Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 1;143(1):55-68.
doi: 10.1093/brain/awz379.

MN1 C-terminal truncation syndrome is a novel neurodevelopmental and craniofacial disorder with partial rhombencephalosynapsis

Christopher C Y Mak  1 Dan Doherty  2   3 Angela E Lin  4 Nancy Vegas  5   6 Megan T Cho  7 Géraldine Viot  8 Clémantine Dimartino  5   6 James D Weisfeld-Adams  9 Davor Lessel  10 Shelagh Joss  11 Chumei Li  12 Claudia Gonzaga-Jauregui  13 Yuri A Zarate  14 Nadja Ehmke  15 Denise Horn  15 Caitlin Troyer  16 Sarina G Kant  17 Youngha Lee  18 Gisele E Ishak  3   19 Gordon Leung  1 Amanda Barone Pritchard  20 Sandra Yang  7 Eric G Bend  21   22 Francesca Filippini  5   6 Chelsea Roadhouse  12 Nicolas Lebrun  23 Michele G Mehaffey  2 Pierre-Marie Martin  24   25 Benjamin Apple  9 Francisca Millan  7 Oliver Puk  26 Mariette J V Hoffer  17 Lindsay B Henderson  7 Ruth McGowan  11 Ingrid M Wentzensen  7 Steven Pei  1 Farah R Zahir  27 Mullin Yu  1 William T Gibson  27 Ann Seman  28 Marcie Steeves  4 Jill R Murrell  29 Sabine Luettgen  10 Elizabeth Francisco  30 Tim M Strom  31   32 Louise Amlie-Wolf  33 Angela M Kaindl  34   35 William G Wilson  16 Sara Halbach  36 Lina Basel-Salmon  37   38   39   40 Noa Lev-El  37 Jonas Denecke  41 Lisenka E L M Vissers  42 Kelly Radtke  43 Jamel Chelly  44   45   46 Elaine Zackai  20   47 Jan M Friedman  27 Michael J Bamshad  2   48   49 Deborah A Nickerson  48   49 University of Washington Center for Mendelian GenomicsRussell R Reid  50 Koenraad Devriendt  51 Jong-Hee Chae  52 Elliot Stolerman  21 Carey McDougall  20 Zöe Powis  43 Thierry Bienvenu  23   53 Tiong Y Tan  54 Naama Orenstein  38   39 William B Dobyns  2   3   55 Joseph T Shieh  24   25 Murim Choi  18   52 Darrel Waggoner  36 Karen W Gripp  33 Michael J Parker  56 Joan Stoler  28 Stanislas Lyonnet  5   6   57 Valérie Cormier-Daire  6   57   58 David Viskochil  59 Trevor L Hoffman  60 Jeanne Amiel  5   6   57 Brian H Y Chung  1 Christopher T Gordon  5   6
Affiliations

MN1 C-terminal truncation syndrome is a novel neurodevelopmental and craniofacial disorder with partial rhombencephalosynapsis

Christopher C Y Mak et al. Brain. .

Erratum in

  • Erratum.
    [No authors listed] [No authors listed] Brain. 2020 Mar 1;143(3):e24. doi: 10.1093/brain/awaa007. Brain. 2020. PMID: 32333675 Free PMC article. No abstract available.

Abstract

MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.

