Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov;95(11):2236-2243.
doi: 10.1002/jnr.24111. Epub 2017 Jul 8.

Triheptanoin for the treatment of brain energy deficit: A 14-year experience

Affiliations
Review

Triheptanoin for the treatment of brain energy deficit: A 14-year experience

Fanny Mochel. J Neurosci Res. 2017 Nov.

Abstract

Triheptanoin is an odd-chain triglyceride with anaplerotic properties-that is, replenishing the pool of metabolic intermediates in the Krebs cycle. Unlike even-chain fatty acids metabolized to acetyl-CoA only, triheptanoin can indeed provide both acetyl-CoA and propionyl-CoA, two key carbon sources for the Krebs cycle. Triheptanoin was initially used in patients with long-chain fatty acid oxidation disorders. The first demonstration of the possible benefit of triheptanoin for brain energy deficit came from a patient with pyruvate carboxylase deficiency, a severe metabolic disease that affects anaplerosis in the brain. In an open-label study, triheptanoin was then shown to decrease nonepileptic paroxysmal manifestations by 90% in patients with glucose transporter 1 deficiency syndrome, a disease that affects glucose transport into the brain. 31 P magnetic resonance spectroscopy studies also indicated that triheptanoin was able to correct bioenergetics in the brain of patients with Huntington disease, a neurodegenerative disease associated with brain energy deficit. Altogether, these studies indicate that triheptanoin can be a treatment for brain energy deficit related to altered anaplerosis and/or glucose metabolism. © 2017 Wiley Periodicals, Inc.

Keywords: GLUT1; Huntington disease; Krebs cycle; astrocytes; magnetic resonance spectroscopy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources