Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jun 29;11(13):2066.
doi: 10.3390/cells11132066.

Gene Therapy in Amyotrophic Lateral Sclerosis

Affiliations
Review

Gene Therapy in Amyotrophic Lateral Sclerosis

Ton Fang et al. Cells. .

Abstract

Since the discovery of Cu/Zn superoxide dismutase (SOD1) gene mutation, in 1993, as the first genetic abnormality in amyotrophic lateral sclerosis (ALS), over 50 genes have been identified as either cause or modifier in ALS and ALS/frontotemporal dementia (FTD) spectrum disease. Mutations in C9orf72, SOD1, TAR DNA binding protein 43 (TARDBP), and fused in sarcoma (FUS) genes are the four most common ones. During the last three decades, tremendous effort has been made worldwide to reveal biological pathways underlying the pathogenesis of these gene mutations in ALS/FTD. Accordingly, targeting etiologic genes (i.e., gene therapies) to suppress their toxic effects have been investigated widely. It includes four major strategies: (i) removal or inhibition of abnormal transcribed RNA using microRNA or antisense oligonucleotides (ASOs), (ii) degradation of abnormal mRNA using RNA interference (RNAi), (iii) decrease or inhibition of mutant proteins (e.g., using antibodies against misfolded proteins), and (iv) DNA genome editing with methods such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas). The promising results of these studies have led to the application of some of these strategies into ALS clinical trials, especially for C9orf72 and SOD1. In this paper, we will overview advances in gene therapy in ALS/FTD, focusing on C9orf72, SOD1, TARDBP, and FUS genes.

Keywords: C9orf72; Cu/Zn superoxide dismutase (SOD1); TAR DNA binding protein 43 (TARDBP); amyotrophic lateral sclerosis (ALS); fused in sarcoma (FUS); gene therapy.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic representation of potential strategies in gene therapy for amyotrophic lateral sclerosis. Antisense oligonucleotide (ASO) are short synthetic oligonucleotides (~20 nucleotides). They bind to the targeted mRNA and either (i) induce the mRNA degradation by endogenous RNase H or (ii) block the mRNA translation. This ultimately decreases the expression of certain proteins. In ALS, this strategy has been utilized to reduce the protein level of TDP-43, SOD1 of FUS protein level or to target C9orf72 RNA foci. SiRNAs are double-stranded RNAs that can bind argonaute proteins as part of the RNA-induced silencing complex (RISC), which ultimately leads to the mRNA cleavage. Gene (i.e., either mRNA or cDNA) delivery through viruses (e.g., adeno-associated viral vectors [AAV]) is another option for functional replacement of a missing gene. This approach was utilized in spinal muscular atrophy but needs more investigation in ALS.

Similar articles

Cited by

References

    1. Peters O.M., Ghasemi M., Brown R.H., Jr. Emerging mechanisms of molecular pathology in ALS. J. Clin. Investig. 2015;125:1767–1779. doi: 10.1172/JCI71601. - DOI - PMC - PubMed
    1. Zucchi E., Ticozzi N., Mandrioli J. Psychiatric Symptoms in Amyotrophic Lateral Sclerosis: Beyond a Motor Neuron Disorder. Front. Neurosci. 2019;13:175. doi: 10.3389/fnins.2019.00175. - DOI - PMC - PubMed
    1. Ghasemi M., Brown R.H., Jr. Genetics of Amyotrophic Lateral Sclerosis. Cold Spring Harb. Perspect. Med. 2018;8:a024125. doi: 10.1101/cshperspect.a024125. - DOI - PMC - PubMed
    1. Al-Sarraj S., King A., Troakes C., Smith B., Maekawa S., Bodi I., Rogelj B., Al-Chalabi A., Hortobágyi T., Shaw C.E. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol. 2011;122:691–702. doi: 10.1007/s00401-011-0911-2. - DOI - PubMed
    1. Cooper-Knock J., Hewitt C., Highley J.R., Brockington A., Milano A., Man S., Martindale J., Hartley J., Walsh T., Gelsthorpe C., et al. Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain J. Neurol. 2012;135:751–764. doi: 10.1093/brain/awr365. - DOI - PMC - PubMed

Publication types

MeSH terms