Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 21;122(12):1200-9.
doi: 10.1161/CIRCULATIONAHA.110.955245. Epub 2010 Sep 7.

Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition

Affiliations

Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition

Asish K Ghosh et al. Circulation. .

Abstract

Background: Elevated levels of plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of urokinase plasminogen activator and tissue plasminogen activator, are implicated in the pathogenesis of tissue fibrosis. Paradoxically, lack of PAI-1 in the heart is associated with the development of cardiac fibrosis in aged mice. However, the molecular basis of cardiac fibrosis in aged PAI-1-deficient mice is unknown. Here, we investigated the molecular and cellular bases of myocardial fibrosis.

Methods and results: Histological evaluation of myocardial tissues derived from aged PAI-1-deficient mice revealed myocardial fibrosis resulting from excessive accumulation of collagen. Immunohistochemical characterization revealed that the levels of matrix metalloproteinase-2, matrix metalloproteinase-9, and transforming growth factor-β1/2 and the number of Mac3-positive and fibroblast specific protein-1-positive cells were significantly elevated in aged PAI-1-deficient myocardial tissues compared with controls. Zymographic analysis revealed that matrix metalloproteinase-2 enzymatic activity was elevated in PAI-1-deficient mouse cardiac endothelial cells. Real-time quantitative polymerase chain reaction analyses of RNA from myocardial tissues revealed the upregulation of profibrotic markers in aged PAI-1-deficient mice. The numbers of phosphorylated Smad2-, phosphorylated Smad3-, and phosphorylated ERK1/2 MAPK-, but not pAkt/PKB-, positive cells were significantly increased in PAI-1-deficient myocardial tissues. Western blot and immunocytochemical analysis revealed that PAI-1-deficient mouse cardiac endothelial cells were more susceptible to endothelial-to-mesenchymal transition in response to transforming growth factor-β2.

Conclusions: These results indicate that spontaneous activation of both Smad and non-Smad transforming growth factor-β signaling may contribute to profibrotic responses in aged PAI-1-deficient mice hearts and establish a possible link between endothelial-to-mesenchymal transition and cardiac fibrosis in PAI-1-deficient mice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms