Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome

In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993.
[updated ].
Affiliations
Free Books & Documents
Review

Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome

Jose Camacho et al.
Free Books & Documents

Excerpt

Clinical characteristics: Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a disorder of the urea cycle and ornithine degradation pathway. Clinical manifestations and age of onset vary among individuals even in the same family.

Neonatal onset (~8% of affected individuals). Manifestations of hyperammonemia usually begin 24-48 hours after feeding begins and can include lethargy, somnolence, refusal to feed, vomiting, tachypnea with respiratory alkalosis, and/or seizures.

Infantile, childhood, and adult onset (~92%). Affected individuals may present with:

  1. Chronic neurocognitive deficits (including developmental delay, ataxia, spasticity, learning disabilities, cognitive deficits, and/or unexplained seizures);

  2. Acute encephalopathy secondary to hyperammonemic crisis precipitated by a variety of factors; and

  3. Chronic liver dysfunction (unexplained elevation of liver transaminases with or without mild coagulopathy, with or without mild hyperammonemia and protein intolerance).

Neurologic findings and cognitive abilities can continue to deteriorate despite early metabolic control that prevents hyperammonemia.

Diagnosis/testing: The biochemical diagnosis of HHH syndrome is established in a proband with the classic metabolic triad of episodic or postprandial hyperammonemia, persistent hyperornithinemia, and urinary excretion of homocitrulline. The molecular diagnosis of HHH syndrome is established in a symptomatic individual with or without suggestive metabolic/biochemical findings by identification of biallelic pathogenic variants in SLC25A15.

Management: Treatment of manifestations: Acute and long-term management is best performed in conjunction with a metabolic specialist. Of primary importance is the use of established protocols to rapidly control hyperammonemic episodes by discontinuation of protein intake, intravenous infusion of glucose and, as needed, infusion of supplemental arginine and the ammonia removal drugs sodium benzoate and sodium phenylacetate. Hemodialysis is performed if hyperammonemia persists and/or the neurologic status deteriorates.

Prevention of primary manifestations: Individuals with HHH syndrome should be maintained on an age-appropriate protein-restricted diet, citrulline supplementation, and sodium phenylbutyrate to maintain plasma concentrations of ammonia, glutamine, arginine, and essential amino acids within normal range. Note: Liver transplantation is not indicated when metabolic control can be achieved with this regimen as liver transplantation may correct the hyperammonemia but will not correct tissue-specific metabolic abnormalities that also contribute to the neuropathology.

Surveillance: Routine assessment of height, weight, and head circumference from the time of diagnosis to adolescence. Routine assessment of plasma ammonia concentration, plasma and urine amino acid concentrations, urine organic acids, and urine orotic acid based on age and history of adherence and metabolic control. Routine developmental and educational assessment to assure optional interventions. Attention to subtle changes in mood, behavior, and eating and/or the onset of vomiting, which may suggest that plasma concentrations of glutamine and ammonia are increasing. Periodic neurologic evaluation to monitor for neurologic deterioration even when metabolic control is optimal.

Agents/circumstances to avoid: Excess dietary protein intake; nonprescribed protein supplements such as those used during exercise regimens; prolonged fasting during an illness or weight loss; oral and intravenous steroids; and valproic acid, which exacerbates hyperammonemia in urea cycle disorders.

Evaluation of relatives at risk: Once the pathogenic variants in a family are known, use molecular genetic testing to clarify the genetic status of at-risk relatives to allow early diagnosis and treatment, perhaps even before symptoms occur.

Pregnancy management: In general, pregnant women should continue dietary protein restriction and supplementation with citrulline and ammonia-scavenging medications based on their clinical course before pregnancy. Due to increased protein and energy requirements in pregnancy and, oftentimes, difficulty with patient adherence, weekly to every two-week monitoring of plasma amino acids and ammonia is recommended, especially in the first and third trimester, and close monitoring immediately after delivery.

Genetic counseling: HHH syndrome is inherited in an autosomal recessive manner. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Once the SLC25A15 pathogenic variants have been identified in an affected family member, carrier testing for at-risk relatives, prenatal testing for a pregnancy at increased risk, and preimplantation genetic testing are possible. However, the identification of familial SLC25A15 pathogenic variants cannot predict clinical outcome because of significant intrafamilial phenotypic variability.

PubMed Disclaimer

Similar articles

  • Citrullinemia Type I.
    Quinonez SC, Lee KN. Quinonez SC, et al. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Jul 7 [updated 2022 Aug 18]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301631 Free Books & Documents. Review.
  • Ornithine Transcarbamylase Deficiency.
    Lichter-Konecki U, Caldovic L, Morizono H, Simpson K, Ah Mew N, MacLeod E. Lichter-Konecki U, et al. 2013 Aug 29 [updated 2022 May 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2013 Aug 29 [updated 2022 May 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 24006547 Free Books & Documents. Review.
  • Carnitine-Acylcarnitine Translocase Deficiency.
    Morales Corado JA, Lee CU, Enns GM. Morales Corado JA, et al. 2022 Jul 21. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2022 Jul 21. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 35862567 Free Books & Documents. Review.
  • Isolated Methylmalonic Acidemia.
    Manoli I, Sloan JL, Venditti CP. Manoli I, et al. 2005 Aug 16 [updated 2022 Sep 8]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2005 Aug 16 [updated 2022 Sep 8]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301409 Free Books & Documents. Review.
  • Arginase Deficiency.
    Sun A, Crombez EA, Wong D. Sun A, et al. 2004 Oct 21 [updated 2020 May 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2004 Oct 21 [updated 2020 May 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301338 Free Books & Documents. Review.

References

    1. Acosta PB, Yannicelli S, eds. Nutrition Support Protocols: The Ross Metabolic Formula System. 4 ed. Columbus, OH: Abbott Nutrition; 2001.
    1. Alfadhel M, Mutairi FA, Makhseed N, Jasmi FA, Al-Thihli K, Al-Jishi E, AlSayed M, Al-Hassnan ZN, Al-Murshedi F, Häberle J, Ben-Omran T. Guidelines for acute management of hyperammonemia in the Middle East region. Ther Clin Risk Manag. 2016;12:479–87. - PMC - PubMed
    1. Al-Hassnan ZN, Rashed MS, Al-Dirbashi OY, Patay Z, Rahbeeni Z, Abu-Amero KK. Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome with stroke-like imaging presentation: clinical, biochemical and molecular analysis. J Neurol Sci. 2008;264:187–94. - PubMed
    1. Berry SA, Longo N, Diaz GA, McCandless SE, Smith WE, Harding CO, Zori R, Ficicioglu C, Lichter-Konecki U, Robinson B, Vockley J. Safety and efficacy of glycerol phenylbutyrate for management of urea cycle disorders in patients aged 2 months to 2 years. Mol Genet Metab. 2017;122:46–53. - PubMed
    1. Boenzi S, Pastore A, Martinelli D, Goffredo BM, Boiani A, Rizzo C, Dionisi-Vici C. Creatine metabolism in urea cycle defects. J Inherit Metab Dis. 2012;35:647–653. - PubMed

LinkOut - more resources