Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Feb 21;34(7):2163-71.
doi: 10.1021/bi00007a009.

Three-dimensional structure of butyryl-CoA dehydrogenase from Megasphaera elsdenii

Affiliations
Comparative Study

Three-dimensional structure of butyryl-CoA dehydrogenase from Megasphaera elsdenii

S Djordjevic et al. Biochemistry. .

Abstract

The crystal structure of butyryl-CoA dehydrogenase (BCAD) from Megasphaera elsdenii complexed with acetoacetyl-CoA has been solved at 2.5 A resolution. The enzyme crystallizes in the P422 space group with cell dimensions a = b = 107.76 A and c = 153.67 A. BCAD is a bacterial analog of short chain acyl-CoA dehydrogenase from mammalian mitochondria. Mammalian acyl-CoA dehydrogenases are flavin adenine dinucleotide (FAD)-containing enzymes that catalyze the first step in the beta-oxidation of fatty acids. Although specific for substrate chain lengths, they exhibit high sequence homology. The structure of BCAD was solved by the molecular replacement method using the atomic coordinates of pig liver medium chain acyl-CoA dehydrogenase (MCAD). The structure was refined to an R-factor of 19.3%. The overall polypeptide fold of BCAD is similar to that of MCAD. E367 in BCAD is at the same position and in a similar conformation as the catalytic base in MCAD, E376. The main enzymatic differences between BCAD and MCAD are their substrate specificities and the significant oxygen reactivity exhibited by BCAD but not by MCAD. The substrate binding cavity of BCAD is relatively shallow compared to that of MCAD, as consequences of both a single amino acid insertion and differences in the side chains of the helices that make the binding site. The si-face of the FAD in BCAD is more exposed to solvent than that in MCAD. Therefore solvation can stabilize the superoxide anion and considerably increase the rate of oxidation of reduced flavin in the bacterial enzyme.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources