This is a preprint.
MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids
- PMID: 38853909
- PMCID: PMC11160759
- DOI: 10.1101/2024.05.29.596463
MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids
Update in
-
MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids.Cells. 2024 Nov 19;13(22):1913. doi: 10.3390/cells13221913. Cells. 2024. PMID: 39594661 Free PMC article.
Abstract
Background: MYBPC3 , encoding cardiac myosin binding protein-C (cMyBP-C), is the most mutated gene known to cause hypertrophic cardiomyopathy (HCM). However, since little is known about the underlying etiology, additional in vitro studies are crucial to defining the underlying molecular mechanisms. Accordingly, this study aimed to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with a polymorphic variant (D389V) in MYBPC3 by using human-induced pluripotent stem cell (hiPSC)-derived cardiac organoids (hCOs).
Methods: The hiPSC-derived cardiomyocytes (hiPSC-CMs) and hCOs were generated from human subjects to define the molecular, cellular, and functional changes caused by the MYBPC3 D389V variant. This variant is associated with increased fractional shortening and is highly prevalent in South Asian descendants. Recombinant C0-C2, N'-region of cMyBP-C (wildtype and D389V), and myosin S2 proteins were also utilized to perform binding and motility assays in vitro .
Results: Confocal and electron microscopic analyses of hCOs generated from noncarriers (NC) and carriers of the MYBPC3 D389V variant revealed the presence of highly organized sarcomeres. Furthermore, functional experiments showed hypercontractility with increased contraction velocity, faster calcium cycling, and faster contractile kinetics in hCOs expressing MYBPC3 D389V than NC hCOs. Interestingly, significantly increased cMyBP-C phosphorylation in MYBPC3 D389V hCOs was observed, but without changes in total protein levels, in addition to higher oxidative stress and lower mitochondrial membrane potential (ΔΨm). Next, spatial mapping revealed the presence of endothelial cells, fibroblasts, macrophages, immune cells, and cardiomyocytes in the hCOs. The hypercontractile function was significantly improved after treatment with the myosin inhibitor mavacamten (CAMZYOS®) in MYBPC3 D389V hCOs. Lastly, various in vitro binding assays revealed a significant loss of affinity in the presence of MYBPC3 D389V with myosin S2 region as a likely mechanism for hypercontraction.
Conclusions: Conceptually, we showed the feasibility of assessing the functional and molecular mechanisms of HCM using highly translatable hCOs through pragmatic experiments that led to determining the MYBPC3 D389V hypercontractile phenotype, which was rescued by administration of a myosin inhibitor. Novelty and Significance: What Is Known?: MYBPC3 mutations have been implicated in hypertrophic cardiomyopathy. D389V is a polymorphic variant of MYBPC3 predicted to be present in 53000 US South Asians owing to the founder effect. D389V carriers have shown evidence of hyperdynamic heart, and human-induced pluripotent stem cells (hiPSC)-derived cardiomyocytes with D389V show cellular hypertrophy and irregular calcium transients. The molecular mechanism by which the D389V variant develops pathological cardiac dysfunction remains to be conclusively determined.What New Information Does This Article Contribute ?: The authors leveraged a highly translational cardiac organoid model to explore the role of altered cardiac calcium handling and cardiac contractility as a common pathway leading to pathophysiological phenotypes in patients with early HCM. The MYBPC3 D389V -mediated pathological pathway is first studied here by comparing functional properties using three-dimensional cardiac organoids differentiated from hiPSC and determining the presence of hypercontraction. Our data demonstrate that faster sarcomere kinetics resulting from lower binding affinity between D389V-mutated cMyBP-C protein and myosin S2, as evidenced by in vitro studies, could cause hypercontractility which was rescued by administration of mavacamten (CAMZYOS®), a myosin inhibitor. In addition, hypercontractility causes secondary mitochondrial defects such as higher oxidative stress and lower mitochondrial membrane potential (ΔΨm), highlighting a possible early adaptive response to primary sarcomeric changes. Early treatment of MYBPC3 D389V carriers with mavacamten may prevent or reduce early HCM-related pathology. GRAPHICAL ABSTRACT: A graphical abstract is available for this article.
Similar articles
-
MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids.Cells. 2024 Nov 19;13(22):1913. doi: 10.3390/cells13221913. Cells. 2024. PMID: 39594661 Free PMC article.
-
Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.In: Kirtsoglou E, Simpson B, editors. The Time of Anthropology: Studies of Contemporary Chronopolitics. Abingdon: Routledge; 2020. Chapter 5. In: Kirtsoglou E, Simpson B, editors. The Time of Anthropology: Studies of Contemporary Chronopolitics. Abingdon: Routledge; 2020. Chapter 5. PMID: 36137063 Free Books & Documents. Review.
-
A Blog-Based Study of Autistic Adults' Experiences of Aloneness and Connection and the Interplay with Well-Being: Corpus-Based and Thematic Analyses.Autism Adulthood. 2023 Dec 1;5(4):437-449. doi: 10.1089/aut.2022.0073. Epub 2023 Dec 12. Autism Adulthood. 2023. PMID: 38116056 Free PMC article.
-
Qualitative evidence synthesis informing our understanding of people's perceptions and experiences of targeted digital communication.Cochrane Database Syst Rev. 2019 Oct 23;10(10):ED000141. doi: 10.1002/14651858.ED000141. Cochrane Database Syst Rev. 2019. PMID: 31643081 Free PMC article.
-
Trends in Surgical and Nonsurgical Aesthetic Procedures: A 14-Year Analysis of the International Society of Aesthetic Plastic Surgery-ISAPS.Aesthetic Plast Surg. 2024 Oct;48(20):4217-4227. doi: 10.1007/s00266-024-04260-2. Epub 2024 Aug 5. Aesthetic Plast Surg. 2024. PMID: 39103642 Review.
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous