Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr;54(4):260-268.
doi: 10.1136/jmedgenet-2016-104215. Epub 2016 Nov 24.

Diagnostic value of exome and whole genome sequencing in craniosynostosis

Affiliations

Diagnostic value of exome and whole genome sequencing in craniosynostosis

Kerry A Miller et al. J Med Genet. 2017 Apr.

Abstract

Background: Craniosynostosis, the premature fusion of one or more cranial sutures, occurs in ∼1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing.

Methods: We used exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high-priority cases, and in whom prior clinically driven genetic testing had been negative.

Results: We identified likely associated mutations in 15 patients (37.5%), involving 14 different genes. All genes were mutated in single families, except for IL11RA (two families). We classified the other positive diagnoses as follows: commonly mutated craniosynostosis genes with atypical presentation (EFNB1, TWIST1); other core craniosynostosis genes (CDC45, MSX2, ZIC1); genes for which mutations are only rarely associated with craniosynostosis (FBN1, HUWE1, KRAS, STAT3); and known disease genes for which a causal relationship with craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3).

Conclusions: This substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results.

Keywords: Actionable mutation; Craniosynostosis; Exome/whole genome sequencing.

PubMed Disclaimer

Conflict of interest statement

Competing interests: None declared.

Figures

Figure 1
Figure 1
Family pedigrees, clinical photographs/3D-CT scans and sequencing traces of families with mutations identified in FBN1 (A), EFNB1 (B) and STAT3 (C). Each panel shows the location of the mutation (red line) within the gene structure (exons in blue), family pedigree (affected individuals are in black, black arrow depicts the proband and individuals selected for exome sequence/whole genome sequence are indicated with a red asterisk), sequence traces of indicated individuals (red arrow indicates position of mutation) and clinical photographs (B) and 3D-CT scans (C) of affected individuals. Note facial asymmetry associated with right unicoronal synostosis in patient with EFNB1 mutation (B); there is moderate hypertelorism, but the grooving of the nasal tip usually observed in craniofrontonasal syndrome is absent. In the patient with the STAT3 mutation (C), images with soft tissue windows (left and centre) show exorbitism, mid-face hypoplasia and vertex bulge; image with bone windows (right) shows fusion of all sutures of the skull vault.
Figure 2
Figure 2
Identified mutations and their association within the classification of craniosynostosis-associated genes proposed by Twigg and Wilkie.

Similar articles

Cited by

References

    1. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, Kwint M, Janssen IM, Hoischen A, Schenck A, Leach R, Klein R, Tearle R, Bo T, Pfundt R, Yntema HG, de Vries BB, Kleefstra T, Brunner HG, Vissers LE, Veltman JA. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014;511:344–7. 10.1038/nature13394 - DOI - PubMed
    1. Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, Rimmer A, Kanapin A, Lunter G, Fiddy S, Allan C, Aricescu AR, Attar M, Babbs C, Becq J, Beeson D, Bento C, Bignell P, Blair E, Buckle VJ, Bull K, Cais O, Cario H, Chapel H, Copley RR, Cornall R, Craft J, Dahan K, Davenport EE, Dendrou C, Devuyst O, Fenwick AL, Flint J, Fugger L, Gilbert RD, Goriely A, Green A, Greger IH, Grocock R, Gruszczyk AV, Hastings R, Hatton E, Higgs D, Hill A, Holmes C, Howard M, Hughes L, Humburg P, Johnson D, Karpe F, Kingsbury Z, Kini U, Knight JC, Krohn J, Lamble S, Langman C, Lonie L, Luck J, McCarthy D, McGowan SJ, McMullin MF, Miller KA, Murray L, Nemeth AH, Nesbit MA, Nutt D, Ormondroyd E, Oturai AB, Pagnamenta A, Patel SY, Percy M, Petousi N, Piazza P, Piret SE, Polanco-Echeverry G, Popitsch N, Powrie F, Pugh C, Quek L, Robbins PA, Robson K, Russo A, Sahgal N, van Schouwenburg PA, Schuh A, Silverman E, Simmons A, Sorensen PS, Sweeney E, Taylor J, Thakker RV, Tomlinson I, Trebes A, Twigg SRF, Uhlig HH, Vyas P, Vyse T, Wall SA, Watkins H, Whyte MP, Witty L, Wright B, Yau C, Buck D, Humphray S, Ratcliffe PJ, Bell JI, Wilkie AOM, Bentley D, Donnelly P, McVean G. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet 2015;47:717–26. 10.1038/ng.3304 - DOI - PMC - PubMed
    1. Fitzgerald TW GS, Jones WD, van Kogelenberg M, King DA, McRae J, Morley KI, Parthiban V, Al-Turki S, Ambridge K, Barrett DM, Bayzetinova T, Clayton S, Coomber EL, Gribble S, Jones P, Krishnappa N, Mason LE, Middleton A, Miller R, Prigmore E, Rajan D, Sifrim A, Tivey AR, Ahmed M, Akawi N, Andrews R, Anjum U, Archer H, Armstrong R, Balasubramanian M, Banerjee R, Baralle D, Batstone P, Baty D, Bennett C, Berg J, Bernhard B, Bevan AP, Blair E, Blyth M, Bohanna D, Bourdon L, Bourn D, Brady A, Bragin E, Brewer C, Brueton L, Brunstrom K, Bumpstead SJ, Bunyan DJ, Burn J, Burton J, Canham N, Castle B, Chandler K, Clasper S, Clayton-Smith J, Cole T, Collins A, Collinson MN, Connell F, Cooper N, Cox H, Cresswell L, Cross G, Crow Y, D'Alessandro M, Dabir T, Davidson R, Davies S, Dean J, Deshpande C, Devlin G, Dixit A, Dominiczak A, Donnelly C, Donnelly D, Douglas A, Duncan A, Eason J, Edkins S, Ellard S, Ellis P, Elmslie F, Evans K, Everest S, Fendick T, Fisher R, Flinter F, Foulds N, Fryer A, Fu B, Gardiner C, Gaunt L, Ghali N, Gibbons R, Gomes Pereira SL, Goodship J, Goudie D, Gray E, Greene P, Greenhalgh L, Harrison L, Hawkins R, Hellens S, Henderson A, Hobson E, Holden S, Holder S, Hollingsworth G, Homfray T, Humphreys M, Hurst J, Ingram S, Irving M, Jarvis J, Jenkins L, Johnson D, Jones D, Jones E, Josifova D, Joss S, Kaemba B, Kazembe S, Kerr B, Kini U, Kinning E, Kirby G, Kirk C, Kivuva E, Kraus A, Kumar D, Lachlan K, Lam W, Lampe A, Langman C, Lees M, Lim D, Lowther G, Lynch SA, Magee A, Maher E, Mansour S, Marks K, Martin K, Maye U, McCann E, McConnell V, McEntagart M, McGowan R, McKay K, McKee S, McMullan DJ, McNerlan S, Mehta S, Metcalfe K, Miles E, Mohammed S, Montgomery T, Moore D, Morgan S, Morris A, Morton JEV, Mugalaasi H, Murday V, Nevitt L, Newbury-Ecob R, Norman A, O'Shea R, Ogilvie C, Park S, Parker MJ, Patel C, Paterson J, Payne S, Phipps J, Pilz DT, Porteous D, Pratt N, Prescott K, Price S, Pridham A, Procter A, Purnell H, Ragge N, Rankin J, Raymond L, Rice D, Robert L, Roberts E, Roberts G, Roberts J, Roberts P, Ross A, Rosser E, Saggar A, Samant S, Sandford R, Sarkar A, Schweiger S, Scott C, Scott R, Selby A, Seller A, Sequeira C, Shannon N, Sharif S, Shaw-Smith C, Shearing E, Shears D, Simonic I, Simpkin D, Singzon R, Skitt Z, Smith A, Smith B, Smith K, Smithson S, Sneddon L, Splitt M, Squires M, Stewart F, Stewart H, Suri M, Sutton V, Swaminathan GJ, Sweeney E, Tatton-Brown K, Taylor C, Taylor R, Tein M, Temple IK, Thomson J, Tolmie J, Torokwa A, Treacy B, Turner C, Turnpenny P, Tysoe C, Vandersteen A, Vasudevan P, Vogt J, Wakeling E, Walker D, Waters J, Weber A, Wellesley D, Whiteford M, Widaa S, Wilcox S, Williams D, Williams N, Woods G, Wragg C, Wright M, Yang F, Yau M, Carter NP, Parker M, Firth HV, FitzPatrick DR, Wright CF, Barrett JC, Hurles ME. Large-scale discovery of novel genetic causes of developmental disorders. Nature 2015;519:223–8. 10.1038/nature14135 - DOI - PMC - PubMed
    1. Boulet SL, Rasmussen SA, Honein MA. A population-based study of craniosynostosis in metropolitan Atlanta, 1989-2003. Am J Med Genet A 2008;146A:984–91. 10.1002/ajmg.a.32208 - DOI - PubMed
    1. Lajeunie E, Le Merrer M, Bonaiti-Pellie C, Marchac D, Renier D. Genetic study of nonsyndromic coronal craniosynostosis. Am J Med Genet 1995;55:500–4. 10.1002/ajmg.1320550422 - DOI - PubMed

Publication types

Substances