 2015 (144)
39 EVA_UK10K_ALSPAC ss1615060464 Apr 01, 2015 (144)
40 EVA_UK10K_TWINSUK ss1658054497 Apr 01, 2015 (144)
41 EVA_EXAC ss1688172336 Apr 01, 2015 (144)
42 EVA_MGP ss1711113284 Apr 01, 2015 (144)
43 EVA_SVP ss1712840126 Apr 01, 2015 (144)
44 ILLUMINA ss1752617943 Sep 08, 2015 (146)
45 HAMMER_LAB ss1804304017 Sep 08, 2015 (146)
46 ILLUMINA ss1917799662 Feb 12, 2016 (147)
47 WEILL_CORNELL_DGM ss1925894401 Feb 12, 2016 (147)
48 ILLUMINA ss1946168662 Feb 12, 2016 (147)
49 ILLUMINA ss1958867439 Feb 12, 2016 (147)
50 AMU ss1966656270 Feb 12, 2016 (147)
51 JJLAB ss2023565669 Sep 14, 2016 (149)
52 ILLUMINA ss2094820454 Dec 20, 2016 (150)
53 USC_VALOUEV ss2151730016 Dec 20, 2016 (150)
54 ILLUMINA ss2634407225 Nov 08, 2017 (151)
55 ILLUMINA ss2634407226 Nov 08, 2017 (151)
56 GRF ss2707318195 Nov 08, 2017 (151)
57 ILLUMINA ss2711061327 Nov 08, 2017 (151)
58 GNOMAD ss2735561433 Nov 08, 2017 (151)
59 GNOMAD ss2747554041 Nov 08, 2017 (151)
60 GNOMAD ss2836353081 Nov 08, 2017 (151)
61 AFFY ss2985984175 Nov 08, 2017 (151)
62 SWEGEN ss2998599174 Nov 08, 2017 (151)
63 ILLUMINA ss3022579689 Nov 08, 2017 (151)
64 KOEX ss3029664475 Nov 08, 2017 (151)
65 CSHL ss3346859984 Nov 08, 2017 (151)
66 ILLUMINA ss3629456166 Oct 12, 2018 (152)
67 ILLUMINA ss3629456167 Oct 12, 2018 (152)
68 ILLUMINA ss3635046782 Oct 12, 2018 (152)
69 ILLUMINA ss3636761940 Oct 12, 2018 (152)
70 ILLUMINA ss3640754078 Oct 12, 2018 (152)
71 ILLUMINA ss3643551623 Oct 12, 2018 (152)
72 ILLUMINA ss3644901726 Oct 12, 2018 (152)
73 OMUKHERJEE_ADBS ss3646331127 Oct 12, 2018 (152)
74 ILLUMINA ss3653088303 Oct 12, 2018 (152)
75 EVA_DECODE ss3716687250 Jul 13, 2019 (153)
76 ILLUMINA ss3726314857 Jul 13, 2019 (153)
77 ACPOP ss3733249912 Jul 13, 2019 (153)
78 ILLUMINA ss3744546291 Jul 13, 2019 (153)
79 ILLUMINA ss3745346868 Jul 13, 2019 (153)
80 EVA ss3764676098 Jul 13, 2019 (153)
81 ILLUMINA ss3772840657 Jul 13, 2019 (153)
82 KHV_HUMAN_GENOMES ss3807838503 Jul 13, 2019 (153)
83 EVA ss3824158467 Apr 26, 2020 (154)
84 EVA ss3825690598 Apr 26, 2020 (154)
85 EVA ss3829760076 Apr 26, 2020 (154)
86 SGDP_PRJ ss3864022755 Apr 26, 2020 (154)
87 KRGDB ss3910778456 Apr 26, 2020 (154)
88 KOGIC ss3958602273 Apr 26, 2020 (154)
89 EVA ss3984448407 Apr 26, 2021 (155)
90 EVA ss3986337283 Apr 26, 2021 (155)
91 TOPMED ss4695324291 Apr 26, 2021 (155)
92 TOMMO_GENOMICS ss6062349828 Nov 02, 2024 (157)
93 EVA ss6234522859 Nov 02, 2024 (157)
94 EVA ss6297653894 Nov 02, 2024 (157)
95 EVA ss6322264015 Nov 02, 2024 (157)
96 EVA ss6330979717 Nov 02, 2024 (157)
97 YEGNASUBRAMANIAN_LAB ss6339393896 Nov 02, 2024 (157)
98 EVA ss6349657860 Nov 02, 2024 (157)
99 KOGIC ss6369522336 Nov 02, 2024 (157)
100 GNOMAD ss6426751066 Nov 02, 2024 (157)
101 GNOMAD ss6707992220 Nov 02, 2024 (157)
102 TOMMO_GENOMICS ss8176388425 Nov 02, 2024 (157)
103 EVA ss8237020161 Nov 02, 2024 (157)
104 EVA ss8237645242 Nov 02, 2024 (157)
105 1000G_HIGH_COVERAGE ss8267581183 Nov 02, 2024 (157)
106 TRAN_CS_UWATERLOO ss8314415163 Nov 02, 2024 (157)
107 EVA ss8315126418 Nov 02, 2024 (157)
108 EVA ss8364130888 Nov 02, 2024 (157)
109 HUGCELL_USP ss8465357062 Nov 02, 2024 (157)
110 EVA ss8508363045 Nov 02, 2024 (157)
111 EVA ss8512473840 Nov 02, 2024 (157)
112 EVA ss8512473841 Nov 02, 2024 (157)
113 1000G_HIGH_COVERAGE ss8553086965 Nov 02, 2024 (157)
114 SANFORD_IMAGENETICS ss8624616568 Nov 02, 2024 (157)
115 SANFORD_IMAGENETICS ss8639870340 Nov 02, 2024 (157)
116 TOMMO_GENOMICS ss8714119809 Nov 02, 2024 (157)
117 EVA ss8799402167 Nov 02, 2024 (157)
118 YY_MCH ss8807195553 Nov 02, 2024 (157)
119 EVA ss8841864405 Nov 02, 2024 (157)
120 EVA ss8847285223 Nov 02, 2024 (157)
121 EVA ss8848082766 Nov 02, 2024 (157)
122 EVA ss8848646340 Nov 02, 2024 (157)
123 EVA ss8855226419 Nov 02, 2024 (157)
124 EVA ss8882860664 Nov 02, 2024 (157)
125 EVA ss8968372676 Nov 02, 2024 (157)
126 EVA ss8979772107 Nov 02, 2024 (157)
127 EVA ss8981949158 Nov 02, 2024 (157)
128 EVA ss8982518780 Nov 02, 2024 (157)
129 1000Genomes NC_000006.11 - 18130918 Oct 12, 2018 (152)
130 1000Genomes_30X NC_000006.12 - 18130687 Nov 02, 2024 (157)
131 The Avon Longitudinal Study of Parents and Children NC_000006.11 - 18130918 Oct 12, 2018 (152)
132 ExAC NC_000006.11 - 18130918 Oct 12, 2018 (152)
133 FINRISK NC_000006.11 - 18130918 Apr 26, 2020 (154)
134 The Danish reference pan genome NC_000006.11 - 18130918 Apr 26, 2020 (154)
135 gnomAD v4 - Exomes NC_000006.12 - 18130687 Nov 02, 2024 (157)
136 gnomAD v4 - Genomes NC_000006.12 - 18130687 Nov 02, 2024 (157)
137 Genome of the Netherlands Release 5 NC_000006.11 - 18130918 Apr 26, 2020 (154)
138 HapMap NC_000006.12 - 18130687 Apr 26, 2020 (154)
139 KOREAN population from KRGDB NC_000006.11 - 18130918 Apr 26, 2020 (154)
140 Korean Genome Project NC_000006.12 - 18130687 Apr 26, 2020 (154)
141 Korean Genome Project 4K NC_000006.12 - 18130687 Nov 02, 2024 (157)
142 Medical Genome Project healthy controls from Spanish population NC_000006.11 - 18130918 Apr 26, 2020 (154)
143 Northern Sweden NC_000006.11 - 18130918 Jul 13, 2019 (153)
144 MxGDAR/Encodat-PGx NC_000006.11 - 18130918 Apr 26, 2021 (155)
145 PharmGKB Aggregated NC_000006.12 - 18130687 Apr 26, 2020 (154)
146 Qatari NC_000006.11 - 18130918 Apr 26, 2020 (154)
147 SGDP_PRJ NC_000006.11 - 18130918 Apr 26, 2020 (154)
148 Siberian NC_000006.11 - 18130918 Apr 26, 2020 (154)
149 38KJPN NC_000006.12 - 18130687 Nov 02, 2024 (157)
150 TopMed NC_000006.12 - 18130687 Apr 26, 2021 (155)
151 UK 10K study - Twins NC_000006.11 - 18130918 Oct 12, 2018 (152)
152 A Vietnamese Genetic Variation Database NC_000006.11 - 18130918 Jul 13, 2019 (153)
153 ALFA NC_000006.12 - 18130687 Nov 02, 2024 (157)
154 ClinVar RCV000013559.35 Nov 02, 2024 (157)
155 ClinVar RCV000013562.32 Nov 02, 2024 (157)
156 ClinVar RCV000396233.15 Nov 02, 2024 (157)
Help

History tab displays RefSNPs (Associated ID) from previous builds (Build) that now support the current RefSNP, and the dates, when the history was updated for each Associated ID (History Updated).

Associated ID History Updated (Build)
rs1801205 Apr 12, 2001 (94)
rs16880254 Mar 10, 2006 (126)
rs29001646 May 27, 2008 (130)
rs52798150 Sep 21, 2007 (128)
rs61510596 May 27, 2008 (130)
Added to this RefSNP Cluster:
Submission IDs Observation SPDI Canonical SPDI Source RSIDs
ss6349657860, ss8512473841 NC_000006.11:18130917:T:A NC_000006.12:18130686:T:A (self)
ss491881231, ss825644720, ss1592188623, ss1712840126, ss3643551623 NC_000006.10:18238896:T:C NC_000006.12:18130686:T:C (self)
30923631, 17225114, 8192323, 40380, 7718228, 7641688, 17955850, 229044, 6534777, 1408, 7936331, 16039735, 4246370, 17225114, 3813147, ss240424863, ss342202115, ss479976551, ss490920222, ss491378155, ss534203861, ss652948628, ss780845863, ss783529410, ss974458968, ss982638248, ss1067475581, ss1073420853, ss1319172549, ss1581553289, ss1584043919, ss1615060464, ss1658054497, ss1688172336, ss1711113284, ss1752617943, ss1804304017, ss1917799662, ss1925894401, ss1946168662, ss1958867439, ss1966656270, ss2023565669, ss2094820454, ss2151730016, ss2634407225, ss2634407226, ss2707318195, ss2711061327, ss2735561433, ss2747554041, ss2836353081, ss2985984175, ss2998599174, ss3022579689, ss3029664475, ss3346859984, ss3629456166, ss3629456167, ss3635046782, ss3636761940, ss3640754078, ss3644901726, ss3646331127, ss3653088303, ss3733249912, ss3744546291, ss3745346868, ss3764676098, ss3772840657, ss3824158467, ss3825690598, ss3829760076, ss3864022755, ss3910778456, ss3984448407, ss3986337283, ss6234522859, ss6297653894, ss6322264015, ss6330979717, ss6339393896, ss8176388425, ss8315126418, ss8364130888, ss8508363045, ss8512473840, ss8512473841, ss8624616568, ss8639870340, ss8799402167, ss8841864405, ss8847285223, ss8848082766, ss8848646340, ss8968372676, ss8979772107, ss8981949158, ss8982518780 NC_000006.11:18130917:T:C NC_000006.12:18130686:T:C (self)
RCV000013559.35, RCV000013562.32, RCV000396233.15, 40612900, 22062013, 234761783, 3072622, 14980274, 19374234, 10621, 79725648, 532701849, 6559166236, ss244238585, ss275515909, ss3716687250, ss3726314857, ss3807838503, ss3958602273, ss4695324291, ss6062349828, ss6369522336, ss6426751066, ss6707992220, ss8237020161, ss8237645242, ss8267581183, ss8314415163, ss8465357062, ss8553086965, ss8714119809, ss8807195553, ss8855226419, ss8882860664 NC_000006.12:18130686:T:C NC_000006.12:18130686:T:C (self)
ss1554460, ss2421439, ss69368192, ss69370567, ss74811830, ss74822055, ss75279105, ss75287553, ss76875486, ss84164450, ss105439122, ss119383576, ss123105575, ss123336313, ss159977692, ss244272401 NT_007592.15:18070917:T:C NC_000006.12:18130686:T:C (self)
ss6349657860, ss8799402167 NC_000006.11:18130917:T:G NC_000006.12:18130686:T:G (self)
ss831883150 NT_007592.15:18070917:T:G NC_000006.12:18130686:T:G (self)
Help

Publications tab displays PubMed articles citing the variation as a listing of PMID, Title, Author, Year, Journal, ordered by Year, descending.

92 citations for rs1142345
PMID Title Author Year Journal
8561894 Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. Szumlanski C et al. 1996 DNA and cell biology
8644731 Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Tai HL et al. 1996 American journal of human genetics
9177237 Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Tai HL et al. 1997 Proceedings of the National Academy of Sciences of the United States of America
9336428 Azathioprine-induced severe pancytopenia due to a homozygous two-point mutation of the thiopurine methyltransferase gene in a patient with juvenile HLA-B27-associated spondylarthritis. Leipold G et al. 1997 Arthritis and rheumatism
9931345 Thiopurine methyltransferase alleles in British and Ghanaian populations. Ameyaw MM et al. 1999 Human molecular genetics
9931346 Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hon YY et al. 1999 Human molecular genetics
10208641 The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Collie-Duguid ES et al. 1999 Pharmacogenetics
10751626 Genetic analysis of thiopurine methyltransferase polymorphism in a Japanese population. Hiratsuka M et al. 2000 Mutation research
15819814 Severe azathioprine-induced myelotoxicity in a kidney transplant patient with thiopurine S-methyltransferase-deficient genotype (TPMT*3A/*3C). Kurzawski M et al. 2005 Transplant international
15967990 Human thiopurine S-methyltransferase pharmacogenetics: variant allozyme misfolding and aggresome formation. Wang L et al. 2005 Proceedings of the National Academy of Sciences of the United States of America
16476125 Molecular analysis of thiopurine S-methyltransferase alleles in Taiwan aborigines and Taiwanese. Lu HF et al. 2006 Journal of clinical pharmacy and therapeutics
18547414 Genotyping panel for assessing response to cancer chemotherapy. Dai Z et al. 2008 BMC medical genomics
18662289 Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine. Hawwa AF et al. 2008 British journal of clinical pharmacology
18685564 Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Stocco G et al. 2009 Clinical pharmacology and therapeutics
20855458 Ecto-5'-nucleotidase and thiopurine cellular circulation: association with cytotoxicity. Li F et al. 2010 Drug metabolism and disposition
21395650 Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Adam de Beaumais T et al. 2011 British journal of clinical pharmacology
22552919 Bioinformatics and variability in drug response: a protein structural perspective. Lahti JL et al. 2012 Journal of the Royal Society, Interface
22871999 Concordance of DMET plus genotyping results with those of orthogonal genotyping methods. Fernandez CA et al. 2012 Clinical pharmacology and therapeutics
22977575 Accuracy of genotyping using the TaqMan PCR assay for single nucleotide polymorphisms responsible for thiopurine sensitivity in Japanese patients with inflammatory bowel disease. Osaki R et al. 2011 Experimental and therapeutic medicine
23133420 Pharmacogenomic Diversity among Brazilians: Influence of Ancestry, Self-Reported Color, and Geographical Origin. Suarez-Kurtz G et al. 2012 Frontiers in pharmacology
23335936 Multilocus genotypes of relevance for drug metabolizing enzymes and therapy with thiopurines in patients with acute lymphoblastic leukemia. Stocco G et al. 2012 Frontiers in genetics
23588304 Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Pussegoda K et al. 2013 Clinical pharmacology and therapeutics
24762746 New genetic biomarkers predicting azathioprine blood concentrations in combination therapy with 5-aminosalicylic acid. Uchiyama K et al. 2014 PloS one
24774509 Prevalence of TPMT and ITPA gene polymorphisms and effect on mercaptopurine dosage in Chilean children with acute lymphoblastic leukemia. Farfan MJ et al. 2014 BMC cancer
24787444 An ontology-based, mobile-optimized system for pharmacogenomic decision support at the point-of-care. Miñarro-Giménez JA et al. 2014 PloS one
24795743 Pharmacogenomics and adverse drug reactions in children. Rieder MJ et al. 2014 Frontiers in genetics
24860591 Imputation of TPMT defective alleles for the identification of patients with high-risk phenotypes. Almoguera B et al. 2014 Frontiers in genetics
24944790 Screening for 392 polymorphisms in 141 pharmacogenes. Kim JY et al. 2014 Biomedical reports
25266489 Genetic polymorphisms of VIP variants in the Tajik ethnic group of northwest China. Zhang J et al. 2014 BMC genetics
25303517 Association of ITPA genotype with event-free survival and relapse rates in children with acute lymphoblastic leukemia undergoing maintenance therapy. Smid A et al. 2014 PloS one
25419701 Exploring the distribution of genetic markers of pharmacogenomics relevance in Brazilian and Mexican populations. Bonifaz-Peña V et al. 2014 PloS one
25551397 Influence of genetic variants in TPMT and COMT associated with cisplatin induced hearing loss in patients with cancer: two new cohorts and a meta-analysis reveal significant heterogeneity between cohorts. Hagleitner MM et al. 2014 PloS one
25624441 Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. Yang JJ et al. 2015 Journal of clinical oncology
25741362 Use of pharmacogenomics in pediatric renal transplant recipients. Medeiros M et al. 2015 Frontiers in genetics
25887915 Whole genome sequencing of an ethnic Pathan (Pakhtun) from the north-west of Pakistan. Ilyas M et al. 2015 BMC genomics
26091847 Genetic polymorphisms of pharmacogenomic VIP variants in the Uygur population from northwestern China. Wang L et al. 2015 BMC genetics
26503813 NUDT15 gene polymorphism related to mercaptopurine intolerance in Taiwan Chinese children with acute lymphoblastic leukemia. Liang DC et al. 2016 The pharmacogenomics journal
26785747 Polymorphisms in genes involved in the absorption, distribution, metabolism, and excretion of drugs in the Kazakhs of Kazakhstan. Iskakova AN et al. 2016 BMC genetics
26858644 Cross-Comparison of Exome Analysis, Next-Generation Sequencing of Amplicons, and the iPLEX(®) ADME PGx Panel for Pharmacogenomic Profiling. Chua EW et al. 2016 Frontiers in pharmacology
26878724 NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Moriyama T et al. 2016 Nature genetics
27233804 Genetic polymorphisms of pharmacogenomic VIP variants in the Mongol of Northwestern China. Jin T et al. 2016 BMC genetics
27294413 Human genome meeting 2016 : Houston, TX, USA. 28 February - 2 March 2016. Srivastava AK et al. 2016 Human genomics
27307154 A Simple Method for TPMT and ITPA Genotyping Using Multiplex HRMA for Patients Treated with Thiopurine Drugs. Skrzypczak-Zielinska M et al. 2016 Molecular diagnosis & therapy
27427275 Association of germline genetic variants in RFC, IL15 and VDR genes with minimal residual disease in pediatric B-cell precursor ALL. Dawidowska M et al. 2016 Scientific reports
27446285 Risk factors for symptomatic osteonecrosis in childhood ALL: A retrospective study of a Slovenian pediatric ALL population between 1970 and 2004. Karas-Kuželički N et al. 2016 Experimental and therapeutic medicine
27452984 PACSIN2 polymorphism is associated with thiopurine-induced hematological toxicity in children with acute lymphoblastic leukaemia undergoing maintenance therapy. Smid A et al. 2016 Scientific reports
27564568 Genomewide Approach Validates Thiopurine Methyltransferase Activity Is a Monogenic Pharmacogenomic Trait. Liu C et al. 2017 Clinical pharmacology and therapeutics
27618021 Pharmacogenomics in Pediatric Oncology: Review of Gene-Drug Associations for Clinical Use. Mlakar V et al. 2016 International journal of molecular sciences
27636550 A European Spectrum of Pharmacogenomic Biomarkers: Implications for Clinical Pharmacogenomics. Mizzi C et al. 2016 PloS one
28321040 Whole exome sequencing detects variants of genes that mediate response to anticancer drugs. Ohnami S et al. 2017 The Journal of toxicological sciences
28445188 TPMT, COMT and ACYP2 genetic variants in paediatric cancer patients with cisplatin-induced ototoxicity. Thiesen S et al. 2017 Pharmacogenetics and genomics
28462921 One amino acid makes a difference-Characterization of a new TPMT allele and the influence of SAM on TPMT stability. Iu YPH et al. 2017 Scientific reports
28476189 Analysis of Thiopurine S-Methyltransferase Deficient Alleles in Acute Lymphoblastic Leukemia Patients in Mexican Patients. Jiménez-Morales S et al. 2016 Archives of medical research
28498350 Comparison of Direct Sequencing, Real-Time PCR-High Resolution Melt (PCR-HRM) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis for Genotyping of Common Thiopurine Intolerant Variant Alleles NUDT15 c.415C>T and TPMT c.719A>G (TPMT*3C). Fong WY et al. 2017 Diagnostics (Basel, Switzerland)
28771511 Exploring public genomics data for population pharmacogenomics. Lakiotaki K et al. 2017 PloS one
29191122 Association between TPMT*3C and decreased thiopurine S-methyltransferase activity in patients with neuromyelitis optica spectrum disorders in China. Gong X et al. 2018 The International journal of neuroscience
29193749 Clinical Implementation of Pharmacogenetic Testing in a Hospital of the Spanish National Health System: Strategy and Experience Over 3 Years. Borobia AM et al. 2018 Clinical and translational science
29264794 High frequency of mutant thiopurine S-methyltransferase genotypes in Mexican patients with systemic lupus erythematosus and rheumatoid arthritis. Ramirez-Florencio M et al. 2018 Clinical rheumatology
29373914 Genetic Polymorphism of Thiopurine S-methyltransferase in Children with Acute Lymphoblastic Leukemia in Jordan. Alsous M et al. 2018 Asian Pacific journal of cancer prevention
29387964 Role of TPMT and ITPA variants in mercaptopurine disposition. Gerbek T et al. 2018 Cancer chemotherapy and pharmacology
29681089 Genetic variation in biotransformation enzymes, air pollution exposures, and risk of spina bifida. Padula AM et al. 2018 American journal of medical genetics. Part A
29720126 Optimal predictor for 6-mercaptopurine intolerance in Chinese children with acute lymphoblastic leukemia: NUDT15, TPMT, or ITPA genetic variants? Zhou H et al. 2018 BMC cancer
30935835 Development of duplex-crossed allele-specific PCR targeting of TPMT*3B and *3C using crossed allele-specific blockers to eliminate non-specific amplification. Qu XM et al. 2019 Analytical biochemistry
30987408 Azathioprine Biotransformation in Young Patients with Inflammatory Bowel Disease: Contribution of Glutathione-S Transferase M1 and A1 Variants. Lucafò M et al. 2019 Genes
31019283 Secondary actionable findings identified by exome sequencing: expected impact on the organisation of care from the study of 700 consecutive tests. Thauvin-Robinet C et al. 2019 European journal of human genetics
31024313 NUDT15 Polymorphism Confer Increased Susceptibility to Thiopurine-Induced Leukopenia in Patients With Autoimmune Hepatitis and Related Cirrhosis. Fan X et al. 2019 Frontiers in pharmacology
31446180 Genotype-based Treatment With Thiopurine Reduces Incidence of Myelosuppression in Patients With Inflammatory Bowel Diseases. Chang JY et al. 2020 Clinical gastroenterology and hepatology
31507415 ITPA, TPMT, and NUDT15 Genetic Polymorphisms Predict 6-Mercaptopurine Toxicity in Middle Eastern Children With Acute Lymphoblastic Leukemia. Moradveisi B et al. 2019 Frontiers in pharmacology
31738745 A meta-analysis of genome-wide association studies of epigenetic age acceleration. Gibson J et al. 2019 PLoS genetics
32213001 UEG Week 2019 Poster Presentations. 2019 United European gastroenterology journal
32265697 Screening of Novel Pharmacogenetic Candidates for Mercaptopurine-Induced Toxicity in Patients With Acute Lymphoblastic Leukemia. Cao M et al. 2020 Frontiers in pharmacology
32326111 Role of Genetic Variations in the Hepatic Handling of Drugs. Marin JJG et al. 2020 International journal of molecular sciences
32368972 Genetic Analysis of Pharmacogenomic VIP Variants of ABCB1, VDR and TPMT Genes in an Ethnically Isolated Population from the North Caucasus Living in Jordan. Al-Eitan LN et al. 2020 Current drug metabolism
32453263 Pharmacogenomics of thiopurines: distribution of TPMT and NUDT15 polymorphisms in the Brazilian Amazon. Ferreira GMA et al. 2020 Pharmacogenetics and genomics
32704308 Thiopurine S-methyltransferase genetic polymorphisms in adult patients with inflammatory bowel diseases in the Latvian population. Zalizko P et al. 2020 Therapeutic advances in gastroenterology
32713039 Complete remission of refractory pemphigus vulgaris in a Chinese patient with mutated NUDT15 by combination of minimal doses of azathioprine and prednisone. Zhou XL et al. 2020 Dermatologic therapy
32992962 Association between the TPMT*3C (rs1142345) Polymorphism and the Risk of Death in the Treatment of Acute Lymphoblastic Leukemia in Children from the Brazilian Amazon Region. Cardoso de Carvalho D et al. 2020 Genes
33110249 Population impact of pharmacogenetic tests in admixed populations across the Americas. Suarez-Kurtz G et al. 2021 The pharmacogenomics journal
33346461 [Analysis of carrying clinically significant allelic variants of TPMT and DPYD genes associated with the response to drug therapy in cancer practice among 9 ethnic groups of the Russian Federation]. Mirzaev KB et al. 2020 Terapevticheskii arkhiv
33348915 PharmFrag: An Easy and Fast Multiplex Pharmacogenetics Assay to Simultaneously Analyze 9 Genetic Polymorphisms Involved in Response Variability of Anticancer Drugs. Bouvet R et al. 2020 International journal of molecular sciences
33430289 Combination of Genome-Wide Polymorphisms and Copy Number Variations of Pharmacogenes in Koreans. Han N et al. 2021 Journal of personalized medicine
33519226 Genetic Diversity of Drug-Related Genes in Native Americans of the Brazilian Amazon. Fernandes MR et al. 2021 Pharmacogenomics and personalized medicine
33569925 Gene-environment interactions between air pollution and biotransformation enzymes and risk of birth defects. Padula AM et al. 2021 Birth defects research
33846471 Association of genetic variants in TPMT, ITPA, and NUDT15 with azathioprine-induced myelosuppression in southwest china patients with autoimmune hepatitis. Miao Q et al. 2021 Scientific reports
34385834 Individualized Drugs' Selection by Evaluation of Drug Properties, Pharmacogenomics and Clinical Parameters: Performance of a Bioinformatic Tool Compared to a Clinically Established Counselling Process. Borro M et al. 2021 Pharmacogenomics and personalized medicine
34412101 Comprehensive characterization of pharmacogenetic variants in TPMT and NUDT15 in children with acute lymphoblastic leukemia. Moriyama T et al. 2022 Pharmacogenetics and genomics
34621706 Comprehensive analysis of important pharmacogenes in Koreans using the DMET™ platform. Kim B et al. 2021 Translational and clinical pharmacology
34629890 NUDT15 c.415C>T Polymorphism Predicts 6-MP Induced Early Myelotoxicity in Patients with Acute Lymphoblastic Leukemia Undergoing Maintenance Therapy. Pai AA et al. 2021 Pharmacogenomics and personalized medicine
34660484 Effects of TPMT, NUDT15, and ITPA Genetic Variants on 6-Mercaptopurine Toxicity for Pediatric Patients With Acute Lymphoblastic Leukemia in Yunnan of China. Mao X et al. 2021 Frontiers in pediatrics
35089958 Identification of pharmacogenetic variants from large scale next generation sequencing data in the Saudi population. Goljan E et al. 2022 PloS one
35431360 Susceptibility to thiopurine toxicity by TPMT and NUDT15 variants in Colombian children with acute lymphoblastic leukemia. Correa-Jimenez O et al. 2021 Colombia medica (Cali, Colombia)
36164570 Prevalence of exposure to pharmacogenetic drugs by the Saudis treated at the health care centers of the Ministry of National Guard. Alshabeeb MA et al. 2022 Saudi pharmaceutical journal
Help

The Flanks tab provides retrieving flanking sequences of a SNP on all molecules that have placements.

Genome context:
Select flank length:

Genomic regions, transcripts, and products
Top Help

NCBI Graphical Sequence Viewer display of the genomic region, transcripts and protein products for the reported RefSNP (rs).
Use the zoom option to view the nucleotides around the RefSNP and find other neighboring RefSNPs.
Visit Sequence Viewer for help with navigating inside the display and modifying the selection of displayed data tracks.

Software version is: 2.0.1.post825+45319f0