Evolution of copper transporting ATPases in eukaryotic organisms
- PMID: 23024604
- PMCID: PMC3308323
- DOI: 10.2174/138920212799860661
Evolution of copper transporting ATPases in eukaryotic organisms
Abstract
Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases in prokaryotic kingdom. In eukaryotes, in addition to removing excess copper from the cell, Copper-ATPases have another equally important function - to supply copper to copper dependent enzymes within the secretory pathway. This review focuses on the origin and diversification of Copper ATPases in eukaryotic organisms. From a single Copper ATPase in protozoans, a divergence into two functionally distinct ATPases is observed with the evolutionary appearance of chordates. Among the key functional domains of Copper-ATPases, the metal-binding N-terminal domain could be responsible for functional diversification of the copper ATPases during the course of evolution.
Keywords: ATP7B; ATPase; CopA.; Copper.
Figures



Similar articles
-
Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems.IUBMB Life. 2015 Oct;67(10):737-45. doi: 10.1002/iub.1437. Epub 2015 Sep 30. IUBMB Life. 2015. PMID: 26422816 Review.
-
Distinct functions of serial metal-binding domains in the Escherichia coli P1 B -ATPase CopA.Mol Microbiol. 2015 Aug;97(3):423-38. doi: 10.1111/mmi.13038. Epub 2015 May 20. Mol Microbiol. 2015. PMID: 25899340
-
Function and regulation of human copper-transporting ATPases.Physiol Rev. 2007 Jul;87(3):1011-46. doi: 10.1152/physrev.00004.2006. Physiol Rev. 2007. PMID: 17615395 Review.
-
Copper-transporting ATPases throughout the animal evolution - From clinics to basal neuron-less animals.Gene. 2023 Nov 15;885:147720. doi: 10.1016/j.gene.2023.147720. Epub 2023 Aug 18. Gene. 2023. PMID: 37597707 Review.
-
Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins.J Bioenerg Biomembr. 2007 Dec;39(5-6):403-7. doi: 10.1007/s10863-007-9101-2. J Bioenerg Biomembr. 2007. PMID: 18000748 Review.
Cited by
-
A glimpse into the regulation of the Wilson disease protein, ATP7B, sheds light on the complexity of mammalian apical trafficking pathways.Metallomics. 2018 Mar 1;10(3):378-387. doi: 10.1039/c7mt00314e. Epub 2018 Feb 23. Metallomics. 2018. PMID: 29473088 Free PMC article. Review.
-
At sixes and sevens: cryptic domain in the metal binding chain of the human copper transporter ATP7A.Biophys J. 2021 Oct 19;120(20):4600-4607. doi: 10.1016/j.bpj.2021.08.029. Epub 2021 Aug 28. Biophys J. 2021. PMID: 34461106 Free PMC article.
-
Structural and Functional Diversity Among the Members of CTR, the Membrane Copper Transporter Family.J Membr Biol. 2020 Oct;253(5):459-468. doi: 10.1007/s00232-020-00139-w. Epub 2020 Sep 25. J Membr Biol. 2020. PMID: 32975619 Free PMC article. Review.
-
Gene duplication and neo-functionalization in the evolutionary and functional divergence of the metazoan copper transporters Ctr1 and Ctr2.J Biol Chem. 2017 Jul 7;292(27):11531-11546. doi: 10.1074/jbc.M117.793356. Epub 2017 May 15. J Biol Chem. 2017. PMID: 28507097 Free PMC article.
-
A comprehensive phylogenetic analysis of copper transporting P1B ATPases from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic subtypes.Microbiologyopen. 2017 Aug;6(4):e00452. doi: 10.1002/mbo3.452. Epub 2017 Feb 20. Microbiologyopen. 2017. PMID: 28217917 Free PMC article.
References
-
- Saito MA, Sigman D M, Morel F M M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary? Inorg Chim Acta. 2003;356:308–318.
-
- Solioz M, Stoyanov J V. Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev. 2003;27: 183–95. - PubMed
-
- Rasmussen B. Filamentous microfossils in a 3235-million-year-old volcanogenic massive sulphide deposit. Nature. 2000;405: 676–679. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources