U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Tachypnea

MedGen UID:
66669
Concept ID:
C0231835
Finding; Finding
Synonym: Tachypneas
SNOMED CT: Tachypneic (271823003); Tachypnea (271823003); Rapid respiration (271823003); Rapid breathing (271823003)
 
HPO: HP:0002789

Definition

Very rapid breathing. [from HPO]

Conditions with this feature

Biotinidase deficiency
MedGen UID:
66323
Concept ID:
C0220754
Disease or Syndrome
Multiple carboxylase deficiency (MCD) is an autosomal recessive metabolic disorder characterized primarily by cutaneous and neurologic abnormalities. Symptoms result from the patient's inability to reutilize biotin, a necessary nutrient. Sweetman (1981) recognized that multiple carboxylase deficiency could be classified into early (see 253270) and late forms. The early form showed higher urinary excretion of 3-hydroxyisovaleric acid and 3-hydroxypropionic acid than the late form and was associated with normal plasma biotin concentrations. Sweetman (1981) proposed a defect in holocarboxylase synthetase and intestinal biotin absorption, respectively. Some patients with biotinidase deficiency present in infancy (Baumgartner et al., 1985; Kalayci et al., 1994), and some individuals with this deficiency are asymptomatic (Wolf et al., 1997).
Desquamative interstitial pneumonia
MedGen UID:
65962
Concept ID:
C0238378
Disease or Syndrome
Interstitial lung disease (ILD), or pneumonitis, is a heterogeneous group of disorders characterized pathologically by expansion of the interstitial compartment of the lung by inflammatory cells. Fibrosis occurs in many cases (Visscher and Myers, 2006). See also interstitial lung disease-1 (ILD1; 619611). Desquamative interstitial pneumonitis (DIP) was originally described as a pathologic entity by Liebow et al. (1965). Lung biopsy shows diffuse and uniform filling of alveoli by clusters of cells which Liebow et al. (1965) speculated to be 'desquamated pneumocytes.' Since then, these cells have been shown primarily to be pigmented alveolar macrophages. Other features include thickened alveolar septa with an infiltrate of inflammatory cells and plump, cuboidal type II pneumocytes. Mild collagen deposition without architectural distortion or honeycombing may be present. Different forms of ILD represent pathologic classifications based on histologic patterns rather than clinical diagnoses and may occur in a variety of clinical contexts (Visscher and Myers, 2006). Although DIP occurs most often as a sporadic disorder in adults during the third to fifth decade of life and is highly associated with smoking (Carrington et al., 1978), reports of a familial form with onset in infancy and early death suggest a genetic basis (Sharief et al., 1994). Cases of DIP reported in infants are often more severe and refractory to treatment than those reported in adults (Nogee et al., 2001).
Hyperammonemia, type III
MedGen UID:
120649
Concept ID:
C0268543
Disease or Syndrome
N-acetylglutamate synthase deficiency (NAGSD) is an autosomal recessive disorder of the urea cycle. The clinical and biochemical features of the disorder are indistinguishable from carbamoyl phosphate synthase I deficiency (237300), since the CPS1 enzyme (608307) has an absolute requirement for NAGS (Caldovic et al., 2007).
Propionic acidemia
MedGen UID:
75694
Concept ID:
C0268579
Disease or Syndrome
The spectrum of propionic acidemia (PA) ranges from neonatal onset to late-onset disease. Neonatal-onset PA, the most common form, is characterized by a healthy newborn with poor feeding and decreased arousal in the first few days of life, followed by progressive encephalopathy of unexplained origin. Without prompt diagnosis (often through newborn screening) and management, this is followed by progressive encephalopathy manifesting as lethargy, seizures, or coma that can result in death. It is frequently accompanied by metabolic acidosis with anion gap, lactic acidosis, ketonuria, hypoglycemia, hyperammonemia, and cytopenias. Individuals with late-onset PA may remain asymptomatic and suffer a metabolic crisis under catabolic stress (e.g., illness, surgery, fasting) or may experience a more insidious onset with the development of multiorgan complications including vomiting, protein intolerance, failure to thrive, hypotonia, developmental delays or regression, movement disorders, or cardiomyopathy. Isolated cardiomyopathy can be observed on rare occasions in the absence of clinical metabolic decompensation or neurocognitive deficits. Manifestations of neonatal-onset and late-onset PA over time can include growth impairment, intellectual disability, seizures, basal ganglia lesions, pancreatitis, cardiomyopathy, and chronic kidney disease. Other rarely reported complications include optic atrophy, sensorineural hearing loss, and premature ovarian insufficiency.
Holocarboxylase synthetase deficiency
MedGen UID:
120653
Concept ID:
C0268581
Disease or Syndrome
Holocarboxylase synthetase deficiency, a biotin-responsive multiple carboxylase deficiency (MCD), is characterized by metabolic acidosis, lethargy, hypotonia, convulsions, and dermatitis. Most patients present in the newborn or early infantile period, but some become symptomatic in the later infantile period (summary by Suzuki et al., 2005). Also see biotinidase deficiency (253260), another form of MCD with a later onset. Care must be taken to differentiate the inherited multiple carboxylase deficiencies from acquired biotin deficiencies, such as those that develop after excessive dietary intake of avidin, an egg-white glycoprotein that binds specifically and essentially irreversibly to biotin (Sweetman et al., 1981) or prolonged parenteral alimentation without supplemental biotin (Mock et al., 1981).
Familial methionine malabsorption
MedGen UID:
78693
Concept ID:
C0268622
Disease or Syndrome
Succinyl-CoA acetoacetate transferase deficiency
MedGen UID:
137979
Concept ID:
C0342792
Disease or Syndrome
Ketone bodies are major vectors of energy transfer from the liver to extrahepatic tissues and are the main source of lipid-derived energy for the brain. Mitchell et al. (1995) reviewed medical aspects of ketone body metabolism, including the differential diagnosis of abnormalities. As the first step of ketone body utilization, succinyl-CoA:3-oxoacid CoA transferase (SCOT, or OXCT1; EC 2.8.3.5) catalyzes the reversible transfer of CoA from succinyl-CoA to acetoacetate.
Anti-glomerular basement membrane disease
MedGen UID:
140788
Concept ID:
C0403529
Disease or Syndrome
Goodpasture syndrome, also known as anti-GBM disease, is a rare autoimmune disease consisting of alveolar hemorrhage and glomerulonephritis secondary to circulating antiglomerular basement membrane (anti-GBM) antibodies. Anti-GBM antibodies are directed against an antigen intrinsic to the alpha-3 chain of type IV collagen (COL4A3; 120070) that is expressed in the GBMs of the glomerular capillary loops and the basal membrane of the pulmonary alveoli. Goodpasture syndrome is suspected in patients with hemoptysis and hematuria and is confirmed by the presence of anti-GBM antibodies in renal biopsy specimens and serum. Patients with human leukocyte antigen HLA-DR15 and HLA-DR4 are susceptible to the development of Goodpasture syndrome. Reported cases of familial Goodpasture syndrome are extremely rare (summary by Angioi et al., 2017).
Neonatal severe primary hyperparathyroidism
MedGen UID:
331326
Concept ID:
C1832615
Disease or Syndrome
Neonatal severe hyperparathyroidism usually manifests in the first 6 months of life with severe hypercalcemia, bone demineralization, and failure to thrive. Early diagnosis is critical because untreated NSHPT can be a devastating neurodevelopmental disorder, which in some cases is lethal without parathyroidectomy. Some infants have milder hyperparathyroidism and a substantially milder clinical presentation and natural history (summary by Egbuna and Brown, 2008).
Joubert syndrome with oculorenal defect
MedGen UID:
340930
Concept ID:
C1855675
Disease or Syndrome
Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen.
Congenital lactic acidosis, Saguenay-Lac-Saint-Jean type
MedGen UID:
387801
Concept ID:
C1857355
Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 5 (MC4DN5) is an autosomal recessive severe metabolic multisystemic disorder with onset in infancy. Features include delayed psychomotor development, impaired intellectual development with speech delay, mild dysmorphic facial features, hypotonia, ataxia, and seizures. There is increased serum lactate and episodic hypoglycemia. Some patients may have cardiomyopathy, abnormal breathing, or liver abnormalities, reflecting systemic involvement. Brain imaging shows lesions in the brainstem and basal ganglia, consistent with a diagnosis of Leigh syndrome (see 256000). Affected individuals tend to have episodic metabolic and/or neurologic crises in early childhood, which often lead to early death (summary by Debray et al., 2011). For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.
Autosomal recessive distal spinal muscular atrophy 1
MedGen UID:
388083
Concept ID:
C1858517
Disease or Syndrome
Autosomal recessive distal hereditary motor neuronopathy-1 (HMNR1) is characterized by distal and proximal muscle weakness and diaphragmatic palsy that leads to respiratory distress. Without intervention, most infants with the severe form of the disease die before 2 years of age. Affected individuals present in infancy with inspiratory stridor, weak cry, recurrent bronchopneumonia, and swallowing difficulties. The disorder is caused by distal and progressive motor neuronopathy resulting in muscle weakness (summary by Perego et al., 2020). Genetic Heterogeneity of Autosomal Recessive Distal Hereditary Motor Neuronopathy See also HMNR2 (605726), caused by mutation in the SIGMAR1 gene (601978); HMNR3 (607088) (encompassing Harding HMN types III and IV), which maps to chromosome 11q13; HMNR4 (611067), caused by mutation in the PLEKHG5 gene (611101); HMNR5 (614881), caused by mutation in the DNAJB2 gene (604139); HMNR6 (620011), caused by mutation in the REEP1 gene (609139); HMNR7 (619216), caused by mutation in the VWA1 gene (611901); HMNR8 (618912), caused by mutation in the SORD gene (182500); HMNR9 (620402), caused by mutation in the COQ7 gene (601683); HMNR10 (620542), caused by mutation in the VRK1 gene (602168); and HMNR11 (620854), caused by mutation in the RTN2 gene (603183).
Respiratory distress syndrome in premature infants
MedGen UID:
368840
Concept ID:
C1968593
Disease or Syndrome
The main cause of respiratory distress syndrome (RDS) in premature infants is a developmental deficiency of pulmonary surfactant. The frequency of RDS is inversely proportional to gestational age. However, not all infants born prematurely develop RDS, suggesting that there may be susceptibility factors. Because multiple factors can contribute to the pathogenesis of RDS specifically in premature infants, the etiology is considered to be multifactorial (summaries by Ramet et al., 2000; Clark and Clark, 2005). Pathogenic germline mutations in several genes involved in surfactant metabolism, including SFTPB (178640) and SFTPC (178620), can cause clinical features of respiratory distress syndrome in term neonates, children, and adults, disorders referred to as 'surfactant metabolism dysfunction' (see, e.g., SMDP1, 265120). Susceptibility to the development of RDS in premature infants may be associated with polymorphisms in surfactant genes, such as surfactant protein A1 (SFTPA1; 178630), SFTPB, and SFTPC (see MOLECULAR GENETICS).
Surfactant metabolism dysfunction, pulmonary, 1
MedGen UID:
368844
Concept ID:
C1968602
Disease or Syndrome
Inborn errors of pulmonary surfactant metabolism are genetically heterogeneous disorders resulting in severe respiratory insufficiency or failure in full-term neonates or infants. These disorders are associated with various pathologic entities, including pulmonary alveolar proteinosis (PAP), desquamative interstitial pneumonitis (DIP), or cellular nonspecific interstitial pneumonitis (NSIP) (Clark and Clark, 2005). A clinically similar disorder characterized by respiratory distress (267450) can affect preterm infants, who show developmental deficiency of surfactant. Acquired PAP (610910) is an autoimmune disorder characterized by the presence of autoantibodies to CSF2 (138960). Genetic Heterogeneity of Pulmonary Surfactant Metabolism Dysfunction See also SMDP2 (610913), caused by mutation in the SPTPC gene (178620) on 8p21; SMDP3 (610921), caused by mutation in the ABCA3 gene (601615) on 16p13; SMDP4 (300770), caused by mutation in the CSF2RA gene (306250) on Xp22; and SMDP5 (614370), caused by mutation in the CSF2RB gene (138981) on 22q12.
Joubert syndrome 7
MedGen UID:
369401
Concept ID:
C1969053
Disease or Syndrome
Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen.
Brain-lung-thyroid syndrome
MedGen UID:
369694
Concept ID:
C1970269
Disease or Syndrome
NKX2-1-related disorders range from benign hereditary chorea (BHC) to choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress syndrome (also known as brain-lung-thyroid syndrome). Childhood-onset chorea, the hallmark feature of NKX2-1-related disorders, may or may not be associated with pulmonary disease or congenital hypothyroidism. Age of onset of chorea varies from early infancy (most commonly) to late childhood or adolescence and may progress into the second decade, after which it remains static or (rarely) remits. Pulmonary disease, the second most common manifestation, can include respiratory distress syndrome in neonates, interstitial lung disease in young children, and pulmonary fibrosis in older individuals. The risk for pulmonary carcinoma is increased in young adults with NKX2-1-related disorders. Thyroid dysfunction, occurring as a result of thyroid dysgenesis, can present as congenital or compensated hypothyroidism. In one review, 50% of affected individuals had the full brain-lung-thyroid syndrome, 30% had brain and thyroid involvement only, and 13% had chorea only.
Interstitial lung disease due to ABCA3 deficiency
MedGen UID:
410074
Concept ID:
C1970456
Disease or Syndrome
For a general phenotypic description and a discussion of genetic heterogeneity of pulmonary surfactant metabolism dysfunction, see SMDP1 (265120).
Surfactant metabolism dysfunction, pulmonary, 2
MedGen UID:
410078
Concept ID:
C1970470
Disease or Syndrome
Pulmonary surfactant metabolism dysfunction-2 (SMDP2) is a rare autosomal dominant disease associated with progressive respiratory insufficiency and lung disease with a variable clinical course. The pathophysiology of the disorder is postulated to involve intracellular accumulation of a structurally defective SPC protein (Thomas et al., 2002). For a general phenotypic description and a discussion of genetic heterogeneity of pulmonary surfactant metabolism dysfunction, see SMDP1 (265120).
Surfactant metabolism dysfunction, pulmonary, 4
MedGen UID:
393858
Concept ID:
C2677877
Disease or Syndrome
Pulmonary alveolar proteinosis (PAP) is a rare lung disorder in which surfactant-derived lipoproteins accumulate excessively within pulmonary alveoli, causing severe respiratory distress. Three forms of PAP have been described: hereditary (usually congenital), secondary, and acquired. Hereditary PAP is associated with mutations in the CSF2RA gene or in genes encoding surfactant proteins. Secondary PAP develops in conditions in which there are reduced numbers or functional impairment of alveolar macrophages and is associated with inhalation of inorganic dust (silica) or toxic fumes, hematologic malignancies, pharmacologic immunosuppression, infections, and impaired CSF2RB (138960) expression. Acquired PAP (610910), the most common form, usually occurs in adults and is caused by neutralizing autoantibodies to CSF2 (138960) (Martinez-Moczygemba et al., 2008). For a general phenotypic description and a discussion of genetic heterogeneity of congenital pulmonary surfactant metabolism dysfunction, see SMDP1 (265120).
Autosomal recessive spondylometaphyseal dysplasia, Megarbane type
MedGen UID:
413221
Concept ID:
C2750075
Disease or Syndrome
Autosomal recessive spondylometaphyseal dysplasia, Mégarbané type is a rare, primary bone dysplasia characterized by intrauterine growth retardation, pre- and postnatal disproportionate short stature with short, rhizomelic limbs, facial dysmorphism, a short neck and small thorax. Hypotonia, cardiomegaly and global developmental delay have also been associated. Several radiographic findings have been reported, including ribs with cupped ends, platyspondyly, square iliac bones, horizontal and trident acetabula, hypoplastic ischia, and delayed epiphyseal ossification.
Multisystemic smooth muscle dysfunction syndrome
MedGen UID:
462551
Concept ID:
C3151201
Disease or Syndrome
Smooth muscle dysfunction syndrome (SMDYS) presents with a recognizable pattern of complications, including congenital mydriasis, patent ductus arteriosus (PDA), pulmonary artery hypertension, aortic and other arterial aneurysms, moyamoya-like cerebrovascular disease, intestinal hypoperistalsis and malrotation, and hypotonic bladder. It is caused by heterozygous mutations of the ACTA2 gene altering the arginine-179 codon (summary by Regalado et al., 2018).
Multiple mitochondrial dysfunctions syndrome 2
MedGen UID:
482008
Concept ID:
C3280378
Disease or Syndrome
Multiple mitochondrial dysfunctions syndrome-2 (MMDS2) with hyperglycinemia is a severe autosomal recessive disorder characterized by developmental regression in infancy. Affected children have an encephalopathic disease course with seizures, spasticity, loss of head control, and abnormal movement. Additional more variable features include optic atrophy, cardiomyopathy, and leukodystrophy. Laboratory studies show increased serum glycine and lactate. Most patients die in childhood. The disorder represents a form of 'variant' nonketotic hyperglycinemia and is distinct from classic nonketotic hyperglycinemia (NKH, or GCE; 605899), which is characterized by significantly increased CSF glycine. Several forms of 'variant' NKH, including MMDS2, appear to result from defects of mitochondrial lipoate biosynthesis (summary by Baker et al., 2014). For a general description and a discussion of genetic heterogeneity of multiple mitochondrial dysfunctions syndrome, see MMDS1 (605711).
Methylmalonic acidemia with homocystinuria, type cblJ
MedGen UID:
766829
Concept ID:
C3553915
Disease or Syndrome
Combined methylmalonic aciduria (MMA) and homocystinuria is a genetically heterogeneous metabolic disorder of cobalamin (cbl; vitamin B12) metabolism, which is essential for hematologic and neurologic function. Biochemically, the defect causes decreased levels of the coenzymes adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl), which results in decreased activity of the respective enzymes methylmalonyl-CoA mutase (MUT; 609058) and methyltetrahydrofolate:homocysteine methyltransferase, also known as methionine synthase (MTR; 156570). The cblJ type is phenotypically and biochemically similar to the cblF type (MAHCF; 277380) (summary by Coelho et al., 2012).
Hyperammonemic encephalopathy due to carbonic anhydrase VA deficiency
MedGen UID:
816734
Concept ID:
C3810404
Disease or Syndrome
Most children with carbonic anhydrase VA (CA-VA) deficiency reported to date have presented between day 2 of life and early childhood (up to age 20 months) with hyperammonemic encephalopathy (i.e., lethargy, feeding intolerance, weight loss, tachypnea, seizures, and coma). Given that fewer than 20 affected individuals have been reported to date, the ranges of initial presentations and long-term prognoses are not completely understood. As of 2021 the oldest known affected individual is an adolescent. Almost all affected individuals reported to date have shown normal psychomotor development and no further episodes of metabolic crisis; however, a few have shown mild learning difficulties or delayed motor skills.
Very long chain acyl-CoA dehydrogenase deficiency
MedGen UID:
854382
Concept ID:
C3887523
Disease or Syndrome
Deficiency of very long-chain acyl-coenzyme A dehydrogenase (VLCAD), which catalyzes the initial step of mitochondrial beta-oxidation of long-chain fatty acids with a chain length of 14 to 20 carbons, is associated with three phenotypes. The severe early-onset cardiac and multiorgan failure form typically presents in the first months of life with hypertrophic or dilated cardiomyopathy, pericardial effusion, and arrhythmias, as well as hypotonia, hepatomegaly, and intermittent hypoglycemia. The hepatic or hypoketotic hypoglycemic form typically presents during early childhood with hypoketotic hypoglycemia and hepatomegaly, but without cardiomyopathy. The later-onset episodic myopathic form presents with intermittent rhabdomyolysis provoked by exercise, muscle cramps and/or pain, and/or exercise intolerance. Hypoglycemia typically is not present at the time of symptoms.
Mitochondrial complex III deficiency nuclear type 8
MedGen UID:
862877
Concept ID:
C4014440
Disease or Syndrome
Mitochondrial complex III deficiency, nuclear type 8, is an autosomal recessive disorder characterized by progressive neurodegeneration with onset in childhood. Affected individuals may have normal or delayed early development, and often have episodic acute neurologic decompensation and regression associated with febrile illnesses. The developmental regression results in variable intellectual disability and motor deficits, such as hypotonia, axial hypertonia, and spasticity; some patients may lose the ability to walk independently. Laboratory studies show increased serum lactate and isolated deficiency of mitochondrial complex III in skeletal muscle and fibroblasts. Brain imaging shows a characteristic pattern of multifocal small cystic lesions in the periventricular and deep cerebral white matter (summary by Dallabona et al., 2016). For a discussion of genetic heterogeneity of mitochondrial complex III deficiency, see MC3DN1 (124000).
STING-associated vasculopathy with onset in infancy
MedGen UID:
863159
Concept ID:
C4014722
Disease or Syndrome
STING-associated vasculopathy with onset in infancy is an autoinflammatory vasculopathy causing severe skin lesions, particularly affecting the face, ears, nose, and digits, and resulting in ulceration, eschar formation, necrosis, and, in some cases, amputation. Many patients have interstitial lung disease. Tissue biopsy and laboratory findings show a hyperinflammatory state, with evidence of increased beta-interferon (IFNB1; 147640) signaling (summary by Liu et al., 2014).
Joubert syndrome 23
MedGen UID:
900119
Concept ID:
C4084822
Disease or Syndrome
Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen.
Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 4
MedGen UID:
905398
Concept ID:
C4225304
Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 13 (MC4DN13) is an autosomal recessive metabolic disorder characterized by the onset of hypertrophic cardiomyopathy soon after birth. Affected individuals have hypotonia, weakness, and failure to thrive, resulting in death in infancy. Laboratory studies show increased serum lactate and decreased levels and activity of mitochondrial respiratory complex IV (summary by Baertling et al., 2015). For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.
Joubert syndrome 30
MedGen UID:
1613861
Concept ID:
C4539937
Disease or Syndrome
Fibrosis, neurodegeneration, and cerebral angiomatosis
MedGen UID:
1648312
Concept ID:
C4748939
Disease or Syndrome
Fibrosis, neurodegeneration, and cerebral angiomatosis (FINCA) is characterized by severe progressive cerebropulmonary symptoms, resulting in death in infancy from respiratory failure. Features include malabsorption, progressive growth failure, recurrent infections, chronic hemolytic anemia, and transient liver dysfunction. Neuropathology shows increased angiomatosis-like leptomeningeal, cortical, and superficial white matter vascularization and congestion, vacuolar degeneration and myelin loss in white matter, as well as neuronal degeneration. Interstitial fibrosis and granuloma-like lesions are seen in the lungs, and there is hepatomegaly with steatosis and collagen accumulation (Uusimaa et al., 2018).
Autoimmune interstitial lung disease-arthritis syndrome
MedGen UID:
1800821
Concept ID:
C5243948
Disease or Syndrome
Systemic autoinflammation and autoimmunity with immune dysregulation (AIAISD) is an autosomal dominant systemic autoinflammatory disorder with autoimmunity and immune dysregulation. Affected individuals present in the first decade of life with variable features that may include interstitial lung disease, alveolar hemorrhage, inflammatory arthritis, neuromyelitis optica, livedo reticularis, dysautonomia, recurrent infections, and renal disease. Laboratory studies usually show high-titer autoantibodies and features of inflammation, including a type I interferon (e.g., 147660) signature and elevation of inflammatory cytokines. The disorder shows significant incomplete penetrance; most carrier parents are unaffected (summary by Watkin et al., 2015; Delafontaine et al., 2024).
Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 1
MedGen UID:
1748867
Concept ID:
C5399977
Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 2 (MC4DN2) is an autosomal recessive multisystem metabolic disorder characterized by the onset of symptoms at birth or in the first weeks or months of life. Affected individuals have severe hypotonia, often associated with feeding difficulties and respiratory insufficiency necessitating tube feeding and mechanical ventilation. The vast majority of patients develop hypertrophic cardiomyopathy in the first days or weeks of life, which usually leads to death in infancy or early childhood. Patients also show neurologic abnormalities, including developmental delay, nystagmus, fasciculations, dystonia, EEG changes, and brain imaging abnormalities compatible with a diagnosis of Leigh syndrome (see 256000). There may also be evidence of systemic involvement with hepatomegaly and myopathy, although neurogenic muscle atrophy is more common and may resemble spinal muscular atrophy type I (SMA1; 253300). Serum lactate is increased, and laboratory studies show decreased mitochondrial complex IV protein and activity levels in various tissues, including heart and skeletal muscle. Most patients die in infancy of cardiorespiratory failure (summary by Papadopoulou et al., 1999). For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.
Rajab interstitial lung disease with brain calcifications 1
MedGen UID:
1750003
Concept ID:
C5436276
Disease or Syndrome
Rajab interstitial lung disease with brain calcifications-1 (RILDBC1) is an autosomal recessive multisystem disorder with a highly variable phenotype. Most patients present in infancy or early childhood with poor growth and interstitial lung disease, which may lead to death. Some may also have liver, skeletal, and renal abnormalities, and most have intracranial calcifications on brain imaging. Some may have early impaired motor development, but most have normal cognitive development (summary by Xu et al., 2018). Genetic Heterogeneity of Rajab Interstitial Lung Disease with Brain Calcifications Also see Rajab interstitial disease with brain calcifications-2 (RILDBC2; 619013), caused by mutation in the FARSA gene (602918).
Hypermetabolism due to uncoupled mitochondrial oxidative phosphorylation 2
MedGen UID:
1824010
Concept ID:
C5774237
Disease or Syndrome
Hypermetabolism due to uncoupled mitochondrial oxidative phosphorylation-2 (HUMOP2) is characterized by failure to thrive apparent in infancy despite adequate caloric intake. Affected individuals show normal thyroid function, hyperphagia, tachypnea, increased basal temperature, and increased sweating. Biochemical studies demonstrate increased mitochondrial oxygen consumption with inefficient production of ATP in the final steps of oxidative phosphorylation due to an uncoupling defect (Ganetzky et al., 2022). Genetic Heterogeneity of Hypermetabolism due to Uncoupled Mitochondrial Oxidative Phosphorylation See also HUMOP1 (238800).
Cardiomyopathy, dilated, 2H
MedGen UID:
1824069
Concept ID:
C5774296
Disease or Syndrome
CMD2H is an autosomal recessive disorder characterized by rapidly progressive dilated cardiomyopathy and death in early infancy (Verhagen et al., 2019). For a general phenotypic description and a discussion of genetic heterogeneity of dilated cardiomyopathy, see 115200.

Professional guidelines

PubMed

Mokrá D
Physiol Res 2020 Dec 31;69(Suppl 3):S353-S366. doi: 10.33549/physiolres.934602. PMID: 33464919Free PMC Article
Saguil A, Fargo MV
Am Fam Physician 2020 Jun 15;101(12):730-738. PMID: 32538594
Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC
JAMA 2016 Feb 23;315(8):762-74. doi: 10.1001/jama.2016.0288. PMID: 26903335Free PMC Article

Recent clinical studies

Etiology

Ulanovsky I, Smolkin T, Almashanu S, Mashiach T, Makhoul IR
J Pediatr 2016 Dec;179:266-268.e1. Epub 2016 Sep 19 doi: 10.1016/j.jpeds.2016.08.061. PMID: 27659026
Reuter S, Moser C, Baack M
Pediatr Rev 2014 Oct;35(10):417-28; quiz 429. doi: 10.1542/pir.35-10-417. PMID: 25274969Free PMC Article
Raju TN
Semin Fetal Neonatal Med 2012 Jun;17(3):126-31. Epub 2012 Feb 7 doi: 10.1016/j.siny.2012.01.010. PMID: 22317884
Yurdakök M
J Matern Fetal Neonatal Med 2010 Oct;23 Suppl 3:24-6. doi: 10.3109/14767058.2010.507971. PMID: 20807157
Balk RA, Bone RC
Crit Care Clin 1989 Jan;5(1):1-8. PMID: 2647221

Diagnosis

Smith DK, Kuckel DP, Recidoro AM
Am Fam Physician 2021 Dec 1;104(6):618-625. PMID: 34913645
Alhassen Z, Vali P, Guglani L, Lakshminrusimha S, Ryan RM
J Perinatol 2021 Jan;41(1):6-16. Epub 2020 Aug 4 doi: 10.1038/s41372-020-0757-3. PMID: 32753712Free PMC Article
Scott RA, Rabinstein AA
Semin Neurol 2020 Oct;40(5):485-491. Epub 2020 Sep 9 doi: 10.1055/s-0040-1713845. PMID: 32906174
Hegde SV, Greenberg B
Semin Ultrasound CT MR 2015 Apr;36(2):138-45. Epub 2015 Feb 3 doi: 10.1053/j.sult.2015.01.005. PMID: 26001943
Reuter S, Moser C, Baack M
Pediatr Rev 2014 Oct;35(10):417-28; quiz 429. doi: 10.1542/pir.35-10-417. PMID: 25274969Free PMC Article

Therapy

Gregory H, Weant KA
Adv Emerg Nurs J 2021 Apr-Jun 01;43(2):102-110. doi: 10.1097/TME.0000000000000344. PMID: 33915557
Aschenbrenner DS
Am J Nurs 2021 Apr 1;121(4):22. doi: 10.1097/01.NAJ.0000742484.81331.b2. PMID: 33755619
Kaur H, Katyal N, Yelam A, Kumar K, Srivastava H, Govindarajan R
Mo Med 2019 Mar-Apr;116(2):154-159. PMID: 31040503Free PMC Article
Leung AKC, Wong AHC, Hon KL
Recent Pat Inflamm Allergy Drug Discov 2018;12(2):136-144. doi: 10.2174/1872213X12666180621163821. PMID: 29932038
Reuter S, Moser C, Baack M
Pediatr Rev 2014 Oct;35(10):417-28; quiz 429. doi: 10.1542/pir.35-10-417. PMID: 25274969Free PMC Article

Prognosis

Tseng HF, Sy LS, Ackerson B, Solano Z, Slezak J, Luo Y, Fischetti CA, Shinde V
J Infect Dis 2020 Sep 14;222(8):1298-1310. doi: 10.1093/infdis/jiaa361. PMID: 32591787
Burton JM, Morozova OM
Curr Probl Pediatr Adolesc Health Care 2017 Jul;47(7):145-150. Epub 2017 Jul 15 doi: 10.1016/j.cppeds.2017.06.009. PMID: 28716515
Garbi LR, Shah S, La Gamma EF
Acta Paediatr 2016 Nov;105(11):1261-1265. Epub 2016 Jul 11 doi: 10.1111/apa.13497. PMID: 27275634
Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC
JAMA 2016 Feb 23;315(8):762-74. doi: 10.1001/jama.2016.0288. PMID: 26903335Free PMC Article
Brennan MC, Moore LE
Obstet Gynecol Clin North Am 2013 Mar;40(1):27-35. doi: 10.1016/j.ogc.2012.11.005. PMID: 23466134

Clinical prediction guides

Shah K, Tran J, Schmidt L
Emerg Med Pract 2022 Apr 15;25(5, Suppl 1):1-28. PMID: 35467819
Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC
JAMA 2016 Feb 23;315(8):762-74. doi: 10.1001/jama.2016.0288. PMID: 26903335Free PMC Article
Lump D, Moyer M
Curr Neurol Neurosci Rep 2014 Nov;14(11):494. doi: 10.1007/s11910-014-0494-0. PMID: 25220846
Fred HL
Tex Heart Inst J 2010;37(1):82-4. PMID: 20200633Free PMC Article
Diamond AL, Callison RC, Shokri J, Cruz-Flores S, Kinsella LJ
Neurocrit Care 2005;2(3):288-91. doi: 10.1385/NCC:2:3:288. PMID: 16159077

Recent systematic reviews

North K, Frade Garcia A, Crouch M, Kimsen S, Hoey A, Wade C, Kim Y, Chou R, Edmond KM, Lee ACC, Rees CA
Pediatrics 2024 Aug 1;154(Suppl 1) doi: 10.1542/peds.2024-066588G. PMID: 39087803Free PMC Article
Bruschettini M, Hassan KO, Romantsik O, Banzi R, Calevo MG, Moresco L
Cochrane Database Syst Rev 2022 Feb 24;2(2):CD013563. doi: 10.1002/14651858.CD013563.pub2. PMID: 35199848Free PMC Article
Dresang L, Hooper-Lane C
J Fam Pract 2018 Jul;67(7):448-449. PMID: 29989619
Shah SN, Bachur RG, Simel DL, Neuman MI
JAMA 2017 Aug 1;318(5):462-471. doi: 10.1001/jama.2017.9039. PMID: 28763554
Moresco L, Bruschettini M, Cohen A, Gaiero A, Calevo MG
Cochrane Database Syst Rev 2016 May 23;(5):CD011878. doi: 10.1002/14651858.CD011878.pub2. PMID: 27210618

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.
    • Bookshelf
      See practice and clinical guidelines in NCBI Bookshelf. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...