Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

PURA-Related Neurodevelopmental Disorders

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
.
Affiliations
Free Books & Documents
Review

PURA-Related Neurodevelopmental Disorders

Margot RF Reijnders et al.
Free Books & Documents

Excerpt

Clinical characteristics: PURA-related neurodevelopmental disorders include PURA syndrome, caused by a heterozygous pathogenic sequence variant in PURA, and 5q31.3 deletion syndrome, caused by a genomic 5q31.3 deletion encompassing all or part of PURA. PURA-related neurodevelopmental disorders are characterized by moderate-to-severe neurodevelopmental delay with absence of speech in most and lack of independent ambulation in many. Early-onset issues can include hypotonia, hypothermia, hypersomnolence, feeding difficulties, excessive hiccups, recurrent central and obstructive apneas, epileptic seizures, abnormal nonepileptic movements (dystonia, dyskinesia, and dysconjugate eye movements), and abnormal vision. Congenital heart defects, urogenital malformations, skeletal abnormalities, and endocrine disorders occur, but are less common.

Diagnosis/testing: The diagnosis of a PURA-related neurodevelopmental disorder is established in a proband with either a heterozygous PURA pathogenic sequence variant (90% of affected individuals) or a nonrecurrent deletion of 5q31.3 that encompasses all or part of PURA (10%).

Management: Treatment of manifestations: Ongoing routine care by a multidisciplinary team. Treatment and/or therapy for developmental delays; neurologic findings (hypotonia, seizures, abnormal movements); feeding difficulties; apnea; visual impairment; and malformations of the heart, urogenital tract, and skeleton.

Surveillance: Long-term follow up to assess psychomotor development, seizures or suspected seizures, vision, feeding for dysphagia, and musculoskeletal complications (hip dysplasia and scoliosis).

Genetic counseling: PURA-related neurodevelopmental disorders, caused by either a heterozygous PURA pathogenic sequence variant or a 5q31.3 deletion encompassing all or part of PURA, are inherited in an autosomal dominant manner. In almost all probands with a PURA pathogenic sequence variant the sequence variant is de novo; to date, all reported 5q31.3 deletions have been de novo. For parents of an affected child, the risk to future pregnancies is presumed to be low, as a de novo genetic alteration involving PURA is most likely in the proband. However, parents of an affected child may wish to consider prenatal testing or preimplantation genetic testing, as risk may be greater than in the general population owing to the possibility of parental germline mosaicism (estimated empirically at <1%).

PubMed Disclaimer

Similar articles

  • Phelan-McDermid Syndrome-SHANK3 Related.
    Phelan K, Rogers RC, Boccuto L. Phelan K, et al. 2005 May 11 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2005 May 11 [updated 2024 Jun 6]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301377 Free Books & Documents. Review.
  • SCN3A-Related Neurodevelopmental Disorder.
    Helbig KL, Goldberg EM. Helbig KL, et al. 2021 Jun 3 [updated 2021 Nov 4]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2021 Jun 3 [updated 2021 Nov 4]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 34081427 Free Books & Documents. Review.
  • SATB2-Associated Syndrome.
    Zarate YA, Bosanko K, Fish J. Zarate YA, et al. 2017 Oct 12 [updated 2024 Jun 20]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2017 Oct 12 [updated 2024 Jun 20]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 29023086 Free Books & Documents. Review.
  • SLC6A3-Related Dopamine Transporter Deficiency Syndrome.
    Spaull RVV, Kurian MA. Spaull RVV, et al. 2017 Jul 27 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2017 Jul 27 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 28749637 Free Books & Documents. Review.
  • DDX3X-Related Neurodevelopmental Disorder.
    Johnson-Kerner B, Snijders Blok L, Suit L, Thomas J, Kleefstra T, Sherr EH. Johnson-Kerner B, et al. 2020 Aug 27. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2020 Aug 27. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 32852922 Free Books & Documents. Review.

References

    1. Bonaglia MC, Zanotta N, Giorda R, D'Angelo G, Zucca C. Long-term follow-up of a patient with 5q31.3 microdeletion syndrome and the smallest de novo 5q31.2q31.3 deletion involving PURA. Mol Cytogenet. 2015;8:89. - PMC - PubMed
    1. Brown N, Burgess T, Forbes R, McGillivray G, Kornberg A, Mandelstam S, Starl Z. 5q31.3 Microdeletion syndrome: clinical and molecular characterization of two further cases. Am J Med Genet A. 2013;161A:2604–8. - PubMed
    1. Graebsch A, Roche S, Niessing D. X-ray structure of Pur-alpha reveals a Whirly-like fold and an unusual nucleic-acid binding surface. Proc Natl Acad Sci U S A. 2009;106:18521–6. - PMC - PubMed
    1. Hokkanen S, Feldmann HM, Ding H, Jung CK, Bojarski L, Renner-Müller I, Schüller U, Kretzschmar H, Wolf E, Herms J. Lack of Pur-alpha alters postnatal brain development and causes megalencephaly. Hum Mol Genet. 2012;21:473–84. - PubMed
    1. Hosoki K, Ohta T, Natsume J, Imai S, Okumura A, Matsui T, Harda N, Bacino CA, Scaglia F, Jones JY, Niikawa N, Saitoh S. Clinical phenotype and candidate genes for the 5q31.3 microdeletion syndrome. Am J Med Genet A. 2012;158A:1891–6. - PubMed

LinkOut - more resources