Familial Combined Hypolipidemia
- PMID: 37471510
- Bookshelf ID: NBK593236
Familial Combined Hypolipidemia
Excerpt
Clinical characteristics: Familial combined hypolipidemia is not associated with any pathologic signs or symptoms; diagnosis is suggested by low plasma concentrations of lipids. The lipid profile is one of hypocholesterolemia with low plasma low-density lipoprotein (LDL) cholesterol, low plasma high-density lipoprotein (HDL) cholesterol, low plasma triglycerides, and low plasma apolipoprotein (apo) B and apo A-I levels.
Diagnosis/testing: The molecular diagnosis of familial combined hypolipidemia is established in a proband with suggestive laboratory findings and biallelic pathogenic variants in ANGPTL3 identified by molecular genetic testing.
Management: No specific evaluation, management, or surveillance is required for individuals who have familial combined hypolipidemia; however, consultation with a medical geneticist, certified genetic counselor, or certified advanced genetic nurse to inform affected individuals and their families about the nature, mode of inheritance, and lack of specific clinical implications of familial combined hypolipidemia should be considered.
Genetic counseling: Familial combined hypolipidemia is inherited in an autosomal recessive manner. At conception, each sib of a person with FCH has a 25% chance of also having FCH, a 50% chance of being a heterozygous carrier, and a 25% chance of being unaffected and not a carrier. Heterozygotes for ANGPTL3 loss-of-function pathogenic variants have mildly reduced LDL cholesterol and triglyceride levels, and protection against atherosclerotic cardiovascular disease. Carrier testing for at-risk relatives is possible if the pathogenic ANGPTL3 pathogenic variants in the family are known. Prenatal and preimplantation genetic testing are also possible, but given the lack of clinical symptoms in most individuals who have FCH, this is not commonly pursued.
Copyright © 1993-2025, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.
Sections
Similar articles
-
APOB-Related Familial Hypobetalipoproteinemia.2021 May 13 [updated 2021 Sep 9]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2021 May 13 [updated 2021 Sep 9]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 33983694 Free Books & Documents. Review.
-
Adenosine Deaminase Deficiency.2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301656 Free Books & Documents. Review.
-
Citrullinemia Type I.2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301631 Free Books & Documents. Review.
-
Von Willebrand Disease.2009 Jun 4 [updated 2024 Nov 14]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2009 Jun 4 [updated 2024 Nov 14]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301765 Free Books & Documents. Review.
-
Ataxia-Telangiectasia.1999 Mar 19 [updated 2023 Oct 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 1999 Mar 19 [updated 2023 Oct 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301790 Free Books & Documents. Review.
References
-
- Arca M, D'Erasmo L, Minicocci I. Familial combined hypolipidemia: angiopoietin-like protein 3 deficiency. Curr Opin Lipidol. 2020;31:41–8. - PubMed
-
- Balder JW, Rimbert A, Zhang X, Viel M, Kanninga R, van Dijk F, Lansberg P, Sinke R, Kuivenhoven JA. Genetics, lifestyle, and low-density lipoprotein cholesterol in young and apparently healthy women. Circulation. 2018;137:820–31. - PubMed
-
- Blanco-Vaca F, Martin-Campos JM, Beteta-Vicente Á, Canyelles M, Martínez S, Roig R, Farré N, Julve J, Tondo M. Molecular analysis of APOB, SAR1B, ANGPTL3, and MTTP in patients with primary hypocholesterolemia in a clinical laboratory setting: evidence supporting polygenicity in mutation-negative patients. Atherosclerosis. 2019;283:52–60. - PubMed
-
- Bredefeld C, Hussain MM, Averna M, Black DD, Brin MF, Burnett JR, Charrière S, Cuerq C, Davidson NO, Deckelbaum RJ, Goldberg IJ, Granot E, Hegele RA, Ishibashi S, Karmally W, Levy E, Moulin P, Okazaki H, Poinsot P, Rader DJ, Takahashi M, Tarugi P, Traber MG, Di Fillippo M, Peretti N. Guidance for the diagnosis and treatment of hypolipidemia disorders. J Clin Lipidol. 2022;16:797–812. - PubMed
-
- Cefalù AB, Spina R, Noto D, Rabacchi C, Giammanco A, Simone ML, Brucato F, Scrimali C, Gueli-Alletti MG, Barbagallo CM, Tarugi P, Averna MR. Comparison of two polygenic risk scores to identify non-monogenic primary hypocholesterolemias in a large cohort of Italian hypocholesterolemic subjects. J Clin Lipidol. 2022;16:530–7. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous