Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 6;9(6):e99622.
doi: 10.1371/journal.pone.0099622. eCollection 2014.

Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation

Affiliations

Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation

Swapna Bhat et al. PLoS One. .

Abstract

Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Lipid body production in WT cells during development.
(A) DK1622 cells stained with the lipophilic dye Nile red at times indicated during development. Phase (Left), fluorescence (Right). Bar is 10 µm. (B) Lipid bodies were quantified by measuring the average cross sectional area stained with Nile red using at least 30 cells (grey bars). Cell length was measured using phase contrast images of 30 randomly chosen cells (filled diamonds). At 48 h, the cells are a nearly equal mixture of long, peripheral rods and spherical myxospores.
Figure 2
Figure 2. M. xanthus fatty acid metabolic pathways were analyzed at the transcriptional level using available microarray data from developing cells .
The pathway information and gene annotations were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Genes that are down-regulated (≥1.5 fold), up-regulated (≥1.5 fold) or unchanged during development are shown in green, red, and black, respectively. Blue denotes genes that were not on the microarray. A dashed arrow between two compound names implies that the two names represent the same compound in different stages of polymerization or depolymerization.
Figure 3
Figure 3. Lipid body area correlates with cell length in developmental mutants.
Lipid body production at 18table 1.
Figure 4
Figure 4. Lipid bodies are derived from membrane phospholipids.
Myxococcus cells were grown in the presence of palmitic acid alkyne (PAalk) in A1 minimal medium and stained with Nile red. Click chemistry was used to attach Alexa Fluor 488 azide to PAalk prior to visualization. Both Alex Fluor fatty acid and the Nile red stain are visible in membranes during vegetative growth (DK1622 0 h). The PAalk was removed and cells were allowed to develop on TPM agar (DK1622 24 h). Labeled membrane lipids were incorporated into Nile red stained lipid bodies, seen in both channels and the merged images. In a strain deficient in lipid body production (LS3931), incorporation occurs into membrane lipids (LS3931 0 h) but not lipid bodies (LS3931 24 h). A fadL mutant (LS3125), defective in fatty acid uptake, is unable to incorporate PAalk altogether. Wild-type cells grown in the absence of PAalk then allowed to develop (DK1622a 24 h) exhibit no fluorescence (bottom row, second panel) indicating little bleed through between channels. Scale bar is 10 µm.
Figure 5
Figure 5. Regulation of lipid body production during M. xanthus fruiting body development.
Mutants blocked in synthesis of proteins labeled in in black are deficient in lipid body synthesis (>40%). Those labeled in purple produce intermediate levels of lipid bodies (40–80%). Those in green produce near WT levels or higher (>80%). Red letters indicate developmental signals. Asg, A-signal; Csg, C-signal; Esg, E-signal.

Similar articles

Cited by

References

    1. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, et al. (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 121: 2102–2110. - PMC - PubMed
    1. Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60: 367–376. - PubMed
    1. Waltermann M, Hinz A, Robenek H, Troyer D, Reichelt R, et al. (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55: 750–763. - PubMed
    1. Hoiczyk E, Ring MW, McHugh CA, Schwar G, Bode E, et al. (2009) Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus . Mol Microbiol 74: 497–512. - PMC - PubMed
    1. Manoil C, Kaiser D (1980) Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J Bacteriol 141: 305–315. - PMC - PubMed

Publication types

MeSH terms