Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Feb 22:9:125.
doi: 10.3389/fphys.2018.00125. eCollection 2018.

Erythrocytes and Vascular Function: Oxygen and Nitric Oxide

Affiliations
Review

Erythrocytes and Vascular Function: Oxygen and Nitric Oxide

Christine C Helms et al. Front Physiol. .

Abstract

Erythrocytes regulate vascular function through the modulation of oxygen delivery and the scavenging and generation of nitric oxide (NO). First, hemoglobin inside the red blood cell binds oxygen in the lungs and delivers it to tissues throughout the body in an allosterically regulated process, modulated by oxygen, carbon dioxide and proton concentrations. The vasculature responds to low oxygen tensions through vasodilation, further recruiting blood flow and oxygen carrying erythrocytes. Research has shown multiple mechanisms are at play in this classical hypoxic vasodilatory response, with a potential role of red cell derived vasodilatory molecules, such as nitrite derived nitric oxide and red blood cell ATP, considered in the last 20 years. According to these hypotheses, red blood cells release vasodilatory molecules under low oxygen pressures. Candidate molecules released by erythrocytes and responsible for hypoxic vasodilation are nitric oxide, adenosine triphosphate and S-nitrosothiols. Our research group has characterized the biochemistry and physiological effects of the electron and proton transfer reactions from hemoglobin and other ferrous heme globins with nitrite to form NO. In addition to NO generation from nitrite during deoxygenation, hemoglobin has a high affinity for NO. Scavenging of NO by hemoglobin can cause vasoconstriction, which is greatly enhanced by cell free hemoglobin outside of the red cell. Therefore, compartmentalization of hemoglobin inside red blood cells and localization of red blood cells in the blood stream are important for healthy vascular function. Conditions where erythrocyte lysis leads to cell free hemoglobin or where erythrocytes adhere to the endothelium can result in hypertension and vaso constriction. These studies support a model where hemoglobin serves as an oxido-reductase, inhibiting NO and promoting higher vessel tone when oxygenated and reducing nitrite to form NO and vasodilate when deoxygenated.

Keywords: erythrocytes; hemoglobin; hemolysis; hypoxic vasodilation; nitric oxide; nitrite.

PubMed Disclaimer

Figures

Figure 1
Figure 1
RBCs function as a transporter of oxygen from the lungs to the tissue and help establish hemostasis and vascular function. Since Hb inside RBCs is a very effective scavenger of NO, a vasodilator produced by the endothelium (brown), mechanism such as a cell free zone created by fluid dynamics, RBC membrane and internal diffusion minimize NO scavenging. In diseases where hemolysis and RBC adhesion occur these mechanisms to minimize NO scavenging are compromised and vasoconstriction occurs. However, in addition to scavenging NO data supports a role of deoxygenated RBCs in the production of NO leading to vasodilation under hypoxic conditions.

Similar articles

Cited by

References

    1. Abu-Soud H. M., Ichimori K., Presta A., Stuehr D. J. (2000). Electron transfer, oxygen binding, and nitric oxide feedback inhibition in endothelial nitric-oxide synthase. J. Biol. Chem. 275, 17349–17357. 10.1074/jbc.M000050200 - DOI - PubMed
    1. Amdahl M. B., Sparacino-Watkins C., Corti P., Gladwin M. T., Tejero J. (2017). Efficient reduction of vertebrate cytoglobins by the cytochrome b5/cytochrome b5 reductase/NADH System. Biochemistry 56, 3993–4004. 10.1021/acs.biochem.7b00224 - DOI - PMC - PubMed
    1. Angelo M., Singel D. J., Stamler J. S. (2006). An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc. Natl. Acad. Sci.U.S.A. 103, 8366–8371. 10.1073/pnas.0600942103 - DOI - PMC - PubMed
    1. Arnold W. P., Mittal C. K., Katsuki S., Murad F. (1977). Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. U.S.A. 74, 3203–3207. 10.1073/pnas.74.8.3203 - DOI - PMC - PubMed
    1. Ataga K. (2009). Hypercoagulability and thrombotic complications in hemolytic anemias. Haematologica 94, 1481–1484. 10.3324/haematol.2009.013672 - DOI - PMC - PubMed

LinkOut - more resources