Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Feb;17(1):67-76.
doi: 10.1023/a:1027339418683.

Role of the mitochondrial permeability transition pore in apoptosis

Affiliations
Review

Role of the mitochondrial permeability transition pore in apoptosis

T Hirsch et al. Biosci Rep. 1997 Feb.

Abstract

Mitochondrial permeability transition (PT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial megachannel (= mitochondrial PT pore). PT has important metabolic consequences, namely the collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins. Recent evidence suggests that PT is a critical, rate limiting event of apoptosis (programmed cell death): (i) induction of PT suffices to cause apoptosis; (ii) one of the immediate consequences of PT, disruption of the mitochondrial transmembrane potential (delta psi m), is a constant feature of early apoptosis; (iii) prevention of PT impedes the delta psi m collapse as well as all other features of apoptosis at the levels of the cytoplasma, the nucleus, and the plasma membrane; (iv) PT is modulated by members of the apoptosis-regulatory bcl-2 gene family. Recent data suggest that the acquisition of the apoptotic phenotype, including characteristic changes in nuclear morphology and biochemistry (chromatin condensation and DNA fragmentation), depends on the action of apoptogenic proteins released from the mitochondrial intermembrane space.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources