Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion Syndrome

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
.
Affiliations
Free Books & Documents
Review

FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion Syndrome

Mohammed Almannai et al.
Free Books & Documents

Excerpt

Clinical characteristics: FBXL4-related encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome is a multi-system disorder characterized primarily by congenital or early-onset lactic acidosis and growth failure, feeding difficulty, hypotonia, and developmental delay. Other neurologic manifestations can include seizures, movement disorders, ataxia, autonomic dysfunction, and stroke-like episodes. All affected individuals alive at the time they were reported (median age: 3.5 years) demonstrated significant developmental delay. Other findings can involve the heart (hypertrophic cardiomyopathy, congenital heart malformations, arrhythmias), liver (mildly elevated transaminases), eyes (cataract, strabismus, nystagmus, optic atrophy), hearing (sensorineural hearing loss), and bone marrow (neutropenia, lymphopenia). Survival varies; the median age of reported deaths was two years (range 2 days – 75 months), although surviving individuals as old as 36 years have been reported. To date FBXL4-related mtDNA depletion syndrome has been reported in 50 individuals.

Diagnosis/testing: The diagnosis of FBXL4-related mtDNA depletion syndrome is established in a proband by identification of biallelic pathogenic variants in FBXL4 on molecular genetic testing.

Management: Treatment of manifestations: Management is best provided by a multidisciplinary team including neurology, nutrition, clinical genetics/metabolism, and developmental pediatrics. Other specialties may be involved as needed. To date no definite treatment is available; thus, treatment is mainly supportive: assuring adequate nutrition and standard treatment of neurologic complications including developmental delay / intellectual disability, seizures, cardiac complications, eye involvement, and hearing loss. Administration of cofactors and antioxidants, used in mitochondrial disorders with (generally) limited evidence of benefit, may be considered.

Surveillance: No surveillance guidelines have been published. The treating physician should decide about the frequency of follow up of eyes, hearing, heart, feeding difficulties, liver, neurologic complications, and neutropenia based on the patient's findings.

Genetic counseling: FBXL4-related mtDNA depletion syndrome is inherited in an autosomal recessive manner. When both parents are heterozygous carriers, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier (heterozygote), and a 25% chance of being unaffected and not a carrier. Once the FBXL4 pathogenic variants have been identified in an affected family member, carrier testing for at-risk relatives, prenatal testing for a pregnancy at increased risk, and preimplantation genetic testing are possible.

PubMed Disclaimer

Similar articles

  • ATP1A3-Related Disorder.
    Brashear A, Sweadner KJ, Haq I, Napoli E, Ozelius L. Brashear A, et al. 2008 Feb 7 [updated 2024 Dec 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2008 Feb 7 [updated 2024 Dec 5]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301294 Free Books & Documents. Review.
  • Single Large-Scale Mitochondrial DNA Deletion Syndromes.
    Goldstein A, Falk MJ. Goldstein A, et al. 2003 Dec 17 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2003 Dec 17 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301382 Free Books & Documents. Review.
  • Biotinidase Deficiency.
    Wolf B. Wolf B. 2000 Mar 24 [updated 2023 May 25]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2000 Mar 24 [updated 2023 May 25]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301497 Free Books & Documents. Review.
  • Dihydrolipoamide Dehydrogenase Deficiency.
    Quinonez SC, Thoene JG. Quinonez SC, et al. 2014 Jul 17 [updated 2021 Sep 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2014 Jul 17 [updated 2021 Sep 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 25032271 Free Books & Documents. Review.
  • Wilson Disease.
    Weiss KH, Schilsky M. Weiss KH, et al. 1999 Oct 22 [updated 2023 Jan 12]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 1999 Oct 22 [updated 2023 Jan 12]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301685 Free Books & Documents. Review.

References

    1. Antoun G, McBride S, Vanstone JR, Naas T, Michaud J, Redpath S, McMillan HJ, Brophy J, Daoud H, Chakraborty P, Dyment D, Holcik M, Harper ME, Lines MA. Detailed biochemical and bioenergetic characterization of FBXL4-related encephalomyopathic mitochondrial DNA depletion. JIMD Rep. 2016;27:1–9. - PMC - PubMed
    1. Bonnen PE, Yarham JW, Besse A, Wu P, Faqeih EA, Al-Asmari AM, Saleh MA, Eyaid W, Hadeel A, He L, Smith F, Yau S, Simcox EM, Miwa S, Donti T, Abu-Amero KK, Wong LJ, Craigen WJ, Graham BH, Scott KL, McFarland R, Taylor RW. Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. Am J Hum Genet. 2013;93:471–81. - PMC - PubMed
    1. Barøy T, Pedurupillay CR, Bliksrud YT, Rasmussen M, Holmgren A, Vigeland MD, Hughes T, Brink M, Rodenburg R, Nedregaard B, Strømme P, Frengen E, Misceo D. A novel mutation in FBXL4 in a Norwegian child with encephalomyopathic mitochondrial DNA depletion syndrome 13. Eur J Med Genet. 2016;59:342–6. - PubMed
    1. Dai H, Zhang VW, El-Hattab AW, Ficicioglu C, Shinawi M, Lines M, Schulze A, McNutt M, Gotway G, Tian X, Chen S, Wang J, Craigen WJ, Wong LJ. FBXL4 defects are common in patients with congenital lactic acidemia and encephalomyopathic mitochondrial DNA depletion syndrome. Clin Genet. 2017;91:634–9. - PubMed
    1. Ebrahimi-Fakhari D, Seitz A, Kölker S, Hoffmann GF. Recurrent stroke-like episodes in FBXL4-associated early-onset mitochondrial encephalomyopathy. Pediatr Neurol. 2015;53:549–50. - PubMed

LinkOut - more resources