Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012;7(4):e35105.
doi: 10.1371/journal.pone.0035105. Epub 2012 Apr 27.

Global diversity of sponges (Porifera)

Affiliations
Review

Global diversity of sponges (Porifera)

Rob W M Van Soest et al. PLoS One. 2012.

Abstract

With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Porifera morphology and internal structure.
A. Callyspongia (Callyspongia) samarensis (Demospongiae: Haplosclerida), Ternate, Maluku province, Indonesia (photo N.J. de Voogd); B. SEM image of cross section of mesohyl of the demosponge Scopalina ruetzleri obtained by freeze-fracturing technique (courtesy L. de Vos); C. Detail of choanocyte chamber of Scopalina ruetzleri (courtesy L. de Vos).
Figure 2
Figure 2. Demospongiae morphology and spicule diversity.
A. Bath sponge, Spongia officinalis, Greece (photo courtesy E. Voultsiadou); B. Bathyal mud sponge Thenea schmidti; C. Papillae of excavating sponge Cliona celata protruding from limestone substratum (photo M.J. de Kluijver); D. Giant rock sponge, Neophrissospongia, Azores (photo F.M. Porteiro/ImagDOP); E. Giant barrel sponge Xestospongia testudinaria, Lesser Sunda Islands, Indonesia (photo R. Roozendaal); F. Amphimedon queenslandica (photo of holotype in aquarium, photo S. Walker); G. SEM images of a selection of microscleres and megascleres, not to scale, sizes vary between 0.01 and 1 mm.
Figure 3
Figure 3. Carnivorous sponge diversity.
A. Cladorhiza abyssicola (from Fig. 17 in , scale approximate); B. Cladorhiza sp., undescribed species from West Norfolk Ridge (New Zealand EEZ), 757 m (NIWA 25834); C. Abyssocladia sp., undescribed species from Brothers Seamount (New Zealand EEZ), 1336 m (NIWA 21378); D. Abyssocladia sp., undescribed species from Chatham Rise (New Zealand EEZ), 1000 m (NIWA 21337); E. Abyssocladia sp., undescribed species from Seamount 7, Macquarie Ridge (Australian EEZ), 770 m (NIWA 40540); F. Asbestopluma (Asbestopluma) desmophora, holotype QM G331844, from Macquarie Ridge (Australian EEZ), 790 m (from Fig. 5A in [47]); G. Abyssocladia sp., undescribed species from Seamount 8, Macquarie Ridge (Australian EEZ), 501 m (NIWA 52670); H. Asbestopluma hypogea from ; I. Chondrocladia lampadiglobus (from Fig. 17A in [48]).
Figure 4
Figure 4. Examples of chelae and sigmancistras in carnivorous sponges.
A. Arcuate isochelae from Abyssocladia sp., an undescribed species from Morgue Seamount, Chatham Rise (New Zealand EEZ), 1000 m (NIWA 21337); B. Abyssochela from Abyssocladia sp., an undescribed species from Morgue Seamount, Chatham Rise (New Zealand EEZ), 1000 m (NIWA 21337); C. Abyssochela from Abyssocladia carcharias, holotype NIWA 62124, from Monowai Seamount, Kermadec Volcanic Arc (New Zealand EEZ, [47]), 1071 m; D. Abyssochela from Abyssocladia sp., an undescribed species from Seamount 8, Macquarie Ridge (Australian EEZ), 501 m (NIWA 52670); E. Palmate isochelae from Abyssocladia sp. (cf.), an undescribed species from Seamount 7, Macquarie Ridge (Australian EEZ), 770 m (NIWA 40486); F. Anchorate unguiferate anisochela from Cladorhiza sp., an undescribed species from West Norfolk Ridge (New Zealand EEZ), 757 m (NIWA 25834); G. Anchorate isochelae from Chondrocladia (Meliiderma) turbiformis, holotype NIWA 21357, from Pyre Seamount, Chatham Rise, 1075 m (from Fig. 2D right, in [46]); H–I. Palmate anisochelae from Asbestopluma sp., an undescribed species from Hikurangi Channel, off Gisborne, eastern North Island of New Zealand, 1119 m (NIWA 32053); J. Anisochela from Asbestopluma sp., an undescribed species from Ghoul Seamount, Chatham Rise, 922 m (NIWA 21343); K. Palmate anisochela from Abyssocladia sp., an undescribed species from Seamount 7, Macquarie Ridge (Australian EEZ), 770 m (NIWA 40486); L. Placochela from Euchelipluma pristina; M. Anisoplacochela from Asbestopluma (Asbestopluma) anisoplacochela, holotype 25835, from Three Kings Ridge, northern New Zealand, 1690 m ; N. Cercichela from Cercicladia australis, holotype NIWA 39599, from Seamount 1, Macquarie Ridge, 1060 m, (New Zealand EEZ, [49]) (from Fig. 2H, upper left in [49]); O. Anchorate isochela from Lollipocladia tiburoni (from Fig. 3E left, in [50]); P. Sigmancistra from Asbestopluma sp., an undescribed species from Hikurangi Channel, off Gisborne, eastern North Island of New Zealand, 1119 m (NIWA 32053).
Figure 5
Figure 5. Hexactinellida diversity.
A. Scanning electron micrographs of microscleres (courtesy of H.M. Reiswig), left: a hexaster, the diagnostic spicule type of subclass Hexasterophora (scale bar = 10 µm), right: an amphidisc, the diagnostic spicule type of subclass Amphidiscophora (scale bar = 100 µm); B. Hyalonema sp., an amphidiscophoran (Amphidiscosida: Hyalonematidae), Bahamas; C. Atlantisella sp., a lyssacine hexasterophoran (Lyssacinosida: Euplectellidae), Galapagos Islands; D. Lefroyella decora, a dictyonal hexasterophoran (“Hexactinosida”: Sceptrulophora: Euretidae), Bahamas. B–D courtesy of Harbor Branch Oceanographic Institute (Ft. Pierce, Florida, U S A), images taken from manned submersible Johnson-Sea-Link II.
Figure 6
Figure 6. Homoscleromopha diversity.
A. Oscarella lobularis (Oscarellidae): two color morphs from NW Mediterranean Sea (photos courtesy of Jean Vacelet & Thierry Pérez); B. Plakortis simplex (Plakinidae) specimen hanging from the ceiling of the 3PPs cave (NW Mediterranean Sea), a paradise for Homoscleromorpha species (at least 8 species belonging to 4 different genera are present); red arrow indicates the presence of Oscarella microlobata and a green arrow Plakina jani (photo courtesy Thierry Pérez); C. Plakina jani (Plakinidae) detail of the lobes, 3PPs cave (NW Mediterranean Sea) (photo courtesy Jean Vacelet); D. Spicules of Plakinidae: triods, diods and lophose calthrops; E. Spicules of Corticium candelabrum (Plakinidae): calthrops and candelabrum (heterolophose calthrops); F. Corticium candelabrum NW Mediterranean Sea (photos courtesy of Jean Vacelet).
Figure 7
Figure 7. Calcarea diversity.
A. Clathrina rubra (Calcinea, Clathrinida), NW Mediterranean Sea (photo courtesy Jean Vacelet); B. Calcinean spicules: equiangular and equiradiate triactines (photo courtesy Jean Vacelet); C. Guancha lacunosa (Calcinea, Clathrinida), NW Mediterranean Sea; D. Petrobiona massiliana (Calcaronea, Lithonida), two specimens from caves, NW Mediterranean Sea. Spicule complement of P. massiliana: from left to right pugiole, sagittal triactines, microdiactine (photos courtesy Jean Vacelet); E. Calcaronean spicules: sagittal (inequiangular) triactines and diactines; F. Syconoid aquiferous system from Sycon ciliatum (SEM photo, courtesy Louis De Vos, ULB); G. Sycon ciliatum (Calcaronea, Leucosolenida), specimen about 10 cm, from the English Channel.
Figure 8
Figure 8. Phylogenetic relationships of higher demosponge taxa as evident from various molecular phylogenies.
Sources e.g., , , . The approximate composition of the “G4” subtaxa is known, but the phylogenetic relationships of these are still to be assessed.
Figure 9
Figure 9. Percentual species diversity of the four classes of sponges.
Source: World Porifera Database (available: www.marinespecies.org/porifera, accessed 2011 Aug 31).
Figure 10
Figure 10. Cumulative increase of sponge species descriptions between 1759 and 2011.
Source: World Porifera Database (available: www.marinespecies.org/porifera, accessed 2011 Aug 31).
Figure 11
Figure 11. Global diversity of the Porifera.
Numbers of sponge species recorded in each of 232 marine ecoregions of the world extracted from the World Porifera Database (available: www.marinespecies.org/porifera, accessed 2011 Aug 31). The type localities and additional confirmed occurrences in neighboring areas of almost all ‘accepted species’ were entered in one or more of the Marine Ecoregions of the World, but many non-original distribution records in the literature are still to be evaluated and entered. Moreover, many sponge taxa are recorded in the literature undetermined and these are not included in the WPD. Thus, the data presented here are to be considered a conservative or ‘minimal’ estimate of the actual distributional data.
Figure 12
Figure 12. Warm-temperate distribution of the genus Spongia.
All known species of the genus recorded were entered in the relevant Marine Ecoregions of the World , yielding the circumglobal warmer water distribution of this genus. This type of distribution is representative for a large number of sponge genera.
Figure 13
Figure 13. Dendrogram output for hierarchical clustering of 12 Marine Realms.
The method used is group-average linking of Bray-Curtis similarities calculated on presence/absence sponge species data. Four assemblage types are identified at various levels of similarity.
Figure 14
Figure 14. Species richness of regional sponge faunas in western, northern and eastern Australia.
Red circles indicate ‘hotspots’ of high species richness (modified from [127]).

Similar articles

Cited by

References

    1. Bergquist PR. Sponges. London: Hutchinson; 1978. 268
    1. Müller WEG. Sponges (Porifera) Berlin: Springer; 2003. 258
    1. De Goeij JM, Van den Berg H, Van Oostveen MM, Epping EHG, Van Duyl FC. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser. 2008;357:139–151.
    1. Vacelet J, Boury-Esnault N. Carnivorous sponges. Nature. 1995;373(6512):333–335.
    1. De Vos L, Rützler K, Boury-Esnault N, Donadey C, Vacelet J. Atlas of sponge morphology. Atlas de morphologie des éponges. Washington & London: Smithsonian Institution Press; 1991. 117

LinkOut - more resources