Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

SLC39A14 Deficiency

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

SLC39A14 Deficiency

Karin Tuschl et al.
Free Books & Documents

Excerpt

Clinical characteristics: SLC39A14 deficiency is typically characterized by evidence of delay or loss of motor developmental milestones (e.g., delayed walking, gait disturbance) between ages six months and three years. Early in the disease course, children show axial hypotonia followed by dystonia, spasticity, dysarthria, bulbar dysfunction, and signs of parkinsonism including bradykinesia, hypomimia, and tremor. By the end of the first decade, they develop severe, generalized, pharmaco-resistant dystonia, limb contractures, and scoliosis, and lose independent ambulation. Cognitive impairment appears to be less prominent than motor disability. Some affected children have died in their first decade due to secondary complications such as respiratory infections. One individual with disease onset during the late teens has been reported, suggesting that milder adult presentation can occur.

Diagnosis/testing: The diagnosis of SLC39A14 deficiency is established in a proband with progressive dystonia-parkinsonism (often combined with other signs such as spasticity and parkinsonian features), characteristic neuroimaging findings, hypermanganesemia, and biallelic pathogenic (or likely pathogenic) variants in SLC39A14 identified on molecular genetic testing.

Management: Treatment of manifestations: Symptomatic treatment includes physiotherapy and orthopedic management to prevent contractures and maintain ambulation; use of adaptive aids (walker or wheelchair) for gait abnormalities; and use of assistive communication devices. Support by a speech-language pathologist, feeding specialist, and nutritionist to assure adequate nutrition and to reduce the risk of aspiration. When an adequate oral diet can no longer be maintained, gastrostomy tube placement should be considered. Antispasticity medications (baclofen and botulinum toxin) and L-dopa have had limited success. While chelation therapy with intravenous administration of disodium calcium edetate early in the disease course shows promise, additional studies are warranted.

Prevention of primary manifestations: Unknown, but disodium calcium edetate chelation therapy shows promise; additional studies are warranted.

Surveillance: At each visit assess growth, swallowing, and diet to assure adequate nutrition; assess development including ambulation and speech; neurologic examination including scoring of movement disorder severity; consider whole-blood manganese levels and brain MRI as available to assess treatment response and disease progression.

Agents/circumstances to avoid:

  1. Environmental manganese exposure (i.e., contaminated drinking water, occupational manganese exposure in welding/mining industries, contaminated ephedrone preparations)

  2. High manganese content of total parenteral nutrition

  3. Foods very high in manganese including: cloves; saffron; nuts; mussels; dark chocolate; pumpkin, sesame, and sunflower seeds

Evaluation of relatives at risk: Molecular genetic testing for the familial SLC39A14 pathogenic variants of apparently asymptomatic younger sibs of an affected individual allows early identification of sibs who would benefit from prompt initiation of treatment and preventive measures.

Genetic counseling: SLC39A14 deficiency is inherited in an autosomal recessive manner. Heterozygotes (carriers) are asymptomatic and are not at risk of developing the disorder. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Once the SLC39A14 pathogenic variants have been identified in an affected family member, carrier testing of at-risk relatives, prenatal testing for a pregnancy at increased risk, and preimplantation genetic testing are possible.

PubMed Disclaimer

Similar articles

  • Hypermanganesemia with Dystonia 1.
    Tuschl K, Clayton PT, Gospe SM Jr, Mills PB. Tuschl K, et al. 2012 Aug 30 [updated 2021 Dec 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2012 Aug 30 [updated 2021 Dec 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 22934317 Free Books & Documents. Review.
  • SLC6A3-Related Dopamine Transporter Deficiency Syndrome.
    Spaull RVV, Kurian MA. Spaull RVV, et al. 2017 Jul 27 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2017 Jul 27 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 28749637 Free Books & Documents. Review.
  • Citrullinemia Type I.
    Quinonez SC, Lee KN. Quinonez SC, et al. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301631 Free Books & Documents. Review.
  • Adenosine Deaminase Deficiency.
    Hershfield M, Tarrant T. Hershfield M, et al. 2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2006 Oct 3 [updated 2024 Mar 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301656 Free Books & Documents. Review.
  • Ataxia-Telangiectasia.
    Veenhuis S, van Os N, Weemaes C, Kamsteeg EJ, Willemsen M. Veenhuis S, et al. 1999 Mar 19 [updated 2023 Oct 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 1999 Mar 19 [updated 2023 Oct 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301790 Free Books & Documents. Review.

References

    1. Alhasan KA, Alshuaibi W, Hamad MH, Salim S, Jamjoom DZ, Alhashim AH, AlGhamdi MA, Kentab AY, Bashiri FA. Hypermanganesemia with dystonia type 2: a potentially treatable neurodegenerative disorder: a case series in a tertiary university hospital. Children (Basel) 2022;9:1335. - PMC - PubMed
    1. Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin HE, Patel N, Hashem M, Ibrahim N, Abdulwahab F, Ewida N, Alsaif HS, Al Sharif H, Alamoudi W, Kentab A, Bashiri FA, Alnaser M, AlWadei AH, Alfadhel M, Eyaid W, Hashem A, Al Asmari A, Saleh MM, AlSaman A, Alhasan KA, Alsughayir M, Al Shammari M, Mahmoud A, Al-Hassnan ZN, Al-Husain M, Osama Khalil R, Abd El Meguid N, Masri A, Ali R, Ben-Omran T, El Fishway P, Hashish A, Ercan Sencicek A, State M, Alazami AM, Salih MA, Altassan N, Arold ST, Abouelhoda M, Wakil SM, Monies D, Shaheen R, Alkuraya FS. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 2017;22:615–24. - PubMed
    1. Chakravarty K, McDonald H, Pullar T, Taggart A, Chalmers R, Oliver S, Mooney J, Somerville M, Bosworth A, Kennedy T. BSR/BHPR guideline for disease-modifying anti-rheumatic drug (DMARD) therapy in consultation with the British Association of Dermatologists. Rheumatology. 2008;47:924–5. - PubMed
    1. Garg D, Yoganathan S, Shamim U, Mankad K, Gulati P, Bonifati V, Botre A, Kalane U, Saini AG, Sankhyan N, Srivastava K, Gowda VK, Juneja M, Kamate M, Padmanabha H, Panigrahi D, Pachapure S, Udani V, Kumar A, Pandey S, Thomas M, Danda S, Iqbalahmed SA, Subramanian A, Pemde H, Singh V, Faruq M, Sharma S. Clinical profile and treatment outcomes of hypermanganesemia with dystonia 1 and 2 among 27 Indian children. Mov Disord Clin Pract. 2022;9:886–99. - PMC - PubMed
    1. Janocha-Litwin J, Marianska K, Serafinska S, Simon K. Manganese encephalopathy among ephedron abusers. J Neuroimaging. 2015;25:832–5. - PubMed

LinkOut - more resources