Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Mandibulofacial Dysostosis with Microcephaly

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

Mandibulofacial Dysostosis with Microcephaly

Matthew Lines et al.
Free Books & Documents

Excerpt

Clinical characteristics: Mandibulofacial dysostosis with microcephaly (MFDM) is characterized by malar and mandibular hypoplasia, microcephaly (congenital or postnatal onset), intellectual disability (mild, moderate, or severe), malformations of the external ear, and hearing loss that is typically conductive. Associated craniofacial malformations may include cleft palate, choanal atresia, zygomatic arch cleft (identified on cranial CT scan), and facial asymmetry. Other relatively common findings (present in 25%-35% of individuals) can include cardiac anomalies, thumb anomalies, esophageal atresia/tracheoesophageal fistula, short stature, spine anomalies, and epilepsy.

Diagnosis/testing: The diagnosis of MFDM is confirmed in a proband with typical clinical findings and a heterozygous pathogenic variant in EFTUD2 identified by genetic testing.

Management: Treatment of manifestations: Individualized treatment of craniofacial manifestations is managed by a multidisciplinary team which may include: oromaxillofacial surgery, plastic surgery, otolaryngology, dentistry/orthodontics, and occupational and speech-language therapy. Newborn infants may have airway compromise at delivery due to choanal atresia and/or mandibular hypoplasia, requiring intubation and/or tracheostomy for initial stabilization. Esophageal atresia/tracheoesophageal fistula, cardiac defects, renal anomalies, and thumb anomalies are treated in a routine manner. Short stature is managed expectantly. Treatment of hearing loss is individualized, and may involve conventional hearing aid(s), bone-anchored hearing aid(s), and/or cochlear implant(s). Early individualized educational and therapy plans are devised as needed to optimize developmental outcome.

Surveillance: Annual growth assessment and periodic developmental assessment with evaluation for obstructive sleep apnea and epilepsy as needed.

Genetic counseling: MFDM is an autosomal dominant disorder. Most individuals diagnosed with MFDM to date are presumed to have the disorder as the result of a de novo EFTUD2 pathogenic variant; in some individuals, the causative pathogenic variant was inherited from a parent with a milder phenotypic presentation. If a parent of the proband has the pathogenic variant identified in the proband, the risk to sibs of the proband (at conception) is 50%. Once the causative EFTUD2 pathogenic variant has been identified in an affected family member, prenatal testing and preimplantation genetic testing are possible.

PubMed Disclaimer

Similar articles

  • Treacher Collins Syndrome.
    Barbosa M, Jabs EW, Huston S. Barbosa M, et al. 2004 Jul 20 [updated 2024 Jun 20]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Jul 20 [updated 2024 Jun 20]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301704 Free Books & Documents. Review.
  • Phelan-McDermid Syndrome-SHANK3 Related.
    Phelan K, Rogers RC, Boccuto L. Phelan K, et al. 2005 May 11 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2005 May 11 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301377 Free Books & Documents. Review.
  • Fanconi Anemia.
    Mehta PA, Ebens C. Mehta PA, et al. 2002 Feb 14 [updated 2021 Jun 3]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2002 Feb 14 [updated 2021 Jun 3]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301575 Free Books & Documents. Review.
  • Apert Syndrome.
    Wenger TL, Hing AV, Evans KN. Wenger TL, et al. 2019 May 30. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2019 May 30. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 31145570 Free Books & Documents. Review.
  • Noonan Syndrome.
    Roberts AE. Roberts AE. 2001 Nov 15 [updated 2022 Feb 17]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2001 Nov 15 [updated 2022 Feb 17]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301303 Free Books & Documents. Review.

References

    1. Bartels C, Klatt C, Lührmann R, Fabrizio P. The ribosomal translocase homologue Snu114p is involved in unwinding U4/U6 RNA during activation of the spliceosome. EMBO Rep. 2002;3:875–80. - PMC - PubMed
    1. Bick D, Fraser P, Gutzeit M, Harris J, Hambuch T, Helbling D, Jacob H, Kersten JN, Leuthner SR, May T, North PE, Prisco SZ, Schuler BA, Shimoyama M, Strong KA, Van Why SK, Veith R, Verbsky J, Weborg AM, Jr, Wilk BM, Willoughby RE, Jr, Worthey EA, Dimmock DP. Successful application of whole genome sequencing in a medical genetics clinic. J Pediatr Genet. 2017;6:61–76. - PMC - PubMed
    1. Deml B, Reis LM, Muheisen S, Bick D, Semina EV. EFTUD2 deficiency in vertebrates: identification of a novel human mutation and generation of a zebrafish model. Birth Defects Res A Clin Mol Teratol. 2015;103:630–40. - PMC - PubMed
    1. Fabrizio P, Laggerbauer B, Lauber J, Lane WS, Lührmann R. An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2. EMBO J. 1997;16:4092–106. - PMC - PubMed
    1. Gandomi SK, Parra M, Reeves D, Yap V, Gau CL. Array-CGH is an effective first-tier diagnostic test for EFTUD2-associated congenital mandibulofacial dysostosis with microcephaly. Clin Genet. 2015;87:80–4. - PubMed

LinkOut - more resources