Keywords: MCTT syndrome; MN1; craniofacial development; intellectual disability; rhombencephalosynapsis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
MN1 mutations and sequence conservation. (A) Distribution of C-terminal truncating mutations identified in MN1 in 21 probands (red arrows). Beneath the schema of the gene, black arrows indicate the positions of loss-of-function variants in the gnomAD database and p.(Ser179*), p.(Pro365Thrfs*120) and p.(Ser472*) identified in Individuals 24, 25 and 26, respectively. (B) MN1 C-terminal sequence conservation. Multi-species sequence alignment of the entire exon 2 coding region of MN1. Sequences were obtained from the following RefSeq or Ensembl transcripts: human, NM_002430.2; mouse, NM_001081235.1; Xenopus, NM_001100202.1; zebrafish, ENSDART00000129197. Red arrows indicate the positions of the mutations identified in exon 2.
Figure 2
Figure 2
Facial features of individuals with C-terminal truncating mutations in MN1. Oral view for Individuals 18 and 22 indicates high and narrow palate. Individual identification numbers are indicated at the top left of each panel.
Figure 3
Figure 3
3D CT scans indicating craniosynostosis in individuals with C-terminal truncating mutations in MN1. For Individual 5, images show bilateral partial craniosynostosis of squamosal, frontosphenoid and coronal sutures. For Individuals 12 and 18, images show closure of the metopic, coronal and sagittal sutures and partial closure of lambdoid sutures. The images of Individual 18 are subsequent to fronto-orbital advancement surgery and placement of a ventriculoperitoneal shunt.
Figure 4
Figure 4
Brain findings in patients with C-terminal truncating MN1 variants. (A) Inferior cerebellum (axial view): foliar dysplasia with indistinct vermis and abnormal folia crossing the midline (Individuals 2, 14, 17, 20, 21); normal inferior cerebellar anatomy (Individuals 24 and 28). (B) Superior cerebellum (axial view): small (Individuals 17, 20 and 21) or almost absent (Individuals 2 and 14) vermis with abnormal folia crossing the midline especially ventrally; normal superior cerebellar anatomy with intact vermis (Individuals 24 and 28). Arrow in Individual 17 indicates persistent trigeminal artery. (C) Insula (axial view): polymicrogyria interior to yellow bars (Individuals 14, 17, 20 and 21), normal appearance (Individuals 2, 24 and 28). Note that Individual 14 has a cavum velum interpositum (asterisk) and all individuals with C-terminal truncating variants have unusual head shape with bitemporal narrowing. (D) Midline (sagittal view): Tall, flat forehead and thickened rostral corpus callosum (Individuals 2, 14, 17, 20 and 21), abnormal vermis lobulation with indistinct primary and horizontal fissures (Individuals 2, 14, 17, 20 and 21), persistent trigeminal artery (arrow in Individual 14) and prominent posterior clinoid process (arrowheads in Individuals 17 and 20).
Figure 5
Figure 5
Persistent trigeminal artery and prominent posterior clinoid process in patients with C-terminal truncating MN1 variants. (A) Carotid and basilar arteries (axial view): Persistent trigeminal artery flow-voids (dark signal) connecting the carotid (C) and basilar (B) artery flow-voids (arrows). The persistent trigeminal arteries are unilateral in Individuals 11 and 17, and bilateral in Individual 13. Individual 24 with an early truncating variant does not have persistent trigeminal arteries (shown for comparison). (B) Prominent posterior clinoid process (sagittal view): abnormal tissue just superior to the posterior pituitary bright spot and continuous with the posterior clinoid process (arrowheads). Individual 24 without the abnormal tissue is shown for comparison.
Figure 6
Figure 6
Facial features of individuals with N-terminal truncating mutations in MN1 or whole deletions of MN1. Individual identification numbers are indicated at the top left of each panel.

Comment in

Similar articles

Cited by

References

    1. Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol 2016; 17: 241. - PMC - PubMed
    1. Aldinger KA, Dempsey JC, Tully HM,, Grout ME, Mehaffey MG, Dobyns WB, et al.Rhombencephalosynapsis: Fused cerebellum, confused geneticists. Am J Med Genet C Semin Med Genet 2018; 178: 432–9. - PMC - PubMed
    1. Barbi G, Rossier E, Vossbeck S, Hummler H, Lang D, Flock F, et al.Constitutional de novo interstitial deletion of 8 Mb on chromosome 22q12.1-12.3 encompassing the neurofibromatosis type 2 (NF2) locus in a dysmorphic girl with severe malformations. J Med Genet 2002; 39: E6. - PMC - PubMed
    1. Beck M, Peterson JF, McConnell J, McGuire M, Asato M, Losee JE, et al.Craniofacial abnormalities and developmental delay in two families with overlapping 22q12.1 microdeletions involving the MN1 gene. Am J Med Genet A 2015; 167A: 1047–53. - PubMed
    1. Breckpot J, Anderlid B-M, Alanay Y, Blyth M, Brahimi A, Duban-Bedu B, et al.Chromosome 22q12.1 microdeletions: confirmation of the MN1 gene as a candidate gene for cleft palate. Eur J Hum Genet 2016; 24: 51–8. - PMC - PubMed

Publication types

MeSH terms