Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 25;315(4):687-97.
doi: 10.1006/jmbi.2001.5277.

The structure of Escherichia coli cytosine deaminase

Affiliations

The structure of Escherichia coli cytosine deaminase

Gregory C Ireton et al. J Mol Biol. .

Abstract

Cytosine deaminase (CD) catalyzes the deamination of cytosine, producing uracil. This enzyme is present in prokaryotes and fungi (but not multicellular eukaryotes) and is an important member of the pyrimidine salvage pathway in those organisms. The same enzyme also catalyzes the conversion of 5-fluorocytosine to 5-fluorouracil; this activity allows the formation of a cytotoxic chemotherapeutic agent from a non-cytotoxic precursor. The enzyme is of widespread interest both for antimicrobial drug design and for gene therapy applications against tumors. The structure of Escherichia coli CD has been determined in the presence and absence of a bound mechanism-based inhibitor. The enzyme forms an (alphabeta)(8) barrel structure with structural similarity to adenosine deaminase, a relationship that is undetectable at the sequence level, and no similarity to bacterial cytidine deaminase. The enzyme is packed into a hexameric assembly stabilized by a unique domain-swapping interaction between enzyme subunits. The active site is located in the mouth of the enzyme barrel and contains a bound iron ion that coordinates a hydroxyl nucleophile. Substrate binding involves a significant conformational change that sequesters the reaction complex from solvent.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources