Limb-Girdle Muscular Dystrophy Overview – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY
- PMID: 20301582
- Bookshelf ID: NBK1408
Limb-Girdle Muscular Dystrophy Overview – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY
Excerpt
NOTE: THIS PUBLICATION HAS BEEN RETIRED. THIS ARCHIVAL VERSION IS FOR HISTORICAL REFERENCE ONLY, AND THE INFORMATION MAY BE OUT OF DATE.
Clinical characteristics: Limb-girdle muscular dystrophy (LGMD) is a purely descriptive term, generally reserved for childhood- or adult-onset muscular dystrophies that are distinct from the much more common X-linked dystrophinopathies. LGMDs are typically nonsyndromic, with clinical involvement typically limited to skeletal muscle. Individuals with LGMD generally show weakness and wasting restricted to the limb musculature, proximal greater than distal, and muscle degeneration/regeneration on muscle biopsy. Most individuals with LGMD show relative sparing of the bulbar muscles, although exceptions occur, depending on the genetic subtype. Onset, progression, and distribution of the weakness and wasting vary considerably among individuals and genetic subtypes.
Diagnosis/testing: The limb-girdle muscular dystrophies typically show degeneration/regeneration (dystrophic changes) on muscle biopsy, which is usually associated with elevated serum creatine kinase concentration. For any male or female suspected of having limb-girdle muscular dystrophy, it is necessary to first rule out an X-linked dystrophinopathy. Biochemical testing (i.e., protein testing by immunostaining or immunblotting) performed on a muscle biopsy can establish the diagnosis of the following LGMD types: sarcoglycanopathy, calpainopathy, dysferlinopathy, and O-linked glycosylation defects (also known as dystroglycanopathy). In some cases, demonstration of complete or partial deficiencies for any particular protein can then be followed by mutation studies of the corresponding gene. Pathogenic variants in a number of genes have been associated with types of LGMD.
Genetic counseling: The term LGMD1 (including, e.g., LGMD1A, LGMD1B) refers to genetic types showing dominant inheritance, whereas LGMD2 refers to types with autosomal recessive inheritance. Pathogenic variants at more than 50 loci have been reported, making accurate diagnosis and genetic counseling a challenge. In most instances, the proband represents a simplex case, and the families can be counseled for recurrence risks associated with rare autosomal recessive conditions, which leaves a "significant" risk only for the sibs of the proband. If the causative pathogenic variant(s) have been identified in the family, prenatal testing for pregnancies at increased risk is possible.
Management: No definitive treatments for the limb-girdle muscular dystrophies exist. Management should be tailored as much as possible to each individual and each specific LGMD type. Management to prolong survival and improve quality of life includes weight control to avoid obesity, physical therapy and stretching exercises to promote mobility and prevent contractures, use of mechanical aids to help ambulation and mobility, surgical intervention for orthopedic complications, use of respiratory aids when indicated, monitoring for cardiomyopathy in LGMD types with cardiac involvement, and social and emotional support and stimulation.
Copyright © 1993-2025, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.
Sections
Similar articles
-
Congenital Muscular Dystrophy Overview – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY.2001 Jan 22 [updated 2012 Aug 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2001 Jan 22 [updated 2012 Aug 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301468 Free Books & Documents. Review.
-
Calpainopathy.2005 May 10 [updated 2022 Dec 1]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2005 May 10 [updated 2022 Dec 1]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301490 Free Books & Documents. Review.
-
Caveolinopathies – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY.2007 May 14 [updated 2012 Sep 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2007 May 14 [updated 2012 Sep 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301559 Free Books & Documents. Review.
-
Congenital Fiber-Type Disproportion – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY.2007 Jan 12 [updated 2013 Apr 11]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2007 Jan 12 [updated 2013 Apr 11]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301436 Free Books & Documents. Review.
-
Genetics, X-Linked Inheritance.2023 May 1. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2023 May 1. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 32491315 Free Books & Documents.
References
Literature Cited
-
- Amberger J, Bocchini C, Hamosh A. A new face and new challanges for online Mendelian Inheritance in Man (OMIM®). Hum Mutat. 2011;32:564–7. - PubMed
-
- Angelini C, Fanin M, Menegazzo E, Freda MP, Duggan DJ, Hoffman EP. Homozygous alpha-sarcoglycan mutation in two siblings: one asymptomatic and one steroid-responsive mild limb-girdle muscular dystrophy patient. Muscle Nerve. 1998;21:769–75. - PubMed
-
- Balci B, Uyanik G, Dinçer P, Gross C, Willer T, Talim B, Haliloglu G, Kale G, Hehr U, Winkler J, Topaloglu H. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord. 2005;15:271–5. - PubMed
-
- Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 2003;423:168–72. - PubMed
-
- Banwell BL, Russel J, Fukudome T, Shen XM, Stilling G, Engel AG. Myopathy, myasthenic syndrome, and epidermolysis bullosa simplex due to plectin deficiency. J Neuropathol Exp Neurol. 1999;58:832–46. - PubMed
Suggested Reading
-
- Bushby KM. The limb-girdle muscular dystrophies - multiple genes, multiple mechanisms. Hum Mol Genet. 1999;8:1875–82. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous