Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;70(4):301-9.
doi: 10.1006/mgme.2000.3029.

Human acid ceramidase gene: novel mutations in Farber disease

Affiliations

Human acid ceramidase gene: novel mutations in Farber disease

Z Zhang et al. Mol Genet Metab. 2000 Aug.

Abstract

Farber disease is an autosomal recessive disorder caused by lysosomal acid ceramidase (AC) deficiency. It commonly manifests during the first few months after birth with a unique triad of painful and progressive deformed joints, subcutaneous nodules, and progressive hoarseness. In order to understand the molecular mechanism(s) of pathogenesis of Farber disease, we isolated and characterized a full-length human AC gene, mapped its chromosomal location, determined the tissue-specific expression, and analyzed mutations in Farber disease patients. We also studied the AC-mRNA expression in gastrointestinal tumors and adjoining normal tissues. In addition, we determined the pattern of tissue-specific AC-mRNA expression in the adult mouse and during fetal development. Our results show that human AC gene consists of 14 exons and 13 introns spanning approximately 26.5 kb of genomic DNA. It is mapped to human chromosome 8p22-21.2, a region often disrupted in several cancers. The AC-mRNA is expressed in the mouse fetus from the seventh day of gestation. Interestingly, while the AC-mRNA is expressed in all segments of the normal gastrointestinal tract, none of the gastrointestinal tumor tissues had any AC-mRNA expression. We also uncovered four novel mutations in Farber disease patients that were not previously reported. Taken together, our results not only attest to the physiological importance of AC but also uncover several new mutations in Farber disease that may advance our knowledge towards establishing a genotype-phenotype correlation in this disease.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources