Biotinidase deficiency- MedGen UID:
- 66323
- •Concept ID:
- C0220754
- •
- Disease or Syndrome
Multiple carboxylase deficiency (MCD) is an autosomal recessive metabolic disorder characterized primarily by cutaneous and neurologic abnormalities. Symptoms result from the patient's inability to reutilize biotin, a necessary nutrient. Sweetman (1981) recognized that multiple carboxylase deficiency could be classified into early (see 253270) and late forms. The early form showed higher urinary excretion of 3-hydroxyisovaleric acid and 3-hydroxypropionic acid than the late form and was associated with normal plasma biotin concentrations. Sweetman (1981) proposed a defect in holocarboxylase synthetase and intestinal biotin absorption, respectively.
Some patients with biotinidase deficiency present in infancy (Baumgartner et al., 1985; Kalayci et al., 1994), and some individuals with this deficiency are asymptomatic (Wolf et al., 1997).
Methylmalonic aciduria due to methylmalonyl-CoA mutase deficiency- MedGen UID:
- 344424
- •Concept ID:
- C1855114
- •
- Disease or Syndrome
For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut– enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the advent of newborn screening, common phenotypes included: Infantile/non-B12-responsive form (mut0 enzymatic subtype, cblB), the most common phenotype, associated with infantile-onset lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation of protein-containing feeds. Without appropriate treatment, the infantile/non-B12-responsive phenotype could rapidly progress to coma due to hyperammonemic encephalopathy. Partially deficient or B12-responsive phenotypes (mut– enzymatic subtype, cblA, cblB [rare], cblD-MMA), in which symptoms occur in the first few months or years of life and are characterized by feeding problems, failure to thrive, hypotonia, and developmental delay marked by episodes of metabolic decompensation. Methylmalonyl-CoA epimerase deficiency, in which findings range from complete absence of symptoms to severe metabolic acidosis. Affected individuals can also develop ataxia, dysarthria, hypotonia, mild spastic paraparesis, and seizures. In those individuals diagnosed by newborn screening and treated from an early age, there appears to be decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental outcome, and lower incidence of movement disorders and irreversible cerebral damage. However, secondary complications may still occur and can include intellectual disability, tubulointerstitial nephritis with progressive impairment of renal function, "metabolic stroke" (bilateral lacunar infarction of the basal ganglia during acute metabolic decompensation), pancreatitis, growth failure, functional immune impairment, bone marrow failure, optic nerve atrophy, arrhythmias and/or cardiomyopathy (dilated or hypertrophic), liver steatosis/fibrosis/cancer, and renal cancer.
Mitochondrial complex III deficiency nuclear type 6- MedGen UID:
- 815883
- •Concept ID:
- C3809553
- •
- Disease or Syndrome
Mitochondrial complex III deficiency nuclear type 6 (MC3DN6) is an autosomal recessive disorder caused by mitochondrial dysfunction. It is characterized by onset in early childhood of episodic acute lactic acidosis, ketoacidosis, and insulin-responsive hyperglycemia, usually associated with infection. Laboratory studies show decreased activity of mitochondrial complex III. Psychomotor development is normal (summary by Gaignard et al., 2013).
For a discussion of genetic heterogeneity of mitochondrial complex III deficiency, see MC3DN1 (124000).