Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Sep 8:6:60.
doi: 10.1186/1750-1172-6-60.

Atypical hemolytic uremic syndrome

Affiliations
Review

Atypical hemolytic uremic syndrome

Chantal Loirat et al. Orphanet J Rare Dis. .

Abstract

Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently, without unquestionable demonstration of efficiency. There is a high risk of post-transplant recurrence, except in MCP-HUS. Case reports and two phase II trials show an impressive efficacy of the complement C5 blocker eculizumab, suggesting it will be the next standard of care. Except for patients treated by intensive plasmatherapy or eculizumab, the worst prognosis is in factor H-HUS, as mortality can reach 20% and 50% of survivors do not recover renal function. Half of factor I-HUS progress to end-stage renal failure. Conversely, most patients with MCP-HUS have preserved renal function. Anti-factor H antibodies-HUS has favourable outcome if treated early.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The 3 pathways of complement activation. Classical, lectin and alternative pathways converge at the point of C3 activation. The lytic pathway then leads to the assembly of the membrane attack complex which destroys infectious agents. Regulators of the alternative pathway CFH, CFI and MCP cooperate to inactivate endothelial cell surface-bound C3b, thus protecting endothelial cells from complement attack. CFH: factor H; CFI: factor I; CFB: factor B; CFD: factor D; MCP: membrane cofactor protein.
Figure 2
Figure 2
Regulated and deregulated activation of the alternative complement pathway. Figure and comments reproduced from Zuber et al [131]. a) CFH competes with CFB to bind C3b, which hampers the generation of C3 convertase. CFH binds to glycosaminoglycans on the endothelial surface and factors, such as MCP, can act as a cofactor for the CFI-mediated cleavage of C3b to generate iC3b (inactivated C3b). THBD binds to C3b and CFH and might accelerate the CFI-mediated inactivation of C3b. b) Uncontrolled activation of the alternative complement pathway leads to the generation of the membrane-attack complex (C5b-9) through the actions of CFB, CFD and through the generation of C3 convertase and C5 convertase. The resulting injury and activation of endothelial cells initiates a microangiopathic thrombotic process. CFH: factor H; CFI: factor I; CFB: factor B; CFD: factor D; MCP: membrane cofactor protein; THBD: thrombomodulin.
Figure 3
Figure 3
Factor H. Factor H is constituted by 20 short consensus repeats (SCR). The two binding sites for C3b are in SCR 1-4 and 19-20. The binding sites for polyanions of cell surface (vascular endothelium) are in SCR 7 and 19-20. SCR 1-4 are involved in the binding of CFH to circulating C3b i.e. the regulation of complement alternative pathway activation in the fluid phase. SCR 7 and 19-20 are involved in the binding of CFH to polyanionic surface-bound C3b i.e. the regulation of complement alternative pathway activation at the endothelial cell surface.
Figure 4
Figure 4
Complement factor H-related (CFHR) genes and their abnormalities in atypical hemolytic uremic syndrome: genetic rearrangements between CFH and contiguous genes CFHR1 and CFHR3 or deletion of CFHR1-R3.
Figure 5
Figure 5
Mode of transmission and intrafamilial phenotype variability of atypical hemolytic uremic syndrome: example from two families with heterozygous CFH mutation. CFH mutation: W1183R, SCR 20 (Family 1); W1183L, SCR 20 (Family 2). Notice i) the autosomal dominant (Family 1) or recessive (Family 2) mode of inheritance of the disease ii) the intrafamilial phenotype variability and incomplete penetrance in Family 1. Affected individuals are indicated with filled symbols. Deceased individuals are crossed. Carriers of the CFH mutation are indicated by an asterisk. Courtesy of Professor G. Deschênes (Hôpital Robert Debré, Paris), with permission.
Figure 6
Figure 6
Unknown risk factor(s) to atypical hemolytic uremic syndrome can be associated with identified mutations: example from three families. In the 3 families, one child with aHUS has a mutation in CFH or CFI while a sibling also with aHUS has no mutation identified. Therefore the two siblings in each family share at least one unidentified risk factor. Affected individuals are indicated by filled symbols. Carriers of mutations are indicated by an asterisk. Courtesy of Professors R. Salomon (Hôpital Necker, Paris), E. Bérard (Hôpital de l'Archet, Nice) and G. Deschênes (Hôpital Robert Debré, Paris), with permission.
Figure 7
Figure 7
Complement system screening strategy in atypical hemolytic uremic syndrome. Knowledge of complement proteins plasma concentrations guides the investigator for the choice of which gene to study first and for the validation of genetic screening. Of note i. C3 may be low despite normal CFH or CFI plasma levels in patients with CFH or CFI mutations respectively. ii. C3 and CFH plasma levels are normal in patients with hybrid CFH detected by MLPA. STEC: Shiga-toxin producing Escherichia coli; ADAMTS 13, A Desintegrin And Metalloproteinase with a ThromboSpondin type 1 motif, member 13; CFH: factor H; CFI: factor I; CFB: factor B; MCP: membrane cofactor protein; THBD: thrombomodulin.; MLPA, multiplex ligation dependent probe amplification.
Figure 8
Figure 8
The various subgroups of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura according to age at onset. Pink arrows and boxes: complement-HUS; green arrows and boxes: TTP; upper line: immune HUS and TTP; lower line: hereditary HUS and TTP. The figure also shows the 2 main infection-induced HUS (blue arrows and boxes) and the various causes of secondary atypical HUS (violet boxes), according to age. HUS: hemolytic uremic syndrome; TTP: thrombotic thrombocytopenic purpura; HIV: human immunodeficiency virus; STEC: Shiga-toxin producing Escherichia coli; ADAMTS 13, A Desintegrin And Metalloproteinase with a ThromboSpondin type 1 motif, member 13.
Figure 9
Figure 9
Recommendations for plasmatherapy to prevent post- kidney transplant recurrence of hemolytic uremic syndrome, according to the Consensus Study Group [125]. Of note, preventive eculizumab (started before transplantation) now has to be considered for patients at very high risk of recurrence. PE, plasma exchange; FFP, fresh frozen plasma.
Figure 10
Figure 10
Blockade of terminal complement activation, adapted from [149]. Eculizumab binds to C5 and prevents the formation of the membrane attack complex by reducing cleavage of C5 to C5a and C5b.

Similar articles

Cited by

References

    1. Besbas N, Karpman D, Landau D, Loirat C, Proesmans W, Remuzzi G, Rizzoni G, Taylor CM, Van de Kar N, Zimmerhackl LB. A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kidney Int. 2006;70:423–431. - PubMed
    1. Noris M, Remuzzi G. Hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16:1035–1050. doi: 10.1681/ASN.2004100861. - DOI - PubMed
    1. Johnson S, Taylor CM. What's new in haemolytic uraemic syndrome? Eur J Pediatr. 2008;167:965–971. doi: 10.1007/s00431-008-0745-7. - DOI - PubMed
    1. Scheiring J, Rosales A, Zimmerhackl LB. Clinical practice. Today's understanding of the haemolytic uraemic syndrome. Eur J Pediatr. 2010;169:7–13. doi: 10.1007/s00431-009-1039-4. - DOI - PubMed
    1. Keir L, Coward RJ. Advances in our understanding of the pathogenesis of glomerular thrombotic microangiopathy. Pediatr Nephrol. 2011;26:523–533. doi: 10.1007/s00467-010-1637-4. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances