Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;11(12):937-44.
doi: 10.1038/sj.ejhg.5201072.

X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome

Affiliations

X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome

A Lauren Cason et al. Eur J Hum Genet. 2003 Dec.

Abstract

Polyamines (putrescine, spermidine, spermine) are ubiquitous, simple molecules that interact with a variety of other molecules in the cell, including nucleic acids, phospholipids and proteins. Various studies indicate that polyamines are essential for normal cell growth and differentiation. Furthermore, these molecules, especially spermine, have been shown to modulate ion channel activities of certain cells. Nonetheless, little is known about the specific cellular functions of these compounds, and extensive laboratory investigations have failed to identify a heritable condition in humans in which polyamine synthesis is perturbed. We report the first polyamine deficiency syndrome caused by a defect in spermine synthase (SMS). The defect results from a splice mutation, and is associated with the Snyder-Robinson syndrome (SRS, OMIM_309583), an X-linked mental retardation disorder. The affected males have mild-to-moderate mental retardation (MR), hypotonia, cerebellar circuitry dysfunction, facial asymmetry, thin habitus, osteoporosis, kyphoscoliosis, decreased activity of SMS, correspondingly low levels of intracellular spermine in lymphocytes and fibroblasts, and elevated spermidine/spermine ratios. The clinical features observed in SRS are consistent with cerebellar dysfunction and a defective functioning of red nucleus neurons, which, at least in rats, contain high levels of spermine. Additionally, the presence of MR reflects a role for spermine in cognitive function, possibly by spermine's ability to function as an 'intrinsic gateway' molecule for inward rectifier K(+) channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources