Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 May 31;15(21):25193-25200.
doi: 10.1021/acsami.2c22146. Epub 2023 Feb 6.

Cisplatin-Conjugated Polyurethane Capsule for Dual Drug Delivery to a Cancer Cell

Affiliations
Review

Cisplatin-Conjugated Polyurethane Capsule for Dual Drug Delivery to a Cancer Cell

Ranajit Barman et al. ACS Appl Mater Interfaces. .

Abstract

This paper describes the synthesis of a polymer-prodrug conjugate, its aqueous self-assembly, noncovalent encapsulation of a second drug, and stimuli-responsive intracellular dual drug delivery. Condensation polymerization between a functionalized diol and a commercially available diisocyanate in the presence of poly(ethylene glycol) hydroxide (PEG-OH) as the chain stopper produces an ABA-type amphiphilic block copolymer (PU-1) in one pot, with the middle hydrophobic block being a polyurethane containing a pendant tert-butyloxycarbonyl (Boc)-protected amine in every repeating unit. Deprotection of the Boc group, followed by covalent attachment of the Pt(IV) prodrug using the pendant amine groups, produces the polymer-prodrug conjugate PU-Pt-1, which aggregates to nanocapsule-like structures in water with a hydrophilic interior. In the presence of sodium ascorbate, the Pt(IV) prodrug can be detached from the polymer backbone, producing the active Pt(II) drug. Cell culture studies show appreciable cell viability by the parent polymer. However, the polymer-prodrug conjugate nanocapsules exhibit cellular uptake and intracellular release of the active drug under a reducing environment. The capsule-like aggregates of the polymer-prodrug conjugate were used for noncovalent encapsulation of a second drug, doxorubicin (Dox), and Dox-loaded PU-Pt-1 aggregate showed a significantly superior cell killing efficiency compared to either of the individual drugs, highlighting the promising application of such a dual-drug-delivery approach.

Keywords: Pt(IV) prodrug−polymer conjugate; doxorubicin encapsulation; dual drug delivery; nanocapsule; polyurethane; redox-responsive disassembly.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources