Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring
- PMID: 8464127
Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring
Abstract
Objective: To assess the relationship between the GCT repeat number in the myotonic dystrophy gene and the clinical phenotype and examine its predictive utility in prenatal testing.
Design: DNA from patients was examined for the length of the myotonic dystrophy GCT repeat region, using both Southern blot analysis and polymerase chain reaction. The results were compared with the clinical onset of disease, as well as with pregnancy outcomes.
Setting: Patient samples were referred to the Kleberg DNA Diagnostic Laboratory at the Baylor College of Medicine for DNA analysis by geneticists and genetic counselors (84%), neurologists (10%), and obstetricians and other specialists (6%). Clinical features including onset of disease and family pedigrees were determined by the referring centers.
Patients: A total of 241 patient samples from 118 families referred from primarily genetic or neurological centers for genetic linkage analysis or mutation analysis for myotonic dystrophy. This included 44 families referred for prenatal diagnosis.
Main outcome measures: A relationship between myotonic dystrophy disease onset and length of the GCT repeat allele, parental origin of the disease allele, and results of prenatal diagnosis predictions of disease status were measured.
Results: There is a relationship between increasing repeat length and earlier clinical onset of disease. Essentially all (> 99%) myotonic mutations causing myotonic dystrophy are accounted for by GCT repeat amplification. Congenital myotonic dystrophy occurs with as few as 730 GCT repeats but only with alleles of maternal origin. Maternal GCT repeats were found as low as 75 (asymptomatic) that were amplified to result in a child with congenital myotonic dystrophy. Application of DNA diagnosis to 32 pregnancies provided an accurate method for identification of at-risk fetuses and allele enlargement.
Conclusions: The GCT repeat in myotonic dystrophy is highly mutable. The triplet repeat amplification is highly specific for mutations involving the myotonin protein kinase gene accounting for myotonic dystrophy. The quantitation of triplet repeats can be more sensitive than physical, ophthalmologic, and electromyography examinations since the mutation can be detected in patients without evidence of myotonic dystrophy clinical findings. The length of the triplet expansion is influenced by the sex of the transmitting parent and is related to the clinical onset of disease features. Prenatal measurement of the GCT triplet repeat has utility for families with myotonic dystrophy risk since mutant and normal repeats are distinguishable and the length of mutant repeat alleles is associated with clinical severity. Thus, GCT triplet measurement provides a highly accurate means of detecting the myotonic dystrophy mutation in patients and offers a new reproductive option for families at risk for myotonic dystrophy.
Similar articles
-
Molecular analysis of the CTG trinucleotide repeat in South African myotonic dystrophy families--implications for diagnosis and counselling.S Afr Med J. 1995 Nov;85(11):1161-4. S Afr Med J. 1995. PMID: 8597005
-
An unstable triplet repeat in a gene related to myotonic muscular dystrophy.Science. 1992 Mar 6;255(5049):1256-8. doi: 10.1126/science.1546326. Science. 1992. PMID: 1546326
-
Direct diagnosis of myotonic dystrophy with a disease-specific DNA marker.N Engl J Med. 1993 Feb 18;328(7):471-5. doi: 10.1056/NEJM199302183280704. N Engl J Med. 1993. PMID: 8421476
-
Prenatal diagnosis of congenital myotonic dystrophy and counseling of the pregnant mother: case report and literature review.Am J Med Genet. 1998 Jul 7;78(3):250-3. Am J Med Genet. 1998. PMID: 9677060 Review.
-
[DNA diagnosis in myotonic dystrophy].Hokkaido Igaku Zasshi. 1996 Jan;71(1):3-8. Hokkaido Igaku Zasshi. 1996. PMID: 8727368 Review. Japanese.
Cited by
-
Disease burden of myotonic dystrophy type 1.J Neurol. 2019 Apr;266(4):998-1006. doi: 10.1007/s00415-019-09228-w. Epub 2019 Feb 20. J Neurol. 2019. PMID: 30788616 Free PMC article.
-
A low-copy-number Sorghum DNA sequence that detects hypervariable EcoRV fragments.Theor Appl Genet. 1994 Sep;89(1):64-9. doi: 10.1007/BF00226984. Theor Appl Genet. 1994. PMID: 24177771
-
Postzygotic instability of the myotonic dystrophy p[AGC] in repeat supported by larger expansions in muscle and reduced amplifications in sperm.J Neurol. 1995 Jun;242(6):379-83. doi: 10.1007/BF00868393. J Neurol. 1995. PMID: 7561966
-
Modifiers of CAG/CTG Repeat Instability: Insights from Mammalian Models.J Huntingtons Dis. 2021;10(1):123-148. doi: 10.3233/JHD-200426. J Huntingtons Dis. 2021. PMID: 33579861 Free PMC article. Review.
-
Influence of the sex of the transmitting grandparent in congenital myotonic dystrophy.J Med Genet. 1995 Sep;32(9):689-91. doi: 10.1136/jmg.32.9.689. J Med Genet. 1995. PMID: 8544186 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources