Medium-chain acyl-coenzyme A dehydrogenase deficiency- MedGen UID:
- 65086
- •Concept ID:
- C0220710
- •
- Disease or Syndrome
Individuals with medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency typically appear normal at birth, and many are diagnosed through newborn screening programs. Symptomatic individuals experience hypoketotic hypoglycemia in response to either prolonged fasting (e.g., weaning the infant from nighttime feedings) or during intercurrent and common infections (e.g., viral gastrointestinal or upper respiratory tract infections), which typically cause loss of appetite and increased energy requirements when fever is present. Untreated severe hypoglycemic episodes can be accompanied by seizures, vomiting, lethargy, coma, and death. Metabolic decompensation during these episodes can result in elevated liver transaminases and hyperammonemia. Individuals with MCAD deficiency who have experienced the effects of uncontrolled metabolic decompensation are also at risk for chronic myopathy. Early identification and avoidance of prolonged fasting can ameliorate these findings. However, children with MCAD deficiency are at risk for obesity after initiation of treatment due to the frequency of feeding.
Proline dehydrogenase deficiency- MedGen UID:
- 120645
- •Concept ID:
- C0268529
- •
- Disease or Syndrome
Phang et al. (2001) noted that prospective studies of HPI probands identified through newborn screening as well as reports of several families have suggested that it is a metabolic disorder not clearly associated with clinical manifestations. Phang et al. (2001) concluded that HPI is a relatively benign condition in most individuals under most circumstances. However, other reports have suggested that some patients have a severe phenotype with neurologic manifestations, including epilepsy and impaired intellectual development (Jacquet et al., 2003).
Genetic Heterogeneity of Hyperprolinemia
See also hyperprolinemia type II (HYRPRO2; 239510), which is caused by mutation in the gene encoding pyrroline-5-carboxylate dehydrogenase (P5CDH, ALDH4A1; 606811) on chromosome 1p36.
Glucoglycinuria- MedGen UID:
- 78686
- •Concept ID:
- C0268536
- •
- Disease or Syndrome
Hyperglycinemia, transient neonatal- MedGen UID:
- 82818
- •Concept ID:
- C0268560
- •
- Disease or Syndrome
Isovaleryl-CoA dehydrogenase deficiency- MedGen UID:
- 82822
- •Concept ID:
- C0268575
- •
- Disease or Syndrome
Individuals with clinical manifestations of isovaleric acidemia (IVA) have either classic IVA identified on newborn screening or classic IVA with a later diagnosis due to a missed diagnosis or later onset of clinical manifestations. Classic IVA is characterized by acute metabolic decompensations (vomiting, poor feeding, lethargy, hypotonia, seizures, and a distinct odor of sweaty feet). Acute metabolic decompensations are typically triggered by fasting, (febrile) illness (especially gastroenteritis), or increased protein intake. Clinical deterioration often occurs within hours to days after birth. Additional manifestations of classic IVA include developmental delay, intellectual disability and/or impaired cognition, epilepsy, and movement disorder (tremor, dysmetria, extrapyramidal movements). Early treatment in those identified by newborn screening can significantly reduce morbidity and mortality in individuals with classic IVA.
Propionic acidemia- MedGen UID:
- 75694
- •Concept ID:
- C0268579
- •
- Disease or Syndrome
The spectrum of propionic acidemia (PA) ranges from neonatal onset to late-onset disease. Neonatal-onset PA, the most common form, is characterized by a healthy newborn with poor feeding and decreased arousal in the first few days of life, followed by progressive encephalopathy of unexplained origin. Without prompt diagnosis (often through newborn screening) and management, this is followed by progressive encephalopathy manifesting as lethargy, seizures, or coma that can result in death. It is frequently accompanied by metabolic acidosis with anion gap, lactic acidosis, ketonuria, hypoglycemia, hyperammonemia, and cytopenias. Individuals with late-onset PA may remain asymptomatic and suffer a metabolic crisis under catabolic stress (e.g., illness, surgery, fasting) or may experience a more insidious onset with the development of multiorgan complications including vomiting, protein intolerance, failure to thrive, hypotonia, developmental delays or regression, movement disorders, or cardiomyopathy. Isolated cardiomyopathy can be observed on rare occasions in the absence of clinical metabolic decompensation or neurocognitive deficits. Manifestations of neonatal-onset and late-onset PA over time can include growth impairment, intellectual disability, seizures, basal ganglia lesions, pancreatitis, cardiomyopathy, and chronic kidney disease. Other rarely reported complications include optic atrophy, sensorineural hearing loss, and premature ovarian insufficiency.
Iminoglycinuria- MedGen UID:
- 124342
- •Concept ID:
- C0268654
- •
- Disease or Syndrome
The imino acids, proline and hydroxyproline, share a renal tubular reabsorptive mechanism with glycine. Iminoglycinuria (IG), a benign inborn error of amino acid transport, is also a normal finding in neonates and infants under 6 months of age (Chesney, 2001). Early studies of families with iminoglycinuria suggested genetic complexity, with homozygotes developing IG and heterozygotes manifesting only hyperglycinuria (HG; 138500) (summary by Broer et al., 2008).
Iminoglycinuria also occurs as part of the generalized amino aciduria of the Fanconi renotubular syndrome (134600).
Hyperglycinuria- MedGen UID:
- 107456
- •Concept ID:
- C0543541
- •
- Disease or Syndrome
The imino acids, proline and hydroxyproline, share a renal tubular reabsorptive mechanism with glycine. Iminoglycinuria (IG; 242600), a benign inborn error of amino acid transport, is also a normal finding in neonates and infants under 6 months of age (Chesney, 2001). Early studies of families with iminoglycinuria suggested genetic complexity, with homozygotes developing IG and heterozygotes manifesting only hyperglycinuria (HG) (summary by Broer et al., 2008).
A phenotype of combined glucosuria and glycinuria has been described (see 138070).
Indolylacroyl glycinuria with intellectual disability- MedGen UID:
- 340949
- •Concept ID:
- C1855738
- •
- Disease or Syndrome
3-methylcrotonyl-CoA carboxylase 2 deficiency- MedGen UID:
- 347898
- •Concept ID:
- C1859499
- •
- Disease or Syndrome
3-Methylcrotonylglycinuria is an autosomal recessive disorder of leucine catabolism. The clinical phenotype is highly variable, ranging from neonatal onset with severe neurologic involvement to asymptomatic adults. There is a characteristic organic aciduria with massive excretion of 3-hydroxyisovaleric acid and 3-methylcrotonylglycine, usually in combination with a severe secondary carnitine deficiency. MCC activity in extracts of cultured fibroblasts of patients is usually less than 2% of control (summary by Baumgartner et al., 2001).
Also see 3-methylcrotonylglycinuria I (MCC1D; 210200), caused by mutation in the alpha subunit of 3-methylcrotonyl-CoA carboxylase (MCCC1; 609010).
Hyperprolinemia type 2- MedGen UID:
- 419175
- •Concept ID:
- C2931835
- •
- Disease or Syndrome
Hyperprolinemia type II (HYRPRO2) is an inherited abnormality in amino acid metabolism characterized by elevated plasma proline concentrations, iminoglycinuria, and the urinary excretion of delta-1-pyrroline compounds (summary by Valle et al., 1976).
For a discussion of genetic heterogeneity of hyperprolinemia, see HYRPRO1 (239500).
Multiple mitochondrial dysfunctions syndrome 1- MedGen UID:
- 478062
- •Concept ID:
- C3276432
- •
- Disease or Syndrome
Multiple mitochondrial dysfunctions syndrome-1 (MMDS1) is a severe autosomal recessive disorder of systemic energy metabolism, resulting in weakness, respiratory failure, lack of neurologic development, lactic acidosis, and early death (Seyda et al., 2001).
Genetic Heterogeneity of Multiple Mitochondrial Dysfunctions Syndrome
See also MMDS2 (614299), caused by mutation in the BOLA3 gene (613183) on chromosome 2p13; MMDS3 (615330), caused by mutation in the IBA57 gene (615316) on chromosome 1q42; MMDS4 (616370), caused by mutation in the ISCA2 gene (615317) on chromosome 14q24; MMDS5 (617613), caused by mutation in the ISCA1 gene (611006) on chromosome 9q21; MMDS6 (617954), caused by mutation in the PMPCB gene (603131) on chromosome 7q22; MMDS7 (620423), caused by mutation in the GCSH gene (238330) on chromosome 16q23; MMDS8 (251900), caused by mutation in the FDX2 gene (614585) on chromosome 19p13; MMDS9A (617717) and MMDS9B (620887), both caused by mutation in the FDXR gene (103270) on chromosome 17q25.