Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 May 19;48(5):1358-68.
doi: 10.1021/acs.accounts.5b00009.

Redox-Responsive Fluorescent Probes with Different Design Strategies

Review

Redox-Responsive Fluorescent Probes with Different Design Strategies

Zhangrong Lou et al. Acc Chem Res. .

Abstract

In an aerobic organism, reactive oxygen species (ROS) are an inevitable metabolic byproduct. Endogenously produced ROS have a significant role in physiological processes, but excess ROS can cause oxidative stress and can damage tissue. Cells possess elaborate mechanisms to regulate their internal redox status. The intracellular redox homeostasis plays an essential role in maintaining cellular function. However, moderate alterations in redox balance can accompany major transitions in a cell's life cycle. Because of the role of ROS in physiology and in pathology, researchers need new tools to study redox chemistry in biological systems.In recent years, researchers have made remarkable progress in developing new, highly sensitive and selective fluorescent probes that respond to redox changes, and in this Account we highlight related research, primarily from our own group. We present an overview of the design, photophysical properties, and fluorescence transduction mechanisms of reported molecules that probe redox changes. We have designed and synthesized a series of fluorescent probes for redox cycles in biological systems relying on the active center of glutathione peroxidase (GPx). We have also constructed probes based on the oxidation and reduction of hydroquinone and of 2,2,6,6-tetramethylpiperidinooxy (TEMPO). Most of these probes exhibit high sensitivity and good selectivity, absorb in the near-infrared, and respond rapidly. Such probes are useful for confocal fluorescence microscopy, a dynamic imaging technique that could allow researchers to observe biologically important ROS and antioxidants in real time. This technique and these probes provide potentially useful tools for exploring the generation, transport, physiological function, and pathogenic mechanisms of ROS and antioxidants.We also describe features that could improve the properties of redox-responsive fluorescent probes: greater photostability; rapid, dynamic, cyclic and ratiometric responses; and broader absorption in the near-IR region. In addition, fluorescent probes that include organochalcogens such as selenium and tellurium show promise for a new class of fluorescent redox probes that are both chemically stable and robustly reversible. However, further investigations of the chemical and fluorescence transduction mechanisms of selenium-based probes in response to ROS are needed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources