Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 28:7:610.
doi: 10.3389/fmicb.2016.00610. eCollection 2016.

Aroma Profile of Montepulciano d'Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts

Affiliations

Aroma Profile of Montepulciano d'Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts

Rosanna Tofalo et al. Front Microbiol. .

Abstract

Montepulciano d'Abruzzo is a native grape variety of Vitis vinifera L., grown in central Italy and used for production of high quality red wines. Limited studies have been carried out to improve its enological characteristics through the use of indigenous strains of Saccharomyces cerevisiae. The main objective of the present work was to test two indigenous strains of S. cerevisiae (SRS1, RT73), a strain of Starmerella bacillaris (STS12), one of Hanseniaspora uvarum (STS45) and a co-culture of S. cerevisiae (SRS1) and S. bacillaris (STS12), in an experimental cellar to evaluate their role in the sensory characteristic of Montepulciano d'Abruzzo wine. A S. cerevisiae commercial strain was used. Fermentations were conducted under routine Montepulciano d'Abruzzo wine production, in which the main variables were the yeast strains used for fermentation. Basic winemaking parameters, some key chemical analysis and aroma compounds were considered. S. cerevisiae strain dynamics during fermentation were determined by molecular methods. The musts inoculated with the co-culture were characterized by a faster fermentation start and a higher content of glycerol after 3 days of fermentation, as well as the musts added with strains S. bacillaris (STS12) and H. uvarum (STS45). At the end of fermentation the parameters studied were quite similar in all the wines. Total biogenic amines (BA) content of all the wines was low. Ethanolamine was the predominant BA, with a concentration ranging from 21 to 24 mg/l. Wines were characterized by esters and alcohols. In particular, 2-phenylethanol, 3-methylbut-1-yl methanoate, and ethyl ethanoate were the major aroma volatile compounds in all wines. Statistical analysis highlighted the different role played by aroma compounds in the differentiation of wines, even if it was impossible to select a single class of compounds as the most important for a specific yeast. The present study represents a further step toward the use of tailored autochthonous strains to impart the specific characteristics of a given wine which are an expression of a specific terroir.

Keywords: Montepulciano d'Abruzzo wine; Saccharomyces cerevisiae; aroma compounds; autochthonous yeast strains; non-Saccharomyces.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Growth kinetic profiles of pure and mixed fermentation trials.
Figure 2
Figure 2
Yeast strains electrophoretic patterns of microsatellite multiplex PCR (SC8132X, YOR267C and SCPTSY7) at the end of fermentation (15 days). Similar profiles were obtained after 3 days in inoculated fermentations. M: 1-kb plus DNA ladder (Life Technologies).
Figure 3
Figure 3
Heatmap representing volatile profile of autochthonous S. cerevisiae strains (SRS1 and RT73), commercial strain (CS), co-culture (SRS1+STS12), and non-Saccharomyces strains (STS12 and STS45). Compounds were organized by chemical families, and with the indication of the number of compounds per family. Each line corresponds to one metabolite, and each column corresponds to each strain. For the correspondence between number and volatile compound see Table 2. *The quantitative analysis of wine aroma compounds was carried out on the basis of the relative peak area (Qi) calculated from head space SPME (HS/SPME) gas chromatograms after addition of known amounts of analyte standards.
Figure 4
Figure 4
Score plot of the first 3 PCs (A), score (B) and loading plot (C) of the first and second PCs after PC analysis on volatile compounds GC/MS-SPME data for autochthonous S. cerevisiae strains (SRS1, RT73), commercial strain (CS), non-Saccharomyces strains (STS12 and STS45), and co-culture (SRS1+STS12).
Figure 5
Figure 5
Descriptive analysis of obtained wines. *p < 0.05, **p < 0.01.

Similar articles

Cited by

References

    1. Alves Z., Melo A., Figueiredo A. R., Coimbra M. A., Gomes A. C., Rocha S. M. (2015). Exploring the Saccharomyces cerevisiae volatile metabolome: indigenous versus commercial strains. PLoS ONE 11:e0143641. 10.1371/journal.pone.0143641 - DOI - PMC - PubMed
    1. Andorrà I., Berradre M., Rozès N., Mas A., Guillamón J. M., Esteve-Zarzoso B. (2010). Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. Eur. Food Res. Technol. 231, 215–224. 10.1007/s00217-010-1272-0 - DOI
    1. Barbosa C., García-Martínez J., Pérez-Ortín J. E., Mendes-Ferreira A. (2015). Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PLoS ONE 10:e0122709. 10.1371/journal.pone.0122709 - DOI - PMC - PubMed
    1. Bely M., Rinaldi A., Dubourdieu D. (2003). Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J. Biosci. Bioeng. 96, 507–512. 10.1016/S1389-1723(04)70141-3 - DOI - PubMed
    1. Bokulich N. A., Thorngate J. H., Richardson P. M., Mills D. A. (2014). Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS 111, E139–E148. 10.1073/pnas.1317377110 - DOI - PMC - PubMed

LinkOut - more resources