Myoglobinuria, recurrent- MedGen UID:
- 333201
- •Concept ID:
- C1838877
- •
- Finding
Recurring episodes of myoglobinuria, i.e., of the presence of myoglobin in the urine. This is usually a consequence of rhabdomyolysis, i.e., of the destruction of muscle tissue.
Coenzyme Q10 deficiency, primary, 1- MedGen UID:
- 764868
- •Concept ID:
- C3551954
- •
- Disease or Syndrome
Primary CoQ10 deficiency is a rare, clinically heterogeneous autosomal recessive disorder caused by mutation in any of the genes encoding proteins directly involved in the synthesis of coenzyme Q (review by Quinzii and Hirano, 2011). Coenzyme Q10 (CoQ10), or ubiquinone, is a mobile lipophilic electron carrier critical for electron transfer by the mitochondrial inner membrane respiratory chain (Duncan et al., 2009).
The disorder has been associated with 4 major phenotypes, but the molecular basis has not been determined in most patients with the disorder and there are no clear genotype/phenotype correlations. The phenotypes include an encephalomyopathic form with seizures and ataxia (Ogasahara et al., 1989); a multisystem infantile form with encephalopathy, cardiomyopathy and renal failure (Rotig et al., 2000); a predominantly cerebellar form with ataxia and cerebellar atrophy (Lamperti et al., 2003); and Leigh syndrome with growth retardation (van Maldergem et al., 2002). The correct diagnosis is important because some patients may show a favorable response to CoQ10 treatment.
Genetic Heterogeneity of Primary Coenzyme Q10 Deficiency
See also COQ10D2 (614651), caused by mutation in the PDSS1 gene (607429) on chromosome 10p12; COQ10D3 (614652), caused by mutation in the PDSS2 gene (610564) on chromosome 6q21; COQ10D4 (612016), caused by mutation in the COQ8 gene (ADCK3; 606980) on chromosome 1q42; COQ10D5 (614654), caused by mutation in the COQ9 gene (612837) on chromosome 16q21; COQ10D6 (614650), caused by mutation in the COQ6 gene (614647) on chromosome 14q24; COQ10D7 (616276), caused by mutation in the COQ4 gene (612898) on chromosome 9q34; COQ10D8 (616733), caused by mutation in the COQ7 gene (601683) on chromosome 16p13; and COQ10D9 (619028), caused by mutation in the COQ5 gene (616359) on chromosome 12q24.
Secondary CoQ10 deficiency has been reported in association with glutaric aciduria type IIC (MADD; 231680), caused by mutation in the ETFDH gene (231675) on chromosome 4q, and with ataxia-oculomotor apraxia syndrome-1 (AOA1; 208920), caused by mutation in the APTX gene (606350) on chromosome 9p13.
Mitochondrial trifunctional protein deficiency 2- MedGen UID:
- 1841010
- •Concept ID:
- C5830374
- •
- Disease or Syndrome
Long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency and trifunctional protein (TFP) deficiency are caused by impairment of mitochondrial TFP. TFP has three enzymatic activities – long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA dehydrogenase, and long-chain 3-ketoacyl-CoA thiolase. In individuals with LCHAD deficiency, there is isolated deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase, while deficiency of all three enzymes occurs in individuals with TFP deficiency. Individuals with TFP deficiency can present with a severe-to-mild phenotype, while individuals with LCHAD deficiency typically present with a severe-to-intermediate phenotype. Neonates with the severe phenotype present within a few days of birth with hypoglycemia, hepatomegaly, encephalopathy, and often cardiomyopathy. The intermediate phenotype is characterized by hypoketotic hypoglycemia precipitated by infection or fasting in infancy. The mild (late-onset) phenotype is characterized by myopathy and/or neuropathy. Long-term complications include peripheral neuropathy and retinopathy.