Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Abstract

Background: Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood.

Methods: We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly.

Results: We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein-coupled receptor, was overexpressed in patients' pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone-producing cells.

Conclusions: We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.).

PubMed Disclaimer

Figures

Figure 1
Figure 1. Familial and Sporadic Cases of Gigantism and Male and Female Growth Patterns Due to the Xq26.3 Microduplications
Panel A shows Patient F1C, who has familial gigantism, at the age of 3 years. His growth chart up to 24 months of age shows the rapid acceleration in weight, although the acceleration in height did not begin until after his second birthday (Fig. S4 in the Supplementary Appendix). Panel B shows an unaffected mother and her daughter (Patient S6), who has sporadic gigantism and whose height was 120 cm at the age of 3 years. A growth chart for Patient S4 (Panel C), another girl with sporadic gigantism, illustrates the typical early increase in height and weight seen in patients with Xq26.3 microduplications, starting at the age of 6 months in this child.
Figure 2
Figure 2. Summary of the Genomic Gains on Chromosome Xq26.3
Shown are 10 different Xq26.3 microduplications, as seen on array comparative genomic hybridization, that were found in 12 patients with familial or sporadic gigantism (with the inheritance pattern indicated at right). Duplicated genomic segments (red) and nonduplicated segments (white) are shown. The genomic coordinates are provided at base-pair resolution on the x axis. The two smallest regions of overlap (SRO), SRO1 and SRO2, are identified, showing the genomic contents in the corresponding regions. The symbols next to the gene names represent the structure of the genes, with vertical lines representing exons and horizontal lines (with or without arrows) representing introns. Adapted from the UCSC Genes track in the UCSC Genome Browser.
Figure 3
Figure 3. Imaging and Histopathological Findings in Patients with Xq26.3 Microduplications
Panels A through D show progressive changes from normal pituitary tissue (Panel A) to adenoma (Panel D), as indicated by reticulin staining of the pituitary gland in Patient F1C. In Panel A, normal pituitary gives way to the expanded hyperplastic acini (Panel B), and in Panel C, areas of transformation are evident (circled) with enlarged, hyperplastic, confluent acini that are caused by breakdown of reticulin fibers and that lead to adenoma (Panel D) with disruption of the reticulin fiber network. Increased GPR101 expression was observed in five tested patients with Xq26 microduplications, whereas there is little if any expression in normal pituitary tissue or growth hormone–producing tumors without Xq26.3 microduplications or GPR101 defects (see also Fig. S7 in the Supplementary Appendix); an example is shown here (Panels E through G) from Patient S3. When the staining of growth hormone (Panel E) and the staining of GPR101 (Panel F) are merged, GPR101 seems to be expressed in some of the growth hormone–secreting cells (Panel G, arrows) but not in all such cells. Nuclei (blue) were stained with DAPI. Panel H shows a sagittal view of a macroadenoma on magnetic resonance imaging of Patient S5 with the Xq26.3 microduplication.
Figure 4
Figure 4. Expression of GPR101 in Pituitary Tissue from Children with Xq26.3 Microduplications
The expression of GPR101 in pituitary tissue from children carrying Xq26.3 microduplications was increased by a factor as high as 1000, as compared with the expression in unaffected pituitary tissue (in five samples [NP1 through NP5] obtained on autopsy) and in pituitary tumors from two patients with sporadic acromegaly (GH1 and GH2) who tested negative for the microduplication (Panel A). These findings, which were obtained on quantitative reverse-transcriptase–polymerase-chain-reaction (qRT-PCR) assay and normalized by a housekeeping gene, contrast with those for two other genes, ARHGEF6 (Panel B) and RBMX (Panel C), in the duplicated stretch of DNA; neither of these two genes showed up-regulated expression. Also shown are cell proliferation (Panel D), growth hormone secretion (Panel E), and activation of DNA sequences called cyclic AMP response elements (CRE) (Panel F) in rat GH3 cells transfected with mutant (p.E308D and p.A397K) and nonmutant GPR101 constructs. Values for cells transfected with empty (control) vector were set at 1. Also shown are values for untreated cells (vehicle) and forskolin (which increases CRE activation). Data are expressed as the mean results of three to five independent experiments, each of which was performed in triplicate. The T bars indicate standard deviations. One asterisk denotes P<0.05, two asterisks P<0.01, and three asterisks P<0.001.
Figure 5
Figure 5. Effect of the p.E308D Mutation in GPR101 in 11 Patients with Sporadic Acromegaly
Panel A shows the sequence for GPR101 in growth hormone–producing pituitary tumors obtained from patients with sporadic acromegaly, as compared with normal tissue. Panel B shows results for a patient with a somatic mutation, which was determined by the presence of the mutation in the GPR101 sequence of DNA in the tumor sample but not in the sequence in peripheral-blood mononuclear cells. None of the 13 families with familial isolated pituitary adenomas carried the p.E308D mutation in GPR101. Panel C shows a structural model of GPR101 bearing the p.E308D mutation. Residue A397 is located at the cytosolic end of transmembrane (TM) 6 of GPR101. The mutated D308 residue and the nonmutated A397 residue are shown in space-filling representation and colored according to elements, with carbon atoms in gray, oxygen atoms in red, and nitrogen atoms in blue. The backbone of the receptor and the G protein heterotrimer is schematically represented as a ribbon, with the receptor shown with a spectrum of colors that ranges from red at the N-terminal to purple at the C-terminal; the α, β, and γ subunits of the G protein are in gray, blue, and pink, respectively. The cytosolic ends of TM 5 and TM 6 and intracellular loop (IL) 3, which connects them, are indicated by labels. The blue arrows show directions of the β-sheet domains of the β subunit of the G protein.

Comment in

Similar articles

  • Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study.
    Iacovazzo D, Caswell R, Bunce B, Jose S, Yuan B, Hernández-Ramírez LC, Kapur S, Caimari F, Evanson J, Ferraù F, Dang MN, Gabrovska P, Larkin SJ, Ansorge O, Rodd C, Vance ML, Ramírez-Renteria C, Mercado M, Goldstone AP, Buchfelder M, Burren CP, Gurlek A, Dutta P, Choong CS, Cheetham T, Trivellin G, Stratakis CA, Lopes MB, Grossman AB, Trouillas J, Lupski JR, Ellard S, Sampson JR, Roncaroli F, Korbonits M. Iacovazzo D, et al. Acta Neuropathol Commun. 2016 Jun 1;4(1):56. doi: 10.1186/s40478-016-0328-1. Acta Neuropathol Commun. 2016. PMID: 27245663 Free PMC article.
  • An orphan G-protein-coupled receptor causes human gigantism and/or acromegaly: Molecular biology and clinical correlations.
    Trivellin G, Hernández-Ramírez LC, Swan J, Stratakis CA. Trivellin G, et al. Best Pract Res Clin Endocrinol Metab. 2018 Apr;32(2):125-140. doi: 10.1016/j.beem.2018.02.004. Epub 2018 Mar 17. Best Pract Res Clin Endocrinol Metab. 2018. PMID: 29678281 Review.
  • Gigantism: X-linked acrogigantism and GPR101 mutations.
    Iacovazzo D, Korbonits M. Iacovazzo D, et al. Growth Horm IGF Res. 2016 Oct-Dec;30-31:64-69. doi: 10.1016/j.ghir.2016.09.007. Epub 2016 Sep 29. Growth Horm IGF Res. 2016. PMID: 27743704 Review.
  • Mutations in GPR101 as a potential cause of X-linked acrogigantism and acromegaly.
    Hou ZS, Tao YX. Hou ZS, et al. Prog Mol Biol Transl Sci. 2019;161:47-67. doi: 10.1016/bs.pmbts.2018.10.003. Epub 2018 Nov 23. Prog Mol Biol Transl Sci. 2019. PMID: 30711029 Review.
  • X-linked acrogigantism syndrome: clinical profile and therapeutic responses.
    Beckers A, Lodish MB, Trivellin G, Rostomyan L, Lee M, Faucz FR, Yuan B, Choong CS, Caberg JH, Verrua E, Naves LA, Cheetham TD, Young J, Lysy PA, Petrossians P, Cotterill A, Shah NS, Metzger D, Castermans E, Ambrosio MR, Villa C, Strebkova N, Mazerkina N, Gaillard S, Barra GB, Casulari LA, Neggers SJ, Salvatori R, Jaffrain-Rea ML, Zacharin M, Santamaria BL, Zacharieva S, Lim EM, Mantovani G, Zatelli MC, Collins MT, Bonneville JF, Quezado M, Chittiboina P, Oldfield EH, Bours V, Liu P, W de Herder W, Pellegata N, Lupski JR, Daly AF, Stratakis CA. Beckers A, et al. Endocr Relat Cancer. 2015 Jun;22(3):353-67. doi: 10.1530/ERC-15-0038. Epub 2015 Feb 24. Endocr Relat Cancer. 2015. PMID: 25712922 Free PMC article.

Cited by

  • Oncogene-induced DNA damage: cyclic AMP steps into the ring.
    Fagin JA, Petrini JH. Fagin JA, et al. J Clin Invest. 2020 Nov 2;130(11):5668-5670. doi: 10.1172/JCI142237. J Clin Invest. 2020. PMID: 32986019 Free PMC article.
  • Increased Population Risk of AIP-Related Acromegaly and Gigantism in Ireland.
    Radian S, Diekmann Y, Gabrovska P, Holland B, Bradley L, Wallace H, Stals K, Bussell AM, McGurren K, Cuesta M, Ryan AW, Herincs M, Hernández-Ramírez LC, Holland A, Samuels J, Aflorei ED, Barry S, Dénes J, Pernicova I, Stiles CE, Trivellin G, McCloskey R, Ajzensztejn M, Abid N, Akker SA, Mercado M, Cohen M, Thakker RV, Baldeweg S, Barkan A, Musat M, Levy M, Orme SM, Unterländer M, Burger J, Kumar AV, Ellard S, McPartlin J, McManus R, Linden GJ, Atkinson B, Balding DJ, Agha A, Thompson CJ, Hunter SJ, Thomas MG, Morrison PJ, Korbonits M. Radian S, et al. Hum Mutat. 2017 Jan;38(1):78-85. doi: 10.1002/humu.23121. Epub 2016 Oct 4. Hum Mutat. 2017. PMID: 27650164 Free PMC article.
  • Combined treatment with octreotide LAR and pegvisomant in patients with pituitary gigantism: clinical evaluation and genetic screening.
    Mangupli R, Rostomyan L, Castermans E, Caberg JH, Camperos P, Krivoy J, Cuauro E, Bours V, Daly AF, Beckers A. Mangupli R, et al. Pituitary. 2016 Oct;19(5):507-14. doi: 10.1007/s11102-016-0732-3. Pituitary. 2016. PMID: 27287035
  • Genetic architecture of laterality defects revealed by whole exome sequencing.
    Li AH, Hanchard NA, Azamian M, D'Alessandro LCA, Coban-Akdemir Z, Lopez KN, Hall NJ, Dickerson H, Nicosia A, Fernbach S, Boone PM, Gambin T, Karaca E, Gu S, Yuan B, Jhangiani SN, Doddapaneni H, Hu J, Dinh H, Jayaseelan J, Muzny D, Lalani S, Towbin J, Penny D, Fraser C, Martin J, Lupski JR, Gibbs RA, Boerwinkle E, Ware SM, Belmont JW. Li AH, et al. Eur J Hum Genet. 2019 Apr;27(4):563-573. doi: 10.1038/s41431-018-0307-z. Epub 2019 Jan 8. Eur J Hum Genet. 2019. PMID: 30622330 Free PMC article.
  • GHRH secretion from a pancreatic neuroendocrine tumor causing gigantism in a patient with MEN1.
    Srirangam Nadhamuni V, Iacovazzo D, Evanson J, Sahdev A, Trouillas J, McAndrew L, R Kurzawinski T, Bryant D, Hussain K, Bhattacharya S, Korbonits M. Srirangam Nadhamuni V, et al. Endocrinol Diabetes Metab Case Rep. 2021 Jun 1;2021:20-0208. doi: 10.1530/EDM-20-0208. Online ahead of print. Endocrinol Diabetes Metab Case Rep. 2021. PMID: 34156350 Free PMC article.

References

    1. Veldhuis JD, Iranmanesh A, Erickson E, Roelfsema F, Bowers CY. Lifetime regulation of growth hormone (GH) secretion. In: Fink G, Pfaff DW, Levine JW, editors. Handbook of neuroendocrinology. New York: Academic Press; 2012. pp. 237–55.
    1. Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev. 2013;34:239–77. - PMC - PubMed
    1. Stratakis CA, Tichomirowa MA, Boikos S, et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet. 2010;78:457–63. - PMC - PubMed
    1. Daly AF, Jaffrain-Rea ML, Ciccarelli A, et al. Clinical characterization of familial isolated pituitary adenomas. J Clin Endocrinol Metab. 2006;91:3316–23. - PubMed
    1. Xekouki P, Azevedo M, Stratakis CA. Anterior pituitary adenomas: inherited syndromes, novel genes and molecular pathways. Expert Rev Endocrinol Metab. 2010;5:697–709. - PMC - PubMed

Publication types

Substances